measure_theory.measure.measure_spaceMathlib.MeasureTheory.Measure.MeasureSpace

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

chore(measure_theory/measure/outer_measure): lemmas about zero and top (#18983)
Diff
@@ -938,6 +938,17 @@ instance [measurable_space α] : complete_lattice (measure α) :=
 
 end Inf
 
+@[simp] lemma _root_.measure_theory.outer_measure.to_measure_top [measurable_space α] :
+  (⊤ : outer_measure α).to_measure (by rw [outer_measure.top_caratheodory]; exact le_top)
+    = (⊤ : measure α) :=
+top_unique $ λ s hs,
+    by cases s.eq_empty_or_nonempty with h h;
+      simp [h, to_measure_apply ⊤ _ hs, outer_measure.top_apply]
+
+@[simp] lemma to_outer_measure_top [measurable_space α] :
+  (⊤ : measure α).to_outer_measure = (⊤ : outer_measure α) :=
+by rw [←outer_measure.to_measure_top, to_measure_to_outer_measure, outer_measure.trim_top]
+
 @[simp] lemma top_add : ⊤ + μ = ⊤ := top_unique $ measure.le_add_right le_rfl
 @[simp] lemma add_top : μ + ⊤ = ⊤ := top_unique $ measure.le_add_left le_rfl
 

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3445,7 +3445,7 @@ theorem ae_restrict_iff {p : α → Prop} (hp : MeasurableSet {x | p x}) :
     (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x :=
   by
   simp only [ae_iff, ← compl_set_of, restrict_apply hp.compl]
-  congr with x; simp [and_comm']
+  congr with x; simp [and_comm]
 #align measure_theory.ae_restrict_iff MeasureTheory.ae_restrict_iff
 -/
 
@@ -3462,7 +3462,7 @@ theorem ae_restrict_iff' {p : α → Prop} (hs : MeasurableSet s) :
     (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x :=
   by
   simp only [ae_iff, ← compl_set_of, restrict_apply_eq_zero' hs]
-  congr with x; simp [and_comm']
+  congr with x; simp [and_comm]
 #align measure_theory.ae_restrict_iff' MeasureTheory.ae_restrict_iff'
 -/
 
@@ -3591,7 +3591,7 @@ theorem ae_restrict_eq (hs : MeasurableSet s) : (μ.restrict s).ae = μ.ae ⊓ 
   by
   ext t
   simp only [mem_inf_principal, mem_ae_iff, restrict_apply_eq_zero' hs, compl_set_of, not_imp,
-    and_comm' (_ ∈ s)]
+    and_comm (_ ∈ s)]
   rfl
 #align measure_theory.ae_restrict_eq MeasureTheory.ae_restrict_eq
 -/
Diff
@@ -3963,7 +3963,7 @@ theorem ae_mem_iff_measure_eq [IsFiniteMeasure μ] {s : Set α} (hs : NullMeasur
 instance [Finite α] [MeasurableSpace α] : IsFiniteMeasure (Measure.count : Measure α) :=
   ⟨by
     cases nonempty_fintype α
-    simpa [measure.count_apply, tsum_fintype] using (ENNReal.nat_ne_top _).lt_top⟩
+    simpa [measure.count_apply, tsum_fintype] using (ENNReal.natCast_ne_top _).lt_top⟩
 
 end IsFiniteMeasure
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
 -/
 import MeasureTheory.Measure.NullMeasurable
-import MeasureTheory.MeasurableSpace
+import MeasureTheory.MeasurableSpace.Basic
 import Topology.Algebra.Order.LiminfLimsup
 
 #align_import measure_theory.measure.measure_space from "leanprover-community/mathlib"@"343e80208d29d2d15f8050b929aa50fe4ce71b55"
@@ -597,7 +597,7 @@ theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countab
 #align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_biUnion_eq_iSup
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
 #print MeasureTheory.measure_iInter_eq_iInf /-
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the infimum of the measures. -/
@@ -2165,7 +2165,7 @@ theorem restrict_eq_self_of_ae_mem {m0 : MeasurableSpace α} ⦃s : Set α⦄ 
 #align measure_theory.measure.restrict_eq_self_of_ae_mem MeasureTheory.Measure.restrict_eq_self_of_ae_mem
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 #print MeasureTheory.Measure.restrict_congr_meas /-
 theorem restrict_congr_meas (hs : MeasurableSet s) :
     μ.restrict s = ν.restrict s ↔ ∀ (t) (_ : t ⊆ s), MeasurableSet t → μ t = ν t :=
@@ -3109,7 +3109,7 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
   · replace hs : ⇑e⁻¹ ⁻¹' s =ᵐ[μ] s; · rwa [Equiv.image_eq_preimage] at hs
     replace he' : ⇑e⁻¹^[k] ⁻¹' s =ᵐ[μ] s := he'.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e⁻¹ k, inv_pow e k] at he'
-  · rw [zpow_neg, zpow_coe_nat]
+  · rw [zpow_neg, zpow_natCast]
     replace hs : e ⁻¹' s =ᵐ[μ] s; · convert he.preimage_ae_eq hs.symm; rw [Equiv.preimage_image]
     replace he : ⇑e^[k] ⁻¹' s =ᵐ[μ] s := he.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e k] at he
@@ -3179,7 +3179,7 @@ section Pointwise
 
 open scoped Pointwise
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 #print MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_one /-
 @[to_additive]
 theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
@@ -4532,7 +4532,7 @@ theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ :
 #align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
 #print MeasureTheory.Measure.measure_toMeasurable_inter_of_cover /-
 /-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
 superset `to_measurable μ t` (which has the same measure as `t`) satisfies,
@@ -5560,7 +5560,7 @@ namespace IsCompact
 
 variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set α}
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 #print IsCompact.exists_open_superset_measure_lt_top' /-
 /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
 superset of finite measure. -/
@@ -5580,7 +5580,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
 #align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 #print IsCompact.exists_open_superset_measure_lt_top /-
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
Diff
@@ -305,7 +305,7 @@ theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
 theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞}
     (h : μ t < μ s + ε) : μ (t \ s) < ε :=
   by
-  rw [measure_diff hst hs hs']; rw [add_comm] at h 
+  rw [measure_diff hst hs hs']; rw [add_comm] at h
   exact ENNReal.sub_lt_of_lt_add (measure_mono hst) h
 #align measure_theory.measure_diff_lt_of_lt_add MeasureTheory.measure_diff_lt_of_lt_add
 -/
@@ -406,7 +406,7 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
     calc
       μ (⋃ b, s b) = ∞ := top_unique (hb ▸ (h_le b).trans <| measure_mono <| subset_Union _ _)
       _ = μ (⋃ b, t b) := Eq.symm <| top_unique <| hb ▸ measure_mono <| subset_Union _ _
-  push_neg at htop 
+  push_neg at htop
   refine' le_antisymm (measure_mono (Union_mono hsub)) _
   set M := to_measurable μ
   have H : ∀ b, (M (t b) ∩ M (⋃ b, s b) : Set α) =ᵐ[μ] M (t b) :=
@@ -542,7 +542,7 @@ then `s` intersects `t`. Version assuming that `s` is measurable. -/
 theorem nonempty_inter_of_measure_lt_add' {m : MeasurableSpace α} (μ : Measure α) {s t u : Set α}
     (hs : MeasurableSet s) (h's : s ⊆ u) (h't : t ⊆ u) (h : μ u < μ s + μ t) : (s ∩ t).Nonempty :=
   by
-  rw [add_comm] at h 
+  rw [add_comm] at h
   rw [inter_comm]
   exact nonempty_inter_of_measure_lt_add μ hs h't h's h
 #align measure_theory.nonempty_inter_of_measure_lt_add' MeasureTheory.nonempty_inter_of_measure_lt_add'
@@ -561,7 +561,7 @@ theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed
     by
     simp only [← ht, encodable.encode_injective.apply_extend μ, ← supr_eq_Union,
       iSup_extend_bot Encodable.encode_injective, (· ∘ ·), Pi.bot_apply, bot_eq_empty,
-      measure_empty] at this 
+      measure_empty] at this
     exact this.trans (iSup_extend_bot Encodable.encode_injective _)
   clear! ι
   -- The `≥` inequality is trivial
@@ -683,7 +683,7 @@ theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSp
       intro n
       apply bInter_subset_of_mem
       exact u_pos n
-  rw [B] at A 
+  rw [B] at A
   obtain ⟨n, hn⟩ : ∃ n, μ (s (u n)) < L := ((tendsto_order.1 A).2 _ hL).exists
   have : Ioc a (u n) ∈ 𝓝[>] a := Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, u_pos n⟩
   filter_upwards [this] with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
@@ -870,7 +870,7 @@ then for any measurable set `s` one also has `μ (t ∩ s) = μ (u ∩ s)`. -/
 theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (h : μ t = μ u)
     (htu : t ⊆ u) (ht_ne_top : μ t ≠ ∞) : μ (t ∩ s) = μ (u ∩ s) :=
   by
-  rw [h] at ht_ne_top 
+  rw [h] at ht_ne_top
   refine' le_antisymm (measure_mono (inter_subset_inter_left _ htu)) _
   have A : μ (u ∩ s) + μ (u \ s) ≤ μ (t ∩ s) + μ (u \ s) :=
     calc
@@ -1078,7 +1078,7 @@ theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν
       μ t + ν t = μ s + ν s := h''.symm
       _ ≤ μ s + ν t := add_le_add le_rfl (measure_mono h')
   apply ENNReal.le_of_add_le_add_right _ this
-  simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at h 
+  simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at h
   exact h.2
 #align measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eq
 -/
@@ -1087,7 +1087,7 @@ theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν
 theorem measure_eq_right_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν) t ≠ ∞) (h' : s ⊆ t)
     (h'' : (μ + ν) s = (μ + ν) t) : ν s = ν t :=
   by
-  rw [add_comm] at h'' h 
+  rw [add_comm] at h'' h
   exact measure_eq_left_of_subset_of_measure_add_eq h h' h''
 #align measure_theory.measure.measure_eq_right_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_right_of_subset_of_measure_add_eq
 -/
@@ -1101,7 +1101,7 @@ theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s
       measure_eq_left_of_subset_of_measure_add_eq _ (subset_to_measurable _ _)
         (measure_to_measurable t).symm
     rwa [measure_to_measurable t]
-  · simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at ht 
+  · simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at ht
     exact ht.1
 #align measure_theory.measure.measure_to_measurable_add_inter_left MeasureTheory.Measure.measure_toMeasurable_add_inter_left
 -/
@@ -1624,9 +1624,9 @@ theorem ae_eq_image_of_ae_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSp
     simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]; tauto
   have h_eq_β : {a : β | ¬(f '' s) a = (f '' t) a} = f '' s \ f '' t ∪ f '' t \ f '' s := by ext1 x;
     simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]; tauto
-  rw [← Set.image_diff hfi, ← Set.image_diff hfi, ← Set.image_union] at h_eq_β 
+  rw [← Set.image_diff hfi, ← Set.image_diff hfi, ← Set.image_union] at h_eq_β
   rw [h_eq_β]
-  rw [h_eq_α] at hst 
+  rw [h_eq_α] at hst
   exact measure_image_eq_zero_of_comap_eq_zero f μ hfi hf hst
 #align measure_theory.measure.ae_eq_image_of_ae_eq_comap MeasureTheory.Measure.ae_eq_image_of_ae_eq_comap
 -/
@@ -1665,7 +1665,7 @@ section ComapAnyMeasure
 theorem MeasurableSet.nullMeasurableSet_subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
     (ht : MeasurableSet t) : NullMeasurableSet ((coe : s → α) '' t) μ :=
   by
-  rw [Subtype.instMeasurableSpace, comap_eq_generate_from] at ht 
+  rw [Subtype.instMeasurableSpace, comap_eq_generate_from] at ht
   refine'
     generate_from_induction (fun t : Set s => null_measurable_set (coe '' t) μ)
       {t : Set s | ∃ s' : Set α, MeasurableSet s' ∧ coe ⁻¹' s' = t} _ _ _ _ ht
@@ -2271,7 +2271,7 @@ theorem restrict_sInf_eq_sInf_restrict {m0 : MeasurableSpace α} {m : Set (Measu
 theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
     (hp : ∀ᵐ x ∂μ.restrict s, p x) : ∃ x, x ∈ s ∧ p x :=
   by
-  rw [← μ.restrict_apply_self, ← frequently_ae_mem_iff] at hs 
+  rw [← μ.restrict_apply_self, ← frequently_ae_mem_iff] at hs
   exact (hs.and_eventually hp).exists
 #align measure_theory.measure.exists_mem_of_measure_ne_zero_of_ae MeasureTheory.Measure.exists_mem_of_measure_ne_zero_of_ae
 -/
@@ -2329,7 +2329,7 @@ theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = gen
     have := T_eq t ht
     rw [Set.inter_comm] at hvt ⊢
     rwa [← measure_inter_add_diff t hv, ← measure_inter_add_diff t hv, ← hvt,
-      ENNReal.add_right_inj] at this 
+      ENNReal.add_right_inj] at this
     exact ne_top_of_le_ne_top (htop t ht) (measure_mono <| Set.inter_subset_left _ _)
   · intro f hfd hfm h_eq
     simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.iUnion hfm)] at h_eq ⊢
@@ -2730,7 +2730,7 @@ theorem count_apply_eq_top' (s_mble : MeasurableSet s) : count s = ∞ ↔ s.Inf
   by
   by_cases hs : s.finite
   · simp [Set.Infinite, hs, count_apply_finite' hs s_mble]
-  · change s.infinite at hs 
+  · change s.infinite at hs
     simp [hs, count_apply_infinite]
 #align measure_theory.measure.count_apply_eq_top' MeasureTheory.Measure.count_apply_eq_top'
 -/
@@ -2741,7 +2741,7 @@ theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.I
   by
   by_cases hs : s.finite
   · exact count_apply_eq_top' hs.measurable_set
-  · change s.infinite at hs 
+  · change s.infinite at hs
     simp [hs, count_apply_infinite]
 #align measure_theory.measure.count_apply_eq_top MeasureTheory.Measure.count_apply_eq_top
 -/
@@ -2842,7 +2842,7 @@ theorem count_injective_image' {f : β → α} (hf : Function.Injective f) {s :
       s.card_image_of_injective hf]
     simpa only [Finset.coe_image] using fs_mble
   rw [count_apply_infinite hs]
-  rw [← finite_image_iff <| hf.inj_on _] at hs 
+  rw [← finite_image_iff <| hf.inj_on _] at hs
   rw [count_apply_infinite hs]
 #align measure_theory.measure.count_injective_image' MeasureTheory.Measure.count_injective_image'
 -/
@@ -2854,7 +2854,7 @@ theorem count_injective_image [MeasurableSingletonClass α] [MeasurableSingleton
   by_cases hs : s.finite
   · exact count_injective_image' hf hs.measurable_set (finite.image f hs).MeasurableSet
   rw [count_apply_infinite hs]
-  rw [← finite_image_iff <| hf.inj_on _] at hs 
+  rw [← finite_image_iff <| hf.inj_on _] at hs
   rw [count_apply_infinite hs]
 #align measure_theory.measure.count_injective_image MeasureTheory.Measure.count_injective_image
 -/
@@ -3106,13 +3106,13 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
     ⇑(e ^ k) '' s =ᵐ[μ] s := by
   rw [Equiv.image_eq_preimage]
   obtain ⟨k, rfl | rfl⟩ := k.eq_coe_or_neg
-  · replace hs : ⇑e⁻¹ ⁻¹' s =ᵐ[μ] s; · rwa [Equiv.image_eq_preimage] at hs 
+  · replace hs : ⇑e⁻¹ ⁻¹' s =ᵐ[μ] s; · rwa [Equiv.image_eq_preimage] at hs
     replace he' : ⇑e⁻¹^[k] ⁻¹' s =ᵐ[μ] s := he'.preimage_iterate_ae_eq k hs
-    rwa [Equiv.Perm.iterate_eq_pow e⁻¹ k, inv_pow e k] at he' 
+    rwa [Equiv.Perm.iterate_eq_pow e⁻¹ k, inv_pow e k] at he'
   · rw [zpow_neg, zpow_coe_nat]
     replace hs : e ⁻¹' s =ᵐ[μ] s; · convert he.preimage_ae_eq hs.symm; rw [Equiv.preimage_image]
     replace he : ⇑e^[k] ⁻¹' s =ᵐ[μ] s := he.preimage_iterate_ae_eq k hs
-    rwa [Equiv.Perm.iterate_eq_pow e k] at he 
+    rwa [Equiv.Perm.iterate_eq_pow e k] at he
 #align measure_theory.measure.quasi_measure_preserving.image_zpow_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq
 -/
 
@@ -3139,7 +3139,7 @@ theorem liminf_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreservi
   by
   -- Need `@` below because of diamond; see gh issue #16932
   rw [← ae_eq_set_compl_compl, @Filter.liminf_compl (Set α)]
-  rw [← ae_eq_set_compl_compl, ← preimage_compl] at hs 
+  rw [← ae_eq_set_compl_compl, ← preimage_compl] at hs
   convert hf.limsup_preimage_iterate_ae_eq hs
   ext1 n
   simp only [← Set.preimage_iterate_eq, comp_app, preimage_compl]
@@ -3574,7 +3574,7 @@ theorem ae_eq_comp {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ) (
 theorem sub_ae_eq_zero {β} [AddGroup β] (f g : α → β) : f - g =ᵐ[μ] 0 ↔ f =ᵐ[μ] g :=
   by
   refine' ⟨fun h => h.mono fun x hx => _, fun h => h.mono fun x hx => _⟩
-  · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero] at hx 
+  · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero] at hx
   · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero]
 #align measure_theory.sub_ae_eq_zero MeasureTheory.sub_ae_eq_zero
 -/
@@ -4425,9 +4425,9 @@ theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : Mea
     (h's : r < μ s) : ∃ t, MeasurableSet t ∧ t ⊆ s ∧ r < μ t ∧ μ t < ∞ :=
   by
   rw [← supr_restrict_spanning_sets hs,
-    @lt_iSup_iff _ _ _ r fun i : ℕ => μ.restrict (spanning_sets μ i) s] at h's 
+    @lt_iSup_iff _ _ _ r fun i : ℕ => μ.restrict (spanning_sets μ i) s] at h's
   rcases h's with ⟨n, hn⟩
-  simp only [restrict_apply hs] at hn 
+  simp only [restrict_apply hs] at hn
   refine'
     ⟨s ∩ spanning_sets μ n, hs.inter (measurable_spanning_sets _ _), inter_subset_left _ _, hn, _⟩
   exact (measure_mono (inter_subset_right _ _)).trans_lt (measure_spanning_sets_lt_top _ _)
@@ -4731,15 +4731,15 @@ theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFinite
   let s := spanning_sets μ
   have hs_univ : (⋃ i, s i) = Set.univ := Union_spanning_sets μ
   have hs_meas : ∀ i, measurable_set[⊥] (s i) := measurable_spanning_sets μ
-  simp_rw [MeasurableSpace.measurableSet_bot_iff] at hs_meas 
+  simp_rw [MeasurableSpace.measurableSet_bot_iff] at hs_meas
   by_cases h_univ_empty : Set.univ = ∅
   · rw [h_univ_empty, measure_empty]; exact ennreal.zero_ne_top.lt_top
   obtain ⟨i, hsi⟩ : ∃ i, s i = Set.univ :=
     by
     by_contra h_not_univ
-    push_neg at h_not_univ 
+    push_neg at h_not_univ
     have h_empty : ∀ i, s i = ∅ := by simpa [h_not_univ] using hs_meas
-    simp [h_empty] at hs_univ 
+    simp [h_empty] at hs_univ
     exact h_univ_empty hs_univ.symm
   rw [← hsi]
   exact measure_spanning_sets_lt_top μ i
@@ -5017,9 +5017,9 @@ theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β
   inhabit β
   have : m univ ≠ 0 := ne_bot_of_le_ne_bot (h default) (m.mono' <| subset_univ _)
   rcases m.exists_mem_forall_mem_nhds_within_pos this with ⟨b, -, hb⟩
-  simp only [nhdsWithin_univ] at hb 
+  simp only [nhdsWithin_univ] at hb
   rcases m.exists_mem_forall_mem_nhds_within_pos (h b) with ⟨a, hab : a ≠ b, ha⟩
-  simp only [is_open_compl_singleton.nhds_within_eq hab] at ha 
+  simp only [is_open_compl_singleton.nhds_within_eq hab] at ha
   exact ⟨a, b, hab, ha, hb⟩
 #align measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimage
 -/
@@ -5365,7 +5365,7 @@ theorem map_map_symm (e : α ≃ᵐ β) : (ν.map e.symm).map e = ν := by
 
 #print MeasurableEquiv.map_measurableEquiv_injective /-
 theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (map e) := by intro μ₁ μ₂ hμ;
-  apply_fun map e.symm at hμ ; simpa [map_symm_map e] using hμ
+  apply_fun map e.symm at hμ; simpa [map_symm_map e] using hμ
 #align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injective
 -/
 
@@ -5547,7 +5547,7 @@ theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ IsFiniteMeas
   by
   rw [sigma_finite_bot_iff]
   refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ <;> have h_univ := h.measure_univ_lt_top
-  · rwa [trim_measurable_set_eq bot_le MeasurableSet.univ] at h_univ 
+  · rwa [trim_measurable_set_eq bot_le MeasurableSet.univ] at h_univ
   · rwa [trim_measurable_set_eq bot_le MeasurableSet.univ]
 #align measure_theory.sigma_finite_trim_bot_iff MeasureTheory.sigmaFinite_trim_bot_iff
 -/
@@ -5682,10 +5682,10 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
   let S : Set (Set α) := {s | IsOpen s ∧ μ s < ∞}
   obtain ⟨T, T_count, TS, hT⟩ : ∃ T : Set (Set α), T.Countable ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S :=
     is_open_sUnion_countable S fun s hs => hs.1
-  rw [μ.is_topological_basis_is_open_lt_top.sUnion_eq] at hT 
+  rw [μ.is_topological_basis_is_open_lt_top.sUnion_eq] at hT
   have T_ne : T.nonempty := by
     by_contra h'T
-    simp only [not_nonempty_iff_eq_empty.1 h'T, sUnion_empty] at hT 
+    simp only [not_nonempty_iff_eq_empty.1 h'T, sUnion_empty] at hT
     simpa only [← hT] using mem_univ (default : α)
   obtain ⟨f, hf⟩ : ∃ f : ℕ → Set α, T = range f; exact T_count.exists_eq_range T_ne
   have fS : ∀ n, f n ∈ S := by
@@ -5828,7 +5828,7 @@ theorem indicator_ae_eq_restrict_compl (hs : MeasurableSet s) :
 theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict (sᶜ)] 0) : s.indicator f =ᵐ[μ] f :=
   by
-  rw [Filter.EventuallyEq, ae_restrict_iff' hs.compl] at hf 
+  rw [Filter.EventuallyEq, ae_restrict_iff' hs.compl] at hf
   filter_upwards [hf] with x hx
   by_cases hxs : x ∈ s
   · simp only [hxs, Set.indicator_of_mem]
@@ -5840,7 +5840,7 @@ theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
 theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict s] 0) : s.indicator f =ᵐ[μ] 0 :=
   by
-  rw [Filter.EventuallyEq, ae_restrict_iff' hs] at hf 
+  rw [Filter.EventuallyEq, ae_restrict_iff' hs] at hf
   filter_upwards [hf] with x hx
   by_cases hxs : x ∈ s
   · simp only [hxs, hx hxs, Set.indicator_of_mem]
Diff
@@ -3109,7 +3109,7 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
   · replace hs : ⇑e⁻¹ ⁻¹' s =ᵐ[μ] s; · rwa [Equiv.image_eq_preimage] at hs 
     replace he' : ⇑e⁻¹^[k] ⁻¹' s =ᵐ[μ] s := he'.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e⁻¹ k, inv_pow e k] at he' 
-  · rw [zpow_neg, zpow_ofNat]
+  · rw [zpow_neg, zpow_coe_nat]
     replace hs : e ⁻¹' s =ᵐ[μ] s; · convert he.preimage_ae_eq hs.symm; rw [Equiv.preimage_image]
     replace he : ⇑e^[k] ⁻¹' s =ᵐ[μ] s := he.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e k] at he 
Diff
@@ -4878,7 +4878,7 @@ instance isLocallyFiniteMeasureSMulNNReal [TopologicalSpace α] (μ : Measure α
 protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α] (μ : Measure α)
     [IsLocallyFiniteMeasure μ] : TopologicalSpace.IsTopologicalBasis {s | IsOpen s ∧ μ s < ∞} :=
   by
-  refine' TopologicalSpace.isTopologicalBasis_of_open_of_nhds (fun s hs => hs.1) _
+  refine' TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds (fun s hs => hs.1) _
   intro x s xs hs
   rcases μ.exists_is_open_measure_lt_top x with ⟨v, xv, hv, μv⟩
   refine' ⟨v ∩ s, ⟨hv.inter hs, lt_of_le_of_lt _ μv⟩, ⟨xv, xs⟩, inter_subset_right _ _⟩
Diff
@@ -4615,12 +4615,12 @@ theorem restrict_toMeasurable_of_cover {s : Set α} {v : ℕ → Set α} (hv : s
 #align measure_theory.measure.restrict_to_measurable_of_cover MeasureTheory.Measure.restrict_toMeasurable_of_cover
 -/
 
-#print MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFinite /-
+#print MeasureTheory.Measure.measure_toMeasurable_inter_of_sFinite /-
 /-- The measurable superset `to_measurable μ t` of `t` (which has the same measure as `t`)
 satisfies, for any measurable set `s`, the equality `μ (to_measurable μ t ∩ s) = μ (t ∩ s)`.
 This only holds when `μ` is σ-finite. For a version without this assumption (but requiring
 that `t` has finite measure), see `measure_to_measurable_inter`. -/
-theorem measure_toMeasurable_inter_of_sigmaFinite [SigmaFinite μ] {s : Set α} (hs : MeasurableSet s)
+theorem measure_toMeasurable_inter_of_sFinite [SigmaFinite μ] {s : Set α} (hs : MeasurableSet s)
     (t : Set α) : μ (toMeasurable μ t ∩ s) = μ (t ∩ s) :=
   by
   have : t ⊆ ⋃ n, spanning_sets μ n := by rw [Union_spanning_sets]; exact subset_univ _
@@ -4628,16 +4628,16 @@ theorem measure_toMeasurable_inter_of_sigmaFinite [SigmaFinite μ] {s : Set α}
   calc
     μ (t ∩ spanning_sets μ n) ≤ μ (spanning_sets μ n) := measure_mono (inter_subset_right _ _)
     _ < ∞ := measure_spanning_sets_lt_top μ n
-#align measure_theory.measure.measure_to_measurable_inter_of_sigma_finite MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFinite
+#align measure_theory.measure.measure_to_measurable_inter_of_sigma_finite MeasureTheory.Measure.measure_toMeasurable_inter_of_sFinite
 -/
 
-#print MeasureTheory.Measure.restrict_toMeasurable_of_sigmaFinite /-
+#print MeasureTheory.Measure.restrict_toMeasurable_of_sFinite /-
 @[simp]
-theorem restrict_toMeasurable_of_sigmaFinite [SigmaFinite μ] (s : Set α) :
+theorem restrict_toMeasurable_of_sFinite [SigmaFinite μ] (s : Set α) :
     μ.restrict (toMeasurable μ s) = μ.restrict s :=
   ext fun t ht => by
     simp only [restrict_apply ht, inter_comm t, measure_to_measurable_inter_of_sigma_finite ht]
-#align measure_theory.measure.restrict_to_measurable_of_sigma_finite MeasureTheory.Measure.restrict_toMeasurable_of_sigmaFinite
+#align measure_theory.measure.restrict_to_measurable_of_sigma_finite MeasureTheory.Measure.restrict_toMeasurable_of_sFinite
 -/
 
 namespace FiniteSpanningSetsIn
Diff
@@ -5290,10 +5290,12 @@ variable [MeasureSpace α] {s t : Set α}
 -/
 
 
-#print SetCoe.measureSpace /-
-instance SetCoe.measureSpace (s : Set α) : MeasureSpace s :=
+/- warning: set_coe.measure_space clashes with measure_theory.measure.subtype.measure_space -> MeasureTheory.Measure.Subtype.measureSpace
+Case conversion may be inaccurate. Consider using '#align set_coe.measure_space MeasureTheory.Measure.Subtype.measureSpaceₓ'. -/
+#print MeasureTheory.Measure.Subtype.measureSpace /-
+instance MeasureTheory.Measure.Subtype.measureSpace (s : Set α) : MeasureSpace s :=
   ⟨comap (coe : s → α) volume⟩
-#align set_coe.measure_space SetCoe.measureSpace
+#align set_coe.measure_space MeasureTheory.Measure.Subtype.measureSpace
 -/
 
 #print volume_set_coe_def /-
Diff
@@ -649,8 +649,8 @@ theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Se
 /-- The measure of the intersection of a decreasing sequence of measurable
 sets indexed by a linear order with first countable topology is the limit of the measures. -/
 theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSpace ι]
-    [OrderTopology ι] [DenselyOrdered ι] [TopologicalSpace.FirstCountableTopology ι] {s : ι → Set α}
-    {a : ι} (hs : ∀ r > a, MeasurableSet (s r)) (hm : ∀ i j, a < i → i ≤ j → s i ⊆ s j)
+    [OrderTopology ι] [DenselyOrdered ι] [FirstCountableTopology ι] {s : ι → Set α} {a : ι}
+    (hs : ∀ r > a, MeasurableSet (s r)) (hm : ∀ i j, a < i → i ≤ j → s i ⊆ s j)
     (hf : ∃ r > a, μ (s r) ≠ ∞) : Tendsto (μ ∘ s) (𝓝[Ioi a] a) (𝓝 (μ (⋂ r > a, s r))) :=
   by
   refine' tendsto_order.2 ⟨fun l hl => _, fun L hL => _⟩
Diff
@@ -628,7 +628,7 @@ is the limit of the measures. -/
 theorem tendsto_measure_iUnion [SemilatticeSup ι] [Countable ι] {s : ι → Set α} (hm : Monotone s) :
     Tendsto (μ ∘ s) atTop (𝓝 (μ (⋃ n, s n))) :=
   by
-  rw [measure_Union_eq_supr (directed_of_sup hm)]
+  rw [measure_Union_eq_supr (directed_of_isDirected_le hm)]
   exact tendsto_atTop_iSup fun n m hnm => measure_mono <| hm hnm
 #align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_iUnion
 -/
@@ -640,7 +640,7 @@ theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Se
     (hs : ∀ n, MeasurableSet (s n)) (hm : Antitone s) (hf : ∃ i, μ (s i) ≠ ∞) :
     Tendsto (μ ∘ s) atTop (𝓝 (μ (⋂ n, s n))) :=
   by
-  rw [measure_Inter_eq_infi hs (directed_of_sup hm) hf]
+  rw [measure_Inter_eq_infi hs (directed_of_isDirected_le hm) hf]
   exact tendsto_atTop_iInf fun n m hnm => measure_mono <| hm hnm
 #align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_iInter
 -/
@@ -2230,7 +2230,7 @@ theorem restrict_iUnion_congr [Countable ι] {s : ι → Set α} :
   refine' ⟨fun h i => restrict_congr_mono (subset_Union _ _) h, fun h => _⟩
   ext1 t ht
   have D : Directed (· ⊆ ·) fun t : Finset ι => ⋃ i ∈ t, s i :=
-    directed_of_sup fun t₁ t₂ ht => bUnion_subset_bUnion_left ht
+    directed_of_isDirected_le fun t₁ t₂ ht => bUnion_subset_bUnion_left ht
   rw [Union_eq_Union_finset]
   simp only [restrict_Union_apply_eq_supr D ht, restrict_finset_bUnion_congr.2 fun i hi => h i]
 #align measure_theory.measure.restrict_Union_congr MeasureTheory.Measure.restrict_iUnion_congr
@@ -4413,7 +4413,7 @@ theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
     (⨆ i, μ.restrict (spanningSets μ i) s) = μ s :=
   calc
     (⨆ i, μ.restrict (spanningSets μ i) s) = μ.restrict (⋃ i, spanningSets μ i) s :=
-      (restrict_iUnion_apply_eq_iSup (directed_of_sup (monotone_spanningSets μ)) hs).symm
+      (restrict_iUnion_apply_eq_iSup (directed_of_isDirected_le (monotone_spanningSets μ)) hs).symm
     _ = μ s := by rw [Union_spanning_sets, restrict_univ]
 #align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.iSup_restrict_spanningSets
 -/
Diff
@@ -1152,13 +1152,14 @@ theorem le_iff' : μ₁ ≤ μ₂ ↔ ∀ s, μ₁ s ≤ μ₂ s :=
 #print MeasureTheory.Measure.lt_iff /-
 theorem lt_iff : μ < ν ↔ μ ≤ ν ∧ ∃ s, MeasurableSet s ∧ μ s < ν s :=
   lt_iff_le_not_le.trans <|
-    and_congr Iff.rfl <| by simp only [le_iff, not_forall, not_le, exists_prop]
+    and_congr Iff.rfl <| by simp only [le_iff, Classical.not_forall, not_le, exists_prop]
 #align measure_theory.measure.lt_iff MeasureTheory.Measure.lt_iff
 -/
 
 #print MeasureTheory.Measure.lt_iff' /-
 theorem lt_iff' : μ < ν ↔ μ ≤ ν ∧ ∃ s, μ s < ν s :=
-  lt_iff_le_not_le.trans <| and_congr Iff.rfl <| by simp only [le_iff', not_forall, not_le]
+  lt_iff_le_not_le.trans <|
+    and_congr Iff.rfl <| by simp only [le_iff', Classical.not_forall, not_le]
 #align measure_theory.measure.lt_iff' MeasureTheory.Measure.lt_iff'
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
 -/
-import Mathbin.MeasureTheory.Measure.NullMeasurable
-import Mathbin.MeasureTheory.MeasurableSpace
-import Mathbin.Topology.Algebra.Order.LiminfLimsup
+import MeasureTheory.Measure.NullMeasurable
+import MeasureTheory.MeasurableSpace
+import Topology.Algebra.Order.LiminfLimsup
 
 #align_import measure_theory.measure.measure_space from "leanprover-community/mathlib"@"343e80208d29d2d15f8050b929aa50fe4ce71b55"
 
@@ -597,7 +597,7 @@ theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countab
 #align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_biUnion_eq_iSup
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
 #print MeasureTheory.measure_iInter_eq_iInf /-
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the infimum of the measures. -/
@@ -2164,7 +2164,7 @@ theorem restrict_eq_self_of_ae_mem {m0 : MeasurableSpace α} ⦃s : Set α⦄ 
 #align measure_theory.measure.restrict_eq_self_of_ae_mem MeasureTheory.Measure.restrict_eq_self_of_ae_mem
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 #print MeasureTheory.Measure.restrict_congr_meas /-
 theorem restrict_congr_meas (hs : MeasurableSet s) :
     μ.restrict s = ν.restrict s ↔ ∀ (t) (_ : t ⊆ s), MeasurableSet t → μ t = ν t :=
@@ -3178,7 +3178,7 @@ section Pointwise
 
 open scoped Pointwise
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 #print MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_one /-
 @[to_additive]
 theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
@@ -4531,7 +4531,7 @@ theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ :
 #align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
 #print MeasureTheory.Measure.measure_toMeasurable_inter_of_cover /-
 /-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
 superset `to_measurable μ t` (which has the same measure as `t`) satisfies,
@@ -5557,7 +5557,7 @@ namespace IsCompact
 
 variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set α}
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 #print IsCompact.exists_open_superset_measure_lt_top' /-
 /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
 superset of finite measure. -/
@@ -5577,7 +5577,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
 #align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 #print IsCompact.exists_open_superset_measure_lt_top /-
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
Diff
@@ -4901,28 +4901,28 @@ theorem IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α} [IsFini
 #align is_compact.measure_lt_top IsCompact.measure_lt_top
 -/
 
-#print Metric.Bounded.measure_lt_top /-
+#print Bornology.IsBounded.measure_lt_top /-
 /-- A bounded subset has finite measure for a measure which is finite on compact sets, in a
 proper space. -/
-theorem Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [IsFiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Metric.Bounded s) : μ s < ∞ :=
+theorem Bornology.IsBounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
+    [IsFiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Bornology.IsBounded s) : μ s < ∞ :=
   calc
     μ s ≤ μ (closure s) := measure_mono subset_closure
-    _ < ∞ := (Metric.isCompact_of_isClosed_bounded isClosed_closure hs.closure).measure_lt_top
-#align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_top
+    _ < ∞ := (Metric.isCompact_of_isClosed_isBounded isClosed_closure hs.closure).measure_lt_top
+#align metric.bounded.measure_lt_top Bornology.IsBounded.measure_lt_top
 -/
 
 #print MeasureTheory.measure_closedBall_lt_top /-
 theorem measure_closedBall_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
     [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
-  Metric.bounded_closedBall.measure_lt_top
+  Metric.isBounded_closedBall.measure_lt_top
 #align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_top
 -/
 
 #print MeasureTheory.measure_ball_lt_top /-
 theorem measure_ball_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
     [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
-  Metric.bounded_ball.measure_lt_top
+  Metric.isBounded_ball.measure_lt_top
 #align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_top
 -/
 
Diff
@@ -4961,7 +4961,7 @@ theorem isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α
     [LocallyCompactSpace α] [IsFiniteMeasureOnCompacts μ] : IsLocallyFiniteMeasure μ :=
   ⟨by
     intro x
-    rcases exists_compact_mem_nhds x with ⟨K, K_compact, K_mem⟩
+    rcases WeaklyLocallyCompactSpace.exists_compact_mem_nhds x with ⟨K, K_compact, K_mem⟩
     exact ⟨K, K_mem, K_compact.measure_lt_top⟩⟩
 #align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
 -/
Diff
@@ -2287,7 +2287,7 @@ theorem ext_iff_of_iUnion_eq_univ [Countable ι] {s : ι → Set α} (hs : (⋃
 #align measure_theory.measure.ext_iff_of_Union_eq_univ MeasureTheory.Measure.ext_iff_of_iUnion_eq_univ
 -/
 
-alias ext_iff_of_Union_eq_univ ↔ _ ext_of_Union_eq_univ
+alias ⟨_, ext_of_Union_eq_univ⟩ := ext_iff_of_Union_eq_univ
 #align measure_theory.measure.ext_of_Union_eq_univ MeasureTheory.Measure.ext_of_iUnion_eq_univ
 
 #print MeasureTheory.Measure.ext_iff_of_biUnion_eq_univ /-
@@ -2299,7 +2299,7 @@ theorem ext_iff_of_biUnion_eq_univ {S : Set ι} {s : ι → Set α} (hc : S.Coun
 #align measure_theory.measure.ext_iff_of_bUnion_eq_univ MeasureTheory.Measure.ext_iff_of_biUnion_eq_univ
 -/
 
-alias ext_iff_of_bUnion_eq_univ ↔ _ ext_of_bUnion_eq_univ
+alias ⟨_, ext_of_bUnion_eq_univ⟩ := ext_iff_of_bUnion_eq_univ
 #align measure_theory.measure.ext_of_bUnion_eq_univ MeasureTheory.Measure.ext_of_biUnion_eq_univ
 
 #print MeasureTheory.Measure.ext_iff_of_sUnion_eq_univ /-
@@ -2311,7 +2311,7 @@ theorem ext_iff_of_sUnion_eq_univ {S : Set (Set α)} (hc : S.Countable) (hs : 
 #align measure_theory.measure.ext_iff_of_sUnion_eq_univ MeasureTheory.Measure.ext_iff_of_sUnion_eq_univ
 -/
 
-alias ext_iff_of_sUnion_eq_univ ↔ _ ext_of_sUnion_eq_univ
+alias ⟨_, ext_of_sUnion_eq_univ⟩ := ext_iff_of_sUnion_eq_univ
 #align measure_theory.measure.ext_of_sUnion_eq_univ MeasureTheory.Measure.ext_of_sUnion_eq_univ
 
 #print MeasureTheory.Measure.ext_of_generateFrom_of_cover /-
@@ -2879,7 +2879,7 @@ theorem absolutelyContinuous_of_le (h : μ ≤ ν) : μ ≪ ν := fun s hs =>
 #align measure_theory.measure.absolutely_continuous_of_le MeasureTheory.Measure.absolutelyContinuous_of_le
 -/
 
-alias absolutely_continuous_of_le ← _root_.has_le.le.absolutely_continuous
+alias _root_.has_le.le.absolutely_continuous := absolutely_continuous_of_le
 #align has_le.le.absolutely_continuous LE.le.absolutelyContinuous
 
 #print MeasureTheory.Measure.absolutelyContinuous_of_eq /-
@@ -2888,7 +2888,7 @@ theorem absolutelyContinuous_of_eq (h : μ = ν) : μ ≪ ν :=
 #align measure_theory.measure.absolutely_continuous_of_eq MeasureTheory.Measure.absolutelyContinuous_of_eq
 -/
 
-alias absolutely_continuous_of_eq ← _root_.eq.absolutely_continuous
+alias _root_.eq.absolutely_continuous := absolutely_continuous_of_eq
 #align eq.absolutely_continuous Eq.absolutelyContinuous
 
 namespace AbsolutelyContinuous
@@ -2952,12 +2952,12 @@ theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
 #align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuous
 -/
 
-alias ae_le_iff_absolutely_continuous ↔ _root_.has_le.le.absolutely_continuous_of_ae
-  absolutely_continuous.ae_le
+alias ⟨_root_.has_le.le.absolutely_continuous_of_ae, absolutely_continuous.ae_le⟩ :=
+  ae_le_iff_absolutely_continuous
 #align has_le.le.absolutely_continuous_of_ae LE.le.absolutelyContinuous_of_ae
 #align measure_theory.measure.absolutely_continuous.ae_le MeasureTheory.Measure.AbsolutelyContinuous.ae_le
 
-alias absolutely_continuous.ae_le ← ae_mono'
+alias ae_mono' := absolutely_continuous.ae_le
 #align measure_theory.measure.ae_mono' MeasureTheory.Measure.ae_mono'
 
 #print MeasureTheory.Measure.AbsolutelyContinuous.ae_eq /-
@@ -5125,7 +5125,7 @@ theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f :=
 #align measure_theory.measure.finite_at_filter.inf_ae_iff MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff
 -/
 
-alias inf_ae_iff ↔ of_inf_ae _
+alias ⟨of_inf_ae, _⟩ := inf_ae_iff
 #align measure_theory.measure.finite_at_filter.of_inf_ae MeasureTheory.Measure.FiniteAtFilter.of_inf_ae
 
 #print MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae /-
Diff
@@ -5149,7 +5149,7 @@ protected theorem mono (hf : f ≤ g) (hμ : μ ≤ ν) : ν.FiniteAtFilter g 
 
 #print MeasureTheory.Measure.FiniteAtFilter.eventually /-
 protected theorem eventually (h : μ.FiniteAtFilter f) : ∀ᶠ s in f.smallSets, μ s < ∞ :=
-  (eventually_small_sets' fun s t hst ht => (measure_mono hst).trans_lt ht).2 h
+  (eventually_smallSets' fun s t hst ht => (measure_mono hst).trans_lt ht).2 h
 #align measure_theory.measure.finite_at_filter.eventually MeasureTheory.Measure.FiniteAtFilter.eventually
 -/
 
@@ -5565,7 +5565,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
     (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝 x)) : ∃ (U : _) (_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
   by
   refine' IsCompact.induction_on h _ _ _ _
-  · use ∅; simp [Superset]
+  · use∅; simp [Superset]
   · rintro s t hst ⟨U, htU, hUo, hU⟩; exact ⟨U, hst.trans htU, hUo, hU⟩
   · rintro s t ⟨U, hsU, hUo, hU⟩ ⟨V, htV, hVo, hV⟩
     refine'
Diff
@@ -4017,16 +4017,14 @@ theorem prob_le_one [IsProbabilityMeasure μ] : μ s ≤ 1 :=
 #align measure_theory.prob_le_one MeasureTheory.prob_le_one
 -/
 
-#print MeasureTheory.isProbabilityMeasureSmul /-
-theorem isProbabilityMeasureSmul [IsFiniteMeasure μ] (h : μ ≠ 0) :
+theorem isProbabilityMeasureSMul [IsFiniteMeasure μ] (h : μ ≠ 0) :
     IsProbabilityMeasure ((μ univ)⁻¹ • μ) :=
   by
   constructor
   rw [smul_apply, smul_eq_mul, ENNReal.inv_mul_cancel]
   · rwa [Ne, measure_univ_eq_zero]
   · exact measure_ne_top _ _
-#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmul
--/
+#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSMulₓ
 
 #print MeasureTheory.isProbabilityMeasure_map /-
 theorem isProbabilityMeasure_map [IsProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
-
-! This file was ported from Lean 3 source module measure_theory.measure.measure_space
-! leanprover-community/mathlib commit 343e80208d29d2d15f8050b929aa50fe4ce71b55
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Measure.NullMeasurable
 import Mathbin.MeasureTheory.MeasurableSpace
 import Mathbin.Topology.Algebra.Order.LiminfLimsup
 
+#align_import measure_theory.measure.measure_space from "leanprover-community/mathlib"@"343e80208d29d2d15f8050b929aa50fe4ce71b55"
+
 /-!
 # Measure spaces
 
@@ -600,7 +597,7 @@ theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countab
 #align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_biUnion_eq_iSup
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
 #print MeasureTheory.measure_iInter_eq_iInf /-
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the infimum of the measures. -/
@@ -2167,7 +2164,7 @@ theorem restrict_eq_self_of_ae_mem {m0 : MeasurableSpace α} ⦃s : Set α⦄ 
 #align measure_theory.measure.restrict_eq_self_of_ae_mem MeasureTheory.Measure.restrict_eq_self_of_ae_mem
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 #print MeasureTheory.Measure.restrict_congr_meas /-
 theorem restrict_congr_meas (hs : MeasurableSet s) :
     μ.restrict s = ν.restrict s ↔ ∀ (t) (_ : t ⊆ s), MeasurableSet t → μ t = ν t :=
@@ -3181,7 +3178,7 @@ section Pointwise
 
 open scoped Pointwise
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 #print MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_one /-
 @[to_additive]
 theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
@@ -4536,7 +4533,7 @@ theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ :
 #align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
 #print MeasureTheory.Measure.measure_toMeasurable_inter_of_cover /-
 /-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
 superset `to_measurable μ t` (which has the same measure as `t`) satisfies,
@@ -5562,7 +5559,7 @@ namespace IsCompact
 
 variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set α}
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 #print IsCompact.exists_open_superset_measure_lt_top' /-
 /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
 superset of finite measure. -/
@@ -5582,7 +5579,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
 #align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 #print IsCompact.exists_open_superset_measure_lt_top /-
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
Diff
@@ -132,22 +132,31 @@ theorem ae_uIoc_iff [LinearOrder α] {a b : α} {P : α → Prop} :
 #align measure_theory.ae_uIoc_iff MeasureTheory.ae_uIoc_iff
 -/
 
+#print MeasureTheory.measure_union /-
 theorem measure_union (hd : Disjoint s₁ s₂) (h : MeasurableSet s₂) : μ (s₁ ∪ s₂) = μ s₁ + μ s₂ :=
   measure_union₀ h.NullMeasurableSet hd.AEDisjoint
 #align measure_theory.measure_union MeasureTheory.measure_union
+-/
 
+#print MeasureTheory.measure_union' /-
 theorem measure_union' (hd : Disjoint s₁ s₂) (h : MeasurableSet s₁) : μ (s₁ ∪ s₂) = μ s₁ + μ s₂ :=
   measure_union₀' h.NullMeasurableSet hd.AEDisjoint
 #align measure_theory.measure_union' MeasureTheory.measure_union'
+-/
 
+#print MeasureTheory.measure_inter_add_diff /-
 theorem measure_inter_add_diff (s : Set α) (ht : MeasurableSet t) : μ (s ∩ t) + μ (s \ t) = μ s :=
   measure_inter_add_diff₀ _ ht.NullMeasurableSet
 #align measure_theory.measure_inter_add_diff MeasureTheory.measure_inter_add_diff
+-/
 
+#print MeasureTheory.measure_diff_add_inter /-
 theorem measure_diff_add_inter (s : Set α) (ht : MeasurableSet t) : μ (s \ t) + μ (s ∩ t) = μ s :=
   (add_comm _ _).trans (measure_inter_add_diff s ht)
 #align measure_theory.measure_diff_add_inter MeasureTheory.measure_diff_add_inter
+-/
 
+#print MeasureTheory.measure_union_add_inter /-
 theorem measure_union_add_inter (s : Set α) (ht : MeasurableSet t) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t :=
   by
@@ -155,16 +164,22 @@ theorem measure_union_add_inter (s : Set α) (ht : MeasurableSet t) :
     measure_inter_add_diff s ht]
   ac_rfl
 #align measure_theory.measure_union_add_inter MeasureTheory.measure_union_add_inter
+-/
 
+#print MeasureTheory.measure_union_add_inter' /-
 theorem measure_union_add_inter' (hs : MeasurableSet s) (t : Set α) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by
   rw [union_comm, inter_comm, measure_union_add_inter t hs, add_comm]
 #align measure_theory.measure_union_add_inter' MeasureTheory.measure_union_add_inter'
+-/
 
+#print MeasureTheory.measure_add_measure_compl /-
 theorem measure_add_measure_compl (h : MeasurableSet s) : μ s + μ (sᶜ) = μ univ :=
   measure_add_measure_compl₀ h.NullMeasurableSet
 #align measure_theory.measure_add_measure_compl MeasureTheory.measure_add_measure_compl
+-/
 
+#print MeasureTheory.measure_biUnion₀ /-
 theorem measure_biUnion₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
     (hd : s.Pairwise (AEDisjoint μ on f)) (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
@@ -173,22 +188,30 @@ theorem measure_biUnion₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
   rw [bUnion_eq_Union]
   exact measure_Union₀ (hd.on_injective Subtype.coe_injective fun x => x.2) fun x => h x x.2
 #align measure_theory.measure_bUnion₀ MeasureTheory.measure_biUnion₀
+-/
 
+#print MeasureTheory.measure_biUnion /-
 theorem measure_biUnion {s : Set β} {f : β → Set α} (hs : s.Countable) (hd : s.PairwiseDisjoint f)
     (h : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
   measure_biUnion₀ hs hd.AEDisjoint fun b hb => (h b hb).NullMeasurableSet
 #align measure_theory.measure_bUnion MeasureTheory.measure_biUnion
+-/
 
+#print MeasureTheory.measure_sUnion₀ /-
 theorem measure_sUnion₀ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise (AEDisjoint μ))
     (h : ∀ s ∈ S, NullMeasurableSet s μ) : μ (⋃₀ S) = ∑' s : S, μ s := by
   rw [sUnion_eq_bUnion, measure_bUnion₀ hs hd h]
 #align measure_theory.measure_sUnion₀ MeasureTheory.measure_sUnion₀
+-/
 
+#print MeasureTheory.measure_sUnion /-
 theorem measure_sUnion {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise Disjoint)
     (h : ∀ s ∈ S, MeasurableSet s) : μ (⋃₀ S) = ∑' s : S, μ s := by
   rw [sUnion_eq_bUnion, measure_bUnion hs hd h]
 #align measure_theory.measure_sUnion MeasureTheory.measure_sUnion
+-/
 
+#print MeasureTheory.measure_biUnion_finset₀ /-
 theorem measure_biUnion_finset₀ {s : Finset ι} {f : ι → Set α}
     (hd : Set.Pairwise (↑s) (AEDisjoint μ on f)) (hm : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
@@ -196,12 +219,16 @@ theorem measure_biUnion_finset₀ {s : Finset ι} {f : ι → Set α}
   rw [← Finset.sum_attach, Finset.attach_eq_univ, ← tsum_fintype]
   exact measure_bUnion₀ s.countable_to_set hd hm
 #align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_biUnion_finset₀
+-/
 
+#print MeasureTheory.measure_biUnion_finset /-
 theorem measure_biUnion_finset {s : Finset ι} {f : ι → Set α} (hd : PairwiseDisjoint (↑s) f)
     (hm : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
   measure_biUnion_finset₀ hd.AEDisjoint fun b hb => (hm b hb).NullMeasurableSet
 #align measure_theory.measure_bUnion_finset MeasureTheory.measure_biUnion_finset
+-/
 
+#print MeasureTheory.tsum_meas_le_meas_iUnion_of_disjoint /-
 /-- The measure of a disjoint union (even uncountable) of measurable sets is at least the sum of
 the measures of the sets. -/
 theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type _} [MeasurableSpace α] (μ : Measure α)
@@ -215,14 +242,18 @@ theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type _} [MeasurableSpace α]
   rw [← measure_bUnion_finset (fun i hi j hj hij => As_disj hij) fun i _ => As_mble i]
   exact measure_mono (Union₂_subset_Union (fun i : ι => i ∈ s) fun i : ι => As i)
 #align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_iUnion_of_disjoint
+-/
 
+#print MeasureTheory.tsum_measure_preimage_singleton /-
 /-- If `s` is a countable set, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem tsum_measure_preimage_singleton {s : Set β} (hs : s.Countable) {f : α → β}
     (hf : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y})) : ∑' b : s, μ (f ⁻¹' {↑b}) = μ (f ⁻¹' s) := by
   rw [← Set.biUnion_preimage_singleton, measure_bUnion hs (pairwise_disjoint_fiber _ _) hf]
 #align measure_theory.tsum_measure_preimage_singleton MeasureTheory.tsum_measure_preimage_singleton
+-/
 
+#print MeasureTheory.sum_measure_preimage_singleton /-
 /-- If `s` is a `finset`, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem sum_measure_preimage_singleton (s : Finset β) {f : α → β}
@@ -230,28 +261,40 @@ theorem sum_measure_preimage_singleton (s : Finset β) {f : α → β}
   simp only [← measure_bUnion_finset (pairwise_disjoint_fiber _ _) hf,
     Finset.set_biUnion_preimage_singleton]
 #align measure_theory.sum_measure_preimage_singleton MeasureTheory.sum_measure_preimage_singleton
+-/
 
+#print MeasureTheory.measure_diff_null' /-
 theorem measure_diff_null' (h : μ (s₁ ∩ s₂) = 0) : μ (s₁ \ s₂) = μ s₁ :=
   measure_congr <| diff_ae_eq_self.2 h
 #align measure_theory.measure_diff_null' MeasureTheory.measure_diff_null'
+-/
 
+#print MeasureTheory.measure_diff_null /-
 theorem measure_diff_null (h : μ s₂ = 0) : μ (s₁ \ s₂) = μ s₁ :=
   measure_diff_null' <| measure_mono_null (inter_subset_right _ _) h
 #align measure_theory.measure_diff_null MeasureTheory.measure_diff_null
+-/
 
+#print MeasureTheory.measure_add_diff /-
 theorem measure_add_diff (hs : MeasurableSet s) (t : Set α) : μ s + μ (t \ s) = μ (s ∪ t) := by
   rw [← measure_union' disjoint_sdiff_right hs, union_diff_self]
 #align measure_theory.measure_add_diff MeasureTheory.measure_add_diff
+-/
 
+#print MeasureTheory.measure_diff' /-
 theorem measure_diff' (s : Set α) (hm : MeasurableSet t) (h_fin : μ t ≠ ∞) :
     μ (s \ t) = μ (s ∪ t) - μ t :=
   Eq.symm <| ENNReal.sub_eq_of_add_eq h_fin <| by rw [add_comm, measure_add_diff hm, union_comm]
 #align measure_theory.measure_diff' MeasureTheory.measure_diff'
+-/
 
+#print MeasureTheory.measure_diff /-
 theorem measure_diff (h : s₂ ⊆ s₁) (h₂ : MeasurableSet s₂) (h_fin : μ s₂ ≠ ∞) :
     μ (s₁ \ s₂) = μ s₁ - μ s₂ := by rw [measure_diff' _ h₂ h_fin, union_eq_self_of_subset_right h]
 #align measure_theory.measure_diff MeasureTheory.measure_diff
+-/
 
+#print MeasureTheory.le_measure_diff /-
 theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
   tsub_le_iff_left.2 <|
     calc
@@ -259,23 +302,31 @@ theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
       _ = μ (s₂ ∪ s₁ \ s₂) := (congr_arg μ union_diff_self.symm)
       _ ≤ μ s₂ + μ (s₁ \ s₂) := measure_union_le _ _
 #align measure_theory.le_measure_diff MeasureTheory.le_measure_diff
+-/
 
+#print MeasureTheory.measure_diff_lt_of_lt_add /-
 theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞}
     (h : μ t < μ s + ε) : μ (t \ s) < ε :=
   by
   rw [measure_diff hst hs hs']; rw [add_comm] at h 
   exact ENNReal.sub_lt_of_lt_add (measure_mono hst) h
 #align measure_theory.measure_diff_lt_of_lt_add MeasureTheory.measure_diff_lt_of_lt_add
+-/
 
+#print MeasureTheory.measure_diff_le_iff_le_add /-
 theorem measure_diff_le_iff_le_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞} :
     μ (t \ s) ≤ ε ↔ μ t ≤ μ s + ε := by rwa [measure_diff hst hs hs', tsub_le_iff_left]
 #align measure_theory.measure_diff_le_iff_le_add MeasureTheory.measure_diff_le_iff_le_add
+-/
 
+#print MeasureTheory.measure_eq_measure_of_null_diff /-
 theorem measure_eq_measure_of_null_diff {s t : Set α} (hst : s ⊆ t) (h_nulldiff : μ (t \ s) = 0) :
     μ s = μ t :=
   measure_congr (hst.EventuallyLE.antisymm <| ae_le_set.mpr h_nulldiff)
 #align measure_theory.measure_eq_measure_of_null_diff MeasureTheory.measure_eq_measure_of_null_diff
+-/
 
+#print MeasureTheory.measure_eq_measure_of_between_null_diff /-
 theorem measure_eq_measure_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 : s₁ ⊆ s₂) (h23 : s₂ ⊆ s₃)
     (h_nulldiff : μ (s₃ \ s₁) = 0) : μ s₁ = μ s₂ ∧ μ s₂ = μ s₃ :=
   by
@@ -288,21 +339,29 @@ theorem measure_eq_measure_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 :
       _ = μ s₁ := by simp only [h_nulldiff, zero_add]
   exact ⟨le12.antisymm (le23.trans key), le23.antisymm (key.trans le12)⟩
 #align measure_theory.measure_eq_measure_of_between_null_diff MeasureTheory.measure_eq_measure_of_between_null_diff
+-/
 
+#print MeasureTheory.measure_eq_measure_smaller_of_between_null_diff /-
 theorem measure_eq_measure_smaller_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 : s₁ ⊆ s₂)
     (h23 : s₂ ⊆ s₃) (h_nulldiff : μ (s₃ \ s₁) = 0) : μ s₁ = μ s₂ :=
   (measure_eq_measure_of_between_null_diff h12 h23 h_nulldiff).1
 #align measure_theory.measure_eq_measure_smaller_of_between_null_diff MeasureTheory.measure_eq_measure_smaller_of_between_null_diff
+-/
 
+#print MeasureTheory.measure_eq_measure_larger_of_between_null_diff /-
 theorem measure_eq_measure_larger_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 : s₁ ⊆ s₂)
     (h23 : s₂ ⊆ s₃) (h_nulldiff : μ (s₃ \ s₁) = 0) : μ s₂ = μ s₃ :=
   (measure_eq_measure_of_between_null_diff h12 h23 h_nulldiff).2
 #align measure_theory.measure_eq_measure_larger_of_between_null_diff MeasureTheory.measure_eq_measure_larger_of_between_null_diff
+-/
 
+#print MeasureTheory.measure_compl /-
 theorem measure_compl (h₁ : MeasurableSet s) (h_fin : μ s ≠ ∞) : μ (sᶜ) = μ univ - μ s := by
   rw [compl_eq_univ_diff]; exact measure_diff (subset_univ s) h₁ h_fin
 #align measure_theory.measure_compl MeasureTheory.measure_compl
+-/
 
+#print MeasureTheory.union_ae_eq_left_iff_ae_subset /-
 @[simp]
 theorem union_ae_eq_left_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] s ↔ t ≤ᵐ[μ] s :=
   by
@@ -313,12 +372,16 @@ theorem union_ae_eq_left_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] s ↔ t ≤
         ⟨by rwa [ae_le_set, union_diff_left],
           HasSubset.Subset.eventuallyLE <| subset_union_left s t⟩⟩
 #align measure_theory.union_ae_eq_left_iff_ae_subset MeasureTheory.union_ae_eq_left_iff_ae_subset
+-/
 
+#print MeasureTheory.union_ae_eq_right_iff_ae_subset /-
 @[simp]
 theorem union_ae_eq_right_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] t ↔ s ≤ᵐ[μ] t := by
   rw [union_comm, union_ae_eq_left_iff_ae_subset]
 #align measure_theory.union_ae_eq_right_iff_ae_subset MeasureTheory.union_ae_eq_right_iff_ae_subset
+-/
 
+#print MeasureTheory.ae_eq_of_ae_subset_of_measure_ge /-
 theorem ae_eq_of_ae_subset_of_measure_ge (h₁ : s ≤ᵐ[μ] t) (h₂ : μ t ≤ μ s) (hsm : MeasurableSet s)
     (ht : μ t ≠ ∞) : s =ᵐ[μ] t :=
   by
@@ -327,13 +390,17 @@ theorem ae_eq_of_ae_subset_of_measure_ge (h₁ : s ≤ᵐ[μ] t) (h₂ : μ t 
   replace ht : μ s ≠ ∞; exact h₂ ▸ ht
   rw [measure_diff' t hsm ht, measure_congr (union_ae_eq_left_iff_ae_subset.mpr h₁), h₂, tsub_self]
 #align measure_theory.ae_eq_of_ae_subset_of_measure_ge MeasureTheory.ae_eq_of_ae_subset_of_measure_ge
+-/
 
+#print MeasureTheory.ae_eq_of_subset_of_measure_ge /-
 /-- If `s ⊆ t`, `μ t ≤ μ s`, `μ t ≠ ∞`, and `s` is measurable, then `s =ᵐ[μ] t`. -/
 theorem ae_eq_of_subset_of_measure_ge (h₁ : s ⊆ t) (h₂ : μ t ≤ μ s) (hsm : MeasurableSet s)
     (ht : μ t ≠ ∞) : s =ᵐ[μ] t :=
   ae_eq_of_ae_subset_of_measure_ge (HasSubset.Subset.eventuallyLE h₁) h₂ hsm ht
 #align measure_theory.ae_eq_of_subset_of_measure_ge MeasureTheory.ae_eq_of_subset_of_measure_ge
+-/
 
+#print MeasureTheory.measure_iUnion_congr_of_subset /-
 theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : β → Set α}
     (hsub : ∀ b, s b ⊆ t b) (h_le : ∀ b, μ (t b) ≤ μ (s b)) : μ (⋃ b, s b) = μ (⋃ b, t b) :=
   by
@@ -364,13 +431,16 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
     _ ≤ μ (M (⋃ b, s b)) := (measure_mono (Union_subset fun b => inter_subset_right _ _))
     _ = μ (⋃ b, s b) := measure_to_measurable _
 #align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_iUnion_congr_of_subset
+-/
 
+#print MeasureTheory.measure_union_congr_of_subset /-
 theorem measure_union_congr_of_subset {t₁ t₂ : Set α} (hs : s₁ ⊆ s₂) (hsμ : μ s₂ ≤ μ s₁)
     (ht : t₁ ⊆ t₂) (htμ : μ t₂ ≤ μ t₁) : μ (s₁ ∪ t₁) = μ (s₂ ∪ t₂) :=
   by
   rw [union_eq_Union, union_eq_Union]
   exact measure_Union_congr_of_subset (Bool.forall_bool.2 ⟨ht, hs⟩) (Bool.forall_bool.2 ⟨htμ, hsμ⟩)
 #align measure_theory.measure_union_congr_of_subset MeasureTheory.measure_union_congr_of_subset
+-/
 
 #print MeasureTheory.measure_iUnion_toMeasurable /-
 @[simp]
@@ -389,33 +459,42 @@ theorem measure_biUnion_toMeasurable {I : Set β} (hc : I.Countable) (s : β →
 #align measure_theory.measure_bUnion_to_measurable MeasureTheory.measure_biUnion_toMeasurable
 -/
 
+#print MeasureTheory.measure_toMeasurable_union /-
 @[simp]
 theorem measure_toMeasurable_union : μ (toMeasurable μ s ∪ t) = μ (s ∪ t) :=
   Eq.symm <|
     measure_union_congr_of_subset (subset_toMeasurable _ _) (measure_toMeasurable _).le Subset.rfl
       le_rfl
 #align measure_theory.measure_to_measurable_union MeasureTheory.measure_toMeasurable_union
+-/
 
+#print MeasureTheory.measure_union_toMeasurable /-
 @[simp]
 theorem measure_union_toMeasurable : μ (s ∪ toMeasurable μ t) = μ (s ∪ t) :=
   Eq.symm <|
     measure_union_congr_of_subset Subset.rfl le_rfl (subset_toMeasurable _ _)
       (measure_toMeasurable _).le
 #align measure_theory.measure_union_to_measurable MeasureTheory.measure_union_toMeasurable
+-/
 
+#print MeasureTheory.sum_measure_le_measure_univ /-
 theorem sum_measure_le_measure_univ {s : Finset ι} {t : ι → Set α}
     (h : ∀ i ∈ s, MeasurableSet (t i)) (H : Set.PairwiseDisjoint (↑s) t) :
     ∑ i in s, μ (t i) ≤ μ (univ : Set α) := by rw [← measure_bUnion_finset H h];
   exact measure_mono (subset_univ _)
 #align measure_theory.sum_measure_le_measure_univ MeasureTheory.sum_measure_le_measure_univ
+-/
 
+#print MeasureTheory.tsum_measure_le_measure_univ /-
 theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i))
     (H : Pairwise (Disjoint on s)) : ∑' i, μ (s i) ≤ μ (univ : Set α) :=
   by
   rw [ENNReal.tsum_eq_iSup_sum]
   exact iSup_le fun s => sum_measure_le_measure_univ (fun i hi => hs i) fun i hi j hj hij => H hij
 #align measure_theory.tsum_measure_le_measure_univ MeasureTheory.tsum_measure_le_measure_univ
+-/
 
+#print MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure /-
 /-- Pigeonhole principle for measure spaces: if `∑' i, μ (s i) > μ univ`, then
 one of the intersections `s i ∩ s j` is not empty. -/
 theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpace α}
@@ -428,7 +507,9 @@ theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpa
   rw [Function.onFun, disjoint_iff_inf_le]
   exact fun x hx => H i j hij ⟨x, hx⟩
 #align measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure
+-/
 
+#print MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measure /-
 /-- Pigeonhole principle for measure spaces: if `s` is a `finset` and
 `∑ i in s, μ (t i) > μ univ`, then one of the intersections `t i ∩ t j` is not empty. -/
 theorem exists_nonempty_inter_of_measure_univ_lt_sum_measure {m : MeasurableSpace α} (μ : Measure α)
@@ -442,7 +523,9 @@ theorem exists_nonempty_inter_of_measure_univ_lt_sum_measure {m : MeasurableSpac
   rw [Function.onFun, disjoint_iff_inf_le]
   exact fun x hx => H i hi j hj hij ⟨x, hx⟩
 #align measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measure
+-/
 
+#print MeasureTheory.nonempty_inter_of_measure_lt_add /-
 /-- If two sets `s` and `t` are included in a set `u`, and `μ s + μ t > μ u`,
 then `s` intersects `t`. Version assuming that `t` is measurable. -/
 theorem nonempty_inter_of_measure_lt_add {m : MeasurableSpace α} (μ : Measure α) {s t u : Set α}
@@ -454,7 +537,9 @@ theorem nonempty_inter_of_measure_lt_add {m : MeasurableSpace α} (μ : Measure
     μ s + μ t = μ (s ∪ t) := (measure_union h ht).symm
     _ ≤ μ u := measure_mono (union_subset h's h't)
 #align measure_theory.nonempty_inter_of_measure_lt_add MeasureTheory.nonempty_inter_of_measure_lt_add
+-/
 
+#print MeasureTheory.nonempty_inter_of_measure_lt_add' /-
 /-- If two sets `s` and `t` are included in a set `u`, and `μ s + μ t > μ u`,
 then `s` intersects `t`. Version assuming that `s` is measurable. -/
 theorem nonempty_inter_of_measure_lt_add' {m : MeasurableSpace α} (μ : Measure α) {s t u : Set α}
@@ -464,7 +549,9 @@ theorem nonempty_inter_of_measure_lt_add' {m : MeasurableSpace α} (μ : Measure
   rw [inter_comm]
   exact nonempty_inter_of_measure_lt_add μ hs h't h's h
 #align measure_theory.nonempty_inter_of_measure_lt_add' MeasureTheory.nonempty_inter_of_measure_lt_add'
+-/
 
+#print MeasureTheory.measure_iUnion_eq_iSup /-
 /-- Continuity from below: the measure of the union of a directed sequence of (not necessarily
 -measurable) sets is the supremum of the measures. -/
 theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s) :
@@ -502,15 +589,19 @@ theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed
     _ ≤ μ (t N) := (measure_mono (Union₂_subset hN))
     _ ≤ ⨆ n, μ (t n) := le_iSup (μ ∘ t) N
 #align measure_theory.measure_Union_eq_supr MeasureTheory.measure_iUnion_eq_iSup
+-/
 
+#print MeasureTheory.measure_biUnion_eq_iSup /-
 theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countable)
     (hd : DirectedOn ((· ⊆ ·) on s) t) : μ (⋃ i ∈ t, s i) = ⨆ i ∈ t, μ (s i) :=
   by
   haveI := ht.to_encodable
   rw [bUnion_eq_Union, measure_Union_eq_supr hd.directed_coe, ← iSup_subtype'']
 #align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_biUnion_eq_iSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
+#print MeasureTheory.measure_iInter_eq_iInf /-
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the infimum of the measures. -/
 theorem measure_iInter_eq_iInf [Countable ι] {s : ι → Set α} (h : ∀ i, MeasurableSet (s i))
@@ -532,7 +623,9 @@ theorem measure_iInter_eq_iInf [Countable ι] {s : ι → Set α} (h : ∀ i, Me
       exact measure_mono (diff_subset_iff.1 <| subset.refl _)
   · exact hd.mono_comp _ fun _ _ => diff_subset_diff_right
 #align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_iInter_eq_iInf
+-/
 
+#print MeasureTheory.tendsto_measure_iUnion /-
 /-- Continuity from below: the measure of the union of an increasing sequence of measurable sets
 is the limit of the measures. -/
 theorem tendsto_measure_iUnion [SemilatticeSup ι] [Countable ι] {s : ι → Set α} (hm : Monotone s) :
@@ -541,7 +634,9 @@ theorem tendsto_measure_iUnion [SemilatticeSup ι] [Countable ι] {s : ι → Se
   rw [measure_Union_eq_supr (directed_of_sup hm)]
   exact tendsto_atTop_iSup fun n m hnm => measure_mono <| hm hnm
 #align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_iUnion
+-/
 
+#print MeasureTheory.tendsto_measure_iInter /-
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the limit of the measures. -/
 theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Set α}
@@ -551,7 +646,9 @@ theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Se
   rw [measure_Inter_eq_infi hs (directed_of_sup hm) hf]
   exact tendsto_atTop_iInf fun n m hnm => measure_mono <| hm hnm
 #align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_iInter
+-/
 
+#print MeasureTheory.tendsto_measure_biInter_gt /-
 /-- The measure of the intersection of a decreasing sequence of measurable
 sets indexed by a linear order with first countable topology is the limit of the measures. -/
 theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSpace ι]
@@ -594,7 +691,9 @@ theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSp
   have : Ioc a (u n) ∈ 𝓝[>] a := Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, u_pos n⟩
   filter_upwards [this] with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
 #align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gt
+-/
 
+#print MeasureTheory.measure_limsup_eq_zero /-
 /-- One direction of the **Borel-Cantelli lemma**: if (sᵢ) is a sequence of sets such
 that `∑ μ sᵢ` is finite, then the limit superior of the `sᵢ` is a null set. -/
 theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : ∑' i, μ (s i) ≠ ∞) : μ (limsup s atTop) = 0 :=
@@ -626,9 +725,11 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : ∑' i, μ (s i) ≠ 
   simp only [Set.mem_iUnion]
   exact fun ⟨i, hi⟩ => ⟨i + (m - n), by simpa only [add_assoc, tsub_add_cancel_of_le hnm] using hi⟩
 #align measure_theory.measure_limsup_eq_zero MeasureTheory.measure_limsup_eq_zero
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print MeasureTheory.measure_liminf_eq_zero /-
 theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : ∑' i, μ (s i) ≠ ⊤) : μ (liminf s atTop) = 0 :=
   by
   rw [← le_zero_iff]
@@ -642,7 +743,9 @@ theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : ∑' i, μ (s i) ≠ 
           is_bounded_default)
   exact (μ.mono this).trans (by simp [measure_limsup_eq_zero h])
 #align measure_theory.measure_liminf_eq_zero MeasureTheory.measure_liminf_eq_zero
+-/
 
+#print MeasureTheory.limsup_ae_eq_of_forall_ae_eq /-
 theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     (h : ∀ n, s n =ᵐ[μ] t) :-- Need `@` below because of diamond; see gh issue #16932
         @limsup
@@ -658,7 +761,9 @@ theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     apply measure_liminf_eq_zero
     simp [h]
 #align measure_theory.limsup_ae_eq_of_forall_ae_eq MeasureTheory.limsup_ae_eq_of_forall_ae_eq
+-/
 
+#print MeasureTheory.liminf_ae_eq_of_forall_ae_eq /-
 theorem liminf_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     (h : ∀ n, s n =ᵐ[μ] t) :-- Need `@` below because of diamond; see gh issue #16932
         @liminf
@@ -674,10 +779,13 @@ theorem liminf_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     apply measure_limsup_eq_zero
     simp [h]
 #align measure_theory.liminf_ae_eq_of_forall_ae_eq MeasureTheory.liminf_ae_eq_of_forall_ae_eq
+-/
 
+#print MeasureTheory.measure_if /-
 theorem measure_if {x : β} {t : Set β} {s : Set α} :
     μ (if x ∈ t then s else ∅) = indicator t (fun _ => μ s) x := by split_ifs <;> simp [h]
 #align measure_theory.measure_if MeasureTheory.measure_if
+-/
 
 end
 
@@ -685,8 +793,6 @@ section OuterMeasure
 
 variable [ms : MeasurableSpace α] {s t : Set α}
 
-include ms
-
 #print MeasureTheory.OuterMeasure.toMeasure /-
 /-- Obtain a measure by giving an outer measure where all sets in the σ-algebra are
   Carathéodory measurable. -/
@@ -718,10 +824,12 @@ theorem toMeasure_apply (m : OuterMeasure α) (h : ms ≤ m.caratheodory) {s : S
 #align measure_theory.to_measure_apply MeasureTheory.toMeasure_apply
 -/
 
+#print MeasureTheory.le_toMeasure_apply /-
 theorem le_toMeasure_apply (m : OuterMeasure α) (h : ms ≤ m.caratheodory) (s : Set α) :
     m s ≤ m.toMeasure h s :=
   m.le_trim s
 #align measure_theory.le_to_measure_apply MeasureTheory.le_toMeasure_apply
+-/
 
 #print MeasureTheory.toMeasure_apply₀ /-
 theorem toMeasure_apply₀ (m : OuterMeasure α) (h : ms ≤ m.caratheodory) {s : Set α}
@@ -759,6 +867,7 @@ variable {μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α} {s s' t : Set α
 
 namespace Measure
 
+#print MeasureTheory.Measure.measure_inter_eq_of_measure_eq /-
 /-- If `u` is a superset of `t` with the same (finite) measure (both sets possibly non-measurable),
 then for any measurable set `s` one also has `μ (t ∩ s) = μ (u ∩ s)`. -/
 theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (h : μ t = μ u)
@@ -776,7 +885,9 @@ theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (
   have B : μ (u \ s) ≠ ∞ := (lt_of_le_of_lt (measure_mono (diff_subset _ _)) ht_ne_top.lt_top).Ne
   exact ENNReal.le_of_add_le_add_right B A
 #align measure_theory.measure.measure_inter_eq_of_measure_eq MeasureTheory.Measure.measure_inter_eq_of_measure_eq
+-/
 
+#print MeasureTheory.Measure.measure_toMeasurable_inter /-
 /-- The measurable superset `to_measurable μ t` of `t` (which has the same measure as `t`)
 satisfies, for any measurable set `s`, the equality `μ (to_measurable μ t ∩ s) = μ (u ∩ s)`.
 Here, we require that the measure of `t` is finite. The conclusion holds without this assumption
@@ -786,6 +897,7 @@ theorem measure_toMeasurable_inter {s t : Set α} (hs : MeasurableSet s) (ht : 
   (measure_inter_eq_of_measure_eq hs (measure_toMeasurable t).symm (subset_toMeasurable μ t)
       ht).symm
 #align measure_theory.measure.measure_to_measurable_inter MeasureTheory.Measure.measure_toMeasurable_inter
+-/
 
 /-! ### The `ℝ≥0∞`-module of measures -/
 
@@ -802,10 +914,12 @@ theorem zero_toOuterMeasure {m : MeasurableSpace α} : (0 : Measure α).toOuterM
 #align measure_theory.measure.zero_to_outer_measure MeasureTheory.Measure.zero_toOuterMeasure
 -/
 
+#print MeasureTheory.Measure.coe_zero /-
 @[simp, norm_cast]
 theorem coe_zero {m : MeasurableSpace α} : ⇑(0 : Measure α) = 0 :=
   rfl
 #align measure_theory.measure.coe_zero MeasureTheory.Measure.coe_zero
+-/
 
 instance [IsEmpty α] {m : MeasurableSpace α} : Subsingleton (Measure α) :=
   ⟨fun μ ν => by ext1 s hs; simp only [eq_empty_of_is_empty s, measure_empty]⟩
@@ -835,15 +949,19 @@ theorem add_toOuterMeasure {m : MeasurableSpace α} (μ₁ μ₂ : Measure α) :
 #align measure_theory.measure.add_to_outer_measure MeasureTheory.Measure.add_toOuterMeasure
 -/
 
+#print MeasureTheory.Measure.coe_add /-
 @[simp, norm_cast]
 theorem coe_add {m : MeasurableSpace α} (μ₁ μ₂ : Measure α) : ⇑(μ₁ + μ₂) = μ₁ + μ₂ :=
   rfl
 #align measure_theory.measure.coe_add MeasureTheory.Measure.coe_add
+-/
 
+#print MeasureTheory.Measure.add_apply /-
 theorem add_apply {m : MeasurableSpace α} (μ₁ μ₂ : Measure α) (s : Set α) :
     (μ₁ + μ₂) s = μ₁ s + μ₂ s :=
   rfl
 #align measure_theory.measure.add_apply MeasureTheory.Measure.add_apply
+-/
 
 section SMul
 
@@ -861,22 +979,28 @@ instance [MeasurableSpace α] : SMul R (Measure α) :=
         simp_rw [measure_Union hd hs, ENNReal.tsum_mul_left]
       trimmed := by rw [outer_measure.trim_smul, μ.trimmed] }⟩
 
+#print MeasureTheory.Measure.smul_toOuterMeasure /-
 @[simp]
 theorem smul_toOuterMeasure {m : MeasurableSpace α} (c : R) (μ : Measure α) :
     (c • μ).toOuterMeasure = c • μ.toOuterMeasure :=
   rfl
 #align measure_theory.measure.smul_to_outer_measure MeasureTheory.Measure.smul_toOuterMeasure
+-/
 
+#print MeasureTheory.Measure.coe_smul /-
 @[simp, norm_cast]
 theorem coe_smul {m : MeasurableSpace α} (c : R) (μ : Measure α) : ⇑(c • μ) = c • μ :=
   rfl
 #align measure_theory.measure.coe_smul MeasureTheory.Measure.coe_smul
+-/
 
+#print MeasureTheory.Measure.smul_apply /-
 @[simp]
 theorem smul_apply {m : MeasurableSpace α} (c : R) (μ : Measure α) (s : Set α) :
     (c • μ) s = c • μ s :=
   rfl
 #align measure_theory.measure.smul_apply MeasureTheory.Measure.smul_apply
+-/
 
 instance [SMulCommClass R R' ℝ≥0∞] [MeasurableSpace α] : SMulCommClass R R' (Measure α) :=
   ⟨fun _ _ _ => ext fun _ _ => smul_comm _ _ _⟩
@@ -909,15 +1033,19 @@ def coeAddHom {m : MeasurableSpace α} : Measure α →+ Set α → ℝ≥0∞ :
 #align measure_theory.measure.coe_add_hom MeasureTheory.Measure.coeAddHom
 -/
 
+#print MeasureTheory.Measure.coe_finset_sum /-
 @[simp]
 theorem coe_finset_sum {m : MeasurableSpace α} (I : Finset ι) (μ : ι → Measure α) :
     ⇑(∑ i in I, μ i) = ∑ i in I, μ i :=
   (@coeAddHom α m).map_sum _ _
 #align measure_theory.measure.coe_finset_sum MeasureTheory.Measure.coe_finset_sum
+-/
 
+#print MeasureTheory.Measure.finset_sum_apply /-
 theorem finset_sum_apply {m : MeasurableSpace α} (I : Finset ι) (μ : ι → Measure α) (s : Set α) :
     (∑ i in I, μ i) s = ∑ i in I, μ i s := by rw [coe_finset_sum, Finset.sum_apply]
 #align measure_theory.measure.finset_sum_apply MeasureTheory.Measure.finset_sum_apply
+-/
 
 instance [Monoid R] [DistribMulAction R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [MeasurableSpace α] :
     DistribMulAction R (Measure α) :=
@@ -929,16 +1057,21 @@ instance [Semiring R] [Module R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0
   Injective.module R ⟨toOuterMeasure, zero_toOuterMeasure, add_toOuterMeasure⟩
     toOuterMeasure_injective smul_toOuterMeasure
 
+#print MeasureTheory.Measure.coe_nnreal_smul_apply /-
 @[simp]
 theorem coe_nnreal_smul_apply {m : MeasurableSpace α} (c : ℝ≥0) (μ : Measure α) (s : Set α) :
     (c • μ) s = c * μ s :=
   rfl
 #align measure_theory.measure.coe_nnreal_smul_apply MeasureTheory.Measure.coe_nnreal_smul_apply
+-/
 
+#print MeasureTheory.Measure.ae_smul_measure_iff /-
 theorem ae_smul_measure_iff {p : α → Prop} {c : ℝ≥0∞} (hc : c ≠ 0) :
     (∀ᵐ x ∂c • μ, p x) ↔ ∀ᵐ x ∂μ, p x := by simp [ae_iff, hc]
 #align measure_theory.measure.ae_smul_measure_iff MeasureTheory.Measure.ae_smul_measure_iff
+-/
 
+#print MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eq /-
 theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν) t ≠ ∞) (h' : s ⊆ t)
     (h'' : (μ + ν) s = (μ + ν) t) : μ s = μ t :=
   by
@@ -951,14 +1084,18 @@ theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν
   simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at h 
   exact h.2
 #align measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eq
+-/
 
+#print MeasureTheory.Measure.measure_eq_right_of_subset_of_measure_add_eq /-
 theorem measure_eq_right_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν) t ≠ ∞) (h' : s ⊆ t)
     (h'' : (μ + ν) s = (μ + ν) t) : ν s = ν t :=
   by
   rw [add_comm] at h'' h 
   exact measure_eq_left_of_subset_of_measure_add_eq h h' h''
 #align measure_theory.measure.measure_eq_right_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_right_of_subset_of_measure_add_eq
+-/
 
+#print MeasureTheory.Measure.measure_toMeasurable_add_inter_left /-
 theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s)
     (ht : (μ + ν) t ≠ ∞) : μ (toMeasurable (μ + ν) t ∩ s) = μ (t ∩ s) :=
   by
@@ -970,13 +1107,16 @@ theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s
   · simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at ht 
     exact ht.1
 #align measure_theory.measure.measure_to_measurable_add_inter_left MeasureTheory.Measure.measure_toMeasurable_add_inter_left
+-/
 
+#print MeasureTheory.Measure.measure_toMeasurable_add_inter_right /-
 theorem measure_toMeasurable_add_inter_right {s t : Set α} (hs : MeasurableSet s)
     (ht : (μ + ν) t ≠ ∞) : ν (toMeasurable (μ + ν) t ∩ s) = ν (t ∩ s) :=
   by
   rw [add_comm] at ht ⊢
   exact measure_to_measurable_add_inter_left hs ht
 #align measure_theory.measure.measure_to_measurable_add_inter_right MeasureTheory.Measure.measure_toMeasurable_add_inter_right
+-/
 
 /-! ### The complete lattice of measures -/
 
@@ -994,9 +1134,11 @@ instance [MeasurableSpace α] : PartialOrder (Measure α)
   le_trans m₁ m₂ m₃ h₁ h₂ s hs := le_trans (h₁ s hs) (h₂ s hs)
   le_antisymm m₁ m₂ h₁ h₂ := ext fun s hs => le_antisymm (h₁ s hs) (h₂ s hs)
 
+#print MeasureTheory.Measure.le_iff /-
 theorem le_iff : μ₁ ≤ μ₂ ↔ ∀ s, MeasurableSet s → μ₁ s ≤ μ₂ s :=
   Iff.rfl
 #align measure_theory.measure.le_iff MeasureTheory.Measure.le_iff
+-/
 
 #print MeasureTheory.Measure.toOuterMeasure_le /-
 theorem toOuterMeasure_le : μ₁.toOuterMeasure ≤ μ₂.toOuterMeasure ↔ μ₁ ≤ μ₂ := by
@@ -1004,18 +1146,24 @@ theorem toOuterMeasure_le : μ₁.toOuterMeasure ≤ μ₂.toOuterMeasure ↔ μ
 #align measure_theory.measure.to_outer_measure_le MeasureTheory.Measure.toOuterMeasure_le
 -/
 
+#print MeasureTheory.Measure.le_iff' /-
 theorem le_iff' : μ₁ ≤ μ₂ ↔ ∀ s, μ₁ s ≤ μ₂ s :=
   toOuterMeasure_le.symm
 #align measure_theory.measure.le_iff' MeasureTheory.Measure.le_iff'
+-/
 
+#print MeasureTheory.Measure.lt_iff /-
 theorem lt_iff : μ < ν ↔ μ ≤ ν ∧ ∃ s, MeasurableSet s ∧ μ s < ν s :=
   lt_iff_le_not_le.trans <|
     and_congr Iff.rfl <| by simp only [le_iff, not_forall, not_le, exists_prop]
 #align measure_theory.measure.lt_iff MeasureTheory.Measure.lt_iff
+-/
 
+#print MeasureTheory.Measure.lt_iff' /-
 theorem lt_iff' : μ < ν ↔ μ ≤ ν ∧ ∃ s, μ s < ν s :=
   lt_iff_le_not_le.trans <| and_congr Iff.rfl <| by simp only [le_iff', not_forall, not_le]
 #align measure_theory.measure.lt_iff' MeasureTheory.Measure.lt_iff'
+-/
 
 #print MeasureTheory.Measure.covariantAddLE /-
 instance covariantAddLE [MeasurableSpace α] :
@@ -1038,6 +1186,7 @@ section Inf
 
 variable {m : Set (Measure α)}
 
+#print MeasureTheory.Measure.sInf_caratheodory /-
 theorem sInf_caratheodory (s : Set α) (hs : MeasurableSet s) :
     measurable_set[(sInf (toOuterMeasure '' m)).caratheodory] s :=
   by
@@ -1056,13 +1205,16 @@ theorem sInf_caratheodory (s : Set α) (hs : MeasurableSet s) :
   rw [← measure_inter_add_diff u hs]
   refine' add_le_add (hm <| inter_subset_inter_left _ htu) (hm <| diff_subset_diff_left htu)
 #align measure_theory.measure.Inf_caratheodory MeasureTheory.Measure.sInf_caratheodory
+-/
 
 instance [MeasurableSpace α] : InfSet (Measure α) :=
   ⟨fun m => (sInf (toOuterMeasure '' m)).toMeasure <| sInf_caratheodory⟩
 
+#print MeasureTheory.Measure.sInf_apply /-
 theorem sInf_apply (hs : MeasurableSet s) : sInf m s = sInf (toOuterMeasure '' m) s :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.Inf_apply MeasureTheory.Measure.sInf_apply
+-/
 
 private theorem measure_Inf_le (h : μ ∈ m) : sInf m ≤ μ :=
   have : sInf (toOuterMeasure '' m) ≤ μ.toOuterMeasure := sInf_le (mem_image_of_mem _ h)
@@ -1106,21 +1258,27 @@ theorem MeasureTheory.OuterMeasure.toMeasure_top [MeasurableSpace α] :
 #align measure_theory.outer_measure.to_measure_top MeasureTheory.OuterMeasure.toMeasure_top
 -/
 
+#print MeasureTheory.Measure.toOuterMeasure_top /-
 @[simp]
 theorem toOuterMeasure_top [MeasurableSpace α] :
     (⊤ : Measure α).toOuterMeasure = (⊤ : OuterMeasure α) := by
   rw [← outer_measure.to_measure_top, to_measure_to_outer_measure, outer_measure.trim_top]
 #align measure_theory.measure.to_outer_measure_top MeasureTheory.Measure.toOuterMeasure_top
+-/
 
+#print MeasureTheory.Measure.top_add /-
 @[simp]
 theorem top_add : ⊤ + μ = ⊤ :=
   top_unique <| Measure.le_add_right le_rfl
 #align measure_theory.measure.top_add MeasureTheory.Measure.top_add
+-/
 
+#print MeasureTheory.Measure.add_top /-
 @[simp]
 theorem add_top : μ + ⊤ = ⊤ :=
   top_unique <| Measure.le_add_left le_rfl
 #align measure_theory.measure.add_top MeasureTheory.Measure.add_top
+-/
 
 #print MeasureTheory.Measure.zero_le /-
 protected theorem zero_le {m0 : MeasurableSpace α} (μ : Measure α) : 0 ≤ μ :=
@@ -1134,24 +1292,31 @@ theorem nonpos_iff_eq_zero' : μ ≤ 0 ↔ μ = 0 :=
 #align measure_theory.measure.nonpos_iff_eq_zero' MeasureTheory.Measure.nonpos_iff_eq_zero'
 -/
 
+#print MeasureTheory.Measure.measure_univ_eq_zero /-
 @[simp]
 theorem measure_univ_eq_zero : μ univ = 0 ↔ μ = 0 :=
   ⟨fun h => bot_unique fun s hs => trans_rel_left (· ≤ ·) (measure_mono (subset_univ s)) h, fun h =>
     h.symm ▸ rfl⟩
 #align measure_theory.measure.measure_univ_eq_zero MeasureTheory.Measure.measure_univ_eq_zero
+-/
 
+#print MeasureTheory.Measure.measure_univ_ne_zero /-
 theorem measure_univ_ne_zero : μ univ ≠ 0 ↔ μ ≠ 0 :=
   measure_univ_eq_zero.Not
 #align measure_theory.measure.measure_univ_ne_zero MeasureTheory.Measure.measure_univ_ne_zero
+-/
 
+#print MeasureTheory.Measure.measure_univ_pos /-
 @[simp]
 theorem measure_univ_pos : 0 < μ univ ↔ μ ≠ 0 :=
   pos_iff_ne_zero.trans measure_univ_ne_zero
 #align measure_theory.measure.measure_univ_pos MeasureTheory.Measure.measure_univ_pos
+-/
 
 /-! ### Pushforward and pullback -/
 
 
+#print MeasureTheory.Measure.liftLinear /-
 /-- Lift a linear map between `outer_measure` spaces such that for each measure `μ` every measurable
 set is caratheodory-measurable w.r.t. `f μ` to a linear map between `measure` spaces. -/
 def liftLinear {m0 : MeasurableSpace α} (f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β)
@@ -1161,18 +1326,24 @@ def liftLinear {m0 : MeasurableSpace α} (f : OuterMeasure α →ₗ[ℝ≥0∞]
   map_add' μ₁ μ₂ := ext fun s hs => by simp [hs]
   map_smul' c μ := ext fun s hs => by simp [hs]
 #align measure_theory.measure.lift_linear MeasureTheory.Measure.liftLinear
+-/
 
+#print MeasureTheory.Measure.liftLinear_apply /-
 @[simp]
 theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) {s : Set β}
     (hs : MeasurableSet s) : liftLinear f hf μ s = f μ.toOuterMeasure s :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.lift_linear_apply MeasureTheory.Measure.liftLinear_apply
+-/
 
+#print MeasureTheory.Measure.le_liftLinear_apply /-
 theorem le_liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) (s : Set β) :
     f μ.toOuterMeasure s ≤ liftLinear f hf μ s :=
   le_toMeasure_apply _ _ s
 #align measure_theory.measure.le_lift_linear_apply MeasureTheory.Measure.le_liftLinear_apply
+-/
 
+#print MeasureTheory.Measure.mapₗ /-
 /-- The pushforward of a measure as a linear map. It is defined to be `0` if `f` is not
 a measurable function. -/
 def mapₗ [MeasurableSpace α] (f : α → β) : Measure α →ₗ[ℝ≥0∞] Measure β :=
@@ -1181,13 +1352,16 @@ def mapₗ [MeasurableSpace α] (f : α → β) : Measure α →ₗ[ℝ≥0∞]
       le_toOuterMeasure_caratheodory μ _ (hf hs) (f ⁻¹' t)
   else 0
 #align measure_theory.measure.mapₗ MeasureTheory.Measure.mapₗ
+-/
 
+#print MeasureTheory.Measure.mapₗ_congr /-
 theorem mapₗ_congr {f g : α → β} (hf : Measurable f) (hg : Measurable g) (h : f =ᵐ[μ] g) :
     mapₗ f μ = mapₗ g μ := by
   ext1 s hs
   simpa only [mapₗ, hf, hg, hs, dif_pos, lift_linear_apply, outer_measure.map_apply,
     coe_to_outer_measure] using measure_congr (h.preimage s)
 #align measure_theory.measure.mapₗ_congr MeasureTheory.Measure.mapₗ_congr
+-/
 
 #print MeasureTheory.Measure.map /-
 /-- The pushforward of a measure. It is defined to be `0` if `f` is not an almost everywhere
@@ -1197,23 +1371,27 @@ irreducible_def map [MeasurableSpace α] (f : α → β) (μ : Measure α) : Mea
 #align measure_theory.measure.map MeasureTheory.Measure.map
 -/
 
-include m0
-
+#print MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurable /-
 theorem mapₗ_mk_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) :
     mapₗ (hf.mk f) μ = map f μ := by simp [map, hf]
 #align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurable
+-/
 
+#print MeasureTheory.Measure.mapₗ_apply_of_measurable /-
 theorem mapₗ_apply_of_measurable {f : α → β} (hf : Measurable f) (μ : Measure α) :
     mapₗ f μ = map f μ :=
   by
   simp only [← mapₗ_mk_apply_of_ae_measurable hf.ae_measurable]
   exact mapₗ_congr hf hf.ae_measurable.measurable_mk hf.ae_measurable.ae_eq_mk
 #align measure_theory.measure.mapₗ_apply_of_measurable MeasureTheory.Measure.mapₗ_apply_of_measurable
+-/
 
+#print MeasureTheory.Measure.map_add /-
 @[simp]
 theorem map_add (μ ν : Measure α) {f : α → β} (hf : Measurable f) :
     (μ + ν).map f = μ.map f + ν.map f := by simp [← mapₗ_apply_of_measurable hf]
 #align measure_theory.measure.map_add MeasureTheory.Measure.map_add
+-/
 
 #print MeasureTheory.Measure.map_zero /-
 @[simp]
@@ -1222,10 +1400,13 @@ theorem map_zero (f : α → β) : (0 : Measure α).map f = 0 := by
 #align measure_theory.measure.map_zero MeasureTheory.Measure.map_zero
 -/
 
+#print MeasureTheory.Measure.map_of_not_aemeasurable /-
 theorem map_of_not_aemeasurable {f : α → β} {μ : Measure α} (hf : ¬AEMeasurable f μ) :
     μ.map f = 0 := by simp [map, hf]
 #align measure_theory.measure.map_of_not_ae_measurable MeasureTheory.Measure.map_of_not_aemeasurable
+-/
 
+#print MeasureTheory.Measure.map_congr /-
 theorem map_congr {f g : α → β} (h : f =ᵐ[μ] g) : Measure.map f μ = Measure.map g μ :=
   by
   by_cases hf : AEMeasurable f μ
@@ -1236,7 +1417,9 @@ theorem map_congr {f g : α → β} (h : f =ᵐ[μ] g) : Measure.map f μ = Meas
   · have hg : ¬AEMeasurable g μ := by simpa [← aemeasurable_congr h] using hf
     simp [map_of_not_ae_measurable, hf, hg]
 #align measure_theory.measure.map_congr MeasureTheory.Measure.map_congr
+-/
 
+#print MeasureTheory.Measure.map_smul /-
 @[simp]
 protected theorem map_smul (c : ℝ≥0∞) (μ : Measure α) (f : α → β) : (c • μ).map f = c • μ.map f :=
   by
@@ -1254,13 +1437,17 @@ protected theorem map_smul (c : ℝ≥0∞) (μ : Measure α) (f : α → β) :
       exact hf ⟨hfc.mk f, hfc.measurable_mk, (ae_smul_measure_iff hc).1 hfc.ae_eq_mk⟩
     simp [map_of_not_ae_measurable hf, map_of_not_ae_measurable hfc]
 #align measure_theory.measure.map_smul MeasureTheory.Measure.map_smul
+-/
 
+#print MeasureTheory.Measure.map_smul_nnreal /-
 @[simp]
 protected theorem map_smul_nnreal (c : ℝ≥0) (μ : Measure α) (f : α → β) :
     (c • μ).map f = c • μ.map f :=
   μ.map_smul (c : ℝ≥0∞) f
 #align measure_theory.measure.map_smul_nnreal MeasureTheory.Measure.map_smul_nnreal
+-/
 
+#print MeasureTheory.Measure.map_apply_of_aemeasurable /-
 /-- We can evaluate the pushforward on measurable sets. For non-measurable sets, see
   `measure_theory.measure.le_map_apply` and `measurable_equiv.map_apply`. -/
 @[simp]
@@ -1270,13 +1457,17 @@ theorem map_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) {s :
     coe_to_outer_measure, ← mapₗ_mk_apply_of_ae_measurable hf] using
     measure_congr (hf.ae_eq_mk.symm.preimage s)
 #align measure_theory.measure.map_apply_of_ae_measurable MeasureTheory.Measure.map_apply_of_aemeasurable
+-/
 
+#print MeasureTheory.Measure.map_apply /-
 @[simp]
 theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
     μ.map f s = μ (f ⁻¹' s) :=
   map_apply_of_aemeasurable hf.AEMeasurable hs
 #align measure_theory.measure.map_apply MeasureTheory.Measure.map_apply
+-/
 
+#print MeasureTheory.Measure.map_toOuterMeasure /-
 theorem map_toOuterMeasure {f : α → β} (hf : AEMeasurable f μ) :
     (μ.map f).toOuterMeasure = (OuterMeasure.map f μ.toOuterMeasure).trim :=
   by
@@ -1285,6 +1476,7 @@ theorem map_toOuterMeasure {f : α → β} (hf : AEMeasurable f μ) :
   rw [coe_to_outer_measure, map_apply_of_ae_measurable hf hs, outer_measure.map_apply,
     coe_to_outer_measure]
 #align measure_theory.measure.map_to_outer_measure MeasureTheory.Measure.map_toOuterMeasure
+-/
 
 #print MeasureTheory.Measure.map_id /-
 @[simp]
@@ -1300,16 +1492,21 @@ theorem map_id' : map (fun x => x) μ = μ :=
 #align measure_theory.measure.map_id' MeasureTheory.Measure.map_id'
 -/
 
+#print MeasureTheory.Measure.map_map /-
 theorem map_map {g : β → γ} {f : α → β} (hg : Measurable g) (hf : Measurable f) :
     (μ.map f).map g = μ.map (g ∘ f) :=
   ext fun s hs => by simp [hf, hg, hs, hg hs, hg.comp hf, ← preimage_comp]
 #align measure_theory.measure.map_map MeasureTheory.Measure.map_map
+-/
 
+#print MeasureTheory.Measure.map_mono /-
 @[mono]
 theorem map_mono {f : α → β} (h : μ ≤ ν) (hf : Measurable f) : μ.map f ≤ ν.map f := fun s hs => by
   simp [hf.ae_measurable, hs, h _ (hf hs)]
 #align measure_theory.measure.map_mono MeasureTheory.Measure.map_mono
+-/
 
+#print MeasureTheory.Measure.le_map_apply /-
 /-- Even if `s` is not measurable, we can bound `map f μ s` from below.
   See also `measurable_equiv.map_apply`. -/
 theorem le_map_apply {f : α → β} (hf : AEMeasurable f μ) (s : Set β) : μ (f ⁻¹' s) ≤ μ.map f s :=
@@ -1320,19 +1517,23 @@ theorem le_map_apply {f : α → β} (hf : AEMeasurable f μ) (s : Set β) : μ
       (map_apply_of_aemeasurable hf <| measurableSet_toMeasurable _ _).symm
     _ = μ.map f s := measure_toMeasurable _
 #align measure_theory.measure.le_map_apply MeasureTheory.Measure.le_map_apply
+-/
 
+#print MeasureTheory.Measure.preimage_null_of_map_null /-
 /-- Even if `s` is not measurable, `map f μ s = 0` implies that `μ (f ⁻¹' s) = 0`. -/
 theorem preimage_null_of_map_null {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : μ.map f s = 0) : μ (f ⁻¹' s) = 0 :=
   nonpos_iff_eq_zero.mp <| (le_map_apply hf s).trans_eq hs
 #align measure_theory.measure.preimage_null_of_map_null MeasureTheory.Measure.preimage_null_of_map_null
+-/
 
+#print MeasureTheory.Measure.tendsto_ae_map /-
 theorem tendsto_ae_map {f : α → β} (hf : AEMeasurable f μ) : Tendsto f μ.ae (μ.map f).ae :=
   fun s hs => preimage_null_of_map_null hf hs
 #align measure_theory.measure.tendsto_ae_map MeasureTheory.Measure.tendsto_ae_map
+-/
 
-omit m0
-
+#print MeasureTheory.Measure.comapₗ /-
 /-- Pullback of a `measure` as a linear map. If `f` sends each measurable set to a measurable
 set, then for each measurable set `s` we have `comapₗ f μ s = μ (f '' s)`.
 
@@ -1347,7 +1548,9 @@ def comapₗ [MeasurableSpace α] (f : α → β) : Measure β →ₗ[ℝ≥0∞
       exact hf.2 s hs
   else 0
 #align measure_theory.measure.comapₗ MeasureTheory.Measure.comapₗ
+-/
 
+#print MeasureTheory.Measure.comapₗ_apply /-
 theorem comapₗ_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
     (hs : MeasurableSet s) : comapₗ f μ s = μ (f '' s) :=
@@ -1355,6 +1558,7 @@ theorem comapₗ_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f :
   rw [comapₗ, dif_pos, lift_linear_apply _ hs, outer_measure.comap_apply, coe_to_outer_measure]
   exact ⟨hfi, hf⟩
 #align measure_theory.measure.comapₗ_apply MeasureTheory.Measure.comapₗ_apply
+-/
 
 #print MeasureTheory.Measure.comap /-
 /-- Pullback of a `measure`. If `f` sends each measurable set to a null-measurable set,
@@ -1369,6 +1573,7 @@ def comap [MeasurableSpace α] (f : α → β) (μ : Measure β) : Measure α :=
 #align measure_theory.measure.comap MeasureTheory.Measure.comap
 -/
 
+#print MeasureTheory.Measure.comap_apply₀ /-
 theorem comap_apply₀ [MeasurableSpace α] (f : α → β) (μ : Measure β) (hfi : Injective f)
     (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ)
     (hs : NullMeasurableSet s (comap f μ)) : comap f μ s = μ (f '' s) :=
@@ -1376,12 +1581,15 @@ theorem comap_apply₀ [MeasurableSpace α] (f : α → β) (μ : Measure β) (h
   rw [comap, dif_pos (And.intro hfi hf)] at hs ⊢
   rw [to_measure_apply₀ _ _ hs, outer_measure.comap_apply, coe_to_outer_measure]
 #align measure_theory.measure.comap_apply₀ MeasureTheory.Measure.comap_apply₀
+-/
 
+#print MeasureTheory.Measure.le_comap_apply /-
 theorem le_comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β) (μ : Measure β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ) (s : Set α) :
     μ (f '' s) ≤ comap f μ s := by rw [comap, dif_pos (And.intro hfi hf)];
   exact le_to_measure_apply _ _ _
 #align measure_theory.measure.le_comap_apply MeasureTheory.Measure.le_comap_apply
+-/
 
 #print MeasureTheory.Measure.comap_apply /-
 theorem comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β) (hfi : Injective f)
@@ -1391,18 +1599,22 @@ theorem comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α
 #align measure_theory.measure.comap_apply MeasureTheory.Measure.comap_apply
 -/
 
+#print MeasureTheory.Measure.comapₗ_eq_comap /-
 theorem comapₗ_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
     (hs : MeasurableSet s) : comapₗ f μ s = comap f μ s :=
   (comapₗ_apply f hfi hf μ hs).trans (comap_apply f hfi hf μ hs).symm
 #align measure_theory.measure.comapₗ_eq_comap MeasureTheory.Measure.comapₗ_eq_comap
+-/
 
+#print MeasureTheory.Measure.measure_image_eq_zero_of_comap_eq_zero /-
 theorem measure_image_eq_zero_of_comap_eq_zero {β} [MeasurableSpace α] {mβ : MeasurableSpace β}
     (f : α → β) (μ : Measure β) (hfi : Injective f)
     (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ) {s : Set α} (hs : comap f μ s = 0) :
     μ (f '' s) = 0 :=
   le_antisymm ((le_comap_apply f μ hfi hf s).trans hs.le) (zero_le _)
 #align measure_theory.measure.measure_image_eq_zero_of_comap_eq_zero MeasureTheory.Measure.measure_image_eq_zero_of_comap_eq_zero
+-/
 
 #print MeasureTheory.Measure.ae_eq_image_of_ae_eq_comap /-
 theorem ae_eq_image_of_ae_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
@@ -1435,12 +1647,14 @@ theorem NullMeasurableSet.image {β} [MeasurableSpace α] {mβ : MeasurableSpace
 #align measure_theory.measure.null_measurable_set.image MeasureTheory.Measure.NullMeasurableSet.image
 -/
 
+#print MeasureTheory.Measure.comap_preimage /-
 theorem comap_preimage {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β) (μ : Measure β)
     {s : Set β} (hf : Injective f) (hf' : Measurable f)
     (h : ∀ t, MeasurableSet t → NullMeasurableSet (f '' t) μ) (hs : MeasurableSet s) :
     μ.comap f (f ⁻¹' s) = μ (s ∩ range f) := by
   rw [comap_apply₀ _ _ hf h (hf' hs).NullMeasurableSet, image_preimage_eq_inter_range]
 #align measure_theory.measure.comap_preimage MeasureTheory.Measure.comap_preimage
+-/
 
 section Subtype
 
@@ -1478,16 +1692,20 @@ theorem NullMeasurableSet.subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
 #align measure_theory.measure.null_measurable_set.subtype_coe MeasureTheory.Measure.NullMeasurableSet.subtype_coe
 -/
 
+#print MeasureTheory.Measure.measure_subtype_coe_le_comap /-
 theorem measure_subtype_coe_le_comap (hs : NullMeasurableSet s μ) (t : Set s) :
     μ ((coe : s → α) '' t) ≤ μ.comap Subtype.val t :=
   le_comap_apply _ _ Subtype.coe_injective (fun t => MeasurableSet.nullMeasurableSet_subtype_coe hs)
     _
 #align measure_theory.measure.measure_subtype_coe_le_comap MeasureTheory.Measure.measure_subtype_coe_le_comap
+-/
 
+#print MeasureTheory.Measure.measure_subtype_coe_eq_zero_of_comap_eq_zero /-
 theorem measure_subtype_coe_eq_zero_of_comap_eq_zero (hs : NullMeasurableSet s μ) {t : Set s}
     (ht : μ.comap Subtype.val t = 0) : μ ((coe : s → α) '' t) = 0 :=
   eq_bot_iff.mpr <| (measure_subtype_coe_le_comap hs t).trans ht.le
 #align measure_theory.measure.measure_subtype_coe_eq_zero_of_comap_eq_zero MeasureTheory.Measure.measure_subtype_coe_eq_zero_of_comap_eq_zero
+-/
 
 end ComapAnyMeasure
 
@@ -1517,15 +1735,19 @@ theorem Subtype.volume_univ (hs : NullMeasurableSet s) : volume (univ : Set s) =
 #align measure_theory.measure.subtype.volume_univ MeasureTheory.Measure.Subtype.volume_univ
 -/
 
+#print MeasureTheory.Measure.volume_subtype_coe_le_volume /-
 theorem volume_subtype_coe_le_volume (hs : NullMeasurableSet s) (t : Set s) :
     volume ((coe : s → α) '' t) ≤ volume t :=
   measure_subtype_coe_le_comap hs t
 #align measure_theory.measure.volume_subtype_coe_le_volume MeasureTheory.Measure.volume_subtype_coe_le_volume
+-/
 
+#print MeasureTheory.Measure.volume_subtype_coe_eq_zero_of_volume_eq_zero /-
 theorem volume_subtype_coe_eq_zero_of_volume_eq_zero (hs : NullMeasurableSet s) {t : Set s}
     (ht : volume t = 0) : volume ((coe : s → α) '' t) = 0 :=
   measure_subtype_coe_eq_zero_of_comap_eq_zero hs ht
 #align measure_theory.measure.volume_subtype_coe_eq_zero_of_volume_eq_zero MeasureTheory.Measure.volume_subtype_coe_eq_zero_of_volume_eq_zero
+-/
 
 end MeasureSpace
 
@@ -1534,6 +1756,7 @@ end Subtype
 /-! ### Restricting a measure -/
 
 
+#print MeasureTheory.Measure.restrictₗ /-
 /-- Restrict a measure `μ` to a set `s` as an `ℝ≥0∞`-linear map. -/
 def restrictₗ {m0 : MeasurableSpace α} (s : Set α) : Measure α →ₗ[ℝ≥0∞] Measure α :=
   liftLinear (OuterMeasure.restrict s) fun μ s' hs' t =>
@@ -1542,6 +1765,7 @@ def restrictₗ {m0 : MeasurableSpace α} (s : Set α) : Measure α →ₗ[ℝ
       simpa [← Set.inter_assoc, Set.inter_comm _ s, ← inter_diff_assoc]
     exact le_to_outer_measure_caratheodory _ _ hs' _
 #align measure_theory.measure.restrictₗ MeasureTheory.Measure.restrictₗ
+-/
 
 #print MeasureTheory.Measure.restrict /-
 /-- Restrict a measure `μ` to a set `s`. -/
@@ -1550,12 +1774,15 @@ def restrict {m0 : MeasurableSpace α} (μ : Measure α) (s : Set α) : Measure
 #align measure_theory.measure.restrict MeasureTheory.Measure.restrict
 -/
 
+#print MeasureTheory.Measure.restrictₗ_apply /-
 @[simp]
 theorem restrictₗ_apply {m0 : MeasurableSpace α} (s : Set α) (μ : Measure α) :
     restrictₗ s μ = μ.restrict s :=
   rfl
 #align measure_theory.measure.restrictₗ_apply MeasureTheory.Measure.restrictₗ_apply
+-/
 
+#print MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrict /-
 /-- This lemma shows that `restrict` and `to_outer_measure` commute. Note that the LHS has a
 restrict on measures and the RHS has a restrict on outer measures. -/
 theorem restrict_toOuterMeasure_eq_toOuterMeasure_restrict (h : MeasurableSet s) :
@@ -1563,12 +1790,16 @@ theorem restrict_toOuterMeasure_eq_toOuterMeasure_restrict (h : MeasurableSet s)
   simp_rw [restrict, restrictₗ, lift_linear, LinearMap.coe_mk, to_measure_to_outer_measure,
     outer_measure.restrict_trim h, μ.trimmed]
 #align measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrict
+-/
 
+#print MeasureTheory.Measure.restrict_apply₀ /-
 theorem restrict_apply₀ (ht : NullMeasurableSet t (μ.restrict s)) : μ.restrict s t = μ (t ∩ s) :=
   (toMeasure_apply₀ _ _ ht).trans <| by
     simp only [coe_to_outer_measure, outer_measure.restrict_apply]
 #align measure_theory.measure.restrict_apply₀ MeasureTheory.Measure.restrict_apply₀
+-/
 
+#print MeasureTheory.Measure.restrict_apply /-
 /-- If `t` is a measurable set, then the measure of `t` with respect to the restriction of
   the measure to `s` equals the outer measure of `t ∩ s`. An alternate version requiring that `s`
   be measurable instead of `t` exists as `measure.restrict_apply'`. -/
@@ -1576,6 +1807,7 @@ theorem restrict_apply₀ (ht : NullMeasurableSet t (μ.restrict s)) : μ.restri
 theorem restrict_apply (ht : MeasurableSet t) : μ.restrict s t = μ (t ∩ s) :=
   restrict_apply₀ ht.NullMeasurableSet
 #align measure_theory.measure.restrict_apply MeasureTheory.Measure.restrict_apply
+-/
 
 #print MeasureTheory.Measure.restrict_mono' /-
 /-- Restriction of a measure to a subset is monotone both in set and in measure. -/
@@ -1610,6 +1842,7 @@ theorem restrict_congr_set (h : s =ᵐ[μ] t) : μ.restrict s = μ.restrict t :=
 #align measure_theory.measure.restrict_congr_set MeasureTheory.Measure.restrict_congr_set
 -/
 
+#print MeasureTheory.Measure.restrict_apply' /-
 /-- If `s` is a measurable set, then the outer measure of `t` with respect to the restriction of
 the measure to `s` equals the outer measure of `t ∩ s`. This is an alternate version of
 `measure.restrict_apply`, requiring that `s` is measurable instead of `t`. -/
@@ -1618,12 +1851,15 @@ theorem restrict_apply' (hs : MeasurableSet s) : μ.restrict s t = μ (t ∩ s)
   rw [← coe_to_outer_measure, measure.restrict_to_outer_measure_eq_to_outer_measure_restrict hs,
     outer_measure.restrict_apply s t _, coe_to_outer_measure]
 #align measure_theory.measure.restrict_apply' MeasureTheory.Measure.restrict_apply'
+-/
 
+#print MeasureTheory.Measure.restrict_apply₀' /-
 theorem restrict_apply₀' (hs : NullMeasurableSet s μ) : μ.restrict s t = μ (t ∩ s) := by
   rw [← restrict_congr_set hs.to_measurable_ae_eq,
     restrict_apply' (measurable_set_to_measurable _ _),
     measure_congr ((ae_eq_refl t).inter hs.to_measurable_ae_eq)]
 #align measure_theory.measure.restrict_apply₀' MeasureTheory.Measure.restrict_apply₀'
+-/
 
 #print MeasureTheory.Measure.restrict_le_self /-
 theorem restrict_le_self : μ.restrict s ≤ μ := fun t ht =>
@@ -1661,11 +1897,13 @@ theorem restrict_apply_univ (s : Set α) : μ.restrict s univ = μ s := by
 #align measure_theory.measure.restrict_apply_univ MeasureTheory.Measure.restrict_apply_univ
 -/
 
+#print MeasureTheory.Measure.le_restrict_apply /-
 theorem le_restrict_apply (s t : Set α) : μ (t ∩ s) ≤ μ.restrict s t :=
   calc
     μ (t ∩ s) = μ.restrict s (t ∩ s) := (restrict_eq_self μ (inter_subset_right _ _)).symm
     _ ≤ μ.restrict s t := measure_mono (inter_subset_left _ _)
 #align measure_theory.measure.le_restrict_apply MeasureTheory.Measure.le_restrict_apply
+-/
 
 #print MeasureTheory.Measure.restrict_apply_superset /-
 theorem restrict_apply_superset (h : s ⊆ t) : μ.restrict s t = μ s :=
@@ -1743,26 +1981,36 @@ theorem restrict_comm (hs : MeasurableSet s) :
 #align measure_theory.measure.restrict_comm MeasureTheory.Measure.restrict_comm
 -/
 
+#print MeasureTheory.Measure.restrict_apply_eq_zero /-
 theorem restrict_apply_eq_zero (ht : MeasurableSet t) : μ.restrict s t = 0 ↔ μ (t ∩ s) = 0 := by
   rw [restrict_apply ht]
 #align measure_theory.measure.restrict_apply_eq_zero MeasureTheory.Measure.restrict_apply_eq_zero
+-/
 
+#print MeasureTheory.Measure.measure_inter_eq_zero_of_restrict /-
 theorem measure_inter_eq_zero_of_restrict (h : μ.restrict s t = 0) : μ (t ∩ s) = 0 :=
   nonpos_iff_eq_zero.1 (h ▸ le_restrict_apply _ _)
 #align measure_theory.measure.measure_inter_eq_zero_of_restrict MeasureTheory.Measure.measure_inter_eq_zero_of_restrict
+-/
 
+#print MeasureTheory.Measure.restrict_apply_eq_zero' /-
 theorem restrict_apply_eq_zero' (hs : MeasurableSet s) : μ.restrict s t = 0 ↔ μ (t ∩ s) = 0 := by
   rw [restrict_apply' hs]
 #align measure_theory.measure.restrict_apply_eq_zero' MeasureTheory.Measure.restrict_apply_eq_zero'
+-/
 
+#print MeasureTheory.Measure.restrict_eq_zero /-
 @[simp]
 theorem restrict_eq_zero : μ.restrict s = 0 ↔ μ s = 0 := by
   rw [← measure_univ_eq_zero, restrict_apply_univ]
 #align measure_theory.measure.restrict_eq_zero MeasureTheory.Measure.restrict_eq_zero
+-/
 
+#print MeasureTheory.Measure.restrict_zero_set /-
 theorem restrict_zero_set {s : Set α} (h : μ s = 0) : μ.restrict s = 0 :=
   restrict_eq_zero.2 h
 #align measure_theory.measure.restrict_zero_set MeasureTheory.Measure.restrict_zero_set
+-/
 
 #print MeasureTheory.Measure.restrict_empty /-
 @[simp]
@@ -1824,15 +2072,19 @@ theorem restrict_union₀ (h : AEDisjoint μ s t) (ht : NullMeasurableSet t μ)
 #align measure_theory.measure.restrict_union₀ MeasureTheory.Measure.restrict_union₀
 -/
 
+#print MeasureTheory.Measure.restrict_union /-
 theorem restrict_union (h : Disjoint s t) (ht : MeasurableSet t) :
     μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t :=
   restrict_union₀ h.AEDisjoint ht.NullMeasurableSet
 #align measure_theory.measure.restrict_union MeasureTheory.Measure.restrict_union
+-/
 
+#print MeasureTheory.Measure.restrict_union' /-
 theorem restrict_union' (h : Disjoint s t) (hs : MeasurableSet s) :
     μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t := by
   rw [union_comm, restrict_union h.symm hs, add_comm]
 #align measure_theory.measure.restrict_union' MeasureTheory.Measure.restrict_union'
+-/
 
 #print MeasureTheory.Measure.restrict_add_restrict_compl /-
 @[simp]
@@ -1859,6 +2111,7 @@ theorem restrict_union_le (s s' : Set α) : μ.restrict (s ∪ s') ≤ μ.restri
 #align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_le
 -/
 
+#print MeasureTheory.Measure.restrict_iUnion_apply_ae /-
 theorem restrict_iUnion_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
@@ -1868,13 +2121,17 @@ theorem restrict_iUnion_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwi
     measure_Union₀ (hd.mono fun i j h => h.mono (inter_subset_right _ _) (inter_subset_right _ _))
       fun i => ht.null_measurable_set.inter (hm i)
 #align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_iUnion_apply_ae
+-/
 
+#print MeasureTheory.Measure.restrict_iUnion_apply /-
 theorem restrict_iUnion_apply [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
   restrict_iUnion_apply_ae hd.AEDisjoint (fun i => (hm i).NullMeasurableSet) ht
 #align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_iUnion_apply
+-/
 
+#print MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup /-
 theorem restrict_iUnion_apply_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s)
     {t : Set α} (ht : MeasurableSet t) : μ.restrict (⋃ i, s i) t = ⨆ i, μ.restrict (s i) t :=
   by
@@ -1882,19 +2139,24 @@ theorem restrict_iUnion_apply_eq_iSup [Countable ι] {s : ι → Set α} (hd : D
   rw [measure_Union_eq_supr]
   exacts [hd.mono_comp _ fun s₁ s₂ => inter_subset_inter_right _]
 #align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup
+-/
 
+#print MeasureTheory.Measure.restrict_map /-
 /-- The restriction of the pushforward measure is the pushforward of the restriction. For a version
 assuming only `ae_measurable`, see `restrict_map_of_ae_measurable`. -/
 theorem restrict_map {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
     (μ.map f).restrict s = (μ.restrict <| f ⁻¹' s).map f :=
   ext fun t ht => by simp [*, hf ht]
 #align measure_theory.measure.restrict_map MeasureTheory.Measure.restrict_map
+-/
 
+#print MeasureTheory.Measure.restrict_toMeasurable /-
 theorem restrict_toMeasurable (h : μ s ≠ ∞) : μ.restrict (toMeasurable μ s) = μ.restrict s :=
   ext fun t ht => by
     rw [restrict_apply ht, restrict_apply ht, inter_comm, measure_to_measurable_inter ht h,
       inter_comm]
 #align measure_theory.measure.restrict_to_measurable MeasureTheory.Measure.restrict_toMeasurable
+-/
 
 #print MeasureTheory.Measure.restrict_eq_self_of_ae_mem /-
 theorem restrict_eq_self_of_ae_mem {m0 : MeasurableSpace α} ⦃s : Set α⦄ ⦃μ : Measure α⦄
@@ -2007,12 +2269,14 @@ theorem restrict_sInf_eq_sInf_restrict {m0 : MeasurableSpace α} {m : Set (Measu
 #align measure_theory.measure.restrict_Inf_eq_Inf_restrict MeasureTheory.Measure.restrict_sInf_eq_sInf_restrict
 -/
 
+#print MeasureTheory.Measure.exists_mem_of_measure_ne_zero_of_ae /-
 theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
     (hp : ∀ᵐ x ∂μ.restrict s, p x) : ∃ x, x ∈ s ∧ p x :=
   by
   rw [← μ.restrict_apply_self, ← frequently_ae_mem_iff] at hs 
   exact (hs.and_eventually hp).exists
 #align measure_theory.measure.exists_mem_of_measure_ne_zero_of_ae MeasureTheory.Measure.exists_mem_of_measure_ne_zero_of_ae
+-/
 
 /-! ### Extensionality results -/
 
@@ -2053,6 +2317,7 @@ theorem ext_iff_of_sUnion_eq_univ {S : Set (Set α)} (hc : S.Countable) (hs : 
 alias ext_iff_of_sUnion_eq_univ ↔ _ ext_of_sUnion_eq_univ
 #align measure_theory.measure.ext_of_sUnion_eq_univ MeasureTheory.Measure.ext_of_sUnion_eq_univ
 
+#print MeasureTheory.Measure.ext_of_generateFrom_of_cover /-
 theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = generateFrom S)
     (hc : T.Countable) (h_inter : IsPiSystem S) (hU : ⋃₀ T = univ) (htop : ∀ t ∈ T, μ t ≠ ∞)
     (ST_eq : ∀ t ∈ T, ∀ s ∈ S, μ (s ∩ t) = ν (s ∩ t)) (T_eq : ∀ t ∈ T, μ t = ν t) : μ = ν :=
@@ -2072,7 +2337,9 @@ theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = gen
     simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.iUnion hfm)] at h_eq ⊢
     simp only [measure_Union hfd hfm, h_eq]
 #align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_cover
+-/
 
+#print MeasureTheory.Measure.ext_of_generateFrom_of_cover_subset /-
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
   and they are both finite on a increasing spanning sequence of sets in the π-system.
   This lemma is formulated using `sUnion`. -/
@@ -2085,7 +2352,9 @@ theorem ext_of_generateFrom_of_cover_subset {S T : Set (Set α)} (h_gen : ‹_
   · simp only [H, measure_empty]
   · exact h_eq _ (h_inter _ hs _ (h_sub ht) H)
 #align measure_theory.measure.ext_of_generate_from_of_cover_subset MeasureTheory.Measure.ext_of_generateFrom_of_cover_subset
+-/
 
+#print MeasureTheory.Measure.ext_of_generateFrom_of_iUnion /-
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
   and they are both finite on a increasing spanning sequence of sets in the π-system.
   This lemma is formulated using `Union`.
@@ -2098,6 +2367,7 @@ theorem ext_of_generateFrom_of_iUnion (C : Set (Set α)) (B : ℕ → Set α) (h
   · rintro _ ⟨i, rfl⟩; apply h2B
   · rintro _ ⟨i, rfl⟩; apply hμB
 #align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_iUnion
+-/
 
 section Dirac
 
@@ -2113,14 +2383,18 @@ def dirac (a : α) : Measure α :=
 instance : MeasureSpace PUnit :=
   ⟨dirac PUnit.unit⟩
 
+#print MeasureTheory.Measure.le_dirac_apply /-
 theorem le_dirac_apply {a} : s.indicator 1 a ≤ dirac a s :=
   OuterMeasure.dirac_apply a s ▸ le_toMeasure_apply _ _ _
 #align measure_theory.measure.le_dirac_apply MeasureTheory.Measure.le_dirac_apply
+-/
 
+#print MeasureTheory.Measure.dirac_apply' /-
 @[simp]
 theorem dirac_apply' (a : α) (hs : MeasurableSet s) : dirac a s = s.indicator 1 a :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.dirac_apply' MeasureTheory.Measure.dirac_apply'
+-/
 
 #print MeasureTheory.Measure.dirac_apply_of_mem /-
 @[simp]
@@ -2133,6 +2407,7 @@ theorem dirac_apply_of_mem {a : α} (h : a ∈ s) : dirac a s = 1 :=
 #align measure_theory.measure.dirac_apply_of_mem MeasureTheory.Measure.dirac_apply_of_mem
 -/
 
+#print MeasureTheory.Measure.dirac_apply /-
 @[simp]
 theorem dirac_apply [MeasurableSingletonClass α] (a : α) (s : Set α) :
     dirac a s = s.indicator 1 a := by
@@ -2142,11 +2417,15 @@ theorem dirac_apply [MeasurableSingletonClass α] (a : α) (s : Set α) :
     dirac a s ≤ dirac a ({a}ᶜ) := measure_mono (subset_compl_comm.1 <| singleton_subset_iff.2 h)
     _ = 0 := by simp [dirac_apply' _ (measurable_set_singleton _).compl]
 #align measure_theory.measure.dirac_apply MeasureTheory.Measure.dirac_apply
+-/
 
+#print MeasureTheory.Measure.map_dirac /-
 theorem map_dirac {f : α → β} (hf : Measurable f) (a : α) : (dirac a).map f = dirac (f a) :=
   ext fun s hs => by simp [hs, map_apply hf hs, hf hs, indicator_apply]
 #align measure_theory.measure.map_dirac MeasureTheory.Measure.map_dirac
+-/
 
+#print MeasureTheory.Measure.restrict_singleton /-
 @[simp]
 theorem restrict_singleton (μ : Measure α) (a : α) : μ.restrict {a} = μ {a} • dirac a :=
   by
@@ -2157,13 +2436,12 @@ theorem restrict_singleton (μ : Measure α) (a : α) : μ.restrict {a} = μ {a}
   · have : s ∩ {a} = ∅ := inter_singleton_eq_empty.2 ha
     simp [*]
 #align measure_theory.measure.restrict_singleton MeasureTheory.Measure.restrict_singleton
+-/
 
 end Dirac
 
 section Sum
 
-include m0
-
 #print MeasureTheory.Measure.sum /-
 /-- Sum of an indexed family of measures. -/
 def sum (f : ι → Measure α) : Measure α :=
@@ -2173,19 +2451,26 @@ def sum (f : ι → Measure α) : Measure α :=
 #align measure_theory.measure.sum MeasureTheory.Measure.sum
 -/
 
+#print MeasureTheory.Measure.le_sum_apply /-
 theorem le_sum_apply (f : ι → Measure α) (s : Set α) : ∑' i, f i s ≤ sum f s :=
   le_toMeasure_apply _ _ _
 #align measure_theory.measure.le_sum_apply MeasureTheory.Measure.le_sum_apply
+-/
 
+#print MeasureTheory.Measure.sum_apply /-
 @[simp]
 theorem sum_apply (f : ι → Measure α) {s : Set α} (hs : MeasurableSet s) : sum f s = ∑' i, f i s :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.sum_apply MeasureTheory.Measure.sum_apply
+-/
 
+#print MeasureTheory.Measure.le_sum /-
 theorem le_sum (μ : ι → Measure α) (i : ι) : μ i ≤ sum μ := fun s hs => by
   simp only [sum_apply μ hs, ENNReal.le_tsum i]
 #align measure_theory.measure.le_sum MeasureTheory.Measure.le_sum
+-/
 
+#print MeasureTheory.Measure.sum_apply_eq_zero /-
 @[simp]
 theorem sum_apply_eq_zero [Countable ι] {μ : ι → Measure α} {s : Set α} :
     sum μ s = 0 ↔ ∀ i, μ i s = 0 :=
@@ -2198,15 +2483,20 @@ theorem sum_apply_eq_zero [Countable ι] {μ : ι → Measure α} {s : Set α} :
     Sum μ s ≤ Sum μ t := measure_mono hst
     _ = 0 := by simp [*]
 #align measure_theory.measure.sum_apply_eq_zero MeasureTheory.Measure.sum_apply_eq_zero
+-/
 
+#print MeasureTheory.Measure.sum_apply_eq_zero' /-
 theorem sum_apply_eq_zero' {μ : ι → Measure α} {s : Set α} (hs : MeasurableSet s) :
     sum μ s = 0 ↔ ∀ i, μ i s = 0 := by simp [hs]
 #align measure_theory.measure.sum_apply_eq_zero' MeasureTheory.Measure.sum_apply_eq_zero'
+-/
 
+#print MeasureTheory.Measure.sum_comm /-
 theorem sum_comm {ι' : Type _} (μ : ι → ι' → Measure α) :
     (sum fun n => sum (μ n)) = sum fun m => sum fun n => μ n m := by ext1 s hs;
   simp_rw [sum_apply _ hs]; rw [ENNReal.tsum_comm]
 #align measure_theory.measure.sum_comm MeasureTheory.Measure.sum_comm
+-/
 
 #print MeasureTheory.Measure.ae_sum_iff /-
 theorem ae_sum_iff [Countable ι] {μ : ι → Measure α} {p : α → Prop} :
@@ -2215,10 +2505,12 @@ theorem ae_sum_iff [Countable ι] {μ : ι → Measure α} {p : α → Prop} :
 #align measure_theory.measure.ae_sum_iff MeasureTheory.Measure.ae_sum_iff
 -/
 
+#print MeasureTheory.Measure.ae_sum_iff' /-
 theorem ae_sum_iff' {μ : ι → Measure α} {p : α → Prop} (h : MeasurableSet {x | p x}) :
     (∀ᵐ x ∂sum μ, p x) ↔ ∀ i, ∀ᵐ x ∂μ i, p x :=
   sum_apply_eq_zero' h.compl
 #align measure_theory.measure.ae_sum_iff' MeasureTheory.Measure.ae_sum_iff'
+-/
 
 #print MeasureTheory.Measure.sum_fintype /-
 @[simp]
@@ -2234,10 +2526,12 @@ theorem sum_coe_finset (s : Finset ι) (μ : ι → Measure α) :
 #align measure_theory.measure.sum_coe_finset MeasureTheory.Measure.sum_coe_finset
 -/
 
+#print MeasureTheory.Measure.ae_sum_eq /-
 @[simp]
 theorem ae_sum_eq [Countable ι] (μ : ι → Measure α) : (sum μ).ae = ⨆ i, (μ i).ae :=
   Filter.ext fun s => ae_sum_iff.trans mem_iSup.symm
 #align measure_theory.measure.ae_sum_eq MeasureTheory.Measure.ae_sum_eq
+-/
 
 #print MeasureTheory.Measure.sum_bool /-
 @[simp]
@@ -2253,11 +2547,13 @@ theorem sum_cond (μ ν : Measure α) : (sum fun b => cond b μ ν) = μ + ν :=
 #align measure_theory.measure.sum_cond MeasureTheory.Measure.sum_cond
 -/
 
+#print MeasureTheory.Measure.restrict_sum /-
 @[simp]
 theorem restrict_sum (μ : ι → Measure α) {s : Set α} (hs : MeasurableSet s) :
     (sum μ).restrict s = sum fun i => (μ i).restrict s :=
   ext fun t ht => by simp only [sum_apply, restrict_apply, ht, ht.inter hs]
 #align measure_theory.measure.restrict_sum MeasureTheory.Measure.restrict_sum
+-/
 
 #print MeasureTheory.Measure.sum_of_empty /-
 @[simp]
@@ -2311,6 +2607,7 @@ theorem sum_smul_dirac [Countable α] [MeasurableSingletonClass α] (μ : Measur
 #align measure_theory.measure.sum_smul_dirac MeasureTheory.Measure.sum_smul_dirac
 -/
 
+#print MeasureTheory.Measure.tsum_indicator_apply_singleton /-
 /-- Given that `α` is a countable, measurable space with all singleton sets measurable,
 write the measure of a set `s` as the sum of the measure of `{x}` for all `x ∈ s`. -/
 theorem tsum_indicator_apply_singleton [Countable α] [MeasurableSingletonClass α] (μ : Measure α)
@@ -2322,8 +2619,7 @@ theorem tsum_indicator_apply_singleton [Countable α] [MeasurableSingletonClass
         Set.indicator_apply, mul_ite, Pi.one_apply, mul_one, MulZeroClass.mul_zero]
     _ = μ s := by rw [μ.sum_smul_dirac]
 #align measure_theory.measure.tsum_indicator_apply_singleton MeasureTheory.Measure.tsum_indicator_apply_singleton
-
-omit m0
+-/
 
 end Sum
 
@@ -2334,10 +2630,12 @@ theorem restrict_iUnion_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AE
 #align measure_theory.measure.restrict_Union_ae MeasureTheory.Measure.restrict_iUnion_ae
 -/
 
+#print MeasureTheory.Measure.restrict_iUnion /-
 theorem restrict_iUnion [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
   restrict_iUnion_ae hd.AEDisjoint fun i => (hm i).NullMeasurableSet
 #align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_iUnion
+-/
 
 #print MeasureTheory.Measure.restrict_iUnion_le /-
 theorem restrict_iUnion_le [Countable ι] {s : ι → Set α} :
@@ -2360,20 +2658,26 @@ def count : Measure α :=
 #align measure_theory.measure.count MeasureTheory.Measure.count
 -/
 
+#print MeasureTheory.Measure.le_count_apply /-
 theorem le_count_apply : (∑' i : s, 1 : ℝ≥0∞) ≤ count s :=
   calc
     (∑' i : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i := tsum_subtype s 1
     _ ≤ ∑' i, dirac i s := (ENNReal.tsum_le_tsum fun x => le_dirac_apply)
     _ ≤ count s := le_sum_apply _ _
 #align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_apply
+-/
 
+#print MeasureTheory.Measure.count_apply /-
 theorem count_apply (hs : MeasurableSet s) : count s = ∑' i : s, 1 := by
   simp only [count, sum_apply, hs, dirac_apply', ← tsum_subtype s 1, Pi.one_apply]
 #align measure_theory.measure.count_apply MeasureTheory.Measure.count_apply
+-/
 
+#print MeasureTheory.Measure.count_empty /-
 @[simp]
 theorem count_empty : count (∅ : Set α) = 0 := by rw [count_apply MeasurableSet.empty, tsum_empty]
 #align measure_theory.measure.count_empty MeasureTheory.Measure.count_empty
+-/
 
 #print MeasureTheory.Measure.count_apply_finset' /-
 @[simp]
@@ -2408,6 +2712,7 @@ theorem count_apply_finite [MeasurableSingletonClass α] (s : Set α) (hs : s.Fi
 #align measure_theory.measure.count_apply_finite MeasureTheory.Measure.count_apply_finite
 -/
 
+#print MeasureTheory.Measure.count_apply_infinite /-
 /-- `count` measure evaluates to infinity at infinite sets. -/
 theorem count_apply_infinite (hs : s.Infinite) : count s = ∞ :=
   by
@@ -2419,7 +2724,9 @@ theorem count_apply_infinite (hs : s.Infinite) : count s = ∞ :=
     _ ≤ count (t : Set α) := le_count_apply
     _ ≤ count s := measure_mono ht
 #align measure_theory.measure.count_apply_infinite MeasureTheory.Measure.count_apply_infinite
+-/
 
+#print MeasureTheory.Measure.count_apply_eq_top' /-
 @[simp]
 theorem count_apply_eq_top' (s_mble : MeasurableSet s) : count s = ∞ ↔ s.Infinite :=
   by
@@ -2428,7 +2735,9 @@ theorem count_apply_eq_top' (s_mble : MeasurableSet s) : count s = ∞ ↔ s.Inf
   · change s.infinite at hs 
     simp [hs, count_apply_infinite]
 #align measure_theory.measure.count_apply_eq_top' MeasureTheory.Measure.count_apply_eq_top'
+-/
 
+#print MeasureTheory.Measure.count_apply_eq_top /-
 @[simp]
 theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.Infinite :=
   by
@@ -2437,7 +2746,9 @@ theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.I
   · change s.infinite at hs 
     simp [hs, count_apply_infinite]
 #align measure_theory.measure.count_apply_eq_top MeasureTheory.Measure.count_apply_eq_top
+-/
 
+#print MeasureTheory.Measure.count_apply_lt_top' /-
 @[simp]
 theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Finite :=
   calc
@@ -2445,7 +2756,9 @@ theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Fin
     _ ↔ ¬s.Infinite := (not_congr (count_apply_eq_top' s_mble))
     _ ↔ s.Finite := Classical.not_not
 #align measure_theory.measure.count_apply_lt_top' MeasureTheory.Measure.count_apply_lt_top'
+-/
 
+#print MeasureTheory.Measure.count_apply_lt_top /-
 @[simp]
 theorem count_apply_lt_top [MeasurableSingletonClass α] : count s < ∞ ↔ s.Finite :=
   calc
@@ -2453,7 +2766,9 @@ theorem count_apply_lt_top [MeasurableSingletonClass α] : count s < ∞ ↔ s.F
     _ ↔ ¬s.Infinite := (not_congr count_apply_eq_top)
     _ ↔ s.Finite := Classical.not_not
 #align measure_theory.measure.count_apply_lt_top MeasureTheory.Measure.count_apply_lt_top
+-/
 
+#print MeasureTheory.Measure.empty_of_count_eq_zero' /-
 theorem empty_of_count_eq_zero' (s_mble : MeasurableSet s) (hsc : count s = 0) : s = ∅ :=
   by
   have hs : s.finite := by
@@ -2461,7 +2776,9 @@ theorem empty_of_count_eq_zero' (s_mble : MeasurableSet s) (hsc : count s = 0) :
     exact WithTop.zero_lt_top
   simpa [count_apply_finite' hs s_mble] using hsc
 #align measure_theory.measure.empty_of_count_eq_zero' MeasureTheory.Measure.empty_of_count_eq_zero'
+-/
 
+#print MeasureTheory.Measure.empty_of_count_eq_zero /-
 theorem empty_of_count_eq_zero [MeasurableSingletonClass α] (hsc : count s = 0) : s = ∅ :=
   by
   have hs : s.finite := by
@@ -2469,28 +2786,37 @@ theorem empty_of_count_eq_zero [MeasurableSingletonClass α] (hsc : count s = 0)
     exact WithTop.zero_lt_top
   simpa [count_apply_finite _ hs] using hsc
 #align measure_theory.measure.empty_of_count_eq_zero MeasureTheory.Measure.empty_of_count_eq_zero
+-/
 
+#print MeasureTheory.Measure.count_eq_zero_iff' /-
 @[simp]
 theorem count_eq_zero_iff' (s_mble : MeasurableSet s) : count s = 0 ↔ s = ∅ :=
   ⟨empty_of_count_eq_zero' s_mble, fun h => h.symm ▸ count_empty⟩
 #align measure_theory.measure.count_eq_zero_iff' MeasureTheory.Measure.count_eq_zero_iff'
+-/
 
+#print MeasureTheory.Measure.count_eq_zero_iff /-
 @[simp]
 theorem count_eq_zero_iff [MeasurableSingletonClass α] : count s = 0 ↔ s = ∅ :=
   ⟨empty_of_count_eq_zero, fun h => h.symm ▸ count_empty⟩
 #align measure_theory.measure.count_eq_zero_iff MeasureTheory.Measure.count_eq_zero_iff
+-/
 
+#print MeasureTheory.Measure.count_ne_zero' /-
 theorem count_ne_zero' (hs' : s.Nonempty) (s_mble : MeasurableSet s) : count s ≠ 0 :=
   by
   rw [Ne.def, count_eq_zero_iff' s_mble]
   exact hs'.ne_empty
 #align measure_theory.measure.count_ne_zero' MeasureTheory.Measure.count_ne_zero'
+-/
 
+#print MeasureTheory.Measure.count_ne_zero /-
 theorem count_ne_zero [MeasurableSingletonClass α] (hs' : s.Nonempty) : count s ≠ 0 :=
   by
   rw [Ne.def, count_eq_zero_iff]
   exact hs'.ne_empty
 #align measure_theory.measure.count_ne_zero MeasureTheory.Measure.count_ne_zero
+-/
 
 #print MeasureTheory.Measure.count_singleton' /-
 @[simp]
@@ -2523,6 +2849,7 @@ theorem count_injective_image' {f : β → α} (hf : Function.Injective f) {s :
 #align measure_theory.measure.count_injective_image' MeasureTheory.Measure.count_injective_image'
 -/
 
+#print MeasureTheory.Measure.count_injective_image /-
 theorem count_injective_image [MeasurableSingletonClass α] [MeasurableSingletonClass β] {f : β → α}
     (hf : Function.Injective f) (s : Set β) : count (f '' s) = count s :=
   by
@@ -2532,6 +2859,7 @@ theorem count_injective_image [MeasurableSingletonClass α] [MeasurableSingleton
   rw [← finite_image_iff <| hf.inj_on _] at hs 
   rw [count_apply_infinite hs]
 #align measure_theory.measure.count_injective_image MeasureTheory.Measure.count_injective_image
+-/
 
 end Count
 
@@ -2546,7 +2874,6 @@ def AbsolutelyContinuous {m0 : MeasurableSpace α} (μ ν : Measure α) : Prop :
 #align measure_theory.measure.absolutely_continuous MeasureTheory.Measure.AbsolutelyContinuous
 -/
 
--- mathport name: measure.absolutely_continuous
 scoped[MeasureTheory] infixl:50 " ≪ " => MeasureTheory.Measure.AbsolutelyContinuous
 
 #print MeasureTheory.Measure.absolutelyContinuous_of_le /-
@@ -2569,12 +2896,14 @@ alias absolutely_continuous_of_eq ← _root_.eq.absolutely_continuous
 
 namespace AbsolutelyContinuous
 
+#print MeasureTheory.Measure.AbsolutelyContinuous.mk /-
 theorem mk (h : ∀ ⦃s : Set α⦄, MeasurableSet s → ν s = 0 → μ s = 0) : μ ≪ ν :=
   by
   intro s hs
   rcases exists_measurable_superset_of_null hs with ⟨t, h1t, h2t, h3t⟩
   exact measure_mono_null h1t (h h2t h3t)
 #align measure_theory.measure.absolutely_continuous.mk MeasureTheory.Measure.AbsolutelyContinuous.mk
+-/
 
 #print MeasureTheory.Measure.AbsolutelyContinuous.refl /-
 @[refl]
@@ -2597,26 +2926,34 @@ protected theorem trans (h1 : μ₁ ≪ μ₂) (h2 : μ₂ ≪ μ₃) : μ₁ 
 #align measure_theory.measure.absolutely_continuous.trans MeasureTheory.Measure.AbsolutelyContinuous.trans
 -/
 
+#print MeasureTheory.Measure.AbsolutelyContinuous.map /-
 @[mono]
 protected theorem map (h : μ ≪ ν) {f : α → β} (hf : Measurable f) : μ.map f ≪ ν.map f :=
   AbsolutelyContinuous.mk fun s hs => by simpa [hf, hs] using @h _
 #align measure_theory.measure.absolutely_continuous.map MeasureTheory.Measure.AbsolutelyContinuous.map
+-/
 
+#print MeasureTheory.Measure.AbsolutelyContinuous.smul /-
 protected theorem smul [Monoid R] [DistribMulAction R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (h : μ ≪ ν)
     (c : R) : c • μ ≪ ν := fun s hνs => by simp only [h hνs, smul_eq_mul, smul_apply, smul_zero]
 #align measure_theory.measure.absolutely_continuous.smul MeasureTheory.Measure.AbsolutelyContinuous.smul
+-/
 
 end AbsolutelyContinuous
 
+#print MeasureTheory.Measure.absolutelyContinuous_of_le_smul /-
 theorem absolutelyContinuous_of_le_smul {μ' : Measure α} {c : ℝ≥0∞} (hμ'_le : μ' ≤ c • μ) :
     μ' ≪ μ :=
   (Measure.absolutelyContinuous_of_le hμ'_le).trans (Measure.AbsolutelyContinuous.rfl.smul c)
 #align measure_theory.measure.absolutely_continuous_of_le_smul MeasureTheory.Measure.absolutelyContinuous_of_le_smul
+-/
 
+#print MeasureTheory.Measure.ae_le_iff_absolutelyContinuous /-
 theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
   ⟨fun h s => by rw [measure_zero_iff_ae_nmem, measure_zero_iff_ae_nmem]; exact fun hs => h hs,
     fun h s hs => h hs⟩
 #align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuous
+-/
 
 alias ae_le_iff_absolutely_continuous ↔ _root_.has_le.le.absolutely_continuous_of_ae
   absolutely_continuous.ae_le
@@ -2626,9 +2963,11 @@ alias ae_le_iff_absolutely_continuous ↔ _root_.has_le.le.absolutely_continuous
 alias absolutely_continuous.ae_le ← ae_mono'
 #align measure_theory.measure.ae_mono' MeasureTheory.Measure.ae_mono'
 
+#print MeasureTheory.Measure.AbsolutelyContinuous.ae_eq /-
 theorem AbsolutelyContinuous.ae_eq (h : μ ≪ ν) {f g : α → δ} (h' : f =ᵐ[ν] g) : f =ᵐ[μ] g :=
   h.ae_le h'
 #align measure_theory.measure.absolutely_continuous.ae_eq MeasureTheory.Measure.AbsolutelyContinuous.ae_eq
+-/
 
 /-! ### Quasi measure preserving maps (a.k.a. non-singular maps) -/
 
@@ -2655,31 +2994,41 @@ protected theorem id {m0 : MeasurableSpace α} (μ : Measure α) : QuasiMeasureP
 
 variable {μa μa' : Measure α} {μb μb' : Measure β} {μc : Measure γ} {f : α → β}
 
+#print Measurable.quasiMeasurePreserving /-
 protected theorem Measurable.quasiMeasurePreserving {m0 : MeasurableSpace α} (hf : Measurable f)
     (μ : Measure α) : QuasiMeasurePreserving f μ (μ.map f) :=
   ⟨hf, AbsolutelyContinuous.rfl⟩
 #align measurable.quasi_measure_preserving Measurable.quasiMeasurePreserving
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.mono_left /-
 theorem mono_left (h : QuasiMeasurePreserving f μa μb) (ha : μa' ≪ μa) :
     QuasiMeasurePreserving f μa' μb :=
   ⟨h.1, (ha.map h.1).trans h.2⟩
 #align measure_theory.measure.quasi_measure_preserving.mono_left MeasureTheory.Measure.QuasiMeasurePreserving.mono_left
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.mono_right /-
 theorem mono_right (h : QuasiMeasurePreserving f μa μb) (ha : μb ≪ μb') :
     QuasiMeasurePreserving f μa μb' :=
   ⟨h.1, h.2.trans ha⟩
 #align measure_theory.measure.quasi_measure_preserving.mono_right MeasureTheory.Measure.QuasiMeasurePreserving.mono_right
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.mono /-
 @[mono]
 theorem mono (ha : μa' ≪ μa) (hb : μb ≪ μb') (h : QuasiMeasurePreserving f μa μb) :
     QuasiMeasurePreserving f μa' μb' :=
   (h.mono_left ha).mono_right hb
 #align measure_theory.measure.quasi_measure_preserving.mono MeasureTheory.Measure.QuasiMeasurePreserving.mono
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.comp /-
 protected theorem comp {g : β → γ} {f : α → β} (hg : QuasiMeasurePreserving g μb μc)
     (hf : QuasiMeasurePreserving f μa μb) : QuasiMeasurePreserving (g ∘ f) μa μc :=
   ⟨hg.Measurable.comp hf.Measurable, by rw [← map_map hg.1 hf.1]; exact (hf.2.map hg.1).trans hg.2⟩
 #align measure_theory.measure.quasi_measure_preserving.comp MeasureTheory.Measure.QuasiMeasurePreserving.comp
+-/
 
 #print MeasureTheory.Measure.QuasiMeasurePreserving.iterate /-
 protected theorem iterate {f : α → α} (hf : QuasiMeasurePreserving f μa μa) :
@@ -2689,32 +3038,44 @@ protected theorem iterate {f : α → α} (hf : QuasiMeasurePreserving f μa μa
 #align measure_theory.measure.quasi_measure_preserving.iterate MeasureTheory.Measure.QuasiMeasurePreserving.iterate
 -/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.aemeasurable /-
 protected theorem aemeasurable (hf : QuasiMeasurePreserving f μa μb) : AEMeasurable f μa :=
   hf.1.AEMeasurable
 #align measure_theory.measure.quasi_measure_preserving.ae_measurable MeasureTheory.Measure.QuasiMeasurePreserving.aemeasurable
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_le /-
 theorem ae_map_le (h : QuasiMeasurePreserving f μa μb) : (μa.map f).ae ≤ μb.ae :=
   h.2.ae_le
 #align measure_theory.measure.quasi_measure_preserving.ae_map_le MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_le
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.tendsto_ae /-
 theorem tendsto_ae (h : QuasiMeasurePreserving f μa μb) : Tendsto f μa.ae μb.ae :=
   (tendsto_ae_map h.AEMeasurable).mono_right h.ae_map_le
 #align measure_theory.measure.quasi_measure_preserving.tendsto_ae MeasureTheory.Measure.QuasiMeasurePreserving.tendsto_ae
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.ae /-
 theorem ae (h : QuasiMeasurePreserving f μa μb) {p : β → Prop} (hg : ∀ᵐ x ∂μb, p x) :
     ∀ᵐ x ∂μa, p (f x) :=
   h.tendsto_ae hg
 #align measure_theory.measure.quasi_measure_preserving.ae MeasureTheory.Measure.QuasiMeasurePreserving.ae
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq /-
 theorem ae_eq (h : QuasiMeasurePreserving f μa μb) {g₁ g₂ : β → δ} (hg : g₁ =ᵐ[μb] g₂) :
     g₁ ∘ f =ᵐ[μa] g₂ ∘ f :=
   h.ae hg
 #align measure_theory.measure.quasi_measure_preserving.ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.preimage_null /-
 theorem preimage_null (h : QuasiMeasurePreserving f μa μb) {s : Set β} (hs : μb s = 0) :
     μa (f ⁻¹' s) = 0 :=
   preimage_null_of_map_null h.AEMeasurable (h.2 hs)
 #align measure_theory.measure.quasi_measure_preserving.preimage_null MeasureTheory.Measure.QuasiMeasurePreserving.preimage_null
+-/
 
 #print MeasureTheory.Measure.QuasiMeasurePreserving.preimage_mono_ae /-
 theorem preimage_mono_ae {s t : Set β} (hf : QuasiMeasurePreserving f μa μb) (h : s ≤ᵐ[μb] t) :
@@ -2757,6 +3118,7 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
 #align measure_theory.measure.quasi_measure_preserving.image_zpow_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq
 -/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq /-
 theorem limsup_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreserving f μ μ)
     (hs : f ⁻¹' s =ᵐ[μ] s) :-- Need `@` below because of diamond; see gh issue #16932
         @limsup
@@ -2768,7 +3130,9 @@ theorem limsup_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreservi
     simpa only [iterate_succ', comp_app] using ae_eq_trans (hf.ae_eq ih) hs
   (limsup_ae_eq_of_forall_ae_eq (fun n => (preimage f^[n]) s) this).trans (ae_eq_refl _)
 #align measure_theory.measure.quasi_measure_preserving.limsup_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.liminf_preimage_iterate_ae_eq /-
 theorem liminf_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreserving f μ μ)
     (hs : f ⁻¹' s =ᵐ[μ] s) :-- Need `@` below because of diamond; see gh issue #16932
         @liminf
@@ -2782,6 +3146,7 @@ theorem liminf_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreservi
   ext1 n
   simp only [← Set.preimage_iterate_eq, comp_app, preimage_compl]
 #align measure_theory.measure.quasi_measure_preserving.liminf_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.liminf_preimage_iterate_ae_eq
+-/
 
 #print MeasureTheory.Measure.QuasiMeasurePreserving.exists_preimage_eq_of_preimage_ae /-
 /-- By replacing a measurable set that is almost invariant with the `limsup` of its preimages, we
@@ -2800,6 +3165,7 @@ theorem exists_preimage_eq_of_preimage_ae {f : α → α} (h : QuasiMeasurePrese
 
 open scoped Pointwise
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eq /-
 @[to_additive]
 theorem smul_ae_eq_of_ae_eq {G α : Type _} [Group G] [MulAction G α] [MeasurableSpace α]
     {s t : Set α} {μ : Measure α} (g : G) (h_qmp : QuasiMeasurePreserving ((· • ·) g⁻¹ : α → α) μ μ)
@@ -2807,6 +3173,7 @@ theorem smul_ae_eq_of_ae_eq {G α : Type _} [Group G] [MulAction G α] [Measurab
   simpa only [← preimage_smul_inv] using h_qmp.ae_eq h_ae_eq
 #align measure_theory.measure.quasi_measure_preserving.smul_ae_eq_of_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eq
 #align measure_theory.measure.quasi_measure_preserving.vadd_ae_eq_of_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.vadd_ae_eq_of_ae_eq
+-/
 
 end QuasiMeasurePreserving
 
@@ -2815,6 +3182,7 @@ section Pointwise
 open scoped Pointwise
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
+#print MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_one /-
 @[to_additive]
 theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
     [MeasurableSpace α] {μ : Measure α} {s : Set α}
@@ -2832,6 +3200,7 @@ theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type _} [Group G
   exact this ▸ (h_qmp g₂⁻¹).preimage_null (h_ae_disjoint g hg)
 #align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_one
 #align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_zero MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_zero
+-/
 
 end Pointwise
 
@@ -2853,16 +3222,22 @@ def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α
 #align measure_theory.measure.cofinite MeasureTheory.Measure.cofinite
 -/
 
+#print MeasureTheory.Measure.mem_cofinite /-
 theorem mem_cofinite : s ∈ μ.cofinite ↔ μ (sᶜ) < ∞ :=
   Iff.rfl
 #align measure_theory.measure.mem_cofinite MeasureTheory.Measure.mem_cofinite
+-/
 
+#print MeasureTheory.Measure.compl_mem_cofinite /-
 theorem compl_mem_cofinite : sᶜ ∈ μ.cofinite ↔ μ s < ∞ := by rw [mem_cofinite, compl_compl]
 #align measure_theory.measure.compl_mem_cofinite MeasureTheory.Measure.compl_mem_cofinite
+-/
 
+#print MeasureTheory.Measure.eventually_cofinite /-
 theorem eventually_cofinite {p : α → Prop} : (∀ᶠ x in μ.cofinite, p x) ↔ μ {x | ¬p x} < ∞ :=
   Iff.rfl
 #align measure_theory.measure.eventually_cofinite MeasureTheory.Measure.eventually_cofinite
+-/
 
 end Measure
 
@@ -2901,10 +3276,12 @@ theorem AEDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht
 #align measure_theory.ae_disjoint.preimage MeasureTheory.AEDisjoint.preimage
 -/
 
+#print MeasureTheory.ae_eq_bot /-
 @[simp]
 theorem ae_eq_bot : μ.ae = ⊥ ↔ μ = 0 := by
   rw [← empty_mem_iff_bot, mem_ae_iff, compl_empty, measure_univ_eq_zero]
 #align measure_theory.ae_eq_bot MeasureTheory.ae_eq_bot
+-/
 
 #print MeasureTheory.ae_neBot /-
 @[simp]
@@ -2913,36 +3290,49 @@ theorem ae_neBot : μ.ae.ne_bot ↔ μ ≠ 0 :=
 #align measure_theory.ae_ne_bot MeasureTheory.ae_neBot
 -/
 
+#print MeasureTheory.ae_zero /-
 @[simp]
 theorem ae_zero {m0 : MeasurableSpace α} : (0 : Measure α).ae = ⊥ :=
   ae_eq_bot.2 rfl
 #align measure_theory.ae_zero MeasureTheory.ae_zero
+-/
 
+#print MeasureTheory.ae_mono /-
 @[mono]
 theorem ae_mono (h : μ ≤ ν) : μ.ae ≤ ν.ae :=
   h.AbsolutelyContinuous.ae_le
 #align measure_theory.ae_mono MeasureTheory.ae_mono
+-/
 
+#print MeasureTheory.mem_ae_map_iff /-
 theorem mem_ae_map_iff {f : α → β} (hf : AEMeasurable f μ) {s : Set β} (hs : MeasurableSet s) :
     s ∈ (μ.map f).ae ↔ f ⁻¹' s ∈ μ.ae := by
   simp only [mem_ae_iff, map_apply_of_ae_measurable hf hs.compl, preimage_compl]
 #align measure_theory.mem_ae_map_iff MeasureTheory.mem_ae_map_iff
+-/
 
+#print MeasureTheory.mem_ae_of_mem_ae_map /-
 theorem mem_ae_of_mem_ae_map {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : s ∈ (μ.map f).ae) : f ⁻¹' s ∈ μ.ae :=
   (tendsto_ae_map hf).Eventually hs
 #align measure_theory.mem_ae_of_mem_ae_map MeasureTheory.mem_ae_of_mem_ae_map
+-/
 
+#print MeasureTheory.ae_map_iff /-
 theorem ae_map_iff {f : α → β} (hf : AEMeasurable f μ) {p : β → Prop}
     (hp : MeasurableSet {x | p x}) : (∀ᵐ y ∂μ.map f, p y) ↔ ∀ᵐ x ∂μ, p (f x) :=
   mem_ae_map_iff hf hp
 #align measure_theory.ae_map_iff MeasureTheory.ae_map_iff
+-/
 
+#print MeasureTheory.ae_of_ae_map /-
 theorem ae_of_ae_map {f : α → β} (hf : AEMeasurable f μ) {p : β → Prop} (h : ∀ᵐ y ∂μ.map f, p y) :
     ∀ᵐ x ∂μ, p (f x) :=
   mem_ae_of_mem_ae_map hf h
 #align measure_theory.ae_of_ae_map MeasureTheory.ae_of_ae_map
+-/
 
+#print MeasureTheory.ae_map_mem_range /-
 theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : MeasurableSet (range f))
     (μ : Measure α) : ∀ᵐ x ∂μ.map f, x ∈ range f :=
   by
@@ -2953,13 +3343,16 @@ theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : Measura
     exact mem_range_self
   · simp [map_of_not_ae_measurable h]
 #align measure_theory.ae_map_mem_range MeasureTheory.ae_map_mem_range
+-/
 
+#print MeasureTheory.ae_restrict_iUnion_eq /-
 @[simp]
 theorem ae_restrict_iUnion_eq [Countable ι] (s : ι → Set α) :
     (μ.restrict (⋃ i, s i)).ae = ⨆ i, (μ.restrict (s i)).ae :=
   le_antisymm ((ae_sum_eq fun i => μ.restrict (s i)) ▸ ae_mono restrict_iUnion_le) <|
     iSup_le fun i => ae_mono <| restrict_mono (subset_iUnion s i) le_rfl
 #align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_iUnion_eq
+-/
 
 #print MeasureTheory.ae_restrict_union_eq /-
 @[simp]
@@ -2969,17 +3362,21 @@ theorem ae_restrict_union_eq (s t : Set α) :
 #align measure_theory.ae_restrict_union_eq MeasureTheory.ae_restrict_union_eq
 -/
 
+#print MeasureTheory.ae_restrict_biUnion_eq /-
 theorem ae_restrict_biUnion_eq (s : ι → Set α) {t : Set ι} (ht : t.Countable) :
     (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae :=
   by
   haveI := ht.to_subtype
   rw [bUnion_eq_Union, ae_restrict_Union_eq, ← iSup_subtype'']
 #align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_biUnion_eq
+-/
 
+#print MeasureTheory.ae_restrict_biUnion_finset_eq /-
 theorem ae_restrict_biUnion_finset_eq (s : ι → Set α) (t : Finset ι) :
     (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae :=
   ae_restrict_biUnion_eq s t.countable_toSet
 #align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_biUnion_finset_eq
+-/
 
 #print MeasureTheory.ae_restrict_iUnion_iff /-
 theorem ae_restrict_iUnion_iff [Countable ι] (s : ι → Set α) (p : α → Prop) :
@@ -2993,36 +3390,48 @@ theorem ae_restrict_union_iff (s t : Set α) (p : α → Prop) :
 #align measure_theory.ae_restrict_union_iff MeasureTheory.ae_restrict_union_iff
 -/
 
+#print MeasureTheory.ae_restrict_biUnion_iff /-
 theorem ae_restrict_biUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
   simp_rw [Filter.Eventually, ae_restrict_bUnion_eq s ht, mem_supr]
 #align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_biUnion_iff
+-/
 
+#print MeasureTheory.ae_restrict_biUnion_finset_iff /-
 @[simp]
 theorem ae_restrict_biUnion_finset_iff (s : ι → Set α) (t : Finset ι) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
   simp_rw [Filter.Eventually, ae_restrict_bUnion_finset_eq s, mem_supr]
 #align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_biUnion_finset_iff
+-/
 
+#print MeasureTheory.ae_eq_restrict_iUnion_iff /-
 theorem ae_eq_restrict_iUnion_iff [Countable ι] (s : ι → Set α) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i, s i)] g ↔ ∀ i, f =ᵐ[μ.restrict (s i)] g := by
   simp_rw [eventually_eq, ae_restrict_Union_eq, eventually_supr]
 #align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_iUnion_iff
+-/
 
+#print MeasureTheory.ae_eq_restrict_biUnion_iff /-
 theorem ae_eq_restrict_biUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g := by
   simp_rw [ae_restrict_bUnion_eq s ht, eventually_eq, eventually_supr]
 #align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_biUnion_iff
+-/
 
+#print MeasureTheory.ae_eq_restrict_biUnion_finset_iff /-
 theorem ae_eq_restrict_biUnion_finset_iff (s : ι → Set α) (t : Finset ι) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g :=
   ae_eq_restrict_biUnion_iff s t.countable_toSet f g
 #align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_biUnion_finset_iff
+-/
 
+#print MeasureTheory.ae_restrict_uIoc_eq /-
 theorem ae_restrict_uIoc_eq [LinearOrder α] (a b : α) :
     (μ.restrict (Ι a b)).ae = (μ.restrict (Ioc a b)).ae ⊔ (μ.restrict (Ioc b a)).ae := by
   simp only [uIoc_eq_union, ae_restrict_union_eq]
 #align measure_theory.ae_restrict_uIoc_eq MeasureTheory.ae_restrict_uIoc_eq
+-/
 
 #print MeasureTheory.ae_restrict_uIoc_iff /-
 /-- See also `measure_theory.ae_uIoc_iff`. -/
@@ -3059,6 +3468,7 @@ theorem ae_restrict_iff' {p : α → Prop} (hs : MeasurableSet s) :
 #align measure_theory.ae_restrict_iff' MeasureTheory.ae_restrict_iff'
 -/
 
+#print Filter.EventuallyEq.restrict /-
 theorem Filter.EventuallyEq.restrict {f g : α → δ} {s : Set α} (hfg : f =ᵐ[μ] g) :
     f =ᵐ[μ.restrict s] g :=
   by
@@ -3067,6 +3477,7 @@ theorem Filter.EventuallyEq.restrict {f g : α → δ} {s : Set α} (hfg : f =
   rw [measure.ae_le_iff_absolutely_continuous]
   exact measure.absolutely_continuous_of_le measure.restrict_le_self
 #align filter.eventually_eq.restrict Filter.EventuallyEq.restrict
+-/
 
 #print MeasureTheory.ae_restrict_mem /-
 theorem ae_restrict_mem (hs : MeasurableSet s) : ∀ᵐ x ∂μ.restrict s, x ∈ s :=
@@ -3119,15 +3530,19 @@ theorem ae_of_ae_restrict_of_ae_restrict_compl (t : Set α) {p : α → Prop}
 #align measure_theory.ae_of_ae_restrict_of_ae_restrict_compl MeasureTheory.ae_of_ae_restrict_of_ae_restrict_compl
 -/
 
+#print MeasureTheory.mem_map_restrict_ae_iff /-
 theorem mem_map_restrict_ae_iff {β} {s : Set α} {t : Set β} {f : α → β} (hs : MeasurableSet s) :
     t ∈ Filter.map f (μ.restrict s).ae ↔ μ ((f ⁻¹' t)ᶜ ∩ s) = 0 := by
   rw [mem_map, mem_ae_iff, measure.restrict_apply' hs]
 #align measure_theory.mem_map_restrict_ae_iff MeasureTheory.mem_map_restrict_ae_iff
+-/
 
+#print MeasureTheory.ae_smul_measure /-
 theorem ae_smul_measure {p : α → Prop} [Monoid R] [DistribMulAction R ℝ≥0∞]
     [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (h : ∀ᵐ x ∂μ, p x) (c : R) : ∀ᵐ x ∂c • μ, p x :=
   ae_iff.2 <| by rw [smul_apply, ae_iff.1 h, smul_zero]
 #align measure_theory.ae_smul_measure MeasureTheory.ae_smul_measure
+-/
 
 #print MeasureTheory.ae_add_measure_iff /-
 theorem ae_add_measure_iff {p : α → Prop} {ν} :
@@ -3136,32 +3551,43 @@ theorem ae_add_measure_iff {p : α → Prop} {ν} :
 #align measure_theory.ae_add_measure_iff MeasureTheory.ae_add_measure_iff
 -/
 
+#print MeasureTheory.ae_eq_comp' /-
 theorem ae_eq_comp' {ν : Measure β} {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ)
     (h : g =ᵐ[ν] g') (h2 : μ.map f ≪ ν) : g ∘ f =ᵐ[μ] g' ∘ f :=
   (tendsto_ae_map hf).mono_right h2.ae_le h
 #align measure_theory.ae_eq_comp' MeasureTheory.ae_eq_comp'
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq_comp /-
 theorem Measure.QuasiMeasurePreserving.ae_eq_comp {ν : Measure β} {f : α → β} {g g' : β → δ}
     (hf : QuasiMeasurePreserving f μ ν) (h : g =ᵐ[ν] g') : g ∘ f =ᵐ[μ] g' ∘ f :=
   ae_eq_comp' hf.AEMeasurable h hf.AbsolutelyContinuous
 #align measure_theory.measure.quasi_measure_preserving.ae_eq_comp MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq_comp
+-/
 
+#print MeasureTheory.ae_eq_comp /-
 theorem ae_eq_comp {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ) (h : g =ᵐ[μ.map f] g') :
     g ∘ f =ᵐ[μ] g' ∘ f :=
   ae_eq_comp' hf h AbsolutelyContinuous.rfl
 #align measure_theory.ae_eq_comp MeasureTheory.ae_eq_comp
+-/
 
+#print MeasureTheory.sub_ae_eq_zero /-
 theorem sub_ae_eq_zero {β} [AddGroup β] (f g : α → β) : f - g =ᵐ[μ] 0 ↔ f =ᵐ[μ] g :=
   by
   refine' ⟨fun h => h.mono fun x hx => _, fun h => h.mono fun x hx => _⟩
   · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero] at hx 
   · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero]
 #align measure_theory.sub_ae_eq_zero MeasureTheory.sub_ae_eq_zero
+-/
 
+#print MeasureTheory.le_ae_restrict /-
 theorem le_ae_restrict : μ.ae ⊓ 𝓟 s ≤ (μ.restrict s).ae := fun s hs =>
   eventually_inf_principal.2 (ae_imp_of_ae_restrict hs)
 #align measure_theory.le_ae_restrict MeasureTheory.le_ae_restrict
+-/
 
+#print MeasureTheory.ae_restrict_eq /-
 @[simp]
 theorem ae_restrict_eq (hs : MeasurableSet s) : (μ.restrict s).ae = μ.ae ⊓ 𝓟 s :=
   by
@@ -3170,16 +3596,21 @@ theorem ae_restrict_eq (hs : MeasurableSet s) : (μ.restrict s).ae = μ.ae ⊓ 
     and_comm' (_ ∈ s)]
   rfl
 #align measure_theory.ae_restrict_eq MeasureTheory.ae_restrict_eq
+-/
 
+#print MeasureTheory.ae_restrict_eq_bot /-
 @[simp]
 theorem ae_restrict_eq_bot {s} : (μ.restrict s).ae = ⊥ ↔ μ s = 0 :=
   ae_eq_bot.trans restrict_eq_zero
 #align measure_theory.ae_restrict_eq_bot MeasureTheory.ae_restrict_eq_bot
+-/
 
+#print MeasureTheory.ae_restrict_neBot /-
 @[simp]
 theorem ae_restrict_neBot {s} : (μ.restrict s).ae.ne_bot ↔ 0 < μ s :=
   neBot_iff.trans <| (not_congr ae_restrict_eq_bot).trans pos_iff_ne_zero.symm
 #align measure_theory.ae_restrict_ne_bot MeasureTheory.ae_restrict_neBot
+-/
 
 #print MeasureTheory.self_mem_ae_restrict /-
 theorem self_mem_ae_restrict {s} (hs : MeasurableSet s) : s ∈ (μ.restrict s).ae := by
@@ -3205,6 +3636,7 @@ theorem ae_restrict_congr_set {s t} (hst : s =ᵐ[μ] t) {p : α → Prop} :
 #align measure_theory.ae_restrict_congr_set MeasureTheory.ae_restrict_congr_set
 -/
 
+#print MeasureTheory.measure_setOf_frequently_eq_zero /-
 /-- A version of the **Borel-Cantelli lemma**: if `pᵢ` is a sequence of predicates such that
 `∑ μ {x | pᵢ x}` is finite, then the measure of `x` such that `pᵢ x` holds frequently as `i → ∞` (or
 equivalently, `pᵢ x` holds for infinitely many `i`) is equal to zero. -/
@@ -3213,16 +3645,20 @@ theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : ∑' i,
   simpa only [limsup_eq_infi_supr_of_nat, frequently_at_top, set_of_forall, set_of_exists] using
     measure_limsup_eq_zero hp
 #align measure_theory.measure_set_of_frequently_eq_zero MeasureTheory.measure_setOf_frequently_eq_zero
+-/
 
+#print MeasureTheory.ae_eventually_not_mem /-
 /-- A version of the **Borel-Cantelli lemma**: if `sᵢ` is a sequence of sets such that
 `∑ μ sᵢ` exists, then for almost all `x`, `x` does not belong to almost all `sᵢ`. -/
 theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : ∑' i, μ (s i) ≠ ∞) :
     ∀ᵐ x ∂μ, ∀ᶠ n in atTop, x ∉ s n :=
   measure_setOf_frequently_eq_zero hs
 #align measure_theory.ae_eventually_not_mem MeasureTheory.ae_eventually_not_mem
+-/
 
 section Intervals
 
+#print MeasureTheory.biSup_measure_Iic /-
 theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
     (hst : ∀ x : α, ∃ y ∈ s, x ≤ y) (hdir : DirectedOn (· ≤ ·) s) : (⨆ x ∈ s, μ (Iic x)) = μ univ :=
   by
@@ -3230,40 +3666,57 @@ theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
   · congr; exact Union₂_eq_univ_iff.2 hst
   · exact directedOn_iff_directed.2 (hdir.directed_coe.mono_comp _ fun x y => Iic_subset_Iic.2)
 #align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iic
+-/
 
 variable [PartialOrder α] {a b : α}
 
+#print MeasureTheory.Iio_ae_eq_Iic' /-
 theorem Iio_ae_eq_Iic' (ha : μ {a} = 0) : Iio a =ᵐ[μ] Iic a := by
   rw [← Iic_diff_right, diff_ae_eq_self, measure_mono_null (Set.inter_subset_right _ _) ha]
 #align measure_theory.Iio_ae_eq_Iic' MeasureTheory.Iio_ae_eq_Iic'
+-/
 
+#print MeasureTheory.Ioi_ae_eq_Ici' /-
 theorem Ioi_ae_eq_Ici' (ha : μ {a} = 0) : Ioi a =ᵐ[μ] Ici a :=
   @Iio_ae_eq_Iic' αᵒᵈ ‹_› ‹_› _ _ ha
 #align measure_theory.Ioi_ae_eq_Ici' MeasureTheory.Ioi_ae_eq_Ici'
+-/
 
+#print MeasureTheory.Ioo_ae_eq_Ioc' /-
 theorem Ioo_ae_eq_Ioc' (hb : μ {b} = 0) : Ioo a b =ᵐ[μ] Ioc a b :=
   (ae_eq_refl _).inter (Iio_ae_eq_Iic' hb)
 #align measure_theory.Ioo_ae_eq_Ioc' MeasureTheory.Ioo_ae_eq_Ioc'
+-/
 
+#print MeasureTheory.Ioc_ae_eq_Icc' /-
 theorem Ioc_ae_eq_Icc' (ha : μ {a} = 0) : Ioc a b =ᵐ[μ] Icc a b :=
   (Ioi_ae_eq_Ici' ha).inter (ae_eq_refl _)
 #align measure_theory.Ioc_ae_eq_Icc' MeasureTheory.Ioc_ae_eq_Icc'
+-/
 
+#print MeasureTheory.Ioo_ae_eq_Ico' /-
 theorem Ioo_ae_eq_Ico' (ha : μ {a} = 0) : Ioo a b =ᵐ[μ] Ico a b :=
   (Ioi_ae_eq_Ici' ha).inter (ae_eq_refl _)
 #align measure_theory.Ioo_ae_eq_Ico' MeasureTheory.Ioo_ae_eq_Ico'
+-/
 
+#print MeasureTheory.Ioo_ae_eq_Icc' /-
 theorem Ioo_ae_eq_Icc' (ha : μ {a} = 0) (hb : μ {b} = 0) : Ioo a b =ᵐ[μ] Icc a b :=
   (Ioi_ae_eq_Ici' ha).inter (Iio_ae_eq_Iic' hb)
 #align measure_theory.Ioo_ae_eq_Icc' MeasureTheory.Ioo_ae_eq_Icc'
+-/
 
+#print MeasureTheory.Ico_ae_eq_Icc' /-
 theorem Ico_ae_eq_Icc' (hb : μ {b} = 0) : Ico a b =ᵐ[μ] Icc a b :=
   (ae_eq_refl _).inter (Iio_ae_eq_Iic' hb)
 #align measure_theory.Ico_ae_eq_Icc' MeasureTheory.Ico_ae_eq_Icc'
+-/
 
+#print MeasureTheory.Ico_ae_eq_Ioc' /-
 theorem Ico_ae_eq_Ioc' (ha : μ {a} = 0) (hb : μ {b} = 0) : Ico a b =ᵐ[μ] Ioc a b :=
   (Ioo_ae_eq_Ico' ha).symm.trans (Ioo_ae_eq_Ioc' hb)
 #align measure_theory.Ico_ae_eq_Ioc' MeasureTheory.Ico_ae_eq_Ioc'
+-/
 
 end Intervals
 
@@ -3298,16 +3751,16 @@ theorem ae_eq_dirac' [MeasurableSingletonClass β] {a : α} {f : α → β} (hf
 #align measure_theory.ae_eq_dirac' MeasureTheory.ae_eq_dirac'
 -/
 
+#print MeasureTheory.ae_eq_dirac /-
 theorem ae_eq_dirac [MeasurableSingletonClass α] {a : α} (f : α → δ) :
     f =ᵐ[dirac a] const α (f a) := by simp [Filter.EventuallyEq]
 #align measure_theory.ae_eq_dirac MeasureTheory.ae_eq_dirac
+-/
 
 end Dirac
 
 section IsFiniteMeasure
 
-include m0
-
 #print MeasureTheory.IsFiniteMeasure /-
 /-- A measure `μ` is called finite if `μ univ < ∞`. -/
 class IsFiniteMeasure (μ : Measure α) : Prop where
@@ -3315,21 +3768,27 @@ class IsFiniteMeasure (μ : Measure α) : Prop where
 #align measure_theory.is_finite_measure MeasureTheory.IsFiniteMeasure
 -/
 
+#print MeasureTheory.not_isFiniteMeasure_iff /-
 theorem not_isFiniteMeasure_iff : ¬IsFiniteMeasure μ ↔ μ Set.univ = ∞ :=
   by
   refine' ⟨fun h => _, fun h => fun h' => h'.measure_univ_lt_top.ne h⟩
   by_contra h'
   exact h ⟨lt_top_iff_ne_top.mpr h'⟩
 #align measure_theory.not_is_finite_measure_iff MeasureTheory.not_isFiniteMeasure_iff
+-/
 
+#print MeasureTheory.Restrict.isFiniteMeasure /-
 instance Restrict.isFiniteMeasure (μ : Measure α) [hs : Fact (μ s < ∞)] :
     IsFiniteMeasure (μ.restrict s) :=
   ⟨by simp [hs.elim]⟩
 #align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.isFiniteMeasure
+-/
 
+#print MeasureTheory.measure_lt_top /-
 theorem measure_lt_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s < ∞ :=
   (measure_mono (subset_univ s)).trans_lt IsFiniteMeasure.measure_univ_lt_top
 #align measure_theory.measure_lt_top MeasureTheory.measure_lt_top
+-/
 
 #print MeasureTheory.isFiniteMeasureRestrict /-
 instance isFiniteMeasureRestrict (μ : Measure α) (s : Set α) [h : IsFiniteMeasure μ] :
@@ -3338,10 +3797,13 @@ instance isFiniteMeasureRestrict (μ : Measure α) (s : Set α) [h : IsFiniteMea
 #align measure_theory.is_finite_measure_restrict MeasureTheory.isFiniteMeasureRestrict
 -/
 
+#print MeasureTheory.measure_ne_top /-
 theorem measure_ne_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s ≠ ∞ :=
   ne_of_lt (measure_lt_top μ s)
 #align measure_theory.measure_ne_top MeasureTheory.measure_ne_top
+-/
 
+#print MeasureTheory.measure_compl_le_add_of_le_add /-
 theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet s)
     (ht : MeasurableSet t) {ε : ℝ≥0∞} (h : μ s ≤ μ t + ε) : μ (tᶜ) ≤ μ (sᶜ) + ε :=
   by
@@ -3352,12 +3814,15 @@ theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet
     _ ≤ μ univ - μ s + (μ t + ε) := (add_le_add_left h _)
     _ = _ := by rw [add_right_comm, add_assoc]
 #align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_add
+-/
 
+#print MeasureTheory.measure_compl_le_add_iff /-
 theorem measure_compl_le_add_iff [IsFiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
     {ε : ℝ≥0∞} : μ (sᶜ) ≤ μ (tᶜ) + ε ↔ μ t ≤ μ s + ε :=
   ⟨fun h => compl_compl s ▸ compl_compl t ▸ measure_compl_le_add_of_le_add hs.compl ht.compl h,
     measure_compl_le_add_of_le_add ht hs⟩
 #align measure_theory.measure_compl_le_add_iff MeasureTheory.measure_compl_le_add_iff
+-/
 
 #print MeasureTheory.measureUnivNNReal /-
 /-- The measure of the whole space with respect to a finite measure, considered as `ℝ≥0`. -/
@@ -3386,12 +3851,12 @@ instance (priority := 100) isFiniteMeasureOfIsEmpty [IsEmpty α] : IsFiniteMeasu
 #align measure_theory.is_finite_measure_of_is_empty MeasureTheory.isFiniteMeasureOfIsEmpty
 -/
 
+#print MeasureTheory.measureUnivNNReal_zero /-
 @[simp]
 theorem measureUnivNNReal_zero : measureUnivNNReal (0 : Measure α) = 0 :=
   rfl
 #align measure_theory.measure_univ_nnreal_zero MeasureTheory.measureUnivNNReal_zero
-
-omit m0
+-/
 
 #print MeasureTheory.isFiniteMeasureAdd /-
 instance isFiniteMeasureAdd [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFiniteMeasure (μ + ν)
@@ -3402,16 +3867,20 @@ instance isFiniteMeasureAdd [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFinite
 #align measure_theory.is_finite_measure_add MeasureTheory.isFiniteMeasureAdd
 -/
 
+#print MeasureTheory.isFiniteMeasureSMulNNReal /-
 instance isFiniteMeasureSMulNNReal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFiniteMeasure (r • μ)
     where measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
 #align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.isFiniteMeasureSMulNNReal
+-/
 
+#print MeasureTheory.isFiniteMeasureSMulOfNNRealTower /-
 instance isFiniteMeasureSMulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
     [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [IsFiniteMeasure μ] {r : R} : IsFiniteMeasure (r • μ) :=
   by
   rw [← smul_one_smul ℝ≥0 r μ]
   infer_instance
 #align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.isFiniteMeasureSMulOfNNRealTower
+-/
 
 #print MeasureTheory.isFiniteMeasure_of_le /-
 theorem isFiniteMeasure_of_le (μ : Measure α) [IsFiniteMeasure μ] (h : ν ≤ μ) : IsFiniteMeasure ν :=
@@ -3419,6 +3888,7 @@ theorem isFiniteMeasure_of_le (μ : Measure α) [IsFiniteMeasure μ] (h : ν ≤
 #align measure_theory.is_finite_measure_of_le MeasureTheory.isFiniteMeasure_of_le
 -/
 
+#print MeasureTheory.Measure.isFiniteMeasure_map /-
 @[instance]
 theorem Measure.isFiniteMeasure_map {m : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
     (f : α → β) : IsFiniteMeasure (μ.map f) :=
@@ -3427,19 +3897,24 @@ theorem Measure.isFiniteMeasure_map {m : MeasurableSpace α} (μ : Measure α) [
   · constructor; rw [map_apply_of_ae_measurable hf MeasurableSet.univ]; exact measure_lt_top μ _
   · rw [map_of_not_ae_measurable hf]; exact MeasureTheory.isFiniteMeasureZero
 #align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.isFiniteMeasure_map
+-/
 
+#print MeasureTheory.measureUnivNNReal_eq_zero /-
 @[simp]
 theorem measureUnivNNReal_eq_zero [IsFiniteMeasure μ] : measureUnivNNReal μ = 0 ↔ μ = 0 :=
   by
   rw [← MeasureTheory.Measure.measure_univ_eq_zero, ← coe_measure_univ_nnreal]
   norm_cast
 #align measure_theory.measure_univ_nnreal_eq_zero MeasureTheory.measureUnivNNReal_eq_zero
+-/
 
+#print MeasureTheory.measureUnivNNReal_pos /-
 theorem measureUnivNNReal_pos [IsFiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureUnivNNReal μ :=
   by
   contrapose! hμ
   simpa [measure_univ_nnreal_eq_zero, le_zero_iff] using hμ
 #align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNNReal_pos
+-/
 
 #print MeasureTheory.Measure.le_of_add_le_add_left /-
 /-- `le_of_add_le_add_left` is normally applicable to `ordered_cancel_add_comm_monoid`,
@@ -3449,6 +3924,7 @@ theorem Measure.le_of_add_le_add_left [IsFiniteMeasure μ] (A2 : μ + ν₁ ≤
 #align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_left
 -/
 
+#print MeasureTheory.summable_measure_toReal /-
 theorem summable_measure_toReal [hμ : IsFiniteMeasure μ] {f : ℕ → Set α}
     (hf₁ : ∀ i : ℕ, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
     Summable fun x => (μ (f x)).toReal :=
@@ -3457,6 +3933,7 @@ theorem summable_measure_toReal [hμ : IsFiniteMeasure μ] {f : ℕ → Set α}
   rw [← MeasureTheory.measure_iUnion hf₂ hf₁]
   exact ne_of_lt (measure_lt_top _ _)
 #align measure_theory.summable_measure_to_real MeasureTheory.summable_measure_toReal
+-/
 
 #print MeasureTheory.ae_eq_univ_iff_measure_eq /-
 theorem ae_eq_univ_iff_measure_eq [IsFiniteMeasure μ] (hs : NullMeasurableSet s μ) :
@@ -3494,8 +3971,6 @@ end IsFiniteMeasure
 
 section IsProbabilityMeasure
 
-include m0
-
 #print MeasureTheory.IsProbabilityMeasure /-
 /-- A measure `μ` is called a probability measure if `μ univ = 1`. -/
 class IsProbabilityMeasure (μ : Measure α) : Prop where
@@ -3526,8 +4001,6 @@ instance (priority := 200) IsProbabilityMeasure.ae_neBot [IsProbabilityMeasure 
 #align measure_theory.is_probability_measure.ae_ne_bot MeasureTheory.IsProbabilityMeasure.ae_neBot
 -/
 
-omit m0
-
 #print MeasureTheory.Measure.dirac.isProbabilityMeasure /-
 instance Measure.dirac.isProbabilityMeasure [MeasurableSpace α] {x : α} :
     IsProbabilityMeasure (dirac x) :=
@@ -3535,14 +4008,19 @@ instance Measure.dirac.isProbabilityMeasure [MeasurableSpace α] {x : α} :
 #align measure_theory.measure.dirac.is_probability_measure MeasureTheory.Measure.dirac.isProbabilityMeasure
 -/
 
+#print MeasureTheory.prob_add_prob_compl /-
 theorem prob_add_prob_compl [IsProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ (sᶜ) = 1 :=
   (measure_add_measure_compl h).trans measure_univ
 #align measure_theory.prob_add_prob_compl MeasureTheory.prob_add_prob_compl
+-/
 
+#print MeasureTheory.prob_le_one /-
 theorem prob_le_one [IsProbabilityMeasure μ] : μ s ≤ 1 :=
   (measure_mono <| Set.subset_univ _).trans_eq measure_univ
 #align measure_theory.prob_le_one MeasureTheory.prob_le_one
+-/
 
+#print MeasureTheory.isProbabilityMeasureSmul /-
 theorem isProbabilityMeasureSmul [IsFiniteMeasure μ] (h : μ ≠ 0) :
     IsProbabilityMeasure ((μ univ)⁻¹ • μ) :=
   by
@@ -3551,34 +4029,45 @@ theorem isProbabilityMeasureSmul [IsFiniteMeasure μ] (h : μ ≠ 0) :
   · rwa [Ne, measure_univ_eq_zero]
   · exact measure_ne_top _ _
 #align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmul
+-/
 
+#print MeasureTheory.isProbabilityMeasure_map /-
 theorem isProbabilityMeasure_map [IsProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
     IsProbabilityMeasure (map f μ) :=
   ⟨by simp [map_apply_of_ae_measurable, hf]⟩
 #align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasure_map
+-/
 
+#print MeasureTheory.one_le_prob_iff /-
 @[simp]
 theorem one_le_prob_iff [IsProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
   ⟨fun h => le_antisymm prob_le_one h, fun h => h ▸ le_refl _⟩
 #align measure_theory.one_le_prob_iff MeasureTheory.one_le_prob_iff
+-/
 
+#print MeasureTheory.prob_compl_eq_one_sub /-
 /-- Note that this is not quite as useful as it looks because the measure takes values in `ℝ≥0∞`.
 Thus the subtraction appearing is the truncated subtraction of `ℝ≥0∞`, rather than the
 better-behaved subtraction of `ℝ`. -/
 theorem prob_compl_eq_one_sub [IsProbabilityMeasure μ] (hs : MeasurableSet s) : μ (sᶜ) = 1 - μ s :=
   by simpa only [measure_univ] using measure_compl hs (measure_lt_top μ s).Ne
 #align measure_theory.prob_compl_eq_one_sub MeasureTheory.prob_compl_eq_one_sub
+-/
 
+#print MeasureTheory.prob_compl_eq_zero_iff /-
 @[simp]
 theorem prob_compl_eq_zero_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
     μ (sᶜ) = 0 ↔ μ s = 1 := by
   simp only [prob_compl_eq_one_sub hs, tsub_eq_zero_iff_le, one_le_prob_iff]
 #align measure_theory.prob_compl_eq_zero_iff MeasureTheory.prob_compl_eq_zero_iff
+-/
 
+#print MeasureTheory.prob_compl_eq_one_iff /-
 @[simp]
 theorem prob_compl_eq_one_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
     μ (sᶜ) = 1 ↔ μ s = 0 := by rwa [← prob_compl_eq_zero_iff hs.compl, compl_compl]
 #align measure_theory.prob_compl_eq_one_iff MeasureTheory.prob_compl_eq_one_iff
+-/
 
 end IsProbabilityMeasure
 
@@ -3601,10 +4090,12 @@ attribute [simp] measure_singleton
 
 variable [NoAtoms μ]
 
+#print Set.Subsingleton.measure_zero /-
 theorem Set.Subsingleton.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α}
     (hs : s.Subsingleton) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   hs.inductionOn measure_empty measure_singleton
 #align set.subsingleton.measure_zero Set.Subsingleton.measure_zero
+-/
 
 #print MeasureTheory.Measure.restrict_singleton' /-
 theorem Measure.restrict_singleton' {a : α} : μ.restrict {a} = 0 := by
@@ -3620,6 +4111,7 @@ instance (s : Set α) : NoAtoms (μ.restrict s) :=
   rw [measure.restrict_apply ht1]
   apply measure_mono_null (inter_subset_left t s) ht2
 
+#print Set.Countable.measure_zero /-
 theorem Set.Countable.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α}
     (h : s.Countable) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   by
@@ -3627,6 +4119,7 @@ theorem Set.Countable.measure_zero {α : Type _} {m : MeasurableSpace α} {s : S
   refine' le_trans (measure_bUnion_le h _) _
   simp
 #align set.countable.measure_zero Set.Countable.measure_zero
+-/
 
 #print Set.Countable.ae_not_mem /-
 theorem Set.Countable.ae_not_mem {α : Type _} {m : MeasurableSpace α} {s : Set α} (h : s.Countable)
@@ -3635,15 +4128,19 @@ theorem Set.Countable.ae_not_mem {α : Type _} {m : MeasurableSpace α} {s : Set
 #align set.countable.ae_not_mem Set.Countable.ae_not_mem
 -/
 
+#print Set.Finite.measure_zero /-
 theorem Set.Finite.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α} (h : s.Finite)
     (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   h.Countable.measure_zero μ
 #align set.finite.measure_zero Set.Finite.measure_zero
+-/
 
+#print Finset.measure_zero /-
 theorem Finset.measure_zero {α : Type _} {m : MeasurableSpace α} (s : Finset α) (μ : Measure α)
     [NoAtoms μ] : μ s = 0 :=
   s.finite_toSet.measure_zero μ
 #align finset.measure_zero Finset.measure_zero
+-/
 
 #print MeasureTheory.insert_ae_eq_self /-
 theorem insert_ae_eq_self (a : α) (s : Set α) : (insert a s : Set α) =ᵐ[μ] s :=
@@ -3715,6 +4212,7 @@ theorem uIoc_ae_eq_interval [LinearOrder α] {a b : α} : Ι a b =ᵐ[μ] [a, b]
 
 end NoAtoms
 
+#print MeasureTheory.ite_ae_eq_of_measure_zero /-
 theorem ite_ae_eq_of_measure_zero {γ} (f : α → γ) (g : α → γ) (s : Set α) (hs_zero : μ s = 0) :
     (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] g :=
   by
@@ -3724,11 +4222,14 @@ theorem ite_ae_eq_of_measure_zero {γ} (f : α → γ) (g : α → γ) (s : Set
   nth_rw 1 [← compl_compl s]
   rwa [Set.compl_subset_compl]
 #align measure_theory.ite_ae_eq_of_measure_zero MeasureTheory.ite_ae_eq_of_measure_zero
+-/
 
+#print MeasureTheory.ite_ae_eq_of_measure_compl_zero /-
 theorem ite_ae_eq_of_measure_compl_zero {γ} (f : α → γ) (g : α → γ) (s : Set α)
     (hs_zero : μ (sᶜ) = 0) : (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] f := by
   filter_upwards [hs_zero]; intros; split_ifs; rfl
 #align measure_theory.ite_ae_eq_of_measure_compl_zero MeasureTheory.ite_ae_eq_of_measure_compl_zero
+-/
 
 namespace Measure
 
@@ -3747,14 +4248,18 @@ theorem finiteAtFilter_of_finite {m0 : MeasurableSpace α} (μ : Measure α) [Is
 #align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilter_of_finite
 -/
 
+#print MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis /-
 theorem FiniteAtFilter.exists_mem_basis {f : Filter α} (hμ : FiniteAtFilter μ f) {p : ι → Prop}
     {s : ι → Set α} (hf : f.HasBasis p s) : ∃ (i : _) (hi : p i), μ (s i) < ∞ :=
   (hf.exists_iff fun s t hst ht => (measure_mono hst).trans_lt ht).1 hμ
 #align measure_theory.measure.finite_at_filter.exists_mem_basis MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis
+-/
 
+#print MeasureTheory.Measure.finiteAtBot /-
 theorem finiteAtBot {m0 : MeasurableSpace α} (μ : Measure α) : μ.FiniteAtFilter ⊥ :=
   ⟨∅, mem_bot, by simp only [measure_empty, WithTop.zero_lt_top]⟩
 #align measure_theory.measure.finite_at_bot MeasureTheory.Measure.finiteAtBot
+-/
 
 #print MeasureTheory.Measure.FiniteSpanningSetsIn /-
 /-- `μ` has finite spanning sets in `C` if there is a countable sequence of sets in `C` that have
@@ -3795,8 +4300,6 @@ theorem SigmaFinite.out (h : SigmaFinite μ) : Nonempty (μ.FiniteSpanningSetsIn
 #align measure_theory.sigma_finite.out MeasureTheory.SigmaFinite.out
 -/
 
-include m0
-
 #print MeasureTheory.Measure.toFiniteSpanningSetsIn /-
 /-- If `μ` is σ-finite it has finite spanning sets in the collection of all measurable sets. -/
 def Measure.toFiniteSpanningSetsIn (μ : Measure α) [h : SigmaFinite μ] :
@@ -3818,9 +4321,11 @@ def spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) : Set α :=
 #align measure_theory.spanning_sets MeasureTheory.spanningSets
 -/
 
+#print MeasureTheory.monotone_spanningSets /-
 theorem monotone_spanningSets (μ : Measure α) [SigmaFinite μ] : Monotone (spanningSets μ) :=
   monotone_accumulate
 #align measure_theory.monotone_spanning_sets MeasureTheory.monotone_spanningSets
+-/
 
 #print MeasureTheory.measurable_spanningSets /-
 theorem measurable_spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
@@ -3829,10 +4334,12 @@ theorem measurable_spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
 #align measure_theory.measurable_spanning_sets MeasureTheory.measurable_spanningSets
 -/
 
+#print MeasureTheory.measure_spanningSets_lt_top /-
 theorem measure_spanningSets_lt_top (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
     μ (spanningSets μ i) < ∞ :=
   measure_biUnion_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.Finite j).Ne
 #align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_top
+-/
 
 #print MeasureTheory.iUnion_spanningSets /-
 theorem iUnion_spanningSets (μ : Measure α) [SigmaFinite μ] : (⋃ i : ℕ, spanningSets μ i) = univ :=
@@ -3861,20 +4368,26 @@ theorem measurable_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] :
 #align measure_theory.measurable_spanning_sets_index MeasureTheory.measurable_spanningSetsIndex
 -/
 
+#print MeasureTheory.preimage_spanningSetsIndex_singleton /-
 theorem preimage_spanningSetsIndex_singleton (μ : Measure α) [SigmaFinite μ] (n : ℕ) :
     spanningSetsIndex μ ⁻¹' {n} = disjointed (spanningSets μ) n :=
   preimage_find_eq_disjointed _ _ _
 #align measure_theory.preimage_spanning_sets_index_singleton MeasureTheory.preimage_spanningSetsIndex_singleton
+-/
 
+#print MeasureTheory.spanningSetsIndex_eq_iff /-
 theorem spanningSetsIndex_eq_iff (μ : Measure α) [SigmaFinite μ] {x : α} {n : ℕ} :
     spanningSetsIndex μ x = n ↔ x ∈ disjointed (spanningSets μ) n := by
   convert Set.ext_iff.1 (preimage_spanning_sets_index_singleton μ n) x
 #align measure_theory.spanning_sets_index_eq_iff MeasureTheory.spanningSetsIndex_eq_iff
+-/
 
+#print MeasureTheory.mem_disjointed_spanningSetsIndex /-
 theorem mem_disjointed_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) :
     x ∈ disjointed (spanningSets μ) (spanningSetsIndex μ x) :=
   (spanningSetsIndex_eq_iff μ).1 rfl
 #align measure_theory.mem_disjointed_spanning_sets_index MeasureTheory.mem_disjointed_spanningSetsIndex
+-/
 
 #print MeasureTheory.mem_spanningSetsIndex /-
 theorem mem_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) :
@@ -3897,10 +4410,9 @@ theorem eventually_mem_spanningSets (μ : Measure α) [SigmaFinite μ] (x : α)
 #align measure_theory.eventually_mem_spanning_sets MeasureTheory.eventually_mem_spanningSets
 -/
 
-omit m0
-
 namespace Measure
 
+#print MeasureTheory.Measure.iSup_restrict_spanningSets /-
 theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
     (⨆ i, μ.restrict (spanningSets μ i) s) = μ s :=
   calc
@@ -3908,7 +4420,9 @@ theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
       (restrict_iUnion_apply_eq_iSup (directed_of_sup (monotone_spanningSets μ)) hs).symm
     _ = μ s := by rw [Union_spanning_sets, restrict_univ]
 #align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.iSup_restrict_spanningSets
+-/
 
+#print MeasureTheory.Measure.exists_subset_measure_lt_top /-
 /-- In a σ-finite space, any measurable set of measure `> r` contains a measurable subset of
 finite measure `> r`. -/
 theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : MeasurableSet s)
@@ -3922,7 +4436,9 @@ theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : Mea
     ⟨s ∩ spanning_sets μ n, hs.inter (measurable_spanning_sets _ _), inter_subset_left _ _, hn, _⟩
   exact (measure_mono (inter_subset_right _ _)).trans_lt (measure_spanning_sets_lt_top _ _)
 #align measure_theory.measure.exists_subset_measure_lt_top MeasureTheory.Measure.exists_subset_measure_lt_top
+-/
 
+#print MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zero /-
 /-- A set in a σ-finite space has zero measure if and only if its intersection with
 all members of the countable family of finite measure spanning sets has zero measure. -/
 theorem forall_measure_inter_spanningSets_eq_zero [MeasurableSpace α] {μ : Measure α}
@@ -3932,7 +4448,9 @@ theorem forall_measure_inter_spanningSets_eq_zero [MeasurableSpace α] {μ : Mea
       rw [← inter_Union, Union_spanning_sets, inter_univ]]
   rw [measure_Union_null_iff]
 #align measure_theory.measure.forall_measure_inter_spanning_sets_eq_zero MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zero
+-/
 
+#print MeasureTheory.Measure.exists_measure_inter_spanningSets_pos /-
 /-- A set in a σ-finite space has positive measure if and only if its intersection with
 some member of the countable family of finite measure spanning sets has positive measure. -/
 theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure α} [SigmaFinite μ]
@@ -3942,7 +4460,9 @@ theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure
   simp only [not_exists, not_lt, nonpos_iff_eq_zero]
   exact forall_measure_inter_spanning_sets_eq_zero s
 #align measure_theory.measure.exists_measure_inter_spanning_sets_pos MeasureTheory.Measure.exists_measure_inter_spanningSets_pos
+-/
 
+#print MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion /-
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 finitely many members of the union whose measure exceeds any given positive number. -/
 theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] (μ : Measure α)
@@ -3955,7 +4475,9 @@ theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type _} [MeasurableSpace 
       (lt_top_iff_ne_top.mpr Union_As_finite)
   exact Con (ENNReal.finite_const_le_of_tsum_ne_top aux.ne ε_pos.ne.symm)
 #align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion
+-/
 
+#print MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top /-
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 countably many members of the union whose measure is positive. -/
 theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [MeasurableSpace α]
@@ -3977,7 +4499,9 @@ theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [Meas
   refine' countable_Union fun n => finite.countable _
   refine' finite_const_le_meas_of_disjoint_Union μ (as_mem n).1 As_mble As_disj Union_As_finite
 #align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top
+-/
 
+#print MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion /-
 /-- In a σ-finite space, among disjoint measurable sets, only countably many can have positive
 measure. -/
 theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] {μ : Measure α}
@@ -3999,7 +4523,9 @@ theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α]
   · refine' (lt_of_le_of_lt (measure_mono _) (measure_spanning_sets_lt_top μ n)).Ne
     exact Union_subset fun i => inter_subset_right _ _
 #align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion
+-/
 
+#print MeasureTheory.Measure.countable_meas_level_set_pos /-
 theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] [MeasurableSpace β] [MeasurableSingletonClass β] {g : α → β}
     (g_mble : Measurable g) : Set.Countable {t : β | 0 < μ {a : α | g a = t}} :=
@@ -4008,8 +4534,10 @@ theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ :
   measure.countable_meas_pos_of_disjoint_Union
     (fun b => g_mble (‹MeasurableSingletonClass β›.measurableSet_singleton b)) level_sets_disjoint
 #align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
+#print MeasureTheory.Measure.measure_toMeasurable_inter_of_cover /-
 /-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
 superset `to_measurable μ t` (which has the same measure as `t`) satisfies,
 for any measurable set `s`, the equality `μ (to_measurable μ t ∩ s) = μ (t ∩ s)`. -/
@@ -4081,13 +4609,17 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
     exact ae_eq_set_inter ht.some_spec.snd.2 (ae_eq_refl _)
   · exact A.some_spec.snd.2 s hs
 #align measure_theory.measure.measure_to_measurable_inter_of_cover MeasureTheory.Measure.measure_toMeasurable_inter_of_cover
+-/
 
+#print MeasureTheory.Measure.restrict_toMeasurable_of_cover /-
 theorem restrict_toMeasurable_of_cover {s : Set α} {v : ℕ → Set α} (hv : s ⊆ ⋃ n, v n)
     (h'v : ∀ n, μ (s ∩ v n) ≠ ∞) : μ.restrict (toMeasurable μ s) = μ.restrict s :=
   ext fun t ht => by
     simp only [restrict_apply ht, inter_comm t, measure_to_measurable_inter_of_cover ht hv h'v]
 #align measure_theory.measure.restrict_to_measurable_of_cover MeasureTheory.Measure.restrict_toMeasurable_of_cover
+-/
 
+#print MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFinite /-
 /-- The measurable superset `to_measurable μ t` of `t` (which has the same measure as `t`)
 satisfies, for any measurable set `s`, the equality `μ (to_measurable μ t ∩ s) = μ (t ∩ s)`.
 This only holds when `μ` is σ-finite. For a version without this assumption (but requiring
@@ -4101,6 +4633,7 @@ theorem measure_toMeasurable_inter_of_sigmaFinite [SigmaFinite μ] {s : Set α}
     μ (t ∩ spanning_sets μ n) ≤ μ (spanning_sets μ n) := measure_mono (inter_subset_right _ _)
     _ < ∞ := measure_spanning_sets_lt_top μ n
 #align measure_theory.measure.measure_to_measurable_inter_of_sigma_finite MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFinite
+-/
 
 #print MeasureTheory.Measure.restrict_toMeasurable_of_sigmaFinite /-
 @[simp]
@@ -4115,12 +4648,14 @@ namespace FiniteSpanningSetsIn
 
 variable {C D : Set (Set α)}
 
+#print MeasureTheory.Measure.FiniteSpanningSetsIn.mono' /-
 /-- If `μ` has finite spanning sets in `C` and `C ∩ {s | μ s < ∞} ⊆ D` then `μ` has finite spanning
 sets in `D`. -/
 protected def mono' (h : μ.FiniteSpanningSetsIn C) (hC : C ∩ {s | μ s < ∞} ⊆ D) :
     μ.FiniteSpanningSetsIn D :=
   ⟨h.Set, fun i => hC ⟨h.set_mem i, h.Finite i⟩, h.Finite, h.spanning⟩
 #align measure_theory.measure.finite_spanning_sets_in.mono' MeasureTheory.Measure.FiniteSpanningSetsIn.mono'
+-/
 
 #print MeasureTheory.Measure.FiniteSpanningSetsIn.mono /-
 /-- If `μ` has finite spanning sets in `C` and `C ⊆ D` then `μ` has finite spanning sets in `D`. -/
@@ -4154,6 +4689,7 @@ protected theorem isCountablySpanning (h : μ.FiniteSpanningSetsIn C) : IsCounta
 
 end FiniteSpanningSetsIn
 
+#print MeasureTheory.Measure.sigmaFinite_of_countable /-
 theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : ∀ s ∈ S, μ s < ∞)
     (hU : ⋃₀ S = univ) : SigmaFinite μ :=
   by
@@ -4161,6 +4697,7 @@ theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : 
   exact (@exists_seq_cover_iff_countable _ (fun x => μ x < ⊤) ⟨∅, by simp⟩).2 ⟨S, hc, hμ, hU⟩
   exact ⟨⟨⟨fun n => s n, fun n => trivial, hμ, hs⟩⟩⟩
 #align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countable
+-/
 
 #print MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE /-
 /-- Given measures `μ`, `ν` where `ν ≤ μ`, `finite_spanning_sets_in.of_le` provides the induced
@@ -4190,6 +4727,7 @@ instance (priority := 100) IsFiniteMeasure.toSigmaFinite {m0 : MeasurableSpace 
 #align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.IsFiniteMeasure.toSigmaFinite
 -/
 
+#print MeasureTheory.sigmaFinite_bot_iff /-
 theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFiniteMeasure μ :=
   by
   refine' ⟨fun h => ⟨_⟩, fun h => by haveI := h; infer_instance⟩
@@ -4210,8 +4748,7 @@ theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFinite
   rw [← hsi]
   exact measure_spanning_sets_lt_top μ i
 #align measure_theory.sigma_finite_bot_iff MeasureTheory.sigmaFinite_bot_iff
-
-include m0
+-/
 
 #print MeasureTheory.Restrict.sigmaFinite /-
 instance Restrict.sigmaFinite (μ : Measure α) [SigmaFinite μ] (s : Set α) :
@@ -4244,6 +4781,7 @@ instance Add.sigmaFinite (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν]
 #align measure_theory.add.sigma_finite MeasureTheory.Add.sigmaFinite
 -/
 
+#print MeasureTheory.SigmaFinite.of_map /-
 theorem SigmaFinite.of_map (μ : Measure α) {f : α → β} (hf : AEMeasurable f μ)
     (h : SigmaFinite (μ.map f)) : SigmaFinite μ :=
   ⟨⟨⟨fun n => f ⁻¹' spanningSets (μ.map f) n, fun n => trivial, fun n => by
@@ -4251,14 +4789,18 @@ theorem SigmaFinite.of_map (μ : Measure α) {f : α → β} (hf : AEMeasurable
           measure_spanning_sets_lt_top],
         by rw [← preimage_Union, Union_spanning_sets, preimage_univ]⟩⟩⟩
 #align measure_theory.sigma_finite.of_map MeasureTheory.SigmaFinite.of_map
+-/
 
+#print MeasurableEquiv.sigmaFinite_map /-
 theorem MeasurableEquiv.sigmaFinite_map {μ : Measure α} (f : α ≃ᵐ β) (h : SigmaFinite μ) :
     SigmaFinite (μ.map f) :=
   by
   refine' sigma_finite.of_map _ f.symm.measurable.ae_measurable _
   rwa [map_map f.symm.measurable f.measurable, f.symm_comp_self, measure.map_id]
 #align measurable_equiv.sigma_finite_map MeasurableEquiv.sigmaFinite_map
+-/
 
+#print MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict' /-
 /-- Similar to `ae_of_forall_measure_lt_top_ae_restrict`, but where you additionally get the
   hypothesis that another σ-finite measure has finite values on `s`. -/
 theorem ae_of_forall_measure_lt_top_ae_restrict' {μ : Measure α} (ν : Measure α) [SigmaFinite μ]
@@ -4274,13 +4816,16 @@ theorem ae_of_forall_measure_lt_top_ae_restrict' {μ : Measure α} (ν : Measure
       (self_le_add_left _ _).trans_lt (measure_spanning_sets_lt_top (μ + ν) _)]
   filter_upwards [ae_all_iff.2 this] with _ hx using hx _ (mem_spanning_sets_index _ _)
 #align measure_theory.ae_of_forall_measure_lt_top_ae_restrict' MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict'
+-/
 
+#print MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict /-
 /-- To prove something for almost all `x` w.r.t. a σ-finite measure, it is sufficient to show that
   this holds almost everywhere in sets where the measure has finite value. -/
 theorem ae_of_forall_measure_lt_top_ae_restrict {μ : Measure α} [SigmaFinite μ] (P : α → Prop)
     (h : ∀ s, MeasurableSet s → μ s < ∞ → ∀ᵐ x ∂μ.restrict s, P x) : ∀ᵐ x ∂μ, P x :=
   ae_of_forall_measure_lt_top_ae_restrict' μ P fun s hs h2s _ => h s hs h2s
 #align measure_theory.ae_of_forall_measure_lt_top_ae_restrict MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict
+-/
 
 #print MeasureTheory.IsLocallyFiniteMeasure /-
 /-- A measure is called locally finite if it is finite in some neighborhood of each point. -/
@@ -4304,18 +4849,23 @@ theorem Measure.finiteAt_nhds [TopologicalSpace α] (μ : Measure α) [IsLocally
 #align measure_theory.measure.finite_at_nhds MeasureTheory.Measure.finiteAt_nhds
 -/
 
+#print MeasureTheory.Measure.smul_finite /-
 theorem Measure.smul_finite (μ : Measure α) [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
     IsFiniteMeasure (c • μ) := by
   lift c to ℝ≥0 using hc
   exact MeasureTheory.isFiniteMeasureSMulNNReal
 #align measure_theory.measure.smul_finite MeasureTheory.Measure.smul_finite
+-/
 
+#print MeasureTheory.Measure.exists_isOpen_measure_lt_top /-
 theorem Measure.exists_isOpen_measure_lt_top [TopologicalSpace α] (μ : Measure α)
     [IsLocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
   simpa only [exists_prop, and_assoc] using
     (μ.finite_at_nhds x).exists_mem_basis (nhds_basis_opens x)
 #align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_top
+-/
 
+#print MeasureTheory.isLocallyFiniteMeasureSMulNNReal /-
 instance isLocallyFiniteMeasureSMulNNReal [TopologicalSpace α] (μ : Measure α)
     [IsLocallyFiniteMeasure μ] (c : ℝ≥0) : IsLocallyFiniteMeasure (c • μ) :=
   by
@@ -4326,7 +4876,9 @@ instance isLocallyFiniteMeasureSMulNNReal [TopologicalSpace α] (μ : Measure α
   simp only [RingHom.toMonoidHom_eq_coe, RingHom.coe_monoidHom, ENNReal.coe_ne_top,
     ENNReal.coe_ofNNRealHom, Ne.def, not_false_iff]
 #align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.isLocallyFiniteMeasureSMulNNReal
+-/
 
+#print MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_top /-
 protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α] (μ : Measure α)
     [IsLocallyFiniteMeasure μ] : TopologicalSpace.IsTopologicalBasis {s | IsOpen s ∧ μ s < ∞} :=
   by
@@ -4336,6 +4888,7 @@ protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α]
   refine' ⟨v ∩ s, ⟨hv.inter hs, lt_of_le_of_lt _ μv⟩, ⟨xv, xs⟩, inter_subset_right _ _⟩
   exact measure_mono (inter_subset_left _ _)
 #align measure_theory.measure.is_topological_basis_is_open_lt_top MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_top
+-/
 
 #print MeasureTheory.IsFiniteMeasureOnCompacts /-
 /-- A measure `μ` is finite on compacts if any compact set `K` satisfies `μ K < ∞`. -/
@@ -4345,12 +4898,15 @@ class IsFiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop w
 #align measure_theory.is_finite_measure_on_compacts MeasureTheory.IsFiniteMeasureOnCompacts
 -/
 
+#print IsCompact.measure_lt_top /-
 /-- A compact subset has finite measure for a measure which is finite on compacts. -/
 theorem IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α} [IsFiniteMeasureOnCompacts μ]
     ⦃K : Set α⦄ (hK : IsCompact K) : μ K < ∞ :=
   IsFiniteMeasureOnCompacts.lt_top_of_isCompact hK
 #align is_compact.measure_lt_top IsCompact.measure_lt_top
+-/
 
+#print Metric.Bounded.measure_lt_top /-
 /-- A bounded subset has finite measure for a measure which is finite on compact sets, in a
 proper space. -/
 theorem Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
@@ -4359,21 +4915,28 @@ theorem Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {
     μ s ≤ μ (closure s) := measure_mono subset_closure
     _ < ∞ := (Metric.isCompact_of_isClosed_bounded isClosed_closure hs.closure).measure_lt_top
 #align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_top
+-/
 
+#print MeasureTheory.measure_closedBall_lt_top /-
 theorem measure_closedBall_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
     [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
   Metric.bounded_closedBall.measure_lt_top
 #align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_top
+-/
 
+#print MeasureTheory.measure_ball_lt_top /-
 theorem measure_ball_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
     [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
   Metric.bounded_ball.measure_lt_top
 #align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_top
+-/
 
+#print MeasureTheory.IsFiniteMeasureOnCompacts.smul /-
 protected theorem IsFiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
     [IsFiniteMeasureOnCompacts μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : IsFiniteMeasureOnCompacts (c • μ) :=
   ⟨fun K hK => ENNReal.mul_lt_top hc hK.measure_lt_top.Ne⟩
 #align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.IsFiniteMeasureOnCompacts.smul
+-/
 
 #print MeasureTheory.CompactSpace.isFiniteMeasure /-
 /-- Note this cannot be an instance because it would form a typeclass loop with
@@ -4384,8 +4947,6 @@ theorem CompactSpace.isFiniteMeasure [TopologicalSpace α] [CompactSpace α]
 #align measure_theory.compact_space.is_finite_measure MeasureTheory.CompactSpace.isFiniteMeasure
 -/
 
-omit m0
-
 #print MeasureTheory.sigmaFinite_of_locallyFinite /-
 -- see Note [lower instance priority]
 instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
@@ -4410,35 +4971,46 @@ theorem isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α
 #align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
 -/
 
+#print MeasureTheory.exists_pos_measure_of_cover /-
 theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (⋃ i, U i) = univ)
     (hμ : μ ≠ 0) : ∃ i, 0 < μ (U i) := by
   contrapose! hμ with H
   rw [← measure_univ_eq_zero, ← hU]
   exact measure_Union_null fun i => nonpos_iff_eq_zero.1 (H i)
 #align measure_theory.exists_pos_measure_of_cover MeasureTheory.exists_pos_measure_of_cover
+-/
 
+#print MeasureTheory.exists_pos_preimage_ball /-
 theorem exists_pos_preimage_ball [PseudoMetricSpace δ] (f : α → δ) (x : δ) (hμ : μ ≠ 0) :
     ∃ n : ℕ, 0 < μ (f ⁻¹' Metric.ball x n) :=
   exists_pos_measure_of_cover (by rw [← preimage_Union, Metric.iUnion_ball_nat, preimage_univ]) hμ
 #align measure_theory.exists_pos_preimage_ball MeasureTheory.exists_pos_preimage_ball
+-/
 
+#print MeasureTheory.exists_pos_ball /-
 theorem exists_pos_ball [PseudoMetricSpace α] (x : α) (hμ : μ ≠ 0) :
     ∃ n : ℕ, 0 < μ (Metric.ball x n) :=
   exists_pos_preimage_ball id x hμ
 #align measure_theory.exists_pos_ball MeasureTheory.exists_pos_ball
+-/
 
+#print MeasureTheory.null_of_locally_null /-
 /-- If a set has zero measure in a neighborhood of each of its points, then it has zero measure
 in a second-countable space. -/
 theorem null_of_locally_null [TopologicalSpace α] [SecondCountableTopology α] (s : Set α)
     (hs : ∀ x ∈ s, ∃ u ∈ 𝓝[s] x, μ u = 0) : μ s = 0 :=
   μ.toOuterMeasure.null_of_locally_null s hs
 #align measure_theory.null_of_locally_null MeasureTheory.null_of_locally_null
+-/
 
+#print MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measure /-
 theorem exists_mem_forall_mem_nhdsWithin_pos_measure [TopologicalSpace α]
     [SecondCountableTopology α] {s : Set α} (hs : μ s ≠ 0) : ∃ x ∈ s, ∀ t ∈ 𝓝[s] x, 0 < μ t :=
   μ.toOuterMeasure.exists_mem_forall_mem_nhds_within_pos hs
 #align measure_theory.exists_mem_forall_mem_nhds_within_pos_measure MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measure
+-/
 
+#print MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimage /-
 theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β] [T1Space β]
     [SecondCountableTopology β] [Nonempty β] {f : α → β} (h : ∀ b, ∃ᵐ x ∂μ, f x ≠ b) :
     ∃ a b : β, a ≠ b ∧ (∀ s ∈ 𝓝 a, 0 < μ (f ⁻¹' s)) ∧ ∀ t ∈ 𝓝 b, 0 < μ (f ⁻¹' t) :=
@@ -4454,6 +5026,7 @@ theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β
   simp only [is_open_compl_singleton.nhds_within_eq hab] at ha 
   exact ⟨a, b, hab, ha, hb⟩
 #align measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimage
+-/
 
 #print MeasureTheory.ext_on_measurableSpace_of_generate_finite /-
 /-- If two finite measures give the same mass to the whole space and coincide on a π-system made
@@ -4492,8 +5065,6 @@ namespace Measure
 
 section disjointed
 
-include m0
-
 #print MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed /-
 /-- Given `S : μ.finite_spanning_sets_in {s | measurable_set s}`,
 `finite_spanning_sets_in.disjointed` provides a `finite_spanning_sets_in {s | measurable_set s}`
@@ -4507,11 +5078,14 @@ protected def FiniteSpanningSetsIn.disjointed {μ : Measure α}
 #align measure_theory.measure.finite_spanning_sets_in.disjointed MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed
 -/
 
+#print MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq /-
 theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
     (S : μ.FiniteSpanningSetsIn {s | MeasurableSet s}) : S.disjointed.Set = disjointed S.Set :=
   rfl
 #align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq
+-/
 
+#print MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsIn /-
 theorem exists_eq_disjoint_finiteSpanningSetsIn (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] :
     ∃ (S : μ.FiniteSpanningSetsIn {s | MeasurableSet s}) (T :
       ν.FiniteSpanningSetsIn {s | MeasurableSet s}), S.Set = T.Set ∧ Pairwise (Disjoint on S.Set) :=
@@ -4519,6 +5093,7 @@ theorem exists_eq_disjoint_finiteSpanningSetsIn (μ ν : Measure α) [SigmaFinit
   ⟨S.of_le (Measure.le_add_right le_rfl), S.of_le (Measure.le_add_left le_rfl), rfl,
     disjoint_disjointed _⟩
 #align measure_theory.measure.exists_eq_disjoint_finite_spanning_sets_in MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsIn
+-/
 
 end disjointed
 
@@ -4526,18 +5101,25 @@ namespace FiniteAtFilter
 
 variable {f g : Filter α}
 
+#print MeasureTheory.Measure.FiniteAtFilter.filter_mono /-
 theorem filter_mono (h : f ≤ g) : μ.FiniteAtFilter g → μ.FiniteAtFilter f := fun ⟨s, hs, hμ⟩ =>
   ⟨s, h hs, hμ⟩
 #align measure_theory.measure.finite_at_filter.filter_mono MeasureTheory.Measure.FiniteAtFilter.filter_mono
+-/
 
+#print MeasureTheory.Measure.FiniteAtFilter.inf_of_left /-
 theorem inf_of_left (h : μ.FiniteAtFilter f) : μ.FiniteAtFilter (f ⊓ g) :=
   h.filter_mono inf_le_left
 #align measure_theory.measure.finite_at_filter.inf_of_left MeasureTheory.Measure.FiniteAtFilter.inf_of_left
+-/
 
+#print MeasureTheory.Measure.FiniteAtFilter.inf_of_right /-
 theorem inf_of_right (h : μ.FiniteAtFilter g) : μ.FiniteAtFilter (f ⊓ g) :=
   h.filter_mono inf_le_right
 #align measure_theory.measure.finite_at_filter.inf_of_right MeasureTheory.Measure.FiniteAtFilter.inf_of_right
+-/
 
+#print MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff /-
 @[simp]
 theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f :=
   by
@@ -4546,13 +5128,16 @@ theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f :=
   suffices : μ t ≤ μ (t ∩ u); exact ⟨t, ht, this.trans_lt hμ⟩
   exact measure_mono_ae (mem_of_superset hu fun x hu ht => ⟨ht, hu⟩)
 #align measure_theory.measure.finite_at_filter.inf_ae_iff MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff
+-/
 
 alias inf_ae_iff ↔ of_inf_ae _
 #align measure_theory.measure.finite_at_filter.of_inf_ae MeasureTheory.Measure.FiniteAtFilter.of_inf_ae
 
+#print MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae /-
 theorem filter_mono_ae (h : f ⊓ μ.ae ≤ g) (hg : μ.FiniteAtFilter g) : μ.FiniteAtFilter f :=
   inf_ae_iff.1 (hg.filter_mono h)
 #align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae
+-/
 
 #print MeasureTheory.Measure.FiniteAtFilter.measure_mono /-
 protected theorem measure_mono (h : μ ≤ ν) : ν.FiniteAtFilter f → μ.FiniteAtFilter f :=
@@ -4560,19 +5145,25 @@ protected theorem measure_mono (h : μ ≤ ν) : ν.FiniteAtFilter f → μ.Fini
 #align measure_theory.measure.finite_at_filter.measure_mono MeasureTheory.Measure.FiniteAtFilter.measure_mono
 -/
 
+#print MeasureTheory.Measure.FiniteAtFilter.mono /-
 @[mono]
 protected theorem mono (hf : f ≤ g) (hμ : μ ≤ ν) : ν.FiniteAtFilter g → μ.FiniteAtFilter f :=
   fun h => (h.filter_mono hf).measure_mono hμ
 #align measure_theory.measure.finite_at_filter.mono MeasureTheory.Measure.FiniteAtFilter.mono
+-/
 
+#print MeasureTheory.Measure.FiniteAtFilter.eventually /-
 protected theorem eventually (h : μ.FiniteAtFilter f) : ∀ᶠ s in f.smallSets, μ s < ∞ :=
   (eventually_small_sets' fun s t hst ht => (measure_mono hst).trans_lt ht).2 h
 #align measure_theory.measure.finite_at_filter.eventually MeasureTheory.Measure.FiniteAtFilter.eventually
+-/
 
+#print MeasureTheory.Measure.FiniteAtFilter.filterSup /-
 theorem filterSup : μ.FiniteAtFilter f → μ.FiniteAtFilter g → μ.FiniteAtFilter (f ⊔ g) :=
   fun ⟨s, hsf, hsμ⟩ ⟨t, htg, htμ⟩ =>
   ⟨s ∪ t, union_mem_sup hsf htg, (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hsμ, htμ⟩)⟩
 #align measure_theory.measure.finite_at_filter.filter_sup MeasureTheory.Measure.FiniteAtFilter.filterSup
+-/
 
 end FiniteAtFilter
 
@@ -4583,10 +5174,12 @@ theorem finiteAt_nhdsWithin [TopologicalSpace α] {m0 : MeasurableSpace α} (μ
 #align measure_theory.measure.finite_at_nhds_within MeasureTheory.Measure.finiteAt_nhdsWithin
 -/
 
+#print MeasureTheory.Measure.finiteAt_principal /-
 @[simp]
 theorem finiteAt_principal : μ.FiniteAtFilter (𝓟 s) ↔ μ s < ∞ :=
   ⟨fun ⟨t, ht, hμ⟩ => (measure_mono ht).trans_lt hμ, fun h => ⟨s, mem_principal_self s, h⟩⟩
 #align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principal
+-/
 
 #print MeasureTheory.Measure.isLocallyFiniteMeasure_of_le /-
 theorem isLocallyFiniteMeasure_of_le [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
@@ -4606,8 +5199,7 @@ namespace MeasurableEmbedding
 
 variable {m0 : MeasurableSpace α} {m1 : MeasurableSpace β} {f : α → β} (hf : MeasurableEmbedding f)
 
-include hf
-
+#print MeasurableEmbedding.map_apply /-
 theorem map_apply (μ : Measure α) (s : Set β) : μ.map f s = μ (f ⁻¹' s) :=
   by
   refine' le_antisymm _ (le_map_apply hf.measurable.ae_measurable s)
@@ -4626,6 +5218,7 @@ theorem map_apply (μ : Measure α) (s : Set β) : μ.map f s = μ (f ⁻¹' s)
     μ.map f s ≤ μ.map f t := measure_mono hst
     _ = μ (f ⁻¹' s) := by rw [map_apply hf.measurable htm, hft, measure_to_measurable]
 #align measurable_embedding.map_apply MeasurableEmbedding.map_apply
+-/
 
 #print MeasurableEmbedding.map_comap /-
 theorem map_comap (μ : Measure β) : (comap f μ).map f = μ.restrict (range f) :=
@@ -4647,20 +5240,26 @@ theorem comap_apply (μ : Measure β) (s : Set α) : comap f μ s = μ (f '' s)
 #align measurable_embedding.comap_apply MeasurableEmbedding.comap_apply
 -/
 
+#print MeasurableEmbedding.ae_map_iff /-
 theorem ae_map_iff {p : β → Prop} {μ : Measure α} : (∀ᵐ x ∂μ.map f, p x) ↔ ∀ᵐ x ∂μ, p (f x) := by
   simp only [ae_iff, hf.map_apply, preimage_set_of_eq]
 #align measurable_embedding.ae_map_iff MeasurableEmbedding.ae_map_iff
+-/
 
+#print MeasurableEmbedding.restrict_map /-
 theorem restrict_map (μ : Measure α) (s : Set β) :
     (μ.map f).restrict s = (μ.restrict <| f ⁻¹' s).map f :=
   Measure.ext fun t ht => by simp [hf.map_apply, ht, hf.measurable ht]
 #align measurable_embedding.restrict_map MeasurableEmbedding.restrict_map
+-/
 
+#print MeasurableEmbedding.comap_preimage /-
 protected theorem comap_preimage (μ : Measure β) {s : Set β} (hs : MeasurableSet s) :
     μ.comap f (f ⁻¹' s) = μ (s ∩ range f) :=
   comap_preimage _ _ hf.Injective hf.Measurable
     (fun t ht => (hf.measurableSet_image' ht).NullMeasurableSet) hs
 #align measurable_embedding.comap_preimage MeasurableEmbedding.comap_preimage
+-/
 
 end MeasurableEmbedding
 
@@ -4721,6 +5320,7 @@ theorem volume_image_subtype_coe {s : Set α} (hs : MeasurableSet s) (t : Set s)
 #align volume_image_subtype_coe volume_image_subtype_coe
 -/
 
+#print volume_preimage_coe /-
 @[simp]
 theorem volume_preimage_coe (hs : NullMeasurableSet s) (ht : MeasurableSet t) :
     volume ((coe : s → α) ⁻¹' t) = volume (t ∩ s) := by
@@ -4730,6 +5330,7 @@ theorem volume_preimage_coe (hs : NullMeasurableSet s) (ht : MeasurableSet t) :
       (measurable_subtype_coe ht).NullMeasurableSet,
     image_preimage_eq_inter_range, Subtype.range_coe]
 #align volume_preimage_coe volume_preimage_coe
+-/
 
 end Subtype
 
@@ -4742,43 +5343,59 @@ open Equiv MeasureTheory.Measure
 
 variable [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β}
 
+#print MeasurableEquiv.map_apply /-
 /-- If we map a measure along a measurable equivalence, we can compute the measure on all sets
   (not just the measurable ones). -/
 protected theorem map_apply (f : α ≃ᵐ β) (s : Set β) : μ.map f s = μ (f ⁻¹' s) :=
   f.MeasurableEmbedding.map_apply _ _
 #align measurable_equiv.map_apply MeasurableEquiv.map_apply
+-/
 
+#print MeasurableEquiv.map_symm_map /-
 @[simp]
 theorem map_symm_map (e : α ≃ᵐ β) : (μ.map e).map e.symm = μ := by
   simp [map_map e.symm.measurable e.measurable]
 #align measurable_equiv.map_symm_map MeasurableEquiv.map_symm_map
+-/
 
+#print MeasurableEquiv.map_map_symm /-
 @[simp]
 theorem map_map_symm (e : α ≃ᵐ β) : (ν.map e.symm).map e = ν := by
   simp [map_map e.measurable e.symm.measurable]
 #align measurable_equiv.map_map_symm MeasurableEquiv.map_map_symm
+-/
 
+#print MeasurableEquiv.map_measurableEquiv_injective /-
 theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (map e) := by intro μ₁ μ₂ hμ;
   apply_fun map e.symm at hμ ; simpa [map_symm_map e] using hμ
 #align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injective
+-/
 
+#print MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eq /-
 theorem map_apply_eq_iff_map_symm_apply_eq (e : α ≃ᵐ β) : μ.map e = ν ↔ ν.map e.symm = μ := by
   rw [← (map_measurable_equiv_injective e).eq_iff, map_map_symm, eq_comm]
 #align measurable_equiv.map_apply_eq_iff_map_symm_apply_eq MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eq
+-/
 
+#print MeasurableEquiv.restrict_map /-
 theorem restrict_map (e : α ≃ᵐ β) (s : Set β) :
     (μ.map e).restrict s = (μ.restrict <| e ⁻¹' s).map e :=
   e.MeasurableEmbedding.restrict_map _ _
 #align measurable_equiv.restrict_map MeasurableEquiv.restrict_map
+-/
 
+#print MeasurableEquiv.map_ae /-
 theorem map_ae (f : α ≃ᵐ β) (μ : Measure α) : Filter.map f μ.ae = (map f μ).ae := by ext s;
   simp_rw [mem_map, mem_ae_iff, ← preimage_compl, f.map_apply]
 #align measurable_equiv.map_ae MeasurableEquiv.map_ae
+-/
 
+#print MeasurableEquiv.quasiMeasurePreserving_symm /-
 theorem quasiMeasurePreserving_symm (μ : Measure α) (e : α ≃ᵐ β) :
     QuasiMeasurePreserving e.symm (map e μ) μ :=
   ⟨e.symm.Measurable, by rw [measure.map_map, e.symm_comp_self, measure.map_id] <;> measurability⟩
 #align measurable_equiv.quasi_measure_preserving_symm MeasurableEquiv.quasiMeasurePreserving_symm
+-/
 
 end MeasurableEquiv
 
@@ -4836,18 +5453,24 @@ theorem trim_measurableSet_eq (hm : m ≤ m0) (hs : @MeasurableSet α m s) : μ.
 #align measure_theory.trim_measurable_set_eq MeasureTheory.trim_measurableSet_eq
 -/
 
+#print MeasureTheory.le_trim /-
 theorem le_trim (hm : m ≤ m0) : μ s ≤ μ.trim hm s := by simp_rw [measure.trim];
   exact @le_to_measure_apply _ m _ _ _
 #align measure_theory.le_trim MeasureTheory.le_trim
+-/
 
+#print MeasureTheory.measure_eq_zero_of_trim_eq_zero /-
 theorem measure_eq_zero_of_trim_eq_zero (hm : m ≤ m0) (h : μ.trim hm s = 0) : μ s = 0 :=
   le_antisymm ((le_trim hm).trans (le_of_eq h)) (zero_le _)
 #align measure_theory.measure_eq_zero_of_trim_eq_zero MeasureTheory.measure_eq_zero_of_trim_eq_zero
+-/
 
+#print MeasureTheory.measure_trim_toMeasurable_eq_zero /-
 theorem measure_trim_toMeasurable_eq_zero {hm : m ≤ m0} (hs : μ.trim hm s = 0) :
     μ (@toMeasurable α m (μ.trim hm) s) = 0 :=
   measure_eq_zero_of_trim_eq_zero hm (by rwa [measure_to_measurable])
 #align measure_theory.measure_trim_to_measurable_eq_zero MeasureTheory.measure_trim_toMeasurable_eq_zero
+-/
 
 #print MeasureTheory.ae_of_ae_trim /-
 theorem ae_of_ae_trim (hm : m ≤ m0) {μ : Measure α} {P : α → Prop} (h : ∀ᵐ x ∂μ.trim hm, P x) :
@@ -4921,6 +5544,7 @@ theorem sigmaFiniteTrim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α}
 #align measure_theory.sigma_finite_trim_mono MeasureTheory.sigmaFiniteTrim_mono
 -/
 
+#print MeasureTheory.sigmaFinite_trim_bot_iff /-
 theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ IsFiniteMeasure μ :=
   by
   rw [sigma_finite_bot_iff]
@@ -4928,6 +5552,7 @@ theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ IsFiniteMeas
   · rwa [trim_measurable_set_eq bot_le MeasurableSet.univ] at h_univ 
   · rwa [trim_measurable_set_eq bot_le MeasurableSet.univ]
 #align measure_theory.sigma_finite_trim_bot_iff MeasureTheory.sigmaFinite_trim_bot_iff
+-/
 
 end Trim
 
@@ -4938,6 +5563,7 @@ namespace IsCompact
 variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set α}
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+#print IsCompact.exists_open_superset_measure_lt_top' /-
 /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
 superset of finite measure. -/
 theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
@@ -4954,25 +5580,32 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
     rcases(hμ x hx).exists_mem_basis (nhds_basis_opens _) with ⟨U, ⟨hx, hUo⟩, hU⟩
     exact ⟨U, nhdsWithin_le_nhds (hUo.mem_nhds hx), U, subset.rfl, hUo, hU⟩
 #align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+#print IsCompact.exists_open_superset_measure_lt_top /-
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
 theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
     [IsLocallyFiniteMeasure μ] : ∃ (U : _) (_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
   h.exists_open_superset_measure_lt_top' fun x hx => μ.finiteAtNhds x
 #align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_top
+-/
 
+#print IsCompact.measure_lt_top_of_nhdsWithin /-
 theorem measure_lt_top_of_nhdsWithin (h : IsCompact s) (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝[s] x)) :
     μ s < ∞ :=
   IsCompact.induction_on h (by simp) (fun s t hst ht => (measure_mono hst).trans_lt ht)
     (fun s t hs ht => (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hs, ht⟩)) hμ
 #align is_compact.measure_lt_top_of_nhds_within IsCompact.measure_lt_top_of_nhdsWithin
+-/
 
+#print IsCompact.measure_zero_of_nhdsWithin /-
 theorem measure_zero_of_nhdsWithin (hs : IsCompact s) :
     (∀ a ∈ s, ∃ t ∈ 𝓝[s] a, μ t = 0) → μ s = 0 := by
   simpa only [← compl_mem_ae_iff] using hs.compl_mem_sets_of_nhds_within
 #align is_compact.measure_zero_of_nhds_within IsCompact.measure_zero_of_nhdsWithin
+-/
 
 end IsCompact
 
@@ -5082,21 +5715,29 @@ section MeasureIxx
 variable [Preorder α] [TopologicalSpace α] [CompactIccSpace α] {m : MeasurableSpace α}
   {μ : Measure α} [IsLocallyFiniteMeasure μ] {a b : α}
 
+#print measure_Icc_lt_top /-
 theorem measure_Icc_lt_top : μ (Icc a b) < ∞ :=
   isCompact_Icc.measure_lt_top
 #align measure_Icc_lt_top measure_Icc_lt_top
+-/
 
+#print measure_Ico_lt_top /-
 theorem measure_Ico_lt_top : μ (Ico a b) < ∞ :=
   (measure_mono Ico_subset_Icc_self).trans_lt measure_Icc_lt_top
 #align measure_Ico_lt_top measure_Ico_lt_top
+-/
 
+#print measure_Ioc_lt_top /-
 theorem measure_Ioc_lt_top : μ (Ioc a b) < ∞ :=
   (measure_mono Ioc_subset_Icc_self).trans_lt measure_Icc_lt_top
 #align measure_Ioc_lt_top measure_Ioc_lt_top
+-/
 
+#print measure_Ioo_lt_top /-
 theorem measure_Ioo_lt_top : μ (Ioo a b) < ∞ :=
   (measure_mono Ioo_subset_Icc_self).trans_lt measure_Icc_lt_top
 #align measure_Ioo_lt_top measure_Ioo_lt_top
+-/
 
 end MeasureIxx
 
@@ -5104,22 +5745,28 @@ section Piecewise
 
 variable [MeasurableSpace α] {μ : Measure α} {s t : Set α} {f g : α → β}
 
+#print piecewise_ae_eq_restrict /-
 theorem piecewise_ae_eq_restrict (hs : MeasurableSet s) : piecewise s f g =ᵐ[μ.restrict s] f :=
   by
   rw [ae_restrict_eq hs]
   exact (piecewise_eq_on s f g).EventuallyEq.filter_mono inf_le_right
 #align piecewise_ae_eq_restrict piecewise_ae_eq_restrict
+-/
 
+#print piecewise_ae_eq_restrict_compl /-
 theorem piecewise_ae_eq_restrict_compl (hs : MeasurableSet s) :
     piecewise s f g =ᵐ[μ.restrict (sᶜ)] g :=
   by
   rw [ae_restrict_eq hs.compl]
   exact (piecewise_eq_on_compl s f g).EventuallyEq.filter_mono inf_le_right
 #align piecewise_ae_eq_restrict_compl piecewise_ae_eq_restrict_compl
+-/
 
+#print piecewise_ae_eq_of_ae_eq_set /-
 theorem piecewise_ae_eq_of_ae_eq_set (hst : s =ᵐ[μ] t) : s.piecewise f g =ᵐ[μ] t.piecewise f g :=
   hst.mem_iff.mono fun x hx => by simp [piecewise, hx]
 #align piecewise_ae_eq_of_ae_eq_set piecewise_ae_eq_of_ae_eq_set
+-/
 
 end Piecewise
 
@@ -5142,6 +5789,7 @@ theorem mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem [Zero β] {t :
 #align mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem
 -/
 
+#print mem_map_indicator_ae_iff_of_zero_nmem /-
 theorem mem_map_indicator_ae_iff_of_zero_nmem [Zero β] {t : Set β} (ht : (0 : β) ∉ t) :
     t ∈ Filter.map (s.indicator f) μ.ae ↔ μ ((f ⁻¹' t)ᶜ ∪ sᶜ) = 0 :=
   by
@@ -5149,7 +5797,9 @@ theorem mem_map_indicator_ae_iff_of_zero_nmem [Zero β] {t : Set β} (ht : (0 :
   change μ (((f ⁻¹' t)ᶜ ∪ sᶜ) ∩ ((fun x => (0 : β)) ⁻¹' t \ s)ᶜ) = 0 ↔ μ ((f ⁻¹' t)ᶜ ∪ sᶜ) = 0
   simp only [ht, if_false, Set.compl_empty, Set.empty_diff, Set.inter_univ, Set.preimage_const]
 #align mem_map_indicator_ae_iff_of_zero_nmem mem_map_indicator_ae_iff_of_zero_nmem
+-/
 
+#print map_restrict_ae_le_map_indicator_ae /-
 theorem map_restrict_ae_le_map_indicator_ae [Zero β] (hs : MeasurableSet s) :
     Filter.map f (μ.restrict s).ae ≤ Filter.map (s.indicator f) μ.ae :=
   by
@@ -5159,18 +5809,24 @@ theorem map_restrict_ae_le_map_indicator_ae [Zero β] (hs : MeasurableSet s) :
   rw [mem_map_indicator_ae_iff_of_zero_nmem ht, mem_map_restrict_ae_iff hs]
   exact fun h => measure_mono_null ((Set.inter_subset_left _ _).trans (Set.subset_union_left _ _)) h
 #align map_restrict_ae_le_map_indicator_ae map_restrict_ae_le_map_indicator_ae
+-/
 
 variable [Zero β]
 
+#print indicator_ae_eq_restrict /-
 theorem indicator_ae_eq_restrict (hs : MeasurableSet s) : indicator s f =ᵐ[μ.restrict s] f :=
   piecewise_ae_eq_restrict hs
 #align indicator_ae_eq_restrict indicator_ae_eq_restrict
+-/
 
+#print indicator_ae_eq_restrict_compl /-
 theorem indicator_ae_eq_restrict_compl (hs : MeasurableSet s) :
     indicator s f =ᵐ[μ.restrict (sᶜ)] 0 :=
   piecewise_ae_eq_restrict_compl hs
 #align indicator_ae_eq_restrict_compl indicator_ae_eq_restrict_compl
+-/
 
+#print indicator_ae_eq_of_restrict_compl_ae_eq_zero /-
 theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict (sᶜ)] 0) : s.indicator f =ᵐ[μ] f :=
   by
@@ -5180,7 +5836,9 @@ theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
   · simp only [hxs, Set.indicator_of_mem]
   · simp only [hx hxs, Pi.zero_apply, Set.indicator_apply_eq_zero, eq_self_iff_true, imp_true_iff]
 #align indicator_ae_eq_of_restrict_compl_ae_eq_zero indicator_ae_eq_of_restrict_compl_ae_eq_zero
+-/
 
+#print indicator_ae_eq_zero_of_restrict_ae_eq_zero /-
 theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict s] 0) : s.indicator f =ᵐ[μ] 0 :=
   by
@@ -5190,15 +5848,21 @@ theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
   · simp only [hxs, hx hxs, Set.indicator_of_mem]
   · simp [hx, hxs]
 #align indicator_ae_eq_zero_of_restrict_ae_eq_zero indicator_ae_eq_zero_of_restrict_ae_eq_zero
+-/
 
+#print indicator_ae_eq_of_ae_eq_set /-
 theorem indicator_ae_eq_of_ae_eq_set (hst : s =ᵐ[μ] t) : s.indicator f =ᵐ[μ] t.indicator f :=
   piecewise_ae_eq_of_ae_eq_set hst
 #align indicator_ae_eq_of_ae_eq_set indicator_ae_eq_of_ae_eq_set
+-/
 
+#print indicator_meas_zero /-
 theorem indicator_meas_zero (hs : μ s = 0) : indicator s f =ᵐ[μ] 0 :=
   indicator_empty' f ▸ indicator_ae_eq_of_ae_eq_set (ae_eq_empty.2 hs)
 #align indicator_meas_zero indicator_meas_zero
+-/
 
+#print ae_eq_restrict_iff_indicator_ae_eq /-
 theorem ae_eq_restrict_iff_indicator_ae_eq {g : α → β} (hs : MeasurableSet s) :
     f =ᵐ[μ.restrict s] g ↔ s.indicator f =ᵐ[μ] s.indicator g :=
   by
@@ -5210,6 +5874,7 @@ theorem ae_eq_restrict_iff_indicator_ae_eq {g : α → β} (hs : MeasurableSet s
   · intro hxs
     simpa [hxs] using hx
 #align ae_eq_restrict_iff_indicator_ae_eq ae_eq_restrict_iff_indicator_ae_eq
+-/
 
 end IndicatorFunction
 
Diff
@@ -206,7 +206,7 @@ theorem measure_biUnion_finset {s : Finset ι} {f : ι → Set α} (hd : Pairwis
 the measures of the sets. -/
 theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type _} [MeasurableSpace α] (μ : Measure α)
     {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
-    (As_disj : Pairwise (Disjoint on As)) : (∑' i, μ (As i)) ≤ μ (⋃ i, As i) :=
+    (As_disj : Pairwise (Disjoint on As)) : ∑' i, μ (As i) ≤ μ (⋃ i, As i) :=
   by
   rcases show Summable fun i => μ (As i) from ENNReal.summable with ⟨S, hS⟩
   rw [hS.tsum_eq]
@@ -219,14 +219,14 @@ theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type _} [MeasurableSpace α]
 /-- If `s` is a countable set, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem tsum_measure_preimage_singleton {s : Set β} (hs : s.Countable) {f : α → β}
-    (hf : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y})) : (∑' b : s, μ (f ⁻¹' {↑b})) = μ (f ⁻¹' s) := by
+    (hf : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y})) : ∑' b : s, μ (f ⁻¹' {↑b}) = μ (f ⁻¹' s) := by
   rw [← Set.biUnion_preimage_singleton, measure_bUnion hs (pairwise_disjoint_fiber _ _) hf]
 #align measure_theory.tsum_measure_preimage_singleton MeasureTheory.tsum_measure_preimage_singleton
 
 /-- If `s` is a `finset`, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem sum_measure_preimage_singleton (s : Finset β) {f : α → β}
-    (hf : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y})) : (∑ b in s, μ (f ⁻¹' {b})) = μ (f ⁻¹' ↑s) := by
+    (hf : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y})) : ∑ b in s, μ (f ⁻¹' {b}) = μ (f ⁻¹' ↑s) := by
   simp only [← measure_bUnion_finset (pairwise_disjoint_fiber _ _) hf,
     Finset.set_biUnion_preimage_singleton]
 #align measure_theory.sum_measure_preimage_singleton MeasureTheory.sum_measure_preimage_singleton
@@ -405,12 +405,12 @@ theorem measure_union_toMeasurable : μ (s ∪ toMeasurable μ t) = μ (s ∪ t)
 
 theorem sum_measure_le_measure_univ {s : Finset ι} {t : ι → Set α}
     (h : ∀ i ∈ s, MeasurableSet (t i)) (H : Set.PairwiseDisjoint (↑s) t) :
-    (∑ i in s, μ (t i)) ≤ μ (univ : Set α) := by rw [← measure_bUnion_finset H h];
+    ∑ i in s, μ (t i) ≤ μ (univ : Set α) := by rw [← measure_bUnion_finset H h];
   exact measure_mono (subset_univ _)
 #align measure_theory.sum_measure_le_measure_univ MeasureTheory.sum_measure_le_measure_univ
 
 theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i))
-    (H : Pairwise (Disjoint on s)) : (∑' i, μ (s i)) ≤ μ (univ : Set α) :=
+    (H : Pairwise (Disjoint on s)) : ∑' i, μ (s i) ≤ μ (univ : Set α) :=
   by
   rw [ENNReal.tsum_eq_iSup_sum]
   exact iSup_le fun s => sum_measure_le_measure_univ (fun i hi => hs i) fun i hi j hj hij => H hij
@@ -495,7 +495,7 @@ theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed
     _ ≤ ⨆ n, μ (t n) := iSup_le fun I => _
   rcases hd.finset_le I with ⟨N, hN⟩
   calc
-    (∑ n in I, μ (Td n)) = μ (⋃ n ∈ I, Td n) :=
+    ∑ n in I, μ (Td n) = μ (⋃ n ∈ I, Td n) :=
       (measure_bUnion_finset ((disjoint_disjointed T).set_pairwise I) fun n _ => hm n).symm
     _ ≤ μ (⋃ n ∈ I, T n) := (measure_mono (Union₂_mono fun n hn => disjointed_subset _ _))
     _ = μ (⋃ n ∈ I, t n) := (measure_bUnion_to_measurable I.countable_to_set _)
@@ -597,13 +597,12 @@ theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSp
 
 /-- One direction of the **Borel-Cantelli lemma**: if (sᵢ) is a sequence of sets such
 that `∑ μ sᵢ` is finite, then the limit superior of the `sᵢ` is a null set. -/
-theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠ ∞) :
-    μ (limsup s atTop) = 0 :=
+theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : ∑' i, μ (s i) ≠ ∞) : μ (limsup s atTop) = 0 :=
   by
   -- First we replace the sequence `sₙ` with a sequence of measurable sets `tₙ ⊇ sₙ` of the same
   -- measure.
   set t : ℕ → Set α := fun n => to_measurable μ (s n)
-  have ht : (∑' i, μ (t i)) ≠ ∞ := by simpa only [t, measure_to_measurable] using hs
+  have ht : ∑' i, μ (t i) ≠ ∞ := by simpa only [t, measure_to_measurable] using hs
   suffices μ (limsup t at_top) = 0
     by
     have A : s ≤ t := fun n => subset_to_measurable μ (s n)
@@ -630,7 +629,7 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
-theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠ ⊤) : μ (liminf s atTop) = 0 :=
+theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : ∑' i, μ (s i) ≠ ⊤) : μ (liminf s atTop) = 0 :=
   by
   rw [← le_zero_iff]
   have : liminf s at_top ≤ limsup s at_top :=
@@ -824,7 +823,7 @@ instance [MeasurableSpace α] : Add (Measure α) :=
   ⟨fun μ₁ μ₂ =>
     { toOuterMeasure := μ₁.toOuterMeasure + μ₂.toOuterMeasure
       m_iUnion := fun s hs hd =>
-        show μ₁ (⋃ i, s i) + μ₂ (⋃ i, s i) = ∑' i, μ₁ (s i) + μ₂ (s i) by
+        show μ₁ (⋃ i, s i) + μ₂ (⋃ i, s i) = ∑' i, (μ₁ (s i) + μ₂ (s i)) by
           rw [ENNReal.tsum_add, measure_Union hd hs, measure_Union hd hs]
       trimmed := by rw [outer_measure.trim_add, μ₁.trimmed, μ₂.trimmed] }⟩
 
@@ -2174,7 +2173,7 @@ def sum (f : ι → Measure α) : Measure α :=
 #align measure_theory.measure.sum MeasureTheory.Measure.sum
 -/
 
-theorem le_sum_apply (f : ι → Measure α) (s : Set α) : (∑' i, f i s) ≤ sum f s :=
+theorem le_sum_apply (f : ι → Measure α) (s : Set α) : ∑' i, f i s ≤ sum f s :=
   le_toMeasure_apply _ _ _
 #align measure_theory.measure.le_sum_apply MeasureTheory.Measure.le_sum_apply
 
@@ -2315,9 +2314,9 @@ theorem sum_smul_dirac [Countable α] [MeasurableSingletonClass α] (μ : Measur
 /-- Given that `α` is a countable, measurable space with all singleton sets measurable,
 write the measure of a set `s` as the sum of the measure of `{x}` for all `x ∈ s`. -/
 theorem tsum_indicator_apply_singleton [Countable α] [MeasurableSingletonClass α] (μ : Measure α)
-    (s : Set α) (hs : MeasurableSet s) : (∑' x : α, s.indicator (fun x => μ {x}) x) = μ s :=
+    (s : Set α) (hs : MeasurableSet s) : ∑' x : α, s.indicator (fun x => μ {x}) x = μ s :=
   calc
-    (∑' x : α, s.indicator (fun x => μ {x}) x) = Measure.sum (fun a => μ {a} • Measure.dirac a) s :=
+    ∑' x : α, s.indicator (fun x => μ {x}) x = Measure.sum (fun a => μ {a} • Measure.dirac a) s :=
       by
       simp only [measure.sum_apply _ hs, measure.smul_apply, smul_eq_mul, measure.dirac_apply,
         Set.indicator_apply, mul_ite, Pi.one_apply, mul_one, MulZeroClass.mul_zero]
@@ -3209,7 +3208,7 @@ theorem ae_restrict_congr_set {s t} (hst : s =ᵐ[μ] t) {p : α → Prop} :
 /-- A version of the **Borel-Cantelli lemma**: if `pᵢ` is a sequence of predicates such that
 `∑ μ {x | pᵢ x}` is finite, then the measure of `x` such that `pᵢ x` holds frequently as `i → ∞` (or
 equivalently, `pᵢ x` holds for infinitely many `i`) is equal to zero. -/
-theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : (∑' i, μ {x | p i x}) ≠ ∞) :
+theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : ∑' i, μ {x | p i x} ≠ ∞) :
     μ {x | ∃ᶠ n in atTop, p n x} = 0 := by
   simpa only [limsup_eq_infi_supr_of_nat, frequently_at_top, set_of_forall, set_of_exists] using
     measure_limsup_eq_zero hp
@@ -3217,7 +3216,7 @@ theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : (∑' i
 
 /-- A version of the **Borel-Cantelli lemma**: if `sᵢ` is a sequence of sets such that
 `∑ μ sᵢ` exists, then for almost all `x`, `x` does not belong to almost all `sᵢ`. -/
-theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠ ∞) :
+theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : ∑' i, μ (s i) ≠ ∞) :
     ∀ᵐ x ∂μ, ∀ᶠ n in atTop, x ∉ s n :=
   measure_setOf_frequently_eq_zero hs
 #align measure_theory.ae_eventually_not_mem MeasureTheory.ae_eventually_not_mem
Diff
@@ -258,7 +258,6 @@ theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
       μ s₁ ≤ μ (s₂ ∪ s₁) := measure_mono (subset_union_right _ _)
       _ = μ (s₂ ∪ s₁ \ s₂) := (congr_arg μ union_diff_self.symm)
       _ ≤ μ s₂ + μ (s₁ \ s₂) := measure_union_le _ _
-      
 #align measure_theory.le_measure_diff MeasureTheory.le_measure_diff
 
 theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞}
@@ -287,7 +286,6 @@ theorem measure_eq_measure_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 :
       μ s₃ = μ (s₃ \ s₁ ∪ s₁) := by rw [diff_union_of_subset (h12.trans h23)]
       _ ≤ μ (s₃ \ s₁) + μ s₁ := (measure_union_le _ _)
       _ = μ s₁ := by simp only [h_nulldiff, zero_add]
-      
   exact ⟨le12.antisymm (le23.trans key), le23.antisymm (key.trans le12)⟩
 #align measure_theory.measure_eq_measure_of_between_null_diff MeasureTheory.measure_eq_measure_of_between_null_diff
 
@@ -344,7 +342,6 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
     calc
       μ (⋃ b, s b) = ∞ := top_unique (hb ▸ (h_le b).trans <| measure_mono <| subset_Union _ _)
       _ = μ (⋃ b, t b) := Eq.symm <| top_unique <| hb ▸ measure_mono <| subset_Union _ _
-      
   push_neg at htop 
   refine' le_antisymm (measure_mono (Union_mono hsub)) _
   set M := to_measurable μ
@@ -359,7 +356,6 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
           measure_mono <|
             subset_inter ((hsub b).trans <| subset_to_measurable _ _)
               ((subset_Union _ _).trans <| subset_to_measurable _ _)
-        
     · exact (measurable_set_to_measurable _ _).inter (measurable_set_to_measurable _ _)
     · rw [measure_to_measurable]; exact htop b
   calc
@@ -367,7 +363,6 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
     _ = μ (⋃ b, M (t b) ∩ M (⋃ b, s b)) := (measure_congr (EventuallyEq.countable_iUnion H).symm)
     _ ≤ μ (M (⋃ b, s b)) := (measure_mono (Union_subset fun b => inter_subset_right _ _))
     _ = μ (⋃ b, s b) := measure_to_measurable _
-    
 #align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_iUnion_congr_of_subset
 
 theorem measure_union_congr_of_subset {t₁ t₂ : Set α} (hs : s₁ ⊆ s₂) (hsμ : μ s₂ ≤ μ s₁)
@@ -458,7 +453,6 @@ theorem nonempty_inter_of_measure_lt_add {m : MeasurableSpace α} (μ : Measure
   calc
     μ s + μ t = μ (s ∪ t) := (measure_union h ht).symm
     _ ≤ μ u := measure_mono (union_subset h's h't)
-    
 #align measure_theory.nonempty_inter_of_measure_lt_add MeasureTheory.nonempty_inter_of_measure_lt_add
 
 /-- If two sets `s` and `t` are included in a set `u`, and `μ s + μ t > μ u`,
@@ -499,7 +493,6 @@ theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed
     _ ≤ ∑' n, μ (Td n) := (measure_Union_le _)
     _ = ⨆ I : Finset ℕ, ∑ n in I, μ (Td n) := ENNReal.tsum_eq_iSup_sum
     _ ≤ ⨆ n, μ (t n) := iSup_le fun I => _
-    
   rcases hd.finset_le I with ⟨N, hN⟩
   calc
     (∑ n in I, μ (Td n)) = μ (⋃ n ∈ I, Td n) :=
@@ -508,7 +501,6 @@ theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed
     _ = μ (⋃ n ∈ I, t n) := (measure_bUnion_to_measurable I.countable_to_set _)
     _ ≤ μ (t N) := (measure_mono (Union₂_subset hN))
     _ ≤ ⨆ n, μ (t n) := le_iSup (μ ∘ t) N
-    
 #align measure_theory.measure_Union_eq_supr MeasureTheory.measure_iUnion_eq_iSup
 
 theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countable)
@@ -742,7 +734,6 @@ theorem toMeasure_apply₀ (m : OuterMeasure α) (h : ms ≤ m.caratheodory) {s
     m.to_measure h s = m.to_measure h t := measure_congr HEq.symm
     _ = m t := (to_measure_apply m h htm)
     _ ≤ m s := m.mono hts
-    
 #align measure_theory.to_measure_apply₀ MeasureTheory.toMeasure_apply₀
 -/
 
@@ -783,7 +774,6 @@ theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (
       _ = μ (t ∩ s) + μ (t \ s) := (measure_inter_add_diff _ hs).symm
       _ ≤ μ (t ∩ s) + μ (u \ s) :=
         add_le_add le_rfl (measure_mono (diff_subset_diff htu subset.rfl))
-      
   have B : μ (u \ s) ≠ ∞ := (lt_of_le_of_lt (measure_mono (diff_subset _ _)) ht_ne_top.lt_top).Ne
   exact ENNReal.le_of_add_le_add_right B A
 #align measure_theory.measure.measure_inter_eq_of_measure_eq MeasureTheory.Measure.measure_inter_eq_of_measure_eq
@@ -958,7 +948,6 @@ theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν
     calc
       μ t + ν t = μ s + ν s := h''.symm
       _ ≤ μ s + ν t := add_le_add le_rfl (measure_mono h')
-      
   apply ENNReal.le_of_add_le_add_right _ this
   simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at h 
   exact h.2
@@ -1331,7 +1320,6 @@ theorem le_map_apply {f : α → β} (hf : AEMeasurable f μ) (s : Set β) : μ
     _ = μ.map f (toMeasurable (μ.map f) s) :=
       (map_apply_of_aemeasurable hf <| measurableSet_toMeasurable _ _).symm
     _ = μ.map f s := measure_toMeasurable _
-    
 #align measure_theory.measure.le_map_apply MeasureTheory.Measure.le_map_apply
 
 /-- Even if `s` is not measurable, `map f μ s = 0` implies that `μ (f ⁻¹' s) = 0`. -/
@@ -1599,7 +1587,6 @@ theorem restrict_mono' {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν :
     _ ≤ μ (t ∩ s') := (measure_mono_ae <| hs.mono fun x hx ⟨hxt, hxs⟩ => ⟨hxt, hx hxs⟩)
     _ ≤ ν (t ∩ s') := (le_iff'.1 hμν (t ∩ s'))
     _ = ν.restrict s' t := (restrict_apply ht).symm
-    
 #align measure_theory.measure.restrict_mono' MeasureTheory.Measure.restrict_mono'
 -/
 
@@ -1644,7 +1631,6 @@ theorem restrict_le_self : μ.restrict s ≤ μ := fun t ht =>
   calc
     μ.restrict s t = μ (t ∩ s) := restrict_apply ht
     _ ≤ μ t := measure_mono <| inter_subset_left t s
-    
 #align measure_theory.measure.restrict_le_self MeasureTheory.Measure.restrict_le_self
 -/
 
@@ -1658,7 +1644,6 @@ theorem restrict_eq_self (h : s ⊆ t) : μ.restrict t s = μ s :=
         measure_mono (subset_inter (subset_toMeasurable _ _) h)
       _ = μ.restrict t s := by
         rw [← restrict_apply (measurable_set_to_measurable _ _), measure_to_measurable]
-      
 #align measure_theory.measure.restrict_eq_self MeasureTheory.Measure.restrict_eq_self
 -/
 
@@ -1681,7 +1666,6 @@ theorem le_restrict_apply (s t : Set α) : μ (t ∩ s) ≤ μ.restrict s t :=
   calc
     μ (t ∩ s) = μ.restrict s (t ∩ s) := (restrict_eq_self μ (inter_subset_right _ _)).symm
     _ ≤ μ.restrict s t := measure_mono (inter_subset_left _ _)
-    
 #align measure_theory.measure.le_restrict_apply MeasureTheory.Measure.le_restrict_apply
 
 #print MeasureTheory.Measure.restrict_apply_superset /-
@@ -1919,7 +1903,6 @@ theorem restrict_eq_self_of_ae_mem {m0 : MeasurableSpace α} ⦃s : Set α⦄ 
   calc
     μ.restrict s = μ.restrict univ := restrict_congr_set (eventuallyEq_univ.mpr hs)
     _ = μ := restrict_univ
-    
 #align measure_theory.measure.restrict_eq_self_of_ae_mem MeasureTheory.Measure.restrict_eq_self_of_ae_mem
 -/
 
@@ -1967,7 +1950,6 @@ theorem restrict_union_congr :
       simp only [restrict_apply, hu, hu.diff hm, hν, ← inter_comm t, inter_diff_assoc]
     _ = ν (US ∪ u ∩ t) := (measure_add_diff hm _)
     _ = ν (u ∩ s ∪ u ∩ t) := Eq.symm <| measure_union_congr_of_subset hsub hν.le subset.rfl le_rfl
-    
 #align measure_theory.measure.restrict_union_congr MeasureTheory.Measure.restrict_union_congr
 -/
 
@@ -2160,7 +2142,6 @@ theorem dirac_apply [MeasurableSingletonClass α] (a : α) (s : Set α) :
   calc
     dirac a s ≤ dirac a ({a}ᶜ) := measure_mono (subset_compl_comm.1 <| singleton_subset_iff.2 h)
     _ = 0 := by simp [dirac_apply' _ (measurable_set_singleton _).compl]
-    
 #align measure_theory.measure.dirac_apply MeasureTheory.Measure.dirac_apply
 
 theorem map_dirac {f : α → β} (hf : Measurable f) (a : α) : (dirac a).map f = dirac (f a) :=
@@ -2217,7 +2198,6 @@ theorem sum_apply_eq_zero [Countable ι] {μ : ι → Measure α} {s : Set α} :
   calc
     Sum μ s ≤ Sum μ t := measure_mono hst
     _ = 0 := by simp [*]
-    
 #align measure_theory.measure.sum_apply_eq_zero MeasureTheory.Measure.sum_apply_eq_zero
 
 theorem sum_apply_eq_zero' {μ : ι → Measure α} {s : Set α} (hs : MeasurableSet s) :
@@ -2342,7 +2322,6 @@ theorem tsum_indicator_apply_singleton [Countable α] [MeasurableSingletonClass
       simp only [measure.sum_apply _ hs, measure.smul_apply, smul_eq_mul, measure.dirac_apply,
         Set.indicator_apply, mul_ite, Pi.one_apply, mul_one, MulZeroClass.mul_zero]
     _ = μ s := by rw [μ.sum_smul_dirac]
-    
 #align measure_theory.measure.tsum_indicator_apply_singleton MeasureTheory.Measure.tsum_indicator_apply_singleton
 
 omit m0
@@ -2387,7 +2366,6 @@ theorem le_count_apply : (∑' i : s, 1 : ℝ≥0∞) ≤ count s :=
     (∑' i : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i := tsum_subtype s 1
     _ ≤ ∑' i, dirac i s := (ENNReal.tsum_le_tsum fun x => le_dirac_apply)
     _ ≤ count s := le_sum_apply _ _
-    
 #align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_apply
 
 theorem count_apply (hs : MeasurableSet s) : count s = ∑' i : s, 1 := by
@@ -2406,7 +2384,6 @@ theorem count_apply_finset' {s : Finset α} (s_mble : MeasurableSet (s : Set α)
     count (↑s : Set α) = ∑' i : (↑s : Set α), 1 := count_apply s_mble
     _ = ∑ i in s, 1 := (s.tsum_subtype 1)
     _ = s.card := by simp
-    
 #align measure_theory.measure.count_apply_finset' MeasureTheory.Measure.count_apply_finset'
 -/
 
@@ -2442,7 +2419,6 @@ theorem count_apply_infinite (hs : s.Infinite) : count s = ∞ :=
     _ = ∑' i : (t : Set α), 1 := (t.tsum_subtype 1).symm
     _ ≤ count (t : Set α) := le_count_apply
     _ ≤ count s := measure_mono ht
-    
 #align measure_theory.measure.count_apply_infinite MeasureTheory.Measure.count_apply_infinite
 
 @[simp]
@@ -2469,7 +2445,6 @@ theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Fin
     count s < ∞ ↔ count s ≠ ∞ := lt_top_iff_ne_top
     _ ↔ ¬s.Infinite := (not_congr (count_apply_eq_top' s_mble))
     _ ↔ s.Finite := Classical.not_not
-    
 #align measure_theory.measure.count_apply_lt_top' MeasureTheory.Measure.count_apply_lt_top'
 
 @[simp]
@@ -2478,7 +2453,6 @@ theorem count_apply_lt_top [MeasurableSingletonClass α] : count s < ∞ ↔ s.F
     count s < ∞ ↔ count s ≠ ∞ := lt_top_iff_ne_top
     _ ↔ ¬s.Infinite := (not_congr count_apply_eq_top)
     _ ↔ s.Finite := Classical.not_not
-    
 #align measure_theory.measure.count_apply_lt_top MeasureTheory.Measure.count_apply_lt_top
 
 theorem empty_of_count_eq_zero' (s_mble : MeasurableSet s) (hsc : count s = 0) : s = ∅ :=
@@ -2876,7 +2850,6 @@ def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α
     calc
       μ (sᶜ ∪ tᶜ) ≤ μ (sᶜ) + μ (tᶜ) := measure_union_le _ _
       _ < ∞ := ENNReal.add_lt_top.2 ⟨hs, ht⟩
-      
   sets_of_superset s t hs hst := lt_of_le_of_lt (measure_mono <| compl_subset_compl.2 hst) hs
 #align measure_theory.measure.cofinite MeasureTheory.Measure.cofinite
 -/
@@ -3144,7 +3117,6 @@ theorem ae_of_ae_restrict_of_ae_restrict_compl (t : Set α) {p : α → Prop}
       _ ≤ μ.restrict t {x | ¬p x} + μ.restrict (tᶜ) {x | ¬p x} :=
         (add_le_add (le_restrict_apply _ _) (le_restrict_apply _ _))
       _ = 0 := by rw [ae_iff.1 ht, ae_iff.1 htc, zero_add]
-      
 #align measure_theory.ae_of_ae_restrict_of_ae_restrict_compl MeasureTheory.ae_of_ae_restrict_of_ae_restrict_compl
 -/
 
@@ -3380,7 +3352,6 @@ theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet
     μ univ = μ univ - μ s + μ s := (tsub_add_cancel_of_le <| measure_mono s.subset_univ).symm
     _ ≤ μ univ - μ s + (μ t + ε) := (add_le_add_left h _)
     _ = _ := by rw [add_right_comm, add_assoc]
-    
 #align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_add
 
 theorem measure_compl_le_add_iff [IsFiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
@@ -3937,7 +3908,6 @@ theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
     (⨆ i, μ.restrict (spanningSets μ i) s) = μ.restrict (⋃ i, spanningSets μ i) s :=
       (restrict_iUnion_apply_eq_iSup (directed_of_sup (monotone_spanningSets μ)) hs).symm
     _ = μ s := by rw [Union_spanning_sets, restrict_univ]
-    
 #align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.iSup_restrict_spanningSets
 
 /-- In a σ-finite space, any measurable set of measure `> r` contains a measurable subset of
@@ -4073,7 +4043,6 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
           exact ⟨hx, subset_to_measurable μ _ this⟩
         _ ⊆ ⋃ n, to_measurable μ (t ∩ disjointed w n) :=
           Union_mono fun n => subset_to_measurable _ _
-        
     refine' ⟨t', tt', MeasurableSet.iUnion fun n => measurable_set_to_measurable μ _, fun u hu => _⟩
     apply le_antisymm _ (measure_mono (inter_subset_inter tt' subset.rfl))
     calc
@@ -4089,7 +4058,6 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
             measure_mono (inter_subset_inter_right _ (disjointed_le w n))
           _ ≤ μ (w n) := (measure_mono (inter_subset_right _ _))
           _ < ∞ := hw n
-          
       _ = ∑' n, μ.restrict (t ∩ u) (disjointed w n) :=
         by
         congr 1
@@ -4106,7 +4074,6 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
           exact measurable_set_to_measurable _ _
       _ ≤ μ.restrict (t ∩ u) univ := (measure_mono (subset_univ _))
       _ = μ (t ∩ u) := by rw [restrict_apply MeasurableSet.univ, univ_inter]
-      
   -- thanks to the definition of `to_measurable`, the previous property will also be shared
   -- by `to_measurable μ t`, which is enough to conclude the proof.
   rw [to_measurable]
@@ -4134,7 +4101,6 @@ theorem measure_toMeasurable_inter_of_sigmaFinite [SigmaFinite μ] {s : Set α}
   calc
     μ (t ∩ spanning_sets μ n) ≤ μ (spanning_sets μ n) := measure_mono (inter_subset_right _ _)
     _ < ∞ := measure_spanning_sets_lt_top μ n
-    
 #align measure_theory.measure.measure_to_measurable_inter_of_sigma_finite MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFinite
 
 #print MeasureTheory.Measure.restrict_toMeasurable_of_sigmaFinite /-
@@ -4393,7 +4359,6 @@ theorem Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {
   calc
     μ s ≤ μ (closure s) := measure_mono subset_closure
     _ < ∞ := (Metric.isCompact_of_isClosed_bounded isClosed_closure hs.closure).measure_lt_top
-    
 #align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_top
 
 theorem measure_closedBall_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
@@ -4661,7 +4626,6 @@ theorem map_apply (μ : Measure α) (s : Set β) : μ.map f s = μ (f ⁻¹' s)
   calc
     μ.map f s ≤ μ.map f t := measure_mono hst
     _ = μ (f ⁻¹' s) := by rw [map_apply hf.measurable htm, hft, measure_to_measurable]
-    
 #align measurable_embedding.map_apply MeasurableEmbedding.map_apply
 
 #print MeasurableEmbedding.map_comap /-
@@ -4681,7 +4645,6 @@ theorem comap_apply (μ : Measure β) (s : Set α) : comap f μ s = μ (f '' s)
     _ = μ (f '' s) := by
       rw [hf.map_comap, restrict_apply' hf.measurable_set_range,
         inter_eq_self_of_subset_left (image_subset_range _ _)]
-    
 #align measurable_embedding.comap_apply MeasurableEmbedding.comap_apply
 -/
 
@@ -4956,7 +4919,6 @@ theorem sigmaFiniteTrim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α}
       _ = (μ.trim (hm₂.trans hm)) (spanning_sets (μ.trim (hm₂.trans hm)) i) := by
         rw [@trim_trim _ _ μ _ _ hm₂ hm]
       _ < ∞ := measure_spanning_sets_lt_top _ _
-      
 #align measure_theory.sigma_finite_trim_mono MeasureTheory.sigmaFiniteTrim_mono
 -/
 
Diff
@@ -518,7 +518,7 @@ theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countab
   rw [bUnion_eq_Union, measure_Union_eq_supr hd.directed_coe, ← iSup_subtype'']
 #align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_biUnion_eq_iSup
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the infimum of the measures. -/
 theorem measure_iInter_eq_iInf [Countable ι] {s : ι → Set α} (h : ∀ i, MeasurableSet (s i))
@@ -1923,7 +1923,7 @@ theorem restrict_eq_self_of_ae_mem {m0 : MeasurableSpace α} ⦃s : Set α⦄ 
 #align measure_theory.measure.restrict_eq_self_of_ae_mem MeasureTheory.Measure.restrict_eq_self_of_ae_mem
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 #print MeasureTheory.Measure.restrict_congr_meas /-
 theorem restrict_congr_meas (hs : MeasurableSet s) :
     μ.restrict s = ν.restrict s ↔ ∀ (t) (_ : t ⊆ s), MeasurableSet t → μ t = ν t :=
@@ -2841,7 +2841,7 @@ section Pointwise
 
 open scoped Pointwise
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 @[to_additive]
 theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
     [MeasurableSpace α] {μ : Measure α} {s : Set α}
@@ -4040,7 +4040,7 @@ theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ :
     (fun b => g_mble (‹MeasurableSingletonClass β›.measurableSet_singleton b)) level_sets_disjoint
 #align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
 /-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
 superset `to_measurable μ t` (which has the same measure as `t`) satisfies,
 for any measurable set `s`, the equality `μ (to_measurable μ t ∩ s) = μ (t ∩ s)`. -/
@@ -4976,7 +4976,7 @@ namespace IsCompact
 
 variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set α}
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
 superset of finite measure. -/
 theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
@@ -4994,7 +4994,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
     exact ⟨U, nhdsWithin_le_nhds (hUo.mem_nhds hx), U, subset.rfl, hUo, hU⟩
 #align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
 theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
Diff
@@ -2922,11 +2922,11 @@ theorem NullMeasurableSet.mono (h : NullMeasurableSet s μ) (hle : ν ≤ μ) :
 #align measure_theory.null_measurable_set.mono MeasureTheory.NullMeasurableSet.mono
 -/
 
-#print MeasureTheory.AeDisjoint.preimage /-
-theorem AeDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AEDisjoint ν s t)
+#print MeasureTheory.AEDisjoint.preimage /-
+theorem AEDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AEDisjoint ν s t)
     (hf : QuasiMeasurePreserving f μ ν) : AEDisjoint μ (f ⁻¹' s) (f ⁻¹' t) :=
   hf.preimage_null ht
-#align measure_theory.ae_disjoint.preimage MeasureTheory.AeDisjoint.preimage
+#align measure_theory.ae_disjoint.preimage MeasureTheory.AEDisjoint.preimage
 -/
 
 @[simp]
Diff
@@ -345,7 +345,7 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
       μ (⋃ b, s b) = ∞ := top_unique (hb ▸ (h_le b).trans <| measure_mono <| subset_Union _ _)
       _ = μ (⋃ b, t b) := Eq.symm <| top_unique <| hb ▸ measure_mono <| subset_Union _ _
       
-  push_neg  at htop 
+  push_neg at htop 
   refine' le_antisymm (measure_mono (Union_mono hsub)) _
   set M := to_measurable μ
   have H : ∀ b, (M (t b) ∩ M (⋃ b, s b) : Set α) =ᵐ[μ] M (t b) :=
@@ -569,8 +569,8 @@ theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSp
   by
   refine' tendsto_order.2 ⟨fun l hl => _, fun L hL => _⟩
   ·
-    filter_upwards [self_mem_nhdsWithin]with r hr using hl.trans_le
-        (measure_mono (bInter_subset_of_mem hr))
+    filter_upwards [self_mem_nhdsWithin] with r hr using
+      hl.trans_le (measure_mono (bInter_subset_of_mem hr))
   obtain ⟨u, u_anti, u_pos, u_lim⟩ :
     ∃ u : ℕ → ι, StrictAnti u ∧ (∀ n : ℕ, a < u n) ∧ tendsto u at_top (𝓝 a) :=
     by
@@ -600,7 +600,7 @@ theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSp
   rw [B] at A 
   obtain ⟨n, hn⟩ : ∃ n, μ (s (u n)) < L := ((tendsto_order.1 A).2 _ hL).exists
   have : Ioc a (u n) ∈ 𝓝[>] a := Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, u_pos n⟩
-  filter_upwards [this]with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
+  filter_upwards [this] with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
 #align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gt
 
 /-- One direction of the **Borel-Cantelli lemma**: if (sᵢ) is a sequence of sets such
@@ -1423,10 +1423,10 @@ theorem ae_eq_image_of_ae_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSp
     {s t : Set α} (hst : s =ᵐ[comap f μ] t) : f '' s =ᵐ[μ] f '' t :=
   by
   rw [eventually_eq, ae_iff] at hst ⊢
-  have h_eq_α : { a : α | ¬s a = t a } = s \ t ∪ t \ s := by ext1 x;
+  have h_eq_α : {a : α | ¬s a = t a} = s \ t ∪ t \ s := by ext1 x;
+    simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]; tauto
+  have h_eq_β : {a : β | ¬(f '' s) a = (f '' t) a} = f '' s \ f '' t ∪ f '' t \ f '' s := by ext1 x;
     simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]; tauto
-  have h_eq_β : { a : β | ¬(f '' s) a = (f '' t) a } = f '' s \ f '' t ∪ f '' t \ f '' s := by
-    ext1 x; simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]; tauto
   rw [← Set.image_diff hfi, ← Set.image_diff hfi, ← Set.image_union] at h_eq_β 
   rw [h_eq_β]
   rw [h_eq_α] at hst 
@@ -1469,7 +1469,7 @@ theorem MeasurableSet.nullMeasurableSet_subtype_coe {t : Set s} (hs : NullMeasur
   rw [Subtype.instMeasurableSpace, comap_eq_generate_from] at ht 
   refine'
     generate_from_induction (fun t : Set s => null_measurable_set (coe '' t) μ)
-      { t : Set s | ∃ s' : Set α, MeasurableSet s' ∧ coe ⁻¹' s' = t } _ _ _ _ ht
+      {t : Set s | ∃ s' : Set α, MeasurableSet s' ∧ coe ⁻¹' s' = t} _ _ _ _ ht
   · rintro t' ⟨s', hs', rfl⟩
     rw [Subtype.image_preimage_coe]
     exact hs'.null_measurable_set.inter hs
@@ -2236,7 +2236,7 @@ theorem ae_sum_iff [Countable ι] {μ : ι → Measure α} {p : α → Prop} :
 #align measure_theory.measure.ae_sum_iff MeasureTheory.Measure.ae_sum_iff
 -/
 
-theorem ae_sum_iff' {μ : ι → Measure α} {p : α → Prop} (h : MeasurableSet { x | p x }) :
+theorem ae_sum_iff' {μ : ι → Measure α} {p : α → Prop} (h : MeasurableSet {x | p x}) :
     (∀ᵐ x ∂sum μ, p x) ↔ ∀ i, ∀ᵐ x ∂μ i, p x :=
   sum_apply_eq_zero' h.compl
 #align measure_theory.measure.ae_sum_iff' MeasureTheory.Measure.ae_sum_iff'
@@ -2645,8 +2645,8 @@ theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
     fun h s hs => h hs⟩
 #align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuous
 
-alias ae_le_iff_absolutely_continuous ↔
-  _root_.has_le.le.absolutely_continuous_of_ae absolutely_continuous.ae_le
+alias ae_le_iff_absolutely_continuous ↔ _root_.has_le.le.absolutely_continuous_of_ae
+  absolutely_continuous.ae_le
 #align has_le.le.absolutely_continuous_of_ae LE.le.absolutelyContinuous_of_ae
 #align measure_theory.measure.absolutely_continuous.ae_le MeasureTheory.Measure.AbsolutelyContinuous.ae_le
 
@@ -2869,7 +2869,7 @@ end Pointwise
 /-- The filter of sets `s` such that `sᶜ` has finite measure. -/
 def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α
     where
-  sets := { s | μ (sᶜ) < ∞ }
+  sets := {s | μ (sᶜ) < ∞}
   univ_sets := by simp
   inter_sets s t hs ht := by
     simp only [compl_inter, mem_set_of_eq]
@@ -2888,7 +2888,7 @@ theorem mem_cofinite : s ∈ μ.cofinite ↔ μ (sᶜ) < ∞ :=
 theorem compl_mem_cofinite : sᶜ ∈ μ.cofinite ↔ μ s < ∞ := by rw [mem_cofinite, compl_compl]
 #align measure_theory.measure.compl_mem_cofinite MeasureTheory.Measure.compl_mem_cofinite
 
-theorem eventually_cofinite {p : α → Prop} : (∀ᶠ x in μ.cofinite, p x) ↔ μ { x | ¬p x } < ∞ :=
+theorem eventually_cofinite {p : α → Prop} : (∀ᶠ x in μ.cofinite, p x) ↔ μ {x | ¬p x} < ∞ :=
   Iff.rfl
 #align measure_theory.measure.eventually_cofinite MeasureTheory.Measure.eventually_cofinite
 
@@ -2962,7 +2962,7 @@ theorem mem_ae_of_mem_ae_map {f : α → β} (hf : AEMeasurable f μ) {s : Set 
 #align measure_theory.mem_ae_of_mem_ae_map MeasureTheory.mem_ae_of_mem_ae_map
 
 theorem ae_map_iff {f : α → β} (hf : AEMeasurable f μ) {p : β → Prop}
-    (hp : MeasurableSet { x | p x }) : (∀ᵐ y ∂μ.map f, p y) ↔ ∀ᵐ x ∂μ, p (f x) :=
+    (hp : MeasurableSet {x | p x}) : (∀ᵐ y ∂μ.map f, p y) ↔ ∀ᵐ x ∂μ, p (f x) :=
   mem_ae_map_iff hf hp
 #align measure_theory.ae_map_iff MeasureTheory.ae_map_iff
 
@@ -3062,7 +3062,7 @@ theorem ae_restrict_uIoc_iff [LinearOrder α] {a b : α} {P : α → Prop} :
 -/
 
 #print MeasureTheory.ae_restrict_iff /-
-theorem ae_restrict_iff {p : α → Prop} (hp : MeasurableSet { x | p x }) :
+theorem ae_restrict_iff {p : α → Prop} (hp : MeasurableSet {x | p x}) :
     (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x :=
   by
   simp only [ae_iff, ← compl_set_of, restrict_apply hp.compl]
@@ -3122,7 +3122,7 @@ theorem ae_restrict_iff'₀ {p : α → Prop} (hs : NullMeasurableSet s μ) :
     (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x :=
   by
   refine' ⟨fun h => ae_imp_of_ae_restrict h, fun h => _⟩
-  filter_upwards [ae_restrict_mem₀ hs, ae_restrict_of_ae h]with x hx h'x using h'x hx
+  filter_upwards [ae_restrict_mem₀ hs, ae_restrict_of_ae h] with x hx h'x using h'x hx
 #align measure_theory.ae_restrict_iff'₀ MeasureTheory.ae_restrict_iff'₀
 -/
 
@@ -3138,10 +3138,10 @@ theorem ae_of_ae_restrict_of_ae_restrict_compl (t : Set α) {p : α → Prop}
     (ht : ∀ᵐ x ∂μ.restrict t, p x) (htc : ∀ᵐ x ∂μ.restrict (tᶜ), p x) : ∀ᵐ x ∂μ, p x :=
   nonpos_iff_eq_zero.1 <|
     calc
-      μ { x | ¬p x } = μ ({ x | ¬p x } ∩ t ∪ { x | ¬p x } ∩ tᶜ) := by
+      μ {x | ¬p x} = μ ({x | ¬p x} ∩ t ∪ {x | ¬p x} ∩ tᶜ) := by
         rw [← inter_union_distrib_left, union_compl_self, inter_univ]
-      _ ≤ μ ({ x | ¬p x } ∩ t) + μ ({ x | ¬p x } ∩ tᶜ) := (measure_union_le _ _)
-      _ ≤ μ.restrict t { x | ¬p x } + μ.restrict (tᶜ) { x | ¬p x } :=
+      _ ≤ μ ({x | ¬p x} ∩ t) + μ ({x | ¬p x} ∩ tᶜ) := (measure_union_le _ _)
+      _ ≤ μ.restrict t {x | ¬p x} + μ.restrict (tᶜ) {x | ¬p x} :=
         (add_le_add (le_restrict_apply _ _) (le_restrict_apply _ _))
       _ = 0 := by rw [ae_iff.1 ht, ae_iff.1 htc, zero_add]
       
@@ -3237,8 +3237,8 @@ theorem ae_restrict_congr_set {s t} (hst : s =ᵐ[μ] t) {p : α → Prop} :
 /-- A version of the **Borel-Cantelli lemma**: if `pᵢ` is a sequence of predicates such that
 `∑ μ {x | pᵢ x}` is finite, then the measure of `x` such that `pᵢ x` holds frequently as `i → ∞` (or
 equivalently, `pᵢ x` holds for infinitely many `i`) is equal to zero. -/
-theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : (∑' i, μ { x | p i x }) ≠ ∞) :
-    μ { x | ∃ᶠ n in atTop, p n x } = 0 := by
+theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : (∑' i, μ {x | p i x}) ≠ ∞) :
+    μ {x | ∃ᶠ n in atTop, p n x} = 0 := by
   simpa only [limsup_eq_infi_supr_of_nat, frequently_at_top, set_of_forall, set_of_exists] using
     measure_limsup_eq_zero hp
 #align measure_theory.measure_set_of_frequently_eq_zero MeasureTheory.measure_setOf_frequently_eq_zero
@@ -3307,7 +3307,7 @@ theorem mem_ae_dirac_iff {a : α} (hs : MeasurableSet s) : s ∈ (dirac a).ae 
 -/
 
 #print MeasureTheory.ae_dirac_iff /-
-theorem ae_dirac_iff {a : α} {p : α → Prop} (hp : MeasurableSet { x | p x }) :
+theorem ae_dirac_iff {a : α} {p : α → Prop} (hp : MeasurableSet {x | p x}) :
     (∀ᵐ x ∂dirac a, p x) ↔ p a :=
   mem_ae_dirac_iff hp
 #align measure_theory.ae_dirac_iff MeasureTheory.ae_dirac_iff
@@ -3337,41 +3337,41 @@ section IsFiniteMeasure
 
 include m0
 
-#print MeasureTheory.FiniteMeasure /-
+#print MeasureTheory.IsFiniteMeasure /-
 /-- A measure `μ` is called finite if `μ univ < ∞`. -/
-class FiniteMeasure (μ : Measure α) : Prop where
+class IsFiniteMeasure (μ : Measure α) : Prop where
   measure_univ_lt_top : μ univ < ∞
-#align measure_theory.is_finite_measure MeasureTheory.FiniteMeasure
+#align measure_theory.is_finite_measure MeasureTheory.IsFiniteMeasure
 -/
 
-theorem not_finiteMeasure_iff : ¬FiniteMeasure μ ↔ μ Set.univ = ∞ :=
+theorem not_isFiniteMeasure_iff : ¬IsFiniteMeasure μ ↔ μ Set.univ = ∞ :=
   by
   refine' ⟨fun h => _, fun h => fun h' => h'.measure_univ_lt_top.ne h⟩
   by_contra h'
   exact h ⟨lt_top_iff_ne_top.mpr h'⟩
-#align measure_theory.not_is_finite_measure_iff MeasureTheory.not_finiteMeasure_iff
+#align measure_theory.not_is_finite_measure_iff MeasureTheory.not_isFiniteMeasure_iff
 
-instance Restrict.finiteMeasure (μ : Measure α) [hs : Fact (μ s < ∞)] :
-    FiniteMeasure (μ.restrict s) :=
+instance Restrict.isFiniteMeasure (μ : Measure α) [hs : Fact (μ s < ∞)] :
+    IsFiniteMeasure (μ.restrict s) :=
   ⟨by simp [hs.elim]⟩
-#align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.finiteMeasure
+#align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.isFiniteMeasure
 
-theorem measure_lt_top (μ : Measure α) [FiniteMeasure μ] (s : Set α) : μ s < ∞ :=
-  (measure_mono (subset_univ s)).trans_lt FiniteMeasure.measure_univ_lt_top
+theorem measure_lt_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s < ∞ :=
+  (measure_mono (subset_univ s)).trans_lt IsFiniteMeasure.measure_univ_lt_top
 #align measure_theory.measure_lt_top MeasureTheory.measure_lt_top
 
-#print MeasureTheory.finiteMeasureRestrict /-
-instance finiteMeasureRestrict (μ : Measure α) (s : Set α) [h : FiniteMeasure μ] :
-    FiniteMeasure (μ.restrict s) :=
+#print MeasureTheory.isFiniteMeasureRestrict /-
+instance isFiniteMeasureRestrict (μ : Measure α) (s : Set α) [h : IsFiniteMeasure μ] :
+    IsFiniteMeasure (μ.restrict s) :=
   ⟨by simp [measure_lt_top μ s]⟩
-#align measure_theory.is_finite_measure_restrict MeasureTheory.finiteMeasureRestrict
+#align measure_theory.is_finite_measure_restrict MeasureTheory.isFiniteMeasureRestrict
 -/
 
-theorem measure_ne_top (μ : Measure α) [FiniteMeasure μ] (s : Set α) : μ s ≠ ∞ :=
+theorem measure_ne_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s ≠ ∞ :=
   ne_of_lt (measure_lt_top μ s)
 #align measure_theory.measure_ne_top MeasureTheory.measure_ne_top
 
-theorem measure_compl_le_add_of_le_add [FiniteMeasure μ] (hs : MeasurableSet s)
+theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet s)
     (ht : MeasurableSet t) {ε : ℝ≥0∞} (h : μ s ≤ μ t + ε) : μ (tᶜ) ≤ μ (sᶜ) + ε :=
   by
   rw [measure_compl ht (measure_ne_top μ _), measure_compl hs (measure_ne_top μ _),
@@ -3383,7 +3383,7 @@ theorem measure_compl_le_add_of_le_add [FiniteMeasure μ] (hs : MeasurableSet s)
     
 #align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_add
 
-theorem measure_compl_le_add_iff [FiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
+theorem measure_compl_le_add_iff [IsFiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
     {ε : ℝ≥0∞} : μ (sᶜ) ≤ μ (tᶜ) + ε ↔ μ t ≤ μ s + ε :=
   ⟨fun h => compl_compl s ▸ compl_compl t ▸ measure_compl_le_add_of_le_add hs.compl ht.compl h,
     measure_compl_le_add_of_le_add ht hs⟩
@@ -3398,21 +3398,22 @@ def measureUnivNNReal (μ : Measure α) : ℝ≥0 :=
 
 #print MeasureTheory.coe_measureUnivNNReal /-
 @[simp]
-theorem coe_measureUnivNNReal (μ : Measure α) [FiniteMeasure μ] : ↑(measureUnivNNReal μ) = μ univ :=
+theorem coe_measureUnivNNReal (μ : Measure α) [IsFiniteMeasure μ] :
+    ↑(measureUnivNNReal μ) = μ univ :=
   ENNReal.coe_toNNReal (measure_ne_top μ univ)
 #align measure_theory.coe_measure_univ_nnreal MeasureTheory.coe_measureUnivNNReal
 -/
 
-#print MeasureTheory.finiteMeasureZero /-
-instance finiteMeasureZero : FiniteMeasure (0 : Measure α) :=
+#print MeasureTheory.isFiniteMeasureZero /-
+instance isFiniteMeasureZero : IsFiniteMeasure (0 : Measure α) :=
   ⟨by simp⟩
-#align measure_theory.is_finite_measure_zero MeasureTheory.finiteMeasureZero
+#align measure_theory.is_finite_measure_zero MeasureTheory.isFiniteMeasureZero
 -/
 
-#print MeasureTheory.finiteMeasureOfIsEmpty /-
-instance (priority := 100) finiteMeasureOfIsEmpty [IsEmpty α] : FiniteMeasure μ := by
+#print MeasureTheory.isFiniteMeasureOfIsEmpty /-
+instance (priority := 100) isFiniteMeasureOfIsEmpty [IsEmpty α] : IsFiniteMeasure μ := by
   rw [eq_zero_of_is_empty μ]; infer_instance
-#align measure_theory.is_finite_measure_of_is_empty MeasureTheory.finiteMeasureOfIsEmpty
+#align measure_theory.is_finite_measure_of_is_empty MeasureTheory.isFiniteMeasureOfIsEmpty
 -/
 
 @[simp]
@@ -3422,49 +3423,49 @@ theorem measureUnivNNReal_zero : measureUnivNNReal (0 : Measure α) = 0 :=
 
 omit m0
 
-#print MeasureTheory.finiteMeasureAdd /-
-instance finiteMeasureAdd [FiniteMeasure μ] [FiniteMeasure ν] : FiniteMeasure (μ + ν)
+#print MeasureTheory.isFiniteMeasureAdd /-
+instance isFiniteMeasureAdd [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFiniteMeasure (μ + ν)
     where measure_univ_lt_top :=
     by
     rw [measure.coe_add, Pi.add_apply, ENNReal.add_lt_top]
     exact ⟨measure_lt_top _ _, measure_lt_top _ _⟩
-#align measure_theory.is_finite_measure_add MeasureTheory.finiteMeasureAdd
+#align measure_theory.is_finite_measure_add MeasureTheory.isFiniteMeasureAdd
 -/
 
-instance finiteMeasureSmulNNReal [FiniteMeasure μ] {r : ℝ≥0} : FiniteMeasure (r • μ)
+instance isFiniteMeasureSMulNNReal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFiniteMeasure (r • μ)
     where measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
-#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.finiteMeasureSmulNNReal
+#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.isFiniteMeasureSMulNNReal
 
-instance finiteMeasureSmulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
-    [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [FiniteMeasure μ] {r : R} : FiniteMeasure (r • μ) :=
+instance isFiniteMeasureSMulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
+    [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [IsFiniteMeasure μ] {r : R} : IsFiniteMeasure (r • μ) :=
   by
   rw [← smul_one_smul ℝ≥0 r μ]
   infer_instance
-#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.finiteMeasureSmulOfNNRealTower
+#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.isFiniteMeasureSMulOfNNRealTower
 
-#print MeasureTheory.finiteMeasureOfLe /-
-theorem finiteMeasureOfLe (μ : Measure α) [FiniteMeasure μ] (h : ν ≤ μ) : FiniteMeasure ν :=
+#print MeasureTheory.isFiniteMeasure_of_le /-
+theorem isFiniteMeasure_of_le (μ : Measure α) [IsFiniteMeasure μ] (h : ν ≤ μ) : IsFiniteMeasure ν :=
   { measure_univ_lt_top := lt_of_le_of_lt (h Set.univ MeasurableSet.univ) (measure_lt_top _ _) }
-#align measure_theory.is_finite_measure_of_le MeasureTheory.finiteMeasureOfLe
+#align measure_theory.is_finite_measure_of_le MeasureTheory.isFiniteMeasure_of_le
 -/
 
 @[instance]
-theorem Measure.finiteMeasureMap {m : MeasurableSpace α} (μ : Measure α) [FiniteMeasure μ]
-    (f : α → β) : FiniteMeasure (μ.map f) :=
+theorem Measure.isFiniteMeasure_map {m : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
+    (f : α → β) : IsFiniteMeasure (μ.map f) :=
   by
   by_cases hf : AEMeasurable f μ
   · constructor; rw [map_apply_of_ae_measurable hf MeasurableSet.univ]; exact measure_lt_top μ _
-  · rw [map_of_not_ae_measurable hf]; exact MeasureTheory.finiteMeasureZero
-#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.finiteMeasureMap
+  · rw [map_of_not_ae_measurable hf]; exact MeasureTheory.isFiniteMeasureZero
+#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.isFiniteMeasure_map
 
 @[simp]
-theorem measureUnivNNReal_eq_zero [FiniteMeasure μ] : measureUnivNNReal μ = 0 ↔ μ = 0 :=
+theorem measureUnivNNReal_eq_zero [IsFiniteMeasure μ] : measureUnivNNReal μ = 0 ↔ μ = 0 :=
   by
   rw [← MeasureTheory.Measure.measure_univ_eq_zero, ← coe_measure_univ_nnreal]
   norm_cast
 #align measure_theory.measure_univ_nnreal_eq_zero MeasureTheory.measureUnivNNReal_eq_zero
 
-theorem measureUnivNNReal_pos [FiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureUnivNNReal μ :=
+theorem measureUnivNNReal_pos [IsFiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureUnivNNReal μ :=
   by
   contrapose! hμ
   simpa [measure_univ_nnreal_eq_zero, le_zero_iff] using hμ
@@ -3473,12 +3474,12 @@ theorem measureUnivNNReal_pos [FiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureU
 #print MeasureTheory.Measure.le_of_add_le_add_left /-
 /-- `le_of_add_le_add_left` is normally applicable to `ordered_cancel_add_comm_monoid`,
 but it holds for measures with the additional assumption that μ is finite. -/
-theorem Measure.le_of_add_le_add_left [FiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
+theorem Measure.le_of_add_le_add_left [IsFiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
   fun S B1 => ENNReal.le_of_add_le_add_left (MeasureTheory.measure_ne_top μ S) (A2 S B1)
 #align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_left
 -/
 
-theorem summable_measure_toReal [hμ : FiniteMeasure μ] {f : ℕ → Set α}
+theorem summable_measure_toReal [hμ : IsFiniteMeasure μ] {f : ℕ → Set α}
     (hf₁ : ∀ i : ℕ, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
     Summable fun x => (μ (f x)).toReal :=
   by
@@ -3488,7 +3489,7 @@ theorem summable_measure_toReal [hμ : FiniteMeasure μ] {f : ℕ → Set α}
 #align measure_theory.summable_measure_to_real MeasureTheory.summable_measure_toReal
 
 #print MeasureTheory.ae_eq_univ_iff_measure_eq /-
-theorem ae_eq_univ_iff_measure_eq [FiniteMeasure μ] (hs : NullMeasurableSet s μ) :
+theorem ae_eq_univ_iff_measure_eq [IsFiniteMeasure μ] (hs : NullMeasurableSet s μ) :
     s =ᵐ[μ] univ ↔ μ s = μ univ :=
   by
   refine' ⟨measure_congr, fun h => _⟩
@@ -3501,20 +3502,20 @@ theorem ae_eq_univ_iff_measure_eq [FiniteMeasure μ] (hs : NullMeasurableSet s 
 -/
 
 #print MeasureTheory.ae_iff_measure_eq /-
-theorem ae_iff_measure_eq [FiniteMeasure μ] {p : α → Prop} (hp : NullMeasurableSet { a | p a } μ) :
-    (∀ᵐ a ∂μ, p a) ↔ μ { a | p a } = μ univ := by
+theorem ae_iff_measure_eq [IsFiniteMeasure μ] {p : α → Prop} (hp : NullMeasurableSet {a | p a} μ) :
+    (∀ᵐ a ∂μ, p a) ↔ μ {a | p a} = μ univ := by
   rw [← ae_eq_univ_iff_measure_eq hp, eventually_eq_univ, eventually_iff]
 #align measure_theory.ae_iff_measure_eq MeasureTheory.ae_iff_measure_eq
 -/
 
 #print MeasureTheory.ae_mem_iff_measure_eq /-
-theorem ae_mem_iff_measure_eq [FiniteMeasure μ] {s : Set α} (hs : NullMeasurableSet s μ) :
+theorem ae_mem_iff_measure_eq [IsFiniteMeasure μ] {s : Set α} (hs : NullMeasurableSet s μ) :
     (∀ᵐ a ∂μ, a ∈ s) ↔ μ s = μ univ :=
   ae_iff_measure_eq hs
 #align measure_theory.ae_mem_iff_measure_eq MeasureTheory.ae_mem_iff_measure_eq
 -/
 
-instance [Finite α] [MeasurableSpace α] : FiniteMeasure (Measure.count : Measure α) :=
+instance [Finite α] [MeasurableSpace α] : IsFiniteMeasure (Measure.count : Measure α) :=
   ⟨by
     cases nonempty_fintype α
     simpa [measure.count_apply, tsum_fintype] using (ENNReal.nat_ne_top _).lt_top⟩
@@ -3525,86 +3526,87 @@ section IsProbabilityMeasure
 
 include m0
 
-#print MeasureTheory.ProbabilityMeasure /-
+#print MeasureTheory.IsProbabilityMeasure /-
 /-- A measure `μ` is called a probability measure if `μ univ = 1`. -/
-class ProbabilityMeasure (μ : Measure α) : Prop where
+class IsProbabilityMeasure (μ : Measure α) : Prop where
   measure_univ : μ univ = 1
-#align measure_theory.is_probability_measure MeasureTheory.ProbabilityMeasure
+#align measure_theory.is_probability_measure MeasureTheory.IsProbabilityMeasure
 -/
 
 export IsProbabilityMeasure (measure_univ)
 
 attribute [simp] is_probability_measure.measure_univ
 
-#print MeasureTheory.ProbabilityMeasure.toIsFiniteMeasure /-
-instance (priority := 100) ProbabilityMeasure.toIsFiniteMeasure (μ : Measure α)
-    [ProbabilityMeasure μ] : FiniteMeasure μ :=
+#print MeasureTheory.IsProbabilityMeasure.toIsFiniteMeasure /-
+instance (priority := 100) IsProbabilityMeasure.toIsFiniteMeasure (μ : Measure α)
+    [IsProbabilityMeasure μ] : IsFiniteMeasure μ :=
   ⟨by simp only [measure_univ, ENNReal.one_lt_top]⟩
-#align measure_theory.is_probability_measure.to_is_finite_measure MeasureTheory.ProbabilityMeasure.toIsFiniteMeasure
+#align measure_theory.is_probability_measure.to_is_finite_measure MeasureTheory.IsProbabilityMeasure.toIsFiniteMeasure
 -/
 
-#print MeasureTheory.ProbabilityMeasure.ne_zero /-
-theorem ProbabilityMeasure.ne_zero (μ : Measure α) [ProbabilityMeasure μ] : μ ≠ 0 :=
+#print MeasureTheory.IsProbabilityMeasure.ne_zero /-
+theorem IsProbabilityMeasure.ne_zero (μ : Measure α) [IsProbabilityMeasure μ] : μ ≠ 0 :=
   mt measure_univ_eq_zero.2 <| by simp [measure_univ]
-#align measure_theory.is_probability_measure.ne_zero MeasureTheory.ProbabilityMeasure.ne_zero
+#align measure_theory.is_probability_measure.ne_zero MeasureTheory.IsProbabilityMeasure.ne_zero
 -/
 
-#print MeasureTheory.ProbabilityMeasure.ae_neBot /-
-instance (priority := 200) ProbabilityMeasure.ae_neBot [ProbabilityMeasure μ] : NeBot μ.ae :=
-  ae_neBot.2 (ProbabilityMeasure.ne_zero μ)
-#align measure_theory.is_probability_measure.ae_ne_bot MeasureTheory.ProbabilityMeasure.ae_neBot
+#print MeasureTheory.IsProbabilityMeasure.ae_neBot /-
+instance (priority := 200) IsProbabilityMeasure.ae_neBot [IsProbabilityMeasure μ] : NeBot μ.ae :=
+  ae_neBot.2 (IsProbabilityMeasure.ne_zero μ)
+#align measure_theory.is_probability_measure.ae_ne_bot MeasureTheory.IsProbabilityMeasure.ae_neBot
 -/
 
 omit m0
 
 #print MeasureTheory.Measure.dirac.isProbabilityMeasure /-
 instance Measure.dirac.isProbabilityMeasure [MeasurableSpace α] {x : α} :
-    ProbabilityMeasure (dirac x) :=
+    IsProbabilityMeasure (dirac x) :=
   ⟨dirac_apply_of_mem <| mem_univ x⟩
 #align measure_theory.measure.dirac.is_probability_measure MeasureTheory.Measure.dirac.isProbabilityMeasure
 -/
 
-theorem prob_add_prob_compl [ProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ (sᶜ) = 1 :=
+theorem prob_add_prob_compl [IsProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ (sᶜ) = 1 :=
   (measure_add_measure_compl h).trans measure_univ
 #align measure_theory.prob_add_prob_compl MeasureTheory.prob_add_prob_compl
 
-theorem prob_le_one [ProbabilityMeasure μ] : μ s ≤ 1 :=
+theorem prob_le_one [IsProbabilityMeasure μ] : μ s ≤ 1 :=
   (measure_mono <| Set.subset_univ _).trans_eq measure_univ
 #align measure_theory.prob_le_one MeasureTheory.prob_le_one
 
-theorem isProbabilityMeasureSmul [FiniteMeasure μ] (h : μ ≠ 0) :
-    ProbabilityMeasure ((μ univ)⁻¹ • μ) := by
+theorem isProbabilityMeasureSmul [IsFiniteMeasure μ] (h : μ ≠ 0) :
+    IsProbabilityMeasure ((μ univ)⁻¹ • μ) :=
+  by
   constructor
   rw [smul_apply, smul_eq_mul, ENNReal.inv_mul_cancel]
   · rwa [Ne, measure_univ_eq_zero]
   · exact measure_ne_top _ _
 #align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmul
 
-theorem isProbabilityMeasureMap [ProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
-    ProbabilityMeasure (map f μ) :=
+theorem isProbabilityMeasure_map [IsProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
+    IsProbabilityMeasure (map f μ) :=
   ⟨by simp [map_apply_of_ae_measurable, hf]⟩
-#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasureMap
+#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasure_map
 
 @[simp]
-theorem one_le_prob_iff [ProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
+theorem one_le_prob_iff [IsProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
   ⟨fun h => le_antisymm prob_le_one h, fun h => h ▸ le_refl _⟩
 #align measure_theory.one_le_prob_iff MeasureTheory.one_le_prob_iff
 
 /-- Note that this is not quite as useful as it looks because the measure takes values in `ℝ≥0∞`.
 Thus the subtraction appearing is the truncated subtraction of `ℝ≥0∞`, rather than the
 better-behaved subtraction of `ℝ`. -/
-theorem prob_compl_eq_one_sub [ProbabilityMeasure μ] (hs : MeasurableSet s) : μ (sᶜ) = 1 - μ s := by
-  simpa only [measure_univ] using measure_compl hs (measure_lt_top μ s).Ne
+theorem prob_compl_eq_one_sub [IsProbabilityMeasure μ] (hs : MeasurableSet s) : μ (sᶜ) = 1 - μ s :=
+  by simpa only [measure_univ] using measure_compl hs (measure_lt_top μ s).Ne
 #align measure_theory.prob_compl_eq_one_sub MeasureTheory.prob_compl_eq_one_sub
 
 @[simp]
-theorem prob_compl_eq_zero_iff [ProbabilityMeasure μ] (hs : MeasurableSet s) :
+theorem prob_compl_eq_zero_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
     μ (sᶜ) = 0 ↔ μ s = 1 := by
   simp only [prob_compl_eq_one_sub hs, tsub_eq_zero_iff_le, one_le_prob_iff]
 #align measure_theory.prob_compl_eq_zero_iff MeasureTheory.prob_compl_eq_zero_iff
 
 @[simp]
-theorem prob_compl_eq_one_iff [ProbabilityMeasure μ] (hs : MeasurableSet s) :
+theorem prob_compl_eq_one_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
     μ (sᶜ) = 1 ↔ μ s = 0 := by rwa [← prob_compl_eq_zero_iff hs.compl, compl_compl]
 #align measure_theory.prob_compl_eq_one_iff MeasureTheory.prob_compl_eq_one_iff
 
@@ -3746,7 +3748,7 @@ end NoAtoms
 theorem ite_ae_eq_of_measure_zero {γ} (f : α → γ) (g : α → γ) (s : Set α) (hs_zero : μ s = 0) :
     (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] g :=
   by
-  have h_ss : sᶜ ⊆ { a : α | ite (a ∈ s) (f a) (g a) = g a } := fun x hx => by
+  have h_ss : sᶜ ⊆ {a : α | ite (a ∈ s) (f a) (g a) = g a} := fun x hx => by
     simp [(Set.mem_compl_iff _ _).mp hx]
   refine' measure_mono_null _ hs_zero
   nth_rw 1 [← compl_compl s]
@@ -3768,11 +3770,11 @@ def FiniteAtFilter {m0 : MeasurableSpace α} (μ : Measure α) (f : Filter α) :
 #align measure_theory.measure.finite_at_filter MeasureTheory.Measure.FiniteAtFilter
 -/
 
-#print MeasureTheory.Measure.finiteAtFilterOfFinite /-
-theorem finiteAtFilterOfFinite {m0 : MeasurableSpace α} (μ : Measure α) [FiniteMeasure μ]
+#print MeasureTheory.Measure.finiteAtFilter_of_finite /-
+theorem finiteAtFilter_of_finite {m0 : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
     (f : Filter α) : μ.FiniteAtFilter f :=
   ⟨univ, univ_mem, measure_lt_top μ univ⟩
-#align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilterOfFinite
+#align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilter_of_finite
 -/
 
 theorem FiniteAtFilter.exists_mem_basis {f : Filter α} (hμ : FiniteAtFilter μ f) {p : ι → Prop}
@@ -3828,7 +3830,7 @@ include m0
 #print MeasureTheory.Measure.toFiniteSpanningSetsIn /-
 /-- If `μ` is σ-finite it has finite spanning sets in the collection of all measurable sets. -/
 def Measure.toFiniteSpanningSetsIn (μ : Measure α) [h : SigmaFinite μ] :
-    μ.FiniteSpanningSetsIn { s | MeasurableSet s }
+    μ.FiniteSpanningSetsIn {s | MeasurableSet s}
     where
   Set n := toMeasurable μ (h.out.some.Set n)
   set_mem n := measurableSet_toMeasurable _ _
@@ -3977,7 +3979,7 @@ finitely many members of the union whose measure exceeds any given positive numb
 theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] (μ : Measure α)
     {ε : ℝ≥0∞} (ε_pos : 0 < ε) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
-    Set.Finite { i : ι | ε ≤ μ (As i) } := by
+    Set.Finite {i : ι | ε ≤ μ (As i)} := by
   by_contra con
   have aux :=
     lt_of_le_of_lt (tsum_meas_le_meas_Union_of_disjoint μ As_mble As_disj)
@@ -3990,12 +3992,12 @@ countably many members of the union whose measure is positive. -/
 theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [MeasurableSpace α]
     (μ : Measure α) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
-    Set.Countable { i : ι | 0 < μ (As i) } :=
+    Set.Countable {i : ι | 0 < μ (As i)} :=
   by
-  set posmeas := { i : ι | 0 < μ (As i) } with posmeas_def
+  set posmeas := {i : ι | 0 < μ (As i)} with posmeas_def
   rcases exists_seq_strictAnti_tendsto' (zero_lt_one : (0 : ℝ≥0∞) < 1) with
     ⟨as, as_decr, as_mem, as_lim⟩
-  set fairmeas := fun n : ℕ => { i : ι | as n ≤ μ (As i) } with fairmeas_def
+  set fairmeas := fun n : ℕ => {i : ι | as n ≤ μ (As i)} with fairmeas_def
   have countable_union : posmeas = ⋃ n, fairmeas n :=
     by
     have fairmeas_eq : ∀ n, fairmeas n = (fun i => μ (As i)) ⁻¹' Ici (as n) := fun n => by
@@ -4011,9 +4013,9 @@ theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [Meas
 measure. -/
 theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
-    (As_disj : Pairwise (Disjoint on As)) : Set.Countable { i : ι | 0 < μ (As i) } :=
+    (As_disj : Pairwise (Disjoint on As)) : Set.Countable {i : ι | 0 < μ (As i)} :=
   by
-  have obs : { i : ι | 0 < μ (As i) } ⊆ ⋃ n, { i : ι | 0 < μ (As i ∩ spanning_sets μ n) } :=
+  have obs : {i : ι | 0 < μ (As i)} ⊆ ⋃ n, {i : ι | 0 < μ (As i ∩ spanning_sets μ n)} :=
     by
     intro i i_in_nonzeroes
     by_contra con
@@ -4031,8 +4033,8 @@ theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α]
 
 theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] [MeasurableSpace β] [MeasurableSingletonClass β] {g : α → β}
-    (g_mble : Measurable g) : Set.Countable { t : β | 0 < μ { a : α | g a = t } } :=
-  haveI level_sets_disjoint : Pairwise (Disjoint on fun t : β => { a : α | g a = t }) :=
+    (g_mble : Measurable g) : Set.Countable {t : β | 0 < μ {a : α | g a = t}} :=
+  haveI level_sets_disjoint : Pairwise (Disjoint on fun t : β => {a : α | g a = t}) :=
     fun s t hst => Disjoint.preimage g (disjoint_singleton.mpr hst)
   measure.countable_meas_pos_of_disjoint_Union
     (fun b => g_mble (‹MeasurableSingletonClass β›.measurableSet_singleton b)) level_sets_disjoint
@@ -4150,7 +4152,7 @@ variable {C D : Set (Set α)}
 
 /-- If `μ` has finite spanning sets in `C` and `C ∩ {s | μ s < ∞} ⊆ D` then `μ` has finite spanning
 sets in `D`. -/
-protected def mono' (h : μ.FiniteSpanningSetsIn C) (hC : C ∩ { s | μ s < ∞ } ⊆ D) :
+protected def mono' (h : μ.FiniteSpanningSetsIn C) (hC : C ∩ {s | μ s < ∞} ⊆ D) :
     μ.FiniteSpanningSetsIn D :=
   ⟨h.Set, fun i => hC ⟨h.set_mem i, h.Finite i⟩, h.Finite, h.spanning⟩
 #align measure_theory.measure.finite_spanning_sets_in.mono' MeasureTheory.Measure.FiniteSpanningSetsIn.mono'
@@ -4215,15 +4217,15 @@ theorem sigmaFinite_of_le (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ
 
 end Measure
 
-#print MeasureTheory.FiniteMeasure.toSigmaFinite /-
+#print MeasureTheory.IsFiniteMeasure.toSigmaFinite /-
 /-- Every finite measure is σ-finite. -/
-instance (priority := 100) FiniteMeasure.toSigmaFinite {m0 : MeasurableSpace α} (μ : Measure α)
-    [FiniteMeasure μ] : SigmaFinite μ :=
+instance (priority := 100) IsFiniteMeasure.toSigmaFinite {m0 : MeasurableSpace α} (μ : Measure α)
+    [IsFiniteMeasure μ] : SigmaFinite μ :=
   ⟨⟨⟨fun _ => univ, fun _ => trivial, fun _ => measure_lt_top μ _, iUnion_const _⟩⟩⟩
-#align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.FiniteMeasure.toSigmaFinite
+#align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.IsFiniteMeasure.toSigmaFinite
 -/
 
-theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ FiniteMeasure μ :=
+theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFiniteMeasure μ :=
   by
   refine' ⟨fun h => ⟨_⟩, fun h => by haveI := h; infer_instance⟩
   haveI : sigma_finite μ := h
@@ -4236,7 +4238,7 @@ theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ FiniteMe
   obtain ⟨i, hsi⟩ : ∃ i, s i = Set.univ :=
     by
     by_contra h_not_univ
-    push_neg  at h_not_univ 
+    push_neg at h_not_univ 
     have h_empty : ∀ i, s i = ∅ := by simpa [h_not_univ] using hs_meas
     simp [h_empty] at hs_univ 
     exact h_univ_empty hs_univ.symm
@@ -4305,7 +4307,7 @@ theorem ae_of_forall_measure_lt_top_ae_restrict' {μ : Measure α} (ν : Measure
     exacts [(ae_restrict_iff' (measurable_spanning_sets _ _)).mp this,
       (self_le_add_right _ _).trans_lt (measure_spanning_sets_lt_top (μ + ν) _),
       (self_le_add_left _ _).trans_lt (measure_spanning_sets_lt_top (μ + ν) _)]
-  filter_upwards [ae_all_iff.2 this]with _ hx using hx _ (mem_spanning_sets_index _ _)
+  filter_upwards [ae_all_iff.2 this] with _ hx using hx _ (mem_spanning_sets_index _ _)
 #align measure_theory.ae_of_forall_measure_lt_top_ae_restrict' MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict'
 
 /-- To prove something for almost all `x` w.r.t. a σ-finite measure, it is sufficient to show that
@@ -4315,42 +4317,42 @@ theorem ae_of_forall_measure_lt_top_ae_restrict {μ : Measure α} [SigmaFinite 
   ae_of_forall_measure_lt_top_ae_restrict' μ P fun s hs h2s _ => h s hs h2s
 #align measure_theory.ae_of_forall_measure_lt_top_ae_restrict MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict
 
-#print MeasureTheory.LocallyFiniteMeasure /-
+#print MeasureTheory.IsLocallyFiniteMeasure /-
 /-- A measure is called locally finite if it is finite in some neighborhood of each point. -/
-class LocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α) : Prop where
+class IsLocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α) : Prop where
   finiteAtNhds : ∀ x, μ.FiniteAtFilter (𝓝 x)
-#align measure_theory.is_locally_finite_measure MeasureTheory.LocallyFiniteMeasure
+#align measure_theory.is_locally_finite_measure MeasureTheory.IsLocallyFiniteMeasure
 -/
 
-#print MeasureTheory.FiniteMeasure.toLocallyFiniteMeasure /-
+#print MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure /-
 -- see Note [lower instance priority]
-instance (priority := 100) FiniteMeasure.toLocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α)
-    [FiniteMeasure μ] : LocallyFiniteMeasure μ :=
-  ⟨fun x => finiteAtFilterOfFinite _ _⟩
-#align measure_theory.is_finite_measure.to_is_locally_finite_measure MeasureTheory.FiniteMeasure.toLocallyFiniteMeasure
+instance (priority := 100) IsFiniteMeasure.toIsLocallyFiniteMeasure [TopologicalSpace α]
+    (μ : Measure α) [IsFiniteMeasure μ] : IsLocallyFiniteMeasure μ :=
+  ⟨fun x => finiteAtFilter_of_finite _ _⟩
+#align measure_theory.is_finite_measure.to_is_locally_finite_measure MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
 -/
 
 #print MeasureTheory.Measure.finiteAt_nhds /-
-theorem Measure.finiteAt_nhds [TopologicalSpace α] (μ : Measure α) [LocallyFiniteMeasure μ]
+theorem Measure.finiteAt_nhds [TopologicalSpace α] (μ : Measure α) [IsLocallyFiniteMeasure μ]
     (x : α) : μ.FiniteAtFilter (𝓝 x) :=
-  LocallyFiniteMeasure.finiteAtNhds x
+  IsLocallyFiniteMeasure.finiteAtNhds x
 #align measure_theory.measure.finite_at_nhds MeasureTheory.Measure.finiteAt_nhds
 -/
 
-theorem Measure.smul_finite (μ : Measure α) [FiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
-    FiniteMeasure (c • μ) := by
+theorem Measure.smul_finite (μ : Measure α) [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
+    IsFiniteMeasure (c • μ) := by
   lift c to ℝ≥0 using hc
-  exact MeasureTheory.finiteMeasureSmulNNReal
+  exact MeasureTheory.isFiniteMeasureSMulNNReal
 #align measure_theory.measure.smul_finite MeasureTheory.Measure.smul_finite
 
 theorem Measure.exists_isOpen_measure_lt_top [TopologicalSpace α] (μ : Measure α)
-    [LocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
+    [IsLocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
   simpa only [exists_prop, and_assoc] using
     (μ.finite_at_nhds x).exists_mem_basis (nhds_basis_opens x)
 #align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_top
 
-instance locallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α)
-    [LocallyFiniteMeasure μ] (c : ℝ≥0) : LocallyFiniteMeasure (c • μ) :=
+instance isLocallyFiniteMeasureSMulNNReal [TopologicalSpace α] (μ : Measure α)
+    [IsLocallyFiniteMeasure μ] (c : ℝ≥0) : IsLocallyFiniteMeasure (c • μ) :=
   by
   refine' ⟨fun x => _⟩
   rcases μ.exists_is_open_measure_lt_top x with ⟨o, xo, o_open, μo⟩
@@ -4358,10 +4360,10 @@ instance locallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α)
   apply ENNReal.mul_lt_top _ μo.ne
   simp only [RingHom.toMonoidHom_eq_coe, RingHom.coe_monoidHom, ENNReal.coe_ne_top,
     ENNReal.coe_ofNNRealHom, Ne.def, not_false_iff]
-#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.locallyFiniteMeasureSmulNnreal
+#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.isLocallyFiniteMeasureSMulNNReal
 
 protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α] (μ : Measure α)
-    [LocallyFiniteMeasure μ] : TopologicalSpace.IsTopologicalBasis { s | IsOpen s ∧ μ s < ∞ } :=
+    [IsLocallyFiniteMeasure μ] : TopologicalSpace.IsTopologicalBasis {s | IsOpen s ∧ μ s < ∞} :=
   by
   refine' TopologicalSpace.isTopologicalBasis_of_open_of_nhds (fun s hs => hs.1) _
   intro x s xs hs
@@ -4370,24 +4372,24 @@ protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α]
   exact measure_mono (inter_subset_left _ _)
 #align measure_theory.measure.is_topological_basis_is_open_lt_top MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_top
 
-#print MeasureTheory.FiniteMeasureOnCompacts /-
+#print MeasureTheory.IsFiniteMeasureOnCompacts /-
 /-- A measure `μ` is finite on compacts if any compact set `K` satisfies `μ K < ∞`. -/
 @[protect_proj]
-class FiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop where
+class IsFiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop where
   lt_top_of_isCompact : ∀ ⦃K : Set α⦄, IsCompact K → μ K < ∞
-#align measure_theory.is_finite_measure_on_compacts MeasureTheory.FiniteMeasureOnCompacts
+#align measure_theory.is_finite_measure_on_compacts MeasureTheory.IsFiniteMeasureOnCompacts
 -/
 
 /-- A compact subset has finite measure for a measure which is finite on compacts. -/
-theorem IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α} [FiniteMeasureOnCompacts μ]
+theorem IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α} [IsFiniteMeasureOnCompacts μ]
     ⦃K : Set α⦄ (hK : IsCompact K) : μ K < ∞ :=
-  FiniteMeasureOnCompacts.lt_top_of_isCompact hK
+  IsFiniteMeasureOnCompacts.lt_top_of_isCompact hK
 #align is_compact.measure_lt_top IsCompact.measure_lt_top
 
 /-- A bounded subset has finite measure for a measure which is finite on compact sets, in a
 proper space. -/
 theorem Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [FiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Metric.Bounded s) : μ s < ∞ :=
+    [IsFiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Metric.Bounded s) : μ s < ∞ :=
   calc
     μ s ≤ μ (closure s) := measure_mono subset_closure
     _ < ∞ := (Metric.isCompact_of_isClosed_bounded isClosed_closure hs.closure).measure_lt_top
@@ -4395,27 +4397,27 @@ theorem Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {
 #align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_top
 
 theorem measure_closedBall_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [FiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
+    [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
   Metric.bounded_closedBall.measure_lt_top
 #align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_top
 
 theorem measure_ball_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [FiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
+    [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
   Metric.bounded_ball.measure_lt_top
 #align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_top
 
-protected theorem FiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
-    [FiniteMeasureOnCompacts μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : FiniteMeasureOnCompacts (c • μ) :=
+protected theorem IsFiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
+    [IsFiniteMeasureOnCompacts μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : IsFiniteMeasureOnCompacts (c • μ) :=
   ⟨fun K hK => ENNReal.mul_lt_top hc hK.measure_lt_top.Ne⟩
-#align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.FiniteMeasureOnCompacts.smul
+#align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.IsFiniteMeasureOnCompacts.smul
 
-#print MeasureTheory.CompactSpace.finiteMeasure /-
+#print MeasureTheory.CompactSpace.isFiniteMeasure /-
 /-- Note this cannot be an instance because it would form a typeclass loop with
 `is_finite_measure_on_compacts_of_is_locally_finite_measure`. -/
-theorem CompactSpace.finiteMeasure [TopologicalSpace α] [CompactSpace α]
-    [FiniteMeasureOnCompacts μ] : FiniteMeasure μ :=
-  ⟨FiniteMeasureOnCompacts.lt_top_of_isCompact isCompact_univ⟩
-#align measure_theory.compact_space.is_finite_measure MeasureTheory.CompactSpace.finiteMeasure
+theorem CompactSpace.isFiniteMeasure [TopologicalSpace α] [CompactSpace α]
+    [IsFiniteMeasureOnCompacts μ] : IsFiniteMeasure μ :=
+  ⟨IsFiniteMeasureOnCompacts.lt_top_of_isCompact isCompact_univ⟩
+#align measure_theory.compact_space.is_finite_measure MeasureTheory.CompactSpace.isFiniteMeasure
 -/
 
 omit m0
@@ -4423,7 +4425,7 @@ omit m0
 #print MeasureTheory.sigmaFinite_of_locallyFinite /-
 -- see Note [lower instance priority]
 instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
-    [SecondCountableTopology α] [LocallyFiniteMeasure μ] : SigmaFinite μ :=
+    [SecondCountableTopology α] [IsLocallyFiniteMeasure μ] : SigmaFinite μ :=
   by
   choose s hsx hsμ using μ.finite_at_nhds
   rcases TopologicalSpace.countable_cover_nhds hsx with ⟨t, htc, htU⟩
@@ -4432,16 +4434,16 @@ instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
 #align measure_theory.sigma_finite_of_locally_finite MeasureTheory.sigmaFinite_of_locallyFinite
 -/
 
-#print MeasureTheory.locallyFiniteMeasure_of_finiteMeasureOnCompacts /-
+#print MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts /-
 /-- A measure which is finite on compact sets in a locally compact space is locally finite.
 Not registered as an instance to avoid a loop with the other direction. -/
-theorem locallyFiniteMeasure_of_finiteMeasureOnCompacts [TopologicalSpace α] [LocallyCompactSpace α]
-    [FiniteMeasureOnCompacts μ] : LocallyFiniteMeasure μ :=
+theorem isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α]
+    [LocallyCompactSpace α] [IsFiniteMeasureOnCompacts μ] : IsLocallyFiniteMeasure μ :=
   ⟨by
     intro x
     rcases exists_compact_mem_nhds x with ⟨K, K_compact, K_mem⟩
     exact ⟨K, K_mem, K_compact.measure_lt_top⟩⟩
-#align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.locallyFiniteMeasure_of_finiteMeasureOnCompacts
+#align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
 -/
 
 theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (⋃ i, U i) = univ)
@@ -4493,7 +4495,7 @@ theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β
 /-- If two finite measures give the same mass to the whole space and coincide on a π-system made
 of measurable sets, then they coincide on all sets in the σ-algebra generated by the π-system. -/
 theorem ext_on_measurableSpace_of_generate_finite {α} (m₀ : MeasurableSpace α) {μ ν : Measure α}
-    [FiniteMeasure μ] (C : Set (Set α)) (hμν : ∀ s ∈ C, μ s = ν s) {m : MeasurableSpace α}
+    [IsFiniteMeasure μ] (C : Set (Set α)) (hμν : ∀ s ∈ C, μ s = ν s) {m : MeasurableSpace α}
     (h : m ≤ m₀) (hA : m = MeasurableSpace.generateFrom C) (hC : IsPiSystem C)
     (h_univ : μ Set.univ = ν Set.univ) {s : Set α} (hs : measurable_set[m] s) : μ s = ν s :=
   by
@@ -4517,7 +4519,7 @@ theorem ext_on_measurableSpace_of_generate_finite {α} (m₀ : MeasurableSpace 
 /-- Two finite measures are equal if they are equal on the π-system generating the σ-algebra
   (and `univ`). -/
 theorem ext_of_generate_finite (C : Set (Set α)) (hA : m0 = generateFrom C) (hC : IsPiSystem C)
-    [FiniteMeasure μ] (hμν : ∀ s ∈ C, μ s = ν s) (h_univ : μ univ = ν univ) : μ = ν :=
+    [IsFiniteMeasure μ] (hμν : ∀ s ∈ C, μ s = ν s) (h_univ : μ univ = ν univ) : μ = ν :=
   Measure.ext fun s hs => ext_on_measurableSpace_of_generate_finite m0 C hμν le_rfl hA hC h_univ hs
 #align measure_theory.ext_of_generate_finite MeasureTheory.ext_of_generate_finite
 -/
@@ -4533,8 +4535,8 @@ include m0
 `finite_spanning_sets_in.disjointed` provides a `finite_spanning_sets_in {s | measurable_set s}`
 such that its underlying sets are pairwise disjoint. -/
 protected def FiniteSpanningSetsIn.disjointed {μ : Measure α}
-    (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) :
-    μ.FiniteSpanningSetsIn { s | MeasurableSet s } :=
+    (S : μ.FiniteSpanningSetsIn {s | MeasurableSet s}) :
+    μ.FiniteSpanningSetsIn {s | MeasurableSet s} :=
   ⟨disjointed S.Set, MeasurableSet.disjointed S.set_mem, fun n =>
     lt_of_le_of_lt (measure_mono (disjointed_subset S.Set n)) (S.Finite _),
     S.spanning ▸ iUnion_disjointed⟩
@@ -4542,14 +4544,13 @@ protected def FiniteSpanningSetsIn.disjointed {μ : Measure α}
 -/
 
 theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
-    (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) : S.disjointed.Set = disjointed S.Set :=
+    (S : μ.FiniteSpanningSetsIn {s | MeasurableSet s}) : S.disjointed.Set = disjointed S.Set :=
   rfl
 #align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq
 
 theorem exists_eq_disjoint_finiteSpanningSetsIn (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] :
-    ∃ (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) (T :
-      ν.FiniteSpanningSetsIn { s | MeasurableSet s }),
-      S.Set = T.Set ∧ Pairwise (Disjoint on S.Set) :=
+    ∃ (S : μ.FiniteSpanningSetsIn {s | MeasurableSet s}) (T :
+      ν.FiniteSpanningSetsIn {s | MeasurableSet s}), S.Set = T.Set ∧ Pairwise (Disjoint on S.Set) :=
   let S := (μ + ν).toFiniteSpanningSetsIn.disjointed
   ⟨S.of_le (Measure.le_add_right le_rfl), S.of_le (Measure.le_add_left le_rfl), rfl,
     disjoint_disjointed _⟩
@@ -4613,7 +4614,7 @@ end FiniteAtFilter
 
 #print MeasureTheory.Measure.finiteAt_nhdsWithin /-
 theorem finiteAt_nhdsWithin [TopologicalSpace α] {m0 : MeasurableSpace α} (μ : Measure α)
-    [LocallyFiniteMeasure μ] (x : α) (s : Set α) : μ.FiniteAtFilter (𝓝[s] x) :=
+    [IsLocallyFiniteMeasure μ] (x : α) (s : Set α) : μ.FiniteAtFilter (𝓝[s] x) :=
   (finiteAt_nhds μ x).inf_of_left
 #align measure_theory.measure.finite_at_nhds_within MeasureTheory.Measure.finiteAt_nhdsWithin
 -/
@@ -4623,12 +4624,12 @@ theorem finiteAt_principal : μ.FiniteAtFilter (𝓟 s) ↔ μ s < ∞ :=
   ⟨fun ⟨t, ht, hμ⟩ => (measure_mono ht).trans_lt hμ, fun h => ⟨s, mem_principal_self s, h⟩⟩
 #align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principal
 
-#print MeasureTheory.Measure.locallyFiniteMeasure_of_le /-
-theorem locallyFiniteMeasure_of_le [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
-    [H : LocallyFiniteMeasure μ] (h : ν ≤ μ) : LocallyFiniteMeasure ν :=
+#print MeasureTheory.Measure.isLocallyFiniteMeasure_of_le /-
+theorem isLocallyFiniteMeasure_of_le [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
+    [H : IsLocallyFiniteMeasure μ] (h : ν ≤ μ) : IsLocallyFiniteMeasure ν :=
   let F := H.finiteAtNhds
   ⟨fun x => (F x).measure_mono h⟩
-#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.locallyFiniteMeasure_of_le
+#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.isLocallyFiniteMeasure_of_le
 -/
 
 end Measure
@@ -4796,7 +4797,7 @@ theorem map_map_symm (e : α ≃ᵐ β) : (ν.map e.symm).map e = ν := by
 #align measurable_equiv.map_map_symm MeasurableEquiv.map_map_symm
 
 theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (map e) := by intro μ₁ μ₂ hμ;
-  apply_fun map e.symm  at hμ ; simpa [map_symm_map e] using hμ
+  apply_fun map e.symm at hμ ; simpa [map_symm_map e] using hμ
 #align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injective
 
 theorem map_apply_eq_iff_map_symm_apply_eq (e : α ≃ᵐ β) : μ.map e = ν ↔ ν.map e.symm = μ := by
@@ -4928,11 +4929,11 @@ theorem restrict_trim (hm : m ≤ m0) (μ : Measure α) (hs : @MeasurableSet α
 #align measure_theory.restrict_trim MeasureTheory.restrict_trim
 -/
 
-#print MeasureTheory.finiteMeasure_trim /-
-instance finiteMeasure_trim (hm : m ≤ m0) [FiniteMeasure μ] : FiniteMeasure (μ.trim hm)
+#print MeasureTheory.isFiniteMeasure_trim /-
+instance isFiniteMeasure_trim (hm : m ≤ m0) [IsFiniteMeasure μ] : IsFiniteMeasure (μ.trim hm)
     where measure_univ_lt_top := by rw [trim_measurable_set_eq hm (@MeasurableSet.univ _ m)];
     exact measure_lt_top _ _
-#align measure_theory.is_finite_measure_trim MeasureTheory.finiteMeasure_trim
+#align measure_theory.is_finite_measure_trim MeasureTheory.isFiniteMeasure_trim
 -/
 
 #print MeasureTheory.sigmaFiniteTrim_mono /-
@@ -4959,7 +4960,7 @@ theorem sigmaFiniteTrim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α}
 #align measure_theory.sigma_finite_trim_mono MeasureTheory.sigmaFiniteTrim_mono
 -/
 
-theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ FiniteMeasure μ :=
+theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ IsFiniteMeasure μ :=
   by
   rw [sigma_finite_bot_iff]
   refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ <;> have h_univ := h.measure_univ_lt_top
@@ -4997,7 +4998,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
 theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
-    [LocallyFiniteMeasure μ] : ∃ (U : _) (_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
+    [IsLocallyFiniteMeasure μ] : ∃ (U : _) (_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
   h.exists_open_superset_measure_lt_top' fun x hx => μ.finiteAtNhds x
 #align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_top
 
@@ -5014,31 +5015,32 @@ theorem measure_zero_of_nhdsWithin (hs : IsCompact s) :
 
 end IsCompact
 
-#print finiteMeasureOnCompacts_of_locallyFiniteMeasure /-
+#print isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure /-
 -- see Note [lower instance priority]
-instance (priority := 100) finiteMeasureOnCompacts_of_locallyFiniteMeasure [TopologicalSpace α]
-    {m : MeasurableSpace α} {μ : Measure α} [LocallyFiniteMeasure μ] : FiniteMeasureOnCompacts μ :=
+instance (priority := 100) isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure [TopologicalSpace α]
+    {m : MeasurableSpace α} {μ : Measure α} [IsLocallyFiniteMeasure μ] :
+    IsFiniteMeasureOnCompacts μ :=
   ⟨fun s hs => hs.measure_lt_top_of_nhdsWithin fun x hx => μ.finiteAt_nhdsWithin _ _⟩
-#align is_finite_measure_on_compacts_of_is_locally_finite_measure finiteMeasureOnCompacts_of_locallyFiniteMeasure
+#align is_finite_measure_on_compacts_of_is_locally_finite_measure isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure
 -/
 
-#print finiteMeasure_iff_finiteMeasureOnCompacts_of_compactSpace /-
-theorem finiteMeasure_iff_finiteMeasureOnCompacts_of_compactSpace [TopologicalSpace α]
+#print isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace /-
+theorem isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace [TopologicalSpace α]
     [MeasurableSpace α] {μ : Measure α} [CompactSpace α] :
-    FiniteMeasure μ ↔ FiniteMeasureOnCompacts μ :=
+    IsFiniteMeasure μ ↔ IsFiniteMeasureOnCompacts μ :=
   by
   constructor <;> intros
   · infer_instance
   · exact compact_space.is_finite_measure
-#align is_finite_measure_iff_is_finite_measure_on_compacts_of_compact_space finiteMeasure_iff_finiteMeasureOnCompacts_of_compactSpace
+#align is_finite_measure_iff_is_finite_measure_on_compacts_of_compact_space isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace
 -/
 
 #print MeasureTheory.Measure.finiteSpanningSetsInCompact /-
 /-- Compact covering of a `σ`-compact topological space as
 `measure_theory.measure.finite_spanning_sets_in`. -/
 def MeasureTheory.Measure.finiteSpanningSetsInCompact [TopologicalSpace α] [SigmaCompactSpace α]
-    {m : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
-    μ.FiniteSpanningSetsIn { K | IsCompact K }
+    {m : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
+    μ.FiniteSpanningSetsIn {K | IsCompact K}
     where
   Set := compactCovering α
   set_mem := isCompact_compactCovering α
@@ -5051,8 +5053,8 @@ def MeasureTheory.Measure.finiteSpanningSetsInCompact [TopologicalSpace α] [Sig
 /-- A locally finite measure on a `σ`-compact topological space admits a finite spanning sequence
 of open sets. -/
 def MeasureTheory.Measure.finiteSpanningSetsInOpen [TopologicalSpace α] [SigmaCompactSpace α]
-    {m : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
-    μ.FiniteSpanningSetsIn { K | IsOpen K }
+    {m : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
+    μ.FiniteSpanningSetsIn {K | IsOpen K}
     where
   Set n := ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).some
   set_mem n :=
@@ -5073,10 +5075,10 @@ open TopologicalSpace
 /-- A locally finite measure on a second countable topological space admits a finite spanning
 sequence of open sets. -/
 irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpace α]
-  [SecondCountableTopology α] {m : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
-  μ.FiniteSpanningSetsIn { K | IsOpen K } :=
+    [SecondCountableTopology α] {m : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
+    μ.FiniteSpanningSetsIn {K | IsOpen K} :=
   by
-  suffices H : Nonempty (μ.finite_spanning_sets_in { K | IsOpen K }); exact H.some
+  suffices H : Nonempty (μ.finite_spanning_sets_in {K | IsOpen K}); exact H.some
   cases isEmpty_or_nonempty α
   ·
     exact
@@ -5085,7 +5087,7 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
           Finite := fun n => by simp
           spanning := by simp }⟩
   inhabit α
-  let S : Set (Set α) := { s | IsOpen s ∧ μ s < ∞ }
+  let S : Set (Set α) := {s | IsOpen s ∧ μ s < ∞}
   obtain ⟨T, T_count, TS, hT⟩ : ∃ T : Set (Set α), T.Countable ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S :=
     is_open_sUnion_countable S fun s hs => hs.1
   rw [μ.is_topological_basis_is_open_lt_top.sUnion_eq] at hT 
@@ -5117,7 +5119,7 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
 section MeasureIxx
 
 variable [Preorder α] [TopologicalSpace α] [CompactIccSpace α] {m : MeasurableSpace α}
-  {μ : Measure α} [LocallyFiniteMeasure μ] {a b : α}
+  {μ : Measure α} [IsLocallyFiniteMeasure μ] {a b : α}
 
 theorem measure_Icc_lt_top : μ (Icc a b) < ∞ :=
   isCompact_Icc.measure_lt_top
@@ -5212,7 +5214,7 @@ theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict (sᶜ)] 0) : s.indicator f =ᵐ[μ] f :=
   by
   rw [Filter.EventuallyEq, ae_restrict_iff' hs.compl] at hf 
-  filter_upwards [hf]with x hx
+  filter_upwards [hf] with x hx
   by_cases hxs : x ∈ s
   · simp only [hxs, Set.indicator_of_mem]
   · simp only [hx hxs, Pi.zero_apply, Set.indicator_apply_eq_zero, eq_self_iff_true, imp_true_iff]
@@ -5222,7 +5224,7 @@ theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict s] 0) : s.indicator f =ᵐ[μ] 0 :=
   by
   rw [Filter.EventuallyEq, ae_restrict_iff' hs] at hf 
-  filter_upwards [hf]with x hx
+  filter_upwards [hf] with x hx
   by_cases hxs : x ∈ s
   · simp only [hxs, hx hxs, Set.indicator_of_mem]
   · simp [hx, hxs]
@@ -5240,7 +5242,7 @@ theorem ae_eq_restrict_iff_indicator_ae_eq {g : α → β} (hs : MeasurableSet s
     f =ᵐ[μ.restrict s] g ↔ s.indicator f =ᵐ[μ] s.indicator g :=
   by
   rw [Filter.EventuallyEq, ae_restrict_iff' hs]
-  refine' ⟨fun h => _, fun h => _⟩ <;> filter_upwards [h]with x hx
+  refine' ⟨fun h => _, fun h => _⟩ <;> filter_upwards [h] with x hx
   · by_cases hxs : x ∈ s
     · simp [hxs, hx hxs]
     · simp [hxs]
Diff
@@ -264,7 +264,7 @@ theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
 theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞}
     (h : μ t < μ s + ε) : μ (t \ s) < ε :=
   by
-  rw [measure_diff hst hs hs']; rw [add_comm] at h
+  rw [measure_diff hst hs hs']; rw [add_comm] at h 
   exact ENNReal.sub_lt_of_lt_add (measure_mono hst) h
 #align measure_theory.measure_diff_lt_of_lt_add MeasureTheory.measure_diff_lt_of_lt_add
 
@@ -345,7 +345,7 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
       μ (⋃ b, s b) = ∞ := top_unique (hb ▸ (h_le b).trans <| measure_mono <| subset_Union _ _)
       _ = μ (⋃ b, t b) := Eq.symm <| top_unique <| hb ▸ measure_mono <| subset_Union _ _
       
-  push_neg  at htop
+  push_neg  at htop 
   refine' le_antisymm (measure_mono (Union_mono hsub)) _
   set M := to_measurable μ
   have H : ∀ b, (M (t b) ∩ M (⋃ b, s b) : Set α) =ᵐ[μ] M (t b) :=
@@ -425,7 +425,7 @@ theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, Measurable
 one of the intersections `s i ∩ s j` is not empty. -/
 theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpace α}
     (μ : Measure α) {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i))
-    (H : μ (univ : Set α) < ∑' i, μ (s i)) : ∃ (i j : _)(h : i ≠ j), (s i ∩ s j).Nonempty :=
+    (H : μ (univ : Set α) < ∑' i, μ (s i)) : ∃ (i j : _) (h : i ≠ j), (s i ∩ s j).Nonempty :=
   by
   contrapose! H
   apply tsum_measure_le_measure_univ hs
@@ -466,7 +466,7 @@ then `s` intersects `t`. Version assuming that `s` is measurable. -/
 theorem nonempty_inter_of_measure_lt_add' {m : MeasurableSpace α} (μ : Measure α) {s t u : Set α}
     (hs : MeasurableSet s) (h's : s ⊆ u) (h't : t ⊆ u) (h : μ u < μ s + μ t) : (s ∩ t).Nonempty :=
   by
-  rw [add_comm] at h
+  rw [add_comm] at h 
   rw [inter_comm]
   exact nonempty_inter_of_measure_lt_add μ hs h't h's h
 #align measure_theory.nonempty_inter_of_measure_lt_add' MeasureTheory.nonempty_inter_of_measure_lt_add'
@@ -483,7 +483,7 @@ theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed
     by
     simp only [← ht, encodable.encode_injective.apply_extend μ, ← supr_eq_Union,
       iSup_extend_bot Encodable.encode_injective, (· ∘ ·), Pi.bot_apply, bot_eq_empty,
-      measure_empty] at this
+      measure_empty] at this 
     exact this.trans (iSup_extend_bot Encodable.encode_injective _)
   clear! ι
   -- The `≥` inequality is trivial
@@ -597,7 +597,7 @@ theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSp
       intro n
       apply bInter_subset_of_mem
       exact u_pos n
-  rw [B] at A
+  rw [B] at A 
   obtain ⟨n, hn⟩ : ∃ n, μ (s (u n)) < L := ((tendsto_order.1 A).2 _ hL).exists
   have : Ioc a (u n) ∈ 𝓝[>] a := Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, u_pos n⟩
   filter_upwards [this]with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
@@ -658,7 +658,7 @@ theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
         (Set α) ℕ _ s atTop =ᵐ[μ]
       t :=
   by
-  simp_rw [ae_eq_set] at h⊢
+  simp_rw [ae_eq_set] at h ⊢
   constructor
   · rw [at_top.limsup_sdiff s t]
     apply measure_limsup_eq_zero
@@ -674,7 +674,7 @@ theorem liminf_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
         (Set α) ℕ _ s atTop =ᵐ[μ]
       t :=
   by
-  simp_rw [ae_eq_set] at h⊢
+  simp_rw [ae_eq_set] at h ⊢
   constructor
   · rw [at_top.liminf_sdiff s t]
     apply measure_liminf_eq_zero
@@ -774,7 +774,7 @@ then for any measurable set `s` one also has `μ (t ∩ s) = μ (u ∩ s)`. -/
 theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (h : μ t = μ u)
     (htu : t ⊆ u) (ht_ne_top : μ t ≠ ∞) : μ (t ∩ s) = μ (u ∩ s) :=
   by
-  rw [h] at ht_ne_top
+  rw [h] at ht_ne_top 
   refine' le_antisymm (measure_mono (inter_subset_inter_left _ htu)) _
   have A : μ (u ∩ s) + μ (u \ s) ≤ μ (t ∩ s) + μ (u \ s) :=
     calc
@@ -960,14 +960,14 @@ theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν
       _ ≤ μ s + ν t := add_le_add le_rfl (measure_mono h')
       
   apply ENNReal.le_of_add_le_add_right _ this
-  simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at h
+  simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at h 
   exact h.2
 #align measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eq
 
 theorem measure_eq_right_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν) t ≠ ∞) (h' : s ⊆ t)
     (h'' : (μ + ν) s = (μ + ν) t) : ν s = ν t :=
   by
-  rw [add_comm] at h'' h
+  rw [add_comm] at h'' h 
   exact measure_eq_left_of_subset_of_measure_add_eq h h' h''
 #align measure_theory.measure.measure_eq_right_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_right_of_subset_of_measure_add_eq
 
@@ -979,14 +979,14 @@ theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s
       measure_eq_left_of_subset_of_measure_add_eq _ (subset_to_measurable _ _)
         (measure_to_measurable t).symm
     rwa [measure_to_measurable t]
-  · simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at ht
+  · simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at ht 
     exact ht.1
 #align measure_theory.measure.measure_to_measurable_add_inter_left MeasureTheory.Measure.measure_toMeasurable_add_inter_left
 
 theorem measure_toMeasurable_add_inter_right {s t : Set α} (hs : MeasurableSet s)
     (ht : (μ + ν) t ≠ ∞) : ν (toMeasurable (μ + ν) t ∩ s) = ν (t ∩ s) :=
   by
-  rw [add_comm] at ht⊢
+  rw [add_comm] at ht ⊢
   exact measure_to_measurable_add_inter_left hs ht
 #align measure_theory.measure.measure_to_measurable_add_inter_right MeasureTheory.Measure.measure_toMeasurable_add_inter_right
 
@@ -1386,7 +1386,7 @@ theorem comap_apply₀ [MeasurableSpace α] (f : α → β) (μ : Measure β) (h
     (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ)
     (hs : NullMeasurableSet s (comap f μ)) : comap f μ s = μ (f '' s) :=
   by
-  rw [comap, dif_pos (And.intro hfi hf)] at hs⊢
+  rw [comap, dif_pos (And.intro hfi hf)] at hs ⊢
   rw [to_measure_apply₀ _ _ hs, outer_measure.comap_apply, coe_to_outer_measure]
 #align measure_theory.measure.comap_apply₀ MeasureTheory.Measure.comap_apply₀
 
@@ -1422,14 +1422,14 @@ theorem ae_eq_image_of_ae_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSp
     (μ : Measure β) (hfi : Injective f) (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ)
     {s t : Set α} (hst : s =ᵐ[comap f μ] t) : f '' s =ᵐ[μ] f '' t :=
   by
-  rw [eventually_eq, ae_iff] at hst⊢
+  rw [eventually_eq, ae_iff] at hst ⊢
   have h_eq_α : { a : α | ¬s a = t a } = s \ t ∪ t \ s := by ext1 x;
     simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]; tauto
   have h_eq_β : { a : β | ¬(f '' s) a = (f '' t) a } = f '' s \ f '' t ∪ f '' t \ f '' s := by
     ext1 x; simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]; tauto
-  rw [← Set.image_diff hfi, ← Set.image_diff hfi, ← Set.image_union] at h_eq_β
+  rw [← Set.image_diff hfi, ← Set.image_diff hfi, ← Set.image_union] at h_eq_β 
   rw [h_eq_β]
-  rw [h_eq_α] at hst
+  rw [h_eq_α] at hst 
   exact measure_image_eq_zero_of_comap_eq_zero f μ hfi hf hst
 #align measure_theory.measure.ae_eq_image_of_ae_eq_comap MeasureTheory.Measure.ae_eq_image_of_ae_eq_comap
 -/
@@ -1466,7 +1466,7 @@ section ComapAnyMeasure
 theorem MeasurableSet.nullMeasurableSet_subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
     (ht : MeasurableSet t) : NullMeasurableSet ((coe : s → α) '' t) μ :=
   by
-  rw [Subtype.instMeasurableSpace, comap_eq_generate_from] at ht
+  rw [Subtype.instMeasurableSpace, comap_eq_generate_from] at ht 
   refine'
     generate_from_induction (fun t : Set s => null_measurable_set (coe '' t) μ)
       { t : Set s | ∃ s' : Set α, MeasurableSet s' ∧ coe ⁻¹' s' = t } _ _ _ _ ht
@@ -1524,7 +1524,7 @@ theorem Subtype.volume_def : (volume : Measure s) = volume.comap Subtype.val :=
 theorem Subtype.volume_univ (hs : NullMeasurableSet s) : volume (univ : Set s) = volume s :=
   by
   rw [subtype.volume_def, comap_apply₀ _ _ _ _ measurable_set.univ.null_measurable_set]
-  · congr ; simp only [Subtype.val_eq_coe, image_univ, Subtype.range_coe_subtype, set_of_mem_eq]
+  · congr; simp only [Subtype.val_eq_coe, image_univ, Subtype.range_coe_subtype, set_of_mem_eq]
   · exact Subtype.coe_injective
   · exact fun t => measurable_set.null_measurable_set_subtype_coe hs
 #align measure_theory.measure.subtype.volume_univ MeasureTheory.Measure.Subtype.volume_univ
@@ -1897,7 +1897,7 @@ theorem restrict_iUnion_apply_eq_iSup [Countable ι] {s : ι → Set α} (hd : D
   by
   simp only [restrict_apply ht, inter_Union]
   rw [measure_Union_eq_supr]
-  exacts[hd.mono_comp _ fun s₁ s₂ => inter_subset_inter_right _]
+  exacts [hd.mono_comp _ fun s₁ s₂ => inter_subset_inter_right _]
 #align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup
 
 /-- The restriction of the pushforward measure is the pushforward of the restriction. For a version
@@ -2029,7 +2029,7 @@ theorem restrict_sInf_eq_sInf_restrict {m0 : MeasurableSpace α} {m : Set (Measu
 theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
     (hp : ∀ᵐ x ∂μ.restrict s, p x) : ∃ x, x ∈ s ∧ p x :=
   by
-  rw [← μ.restrict_apply_self, ← frequently_ae_mem_iff] at hs
+  rw [← μ.restrict_apply_self, ← frequently_ae_mem_iff] at hs 
   exact (hs.and_eventually hp).exists
 #align measure_theory.measure.exists_mem_of_measure_ne_zero_of_ae MeasureTheory.Measure.exists_mem_of_measure_ne_zero_of_ae
 
@@ -2083,12 +2083,12 @@ theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = gen
   · simp only [Set.empty_inter, measure_empty]
   · intro v hv hvt
     have := T_eq t ht
-    rw [Set.inter_comm] at hvt⊢
+    rw [Set.inter_comm] at hvt ⊢
     rwa [← measure_inter_add_diff t hv, ← measure_inter_add_diff t hv, ← hvt,
-      ENNReal.add_right_inj] at this
+      ENNReal.add_right_inj] at this 
     exact ne_top_of_le_ne_top (htop t ht) (measure_mono <| Set.inter_subset_left _ _)
   · intro f hfd hfm h_eq
-    simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.iUnion hfm)] at h_eq⊢
+    simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.iUnion hfm)] at h_eq ⊢
     simp only [measure_Union hfd hfm, h_eq]
 #align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_cover
 
@@ -2450,7 +2450,7 @@ theorem count_apply_eq_top' (s_mble : MeasurableSet s) : count s = ∞ ↔ s.Inf
   by
   by_cases hs : s.finite
   · simp [Set.Infinite, hs, count_apply_finite' hs s_mble]
-  · change s.infinite at hs
+  · change s.infinite at hs 
     simp [hs, count_apply_infinite]
 #align measure_theory.measure.count_apply_eq_top' MeasureTheory.Measure.count_apply_eq_top'
 
@@ -2459,7 +2459,7 @@ theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.I
   by
   by_cases hs : s.finite
   · exact count_apply_eq_top' hs.measurable_set
-  · change s.infinite at hs
+  · change s.infinite at hs 
     simp [hs, count_apply_infinite]
 #align measure_theory.measure.count_apply_eq_top MeasureTheory.Measure.count_apply_eq_top
 
@@ -2545,7 +2545,7 @@ theorem count_injective_image' {f : β → α} (hf : Function.Injective f) {s :
       s.card_image_of_injective hf]
     simpa only [Finset.coe_image] using fs_mble
   rw [count_apply_infinite hs]
-  rw [← finite_image_iff <| hf.inj_on _] at hs
+  rw [← finite_image_iff <| hf.inj_on _] at hs 
   rw [count_apply_infinite hs]
 #align measure_theory.measure.count_injective_image' MeasureTheory.Measure.count_injective_image'
 -/
@@ -2556,7 +2556,7 @@ theorem count_injective_image [MeasurableSingletonClass α] [MeasurableSingleton
   by_cases hs : s.finite
   · exact count_injective_image' hf hs.measurable_set (finite.image f hs).MeasurableSet
   rw [count_apply_infinite hs]
-  rw [← finite_image_iff <| hf.inj_on _] at hs
+  rw [← finite_image_iff <| hf.inj_on _] at hs 
   rw [count_apply_infinite hs]
 #align measure_theory.measure.count_injective_image MeasureTheory.Measure.count_injective_image
 
@@ -2665,8 +2665,8 @@ theorem AbsolutelyContinuous.ae_eq (h : μ ≪ ν) {f g : α → δ} (h' : f =
 `μa` and `μb` if it is measurable and `μb s = 0` implies `μa (f ⁻¹' s) = 0`. -/
 @[protect_proj]
 structure QuasiMeasurePreserving {m0 : MeasurableSpace α} (f : α → β)
-  (μa : Measure α := by exact MeasureTheory.MeasureSpace.volume)
-  (μb : Measure β := by exact MeasureTheory.MeasureSpace.volume) : Prop where
+    (μa : Measure α := by exact MeasureTheory.MeasureSpace.volume)
+    (μb : Measure β := by exact MeasureTheory.MeasureSpace.volume) : Prop where
   Measurable : Measurable f
   AbsolutelyContinuous : μa.map f ≪ μb
 #align measure_theory.measure.quasi_measure_preserving MeasureTheory.Measure.QuasiMeasurePreserving
@@ -2774,13 +2774,13 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
     ⇑(e ^ k) '' s =ᵐ[μ] s := by
   rw [Equiv.image_eq_preimage]
   obtain ⟨k, rfl | rfl⟩ := k.eq_coe_or_neg
-  · replace hs : ⇑e⁻¹ ⁻¹' s =ᵐ[μ] s; · rwa [Equiv.image_eq_preimage] at hs
+  · replace hs : ⇑e⁻¹ ⁻¹' s =ᵐ[μ] s; · rwa [Equiv.image_eq_preimage] at hs 
     replace he' : ⇑e⁻¹^[k] ⁻¹' s =ᵐ[μ] s := he'.preimage_iterate_ae_eq k hs
-    rwa [Equiv.Perm.iterate_eq_pow e⁻¹ k, inv_pow e k] at he'
+    rwa [Equiv.Perm.iterate_eq_pow e⁻¹ k, inv_pow e k] at he' 
   · rw [zpow_neg, zpow_ofNat]
     replace hs : e ⁻¹' s =ᵐ[μ] s; · convert he.preimage_ae_eq hs.symm; rw [Equiv.preimage_image]
     replace he : ⇑e^[k] ⁻¹' s =ᵐ[μ] s := he.preimage_iterate_ae_eq k hs
-    rwa [Equiv.Perm.iterate_eq_pow e k] at he
+    rwa [Equiv.Perm.iterate_eq_pow e k] at he 
 #align measure_theory.measure.quasi_measure_preserving.image_zpow_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq
 -/
 
@@ -2804,7 +2804,7 @@ theorem liminf_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreservi
   by
   -- Need `@` below because of diamond; see gh issue #16932
   rw [← ae_eq_set_compl_compl, @Filter.liminf_compl (Set α)]
-  rw [← ae_eq_set_compl_compl, ← preimage_compl] at hs
+  rw [← ae_eq_set_compl_compl, ← preimage_compl] at hs 
   convert hf.limsup_preimage_iterate_ae_eq hs
   ext1 n
   simp only [← Set.preimage_iterate_eq, comp_app, preimage_compl]
@@ -3073,7 +3073,7 @@ theorem ae_restrict_iff {p : α → Prop} (hp : MeasurableSet { x | p x }) :
 #print MeasureTheory.ae_imp_of_ae_restrict /-
 theorem ae_imp_of_ae_restrict {s : Set α} {p : α → Prop} (h : ∀ᵐ x ∂μ.restrict s, p x) :
     ∀ᵐ x ∂μ, x ∈ s → p x := by
-  simp only [ae_iff] at h⊢
+  simp only [ae_iff] at h ⊢
   simpa [set_of_and, inter_comm] using measure_inter_eq_zero_of_restrict h
 #align measure_theory.ae_imp_of_ae_restrict MeasureTheory.ae_imp_of_ae_restrict
 -/
@@ -3183,7 +3183,7 @@ theorem ae_eq_comp {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ) (
 theorem sub_ae_eq_zero {β} [AddGroup β] (f g : α → β) : f - g =ᵐ[μ] 0 ↔ f =ᵐ[μ] g :=
   by
   refine' ⟨fun h => h.mono fun x hx => _, fun h => h.mono fun x hx => _⟩
-  · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero] at hx
+  · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero] at hx 
   · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero]
 #align measure_theory.sub_ae_eq_zero MeasureTheory.sub_ae_eq_zero
 
@@ -3256,7 +3256,7 @@ theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
     (hst : ∀ x : α, ∃ y ∈ s, x ≤ y) (hdir : DirectedOn (· ≤ ·) s) : (⨆ x ∈ s, μ (Iic x)) = μ univ :=
   by
   rw [← measure_bUnion_eq_supr hsc]
-  · congr ; exact Union₂_eq_univ_iff.2 hst
+  · congr; exact Union₂_eq_univ_iff.2 hst
   · exact directedOn_iff_directed.2 (hdir.directed_coe.mono_comp _ fun x y => Iic_subset_Iic.2)
 #align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iic
 
@@ -3755,7 +3755,7 @@ theorem ite_ae_eq_of_measure_zero {γ} (f : α → γ) (g : α → γ) (s : Set
 
 theorem ite_ae_eq_of_measure_compl_zero {γ} (f : α → γ) (g : α → γ) (s : Set α)
     (hs_zero : μ (sᶜ) = 0) : (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] f := by
-  filter_upwards [hs_zero]; intros ; split_ifs; rfl
+  filter_upwards [hs_zero]; intros; split_ifs; rfl
 #align measure_theory.ite_ae_eq_of_measure_compl_zero MeasureTheory.ite_ae_eq_of_measure_compl_zero
 
 namespace Measure
@@ -3776,7 +3776,7 @@ theorem finiteAtFilterOfFinite {m0 : MeasurableSpace α} (μ : Measure α) [Fini
 -/
 
 theorem FiniteAtFilter.exists_mem_basis {f : Filter α} (hμ : FiniteAtFilter μ f) {p : ι → Prop}
-    {s : ι → Set α} (hf : f.HasBasis p s) : ∃ (i : _)(hi : p i), μ (s i) < ∞ :=
+    {s : ι → Set α} (hf : f.HasBasis p s) : ∃ (i : _) (hi : p i), μ (s i) < ∞ :=
   (hf.exists_iff fun s t hst ht => (measure_mono hst).trans_lt ht).1 hμ
 #align measure_theory.measure.finite_at_filter.exists_mem_basis MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis
 
@@ -3944,9 +3944,9 @@ theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : Mea
     (h's : r < μ s) : ∃ t, MeasurableSet t ∧ t ⊆ s ∧ r < μ t ∧ μ t < ∞ :=
   by
   rw [← supr_restrict_spanning_sets hs,
-    @lt_iSup_iff _ _ _ r fun i : ℕ => μ.restrict (spanning_sets μ i) s] at h's
+    @lt_iSup_iff _ _ _ r fun i : ℕ => μ.restrict (spanning_sets μ i) s] at h's 
   rcases h's with ⟨n, hn⟩
-  simp only [restrict_apply hs] at hn
+  simp only [restrict_apply hs] at hn 
   refine'
     ⟨s ∩ spanning_sets μ n, hs.inter (measurable_spanning_sets _ _), inter_subset_left _ _, hn, _⟩
   exact (measure_mono (inter_subset_right _ _)).trans_lt (measure_spanning_sets_lt_top _ _)
@@ -4051,7 +4051,7 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
   -- (which is well behaved for finite measure sets thanks to `measure_to_measurable_inter`), and
   -- the desired property passes to the union.
   have A :
-    ∃ (t' : _)(_ : t' ⊇ t), MeasurableSet t' ∧ ∀ u, MeasurableSet u → μ (t' ∩ u) = μ (t ∩ u) :=
+    ∃ (t' : _) (_ : t' ⊇ t), MeasurableSet t' ∧ ∀ u, MeasurableSet u → μ (t' ∩ u) = μ (t ∩ u) :=
     by
     let w n := to_measurable μ (t ∩ v n)
     have hw : ∀ n, μ (w n) < ∞ := by
@@ -4230,15 +4230,15 @@ theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ FiniteMe
   let s := spanning_sets μ
   have hs_univ : (⋃ i, s i) = Set.univ := Union_spanning_sets μ
   have hs_meas : ∀ i, measurable_set[⊥] (s i) := measurable_spanning_sets μ
-  simp_rw [MeasurableSpace.measurableSet_bot_iff] at hs_meas
+  simp_rw [MeasurableSpace.measurableSet_bot_iff] at hs_meas 
   by_cases h_univ_empty : Set.univ = ∅
   · rw [h_univ_empty, measure_empty]; exact ennreal.zero_ne_top.lt_top
   obtain ⟨i, hsi⟩ : ∃ i, s i = Set.univ :=
     by
     by_contra h_not_univ
-    push_neg  at h_not_univ
+    push_neg  at h_not_univ 
     have h_empty : ∀ i, s i = ∅ := by simpa [h_not_univ] using hs_meas
-    simp [h_empty] at hs_univ
+    simp [h_empty] at hs_univ 
     exact h_univ_empty hs_univ.symm
   rw [← hsi]
   exact measure_spanning_sets_lt_top μ i
@@ -4302,7 +4302,7 @@ theorem ae_of_forall_measure_lt_top_ae_restrict' {μ : Measure α} (ν : Measure
     by
     intro n
     have := h (spanning_sets (μ + ν) n) (measurable_spanning_sets _ _) _ _
-    exacts[(ae_restrict_iff' (measurable_spanning_sets _ _)).mp this,
+    exacts [(ae_restrict_iff' (measurable_spanning_sets _ _)).mp this,
       (self_le_add_right _ _).trans_lt (measure_spanning_sets_lt_top (μ + ν) _),
       (self_le_add_left _ _).trans_lt (measure_spanning_sets_lt_top (μ + ν) _)]
   filter_upwards [ae_all_iff.2 this]with _ hx using hx _ (mem_spanning_sets_index _ _)
@@ -4483,9 +4483,9 @@ theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β
   inhabit β
   have : m univ ≠ 0 := ne_bot_of_le_ne_bot (h default) (m.mono' <| subset_univ _)
   rcases m.exists_mem_forall_mem_nhds_within_pos this with ⟨b, -, hb⟩
-  simp only [nhdsWithin_univ] at hb
+  simp only [nhdsWithin_univ] at hb 
   rcases m.exists_mem_forall_mem_nhds_within_pos (h b) with ⟨a, hab : a ≠ b, ha⟩
-  simp only [is_open_compl_singleton.nhds_within_eq hab] at ha
+  simp only [is_open_compl_singleton.nhds_within_eq hab] at ha 
   exact ⟨a, b, hab, ha, hb⟩
 #align measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimage
 
@@ -4547,7 +4547,7 @@ theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
 #align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq
 
 theorem exists_eq_disjoint_finiteSpanningSetsIn (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] :
-    ∃ (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s })(T :
+    ∃ (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) (T :
       ν.FiniteSpanningSetsIn { s | MeasurableSet s }),
       S.Set = T.Set ∧ Pairwise (Disjoint on S.Set) :=
   let S := (μ + ν).toFiniteSpanningSetsIn.disjointed
@@ -4796,7 +4796,7 @@ theorem map_map_symm (e : α ≃ᵐ β) : (ν.map e.symm).map e = ν := by
 #align measurable_equiv.map_map_symm MeasurableEquiv.map_map_symm
 
 theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (map e) := by intro μ₁ μ₂ hμ;
-  apply_fun map e.symm  at hμ; simpa [map_symm_map e] using hμ
+  apply_fun map e.symm  at hμ ; simpa [map_symm_map e] using hμ
 #align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injective
 
 theorem map_apply_eq_iff_map_symm_apply_eq (e : α ≃ᵐ β) : μ.map e = ν ↔ ν.map e.symm = μ := by
@@ -4963,7 +4963,7 @@ theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ FiniteMeasur
   by
   rw [sigma_finite_bot_iff]
   refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ <;> have h_univ := h.measure_univ_lt_top
-  · rwa [trim_measurable_set_eq bot_le MeasurableSet.univ] at h_univ
+  · rwa [trim_measurable_set_eq bot_le MeasurableSet.univ] at h_univ 
   · rwa [trim_measurable_set_eq bot_le MeasurableSet.univ]
 #align measure_theory.sigma_finite_trim_bot_iff MeasureTheory.sigmaFinite_trim_bot_iff
 
@@ -4979,7 +4979,7 @@ variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set 
 /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
 superset of finite measure. -/
 theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
-    (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝 x)) : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
+    (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝 x)) : ∃ (U : _) (_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
   by
   refine' IsCompact.induction_on h _ _ _ _
   · use ∅; simp [Superset]
@@ -4997,7 +4997,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
 theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
-    [LocallyFiniteMeasure μ] : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
+    [LocallyFiniteMeasure μ] : ∃ (U : _) (_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
   h.exists_open_superset_measure_lt_top' fun x hx => μ.finiteAtNhds x
 #align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_top
 
@@ -5088,10 +5088,10 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
   let S : Set (Set α) := { s | IsOpen s ∧ μ s < ∞ }
   obtain ⟨T, T_count, TS, hT⟩ : ∃ T : Set (Set α), T.Countable ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S :=
     is_open_sUnion_countable S fun s hs => hs.1
-  rw [μ.is_topological_basis_is_open_lt_top.sUnion_eq] at hT
+  rw [μ.is_topological_basis_is_open_lt_top.sUnion_eq] at hT 
   have T_ne : T.nonempty := by
     by_contra h'T
-    simp only [not_nonempty_iff_eq_empty.1 h'T, sUnion_empty] at hT
+    simp only [not_nonempty_iff_eq_empty.1 h'T, sUnion_empty] at hT 
     simpa only [← hT] using mem_univ (default : α)
   obtain ⟨f, hf⟩ : ∃ f : ℕ → Set α, T = range f; exact T_count.exists_eq_range T_ne
   have fS : ∀ n, f n ∈ S := by
@@ -5211,7 +5211,7 @@ theorem indicator_ae_eq_restrict_compl (hs : MeasurableSet s) :
 theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict (sᶜ)] 0) : s.indicator f =ᵐ[μ] f :=
   by
-  rw [Filter.EventuallyEq, ae_restrict_iff' hs.compl] at hf
+  rw [Filter.EventuallyEq, ae_restrict_iff' hs.compl] at hf 
   filter_upwards [hf]with x hx
   by_cases hxs : x ∈ s
   · simp only [hxs, Set.indicator_of_mem]
@@ -5221,7 +5221,7 @@ theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
 theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict s] 0) : s.indicator f =ᵐ[μ] 0 :=
   by
-  rw [Filter.EventuallyEq, ae_restrict_iff' hs] at hf
+  rw [Filter.EventuallyEq, ae_restrict_iff' hs] at hf 
   filter_upwards [hf]with x hx
   by_cases hxs : x ∈ s
   · simp only [hxs, hx hxs, Set.indicator_of_mem]
Diff
@@ -4356,8 +4356,8 @@ instance locallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α)
   rcases μ.exists_is_open_measure_lt_top x with ⟨o, xo, o_open, μo⟩
   refine' ⟨o, o_open.mem_nhds xo, _⟩
   apply ENNReal.mul_lt_top _ μo.ne
-  simp only [RingHom.toMonoidHom_eq_coe, [anonymous], ENNReal.coe_ne_top, ENNReal.coe_ofNNRealHom,
-    Ne.def, not_false_iff]
+  simp only [RingHom.toMonoidHom_eq_coe, RingHom.coe_monoidHom, ENNReal.coe_ne_top,
+    ENNReal.coe_ofNNRealHom, Ne.def, not_false_iff]
 #align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.locallyFiniteMeasureSmulNnreal
 
 protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α] (μ : Measure α)
Diff
@@ -106,7 +106,7 @@ open Function MeasurableSpace
 
 open TopologicalSpace (SecondCountableTopology)
 
-open Classical Topology BigOperators Filter ENNReal NNReal Interval MeasureTheory
+open scoped Classical Topology BigOperators Filter ENNReal NNReal Interval MeasureTheory
 
 variable {α β γ δ ι R R' : Type _}
 
@@ -1010,9 +1010,11 @@ theorem le_iff : μ₁ ≤ μ₂ ↔ ∀ s, MeasurableSet s → μ₁ s ≤ μ
   Iff.rfl
 #align measure_theory.measure.le_iff MeasureTheory.Measure.le_iff
 
+#print MeasureTheory.Measure.toOuterMeasure_le /-
 theorem toOuterMeasure_le : μ₁.toOuterMeasure ≤ μ₂.toOuterMeasure ↔ μ₁ ≤ μ₂ := by
   rw [← μ₂.trimmed, outer_measure.le_trim_iff] <;> rfl
 #align measure_theory.measure.to_outer_measure_le MeasureTheory.Measure.toOuterMeasure_le
+-/
 
 theorem le_iff' : μ₁ ≤ μ₂ ↔ ∀ s, μ₁ s ≤ μ₂ s :=
   toOuterMeasure_le.symm
@@ -1027,16 +1029,22 @@ theorem lt_iff' : μ < ν ↔ μ ≤ ν ∧ ∃ s, μ s < ν s :=
   lt_iff_le_not_le.trans <| and_congr Iff.rfl <| by simp only [le_iff', not_forall, not_le]
 #align measure_theory.measure.lt_iff' MeasureTheory.Measure.lt_iff'
 
+#print MeasureTheory.Measure.covariantAddLE /-
 instance covariantAddLE [MeasurableSpace α] :
     CovariantClass (Measure α) (Measure α) (· + ·) (· ≤ ·) :=
   ⟨fun ν μ₁ μ₂ hμ s hs => add_le_add_left (hμ s hs) _⟩
 #align measure_theory.measure.covariant_add_le MeasureTheory.Measure.covariantAddLE
+-/
 
+#print MeasureTheory.Measure.le_add_left /-
 protected theorem le_add_left (h : μ ≤ ν) : μ ≤ ν' + ν := fun s hs => le_add_left (h s hs)
 #align measure_theory.measure.le_add_left MeasureTheory.Measure.le_add_left
+-/
 
+#print MeasureTheory.Measure.le_add_right /-
 protected theorem le_add_right (h : μ ≤ ν) : μ ≤ ν + ν' := fun s hs => le_add_right (h s hs)
 #align measure_theory.measure.le_add_right MeasureTheory.Measure.le_add_right
+-/
 
 section Inf
 
@@ -1126,13 +1134,17 @@ theorem add_top : μ + ⊤ = ⊤ :=
   top_unique <| Measure.le_add_left le_rfl
 #align measure_theory.measure.add_top MeasureTheory.Measure.add_top
 
+#print MeasureTheory.Measure.zero_le /-
 protected theorem zero_le {m0 : MeasurableSpace α} (μ : Measure α) : 0 ≤ μ :=
   bot_le
 #align measure_theory.measure.zero_le MeasureTheory.Measure.zero_le
+-/
 
+#print MeasureTheory.Measure.nonpos_iff_eq_zero' /-
 theorem nonpos_iff_eq_zero' : μ ≤ 0 ↔ μ = 0 :=
   μ.zero_le.le_iff_eq
 #align measure_theory.measure.nonpos_iff_eq_zero' MeasureTheory.Measure.nonpos_iff_eq_zero'
+-/
 
 @[simp]
 theorem measure_univ_eq_zero : μ univ = 0 ↔ μ = 0 :=
@@ -1578,6 +1590,7 @@ theorem restrict_apply (ht : MeasurableSet t) : μ.restrict s t = μ (t ∩ s) :
   restrict_apply₀ ht.NullMeasurableSet
 #align measure_theory.measure.restrict_apply MeasureTheory.Measure.restrict_apply
 
+#print MeasureTheory.Measure.restrict_mono' /-
 /-- Restriction of a measure to a subset is monotone both in set and in measure. -/
 theorem restrict_mono' {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν : Measure α⦄ (hs : s ≤ᵐ[μ] s')
     (hμν : μ ≤ ν) : μ.restrict s ≤ ν.restrict s' := fun t ht =>
@@ -1588,17 +1601,22 @@ theorem restrict_mono' {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν :
     _ = ν.restrict s' t := (restrict_apply ht).symm
     
 #align measure_theory.measure.restrict_mono' MeasureTheory.Measure.restrict_mono'
+-/
 
+#print MeasureTheory.Measure.restrict_mono /-
 /-- Restriction of a measure to a subset is monotone both in set and in measure. -/
 @[mono]
 theorem restrict_mono {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ (hs : s ⊆ s') ⦃μ ν : Measure α⦄
     (hμν : μ ≤ ν) : μ.restrict s ≤ ν.restrict s' :=
   restrict_mono' (ae_of_all _ hs) hμν
 #align measure_theory.measure.restrict_mono MeasureTheory.Measure.restrict_mono
+-/
 
+#print MeasureTheory.Measure.restrict_mono_ae /-
 theorem restrict_mono_ae (h : s ≤ᵐ[μ] t) : μ.restrict s ≤ μ.restrict t :=
   restrict_mono' h (le_refl μ)
 #align measure_theory.measure.restrict_mono_ae MeasureTheory.Measure.restrict_mono_ae
+-/
 
 #print MeasureTheory.Measure.restrict_congr_set /-
 theorem restrict_congr_set (h : s =ᵐ[μ] t) : μ.restrict s = μ.restrict t :=
@@ -1621,12 +1639,14 @@ theorem restrict_apply₀' (hs : NullMeasurableSet s μ) : μ.restrict s t = μ
     measure_congr ((ae_eq_refl t).inter hs.to_measurable_ae_eq)]
 #align measure_theory.measure.restrict_apply₀' MeasureTheory.Measure.restrict_apply₀'
 
+#print MeasureTheory.Measure.restrict_le_self /-
 theorem restrict_le_self : μ.restrict s ≤ μ := fun t ht =>
   calc
     μ.restrict s t = μ (t ∩ s) := restrict_apply ht
     _ ≤ μ t := measure_mono <| inter_subset_left t s
     
 #align measure_theory.measure.restrict_le_self MeasureTheory.Measure.restrict_le_self
+-/
 
 variable (μ)
 
@@ -1847,12 +1867,14 @@ theorem restrict_compl_add_restrict (hs : MeasurableSet s) : μ.restrict (sᶜ)
 #align measure_theory.measure.restrict_compl_add_restrict MeasureTheory.Measure.restrict_compl_add_restrict
 -/
 
+#print MeasureTheory.Measure.restrict_union_le /-
 theorem restrict_union_le (s s' : Set α) : μ.restrict (s ∪ s') ≤ μ.restrict s + μ.restrict s' :=
   by
   intro t ht
   suffices μ (t ∩ s ∪ t ∩ s') ≤ μ (t ∩ s) + μ (t ∩ s') by simpa [ht, inter_union_distrib_left]
   apply measure_union_le
 #align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_le
+-/
 
 theorem restrict_iUnion_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) {t : Set α} (ht : MeasurableSet t) :
@@ -2339,6 +2361,7 @@ theorem restrict_iUnion [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjo
   restrict_iUnion_ae hd.AEDisjoint fun i => (hm i).NullMeasurableSet
 #align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_iUnion
 
+#print MeasureTheory.Measure.restrict_iUnion_le /-
 theorem restrict_iUnion_le [Countable ι] {s : ι → Set α} :
     μ.restrict (⋃ i, s i) ≤ sum fun i => μ.restrict (s i) :=
   by
@@ -2346,6 +2369,7 @@ theorem restrict_iUnion_le [Countable ι] {s : ι → Set α} :
   suffices μ (⋃ i, t ∩ s i) ≤ ∑' i, μ (t ∩ s i) by simpa [ht, inter_Union]
   apply measure_Union_le
 #align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_iUnion_le
+-/
 
 section Count
 
@@ -2552,9 +2576,11 @@ def AbsolutelyContinuous {m0 : MeasurableSpace α} (μ ν : Measure α) : Prop :
 -- mathport name: measure.absolutely_continuous
 scoped[MeasureTheory] infixl:50 " ≪ " => MeasureTheory.Measure.AbsolutelyContinuous
 
+#print MeasureTheory.Measure.absolutelyContinuous_of_le /-
 theorem absolutelyContinuous_of_le (h : μ ≤ ν) : μ ≪ ν := fun s hs =>
   nonpos_iff_eq_zero.1 <| hs ▸ le_iff'.1 h s
 #align measure_theory.measure.absolutely_continuous_of_le MeasureTheory.Measure.absolutelyContinuous_of_le
+-/
 
 alias absolutely_continuous_of_le ← _root_.has_le.le.absolutely_continuous
 #align has_le.le.absolutely_continuous LE.le.absolutelyContinuous
@@ -2799,7 +2825,7 @@ theorem exists_preimage_eq_of_preimage_ae {f : α → α} (h : QuasiMeasurePrese
 #align measure_theory.measure.quasi_measure_preserving.exists_preimage_eq_of_preimage_ae MeasureTheory.Measure.QuasiMeasurePreserving.exists_preimage_eq_of_preimage_ae
 -/
 
-open Pointwise
+open scoped Pointwise
 
 @[to_additive]
 theorem smul_ae_eq_of_ae_eq {G α : Type _} [Group G] [MulAction G α] [MeasurableSpace α]
@@ -2813,7 +2839,7 @@ end QuasiMeasurePreserving
 
 section Pointwise
 
-open Pointwise
+open scoped Pointwise
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 @[to_additive]
@@ -2870,7 +2896,7 @@ end Measure
 
 open Measure
 
-open MeasureTheory
+open scoped MeasureTheory
 
 #print MeasureTheory.NullMeasurableSet.preimage /-
 /-- The preimage of a null measurable set under a (quasi) measure preserving map is a null
@@ -2890,9 +2916,11 @@ theorem NullMeasurableSet.mono_ac (h : NullMeasurableSet s μ) (hle : ν ≪ μ)
 #align measure_theory.null_measurable_set.mono_ac MeasureTheory.NullMeasurableSet.mono_ac
 -/
 
+#print MeasureTheory.NullMeasurableSet.mono /-
 theorem NullMeasurableSet.mono (h : NullMeasurableSet s μ) (hle : ν ≤ μ) : NullMeasurableSet s ν :=
   h.mono_ac hle.AbsolutelyContinuous
 #align measure_theory.null_measurable_set.mono MeasureTheory.NullMeasurableSet.mono
+-/
 
 #print MeasureTheory.AeDisjoint.preimage /-
 theorem AeDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AEDisjoint ν s t)
@@ -3414,9 +3442,11 @@ instance finiteMeasureSmulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞]
   infer_instance
 #align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.finiteMeasureSmulOfNNRealTower
 
+#print MeasureTheory.finiteMeasureOfLe /-
 theorem finiteMeasureOfLe (μ : Measure α) [FiniteMeasure μ] (h : ν ≤ μ) : FiniteMeasure ν :=
   { measure_univ_lt_top := lt_of_le_of_lt (h Set.univ MeasurableSet.univ) (measure_lt_top _ _) }
 #align measure_theory.is_finite_measure_of_le MeasureTheory.finiteMeasureOfLe
+-/
 
 @[instance]
 theorem Measure.finiteMeasureMap {m : MeasurableSpace α} (μ : Measure α) [FiniteMeasure μ]
@@ -3440,11 +3470,13 @@ theorem measureUnivNNReal_pos [FiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureU
   simpa [measure_univ_nnreal_eq_zero, le_zero_iff] using hμ
 #align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNNReal_pos
 
+#print MeasureTheory.Measure.le_of_add_le_add_left /-
 /-- `le_of_add_le_add_left` is normally applicable to `ordered_cancel_add_comm_monoid`,
 but it holds for measures with the additional assumption that μ is finite. -/
 theorem Measure.le_of_add_le_add_left [FiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
   fun S B1 => ENNReal.le_of_add_le_add_left (MeasureTheory.measure_ne_top μ S) (A2 S B1)
 #align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_left
+-/
 
 theorem summable_measure_toReal [hμ : FiniteMeasure μ] {f : ℕ → Set α}
     (hf₁ : ∀ i : ℕ, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
@@ -3701,7 +3733,7 @@ theorem Ico_ae_eq_Ioc : Ico a b =ᵐ[μ] Ioc a b :=
 
 end
 
-open Interval
+open scoped Interval
 
 #print MeasureTheory.uIoc_ae_eq_interval /-
 theorem uIoc_ae_eq_interval [LinearOrder α] {a b : α} : Ι a b =ᵐ[μ] [a, b] :=
@@ -4163,6 +4195,7 @@ theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : 
   exact ⟨⟨⟨fun n => s n, fun n => trivial, hμ, hs⟩⟩⟩
 #align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countable
 
+#print MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE /-
 /-- Given measures `μ`, `ν` where `ν ≤ μ`, `finite_spanning_sets_in.of_le` provides the induced
 `finite_spanning_set` with respect to `ν` from a `finite_spanning_set` with respect to `μ`. -/
 def FiniteSpanningSetsIn.ofLE (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteSpanningSetsIn C) :
@@ -4172,10 +4205,13 @@ def FiniteSpanningSetsIn.ofLE (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteS
   Finite n := lt_of_le_of_lt (le_iff'.1 h _) (S.Finite n)
   spanning := S.spanning
 #align measure_theory.measure.finite_spanning_sets_in.of_le MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE
+-/
 
+#print MeasureTheory.Measure.sigmaFinite_of_le /-
 theorem sigmaFinite_of_le (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ) : SigmaFinite ν :=
   ⟨hs.out.map <| FiniteSpanningSetsIn.ofLE h⟩
 #align measure_theory.measure.sigma_finite_of_le MeasureTheory.Measure.sigmaFinite_of_le
+-/
 
 end Measure
 
@@ -4553,9 +4589,11 @@ theorem filter_mono_ae (h : f ⊓ μ.ae ≤ g) (hg : μ.FiniteAtFilter g) : μ.F
   inf_ae_iff.1 (hg.filter_mono h)
 #align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae
 
+#print MeasureTheory.Measure.FiniteAtFilter.measure_mono /-
 protected theorem measure_mono (h : μ ≤ ν) : ν.FiniteAtFilter f → μ.FiniteAtFilter f :=
   fun ⟨s, hs, hν⟩ => ⟨s, hs, (Measure.le_iff'.1 h s).trans_lt hν⟩
 #align measure_theory.measure.finite_at_filter.measure_mono MeasureTheory.Measure.FiniteAtFilter.measure_mono
+-/
 
 @[mono]
 protected theorem mono (hf : f ≤ g) (hμ : μ ≤ ν) : ν.FiniteAtFilter g → μ.FiniteAtFilter f :=
@@ -4585,11 +4623,13 @@ theorem finiteAt_principal : μ.FiniteAtFilter (𝓟 s) ↔ μ s < ∞ :=
   ⟨fun ⟨t, ht, hμ⟩ => (measure_mono ht).trans_lt hμ, fun h => ⟨s, mem_principal_self s, h⟩⟩
 #align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principal
 
+#print MeasureTheory.Measure.locallyFiniteMeasure_of_le /-
 theorem locallyFiniteMeasure_of_le [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
     [H : LocallyFiniteMeasure μ] (h : ν ≤ μ) : LocallyFiniteMeasure ν :=
   let F := H.finiteAtNhds
   ⟨fun x => (F x).measure_mono h⟩
 #align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.locallyFiniteMeasure_of_le
+-/
 
 end Measure
 
Diff
@@ -132,52 +132,22 @@ theorem ae_uIoc_iff [LinearOrder α] {a b : α} {P : α → Prop} :
 #align measure_theory.ae_uIoc_iff MeasureTheory.ae_uIoc_iff
 -/
 
-/- warning: measure_theory.measure_union -> MeasureTheory.measure_union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s₁ s₂) -> (MeasurableSet.{u1} α m s₂) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₁ s₂)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s₁ s₂) -> (MeasurableSet.{u1} α m s₂) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s₁ s₂)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union MeasureTheory.measure_unionₓ'. -/
 theorem measure_union (hd : Disjoint s₁ s₂) (h : MeasurableSet s₂) : μ (s₁ ∪ s₂) = μ s₁ + μ s₂ :=
   measure_union₀ h.NullMeasurableSet hd.AEDisjoint
 #align measure_theory.measure_union MeasureTheory.measure_union
 
-/- warning: measure_theory.measure_union' -> MeasureTheory.measure_union' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s₁ s₂) -> (MeasurableSet.{u1} α m s₁) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₁ s₂)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s₁ s₂) -> (MeasurableSet.{u1} α m s₁) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s₁ s₂)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union' MeasureTheory.measure_union'ₓ'. -/
 theorem measure_union' (hd : Disjoint s₁ s₂) (h : MeasurableSet s₁) : μ (s₁ ∪ s₂) = μ s₁ + μ s₂ :=
   measure_union₀' h.NullMeasurableSet hd.AEDisjoint
 #align measure_theory.measure_union' MeasureTheory.measure_union'
 
-/- warning: measure_theory.measure_inter_add_diff -> MeasureTheory.measure_inter_add_diff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_inter_add_diff MeasureTheory.measure_inter_add_diffₓ'. -/
 theorem measure_inter_add_diff (s : Set α) (ht : MeasurableSet t) : μ (s ∩ t) + μ (s \ t) = μ s :=
   measure_inter_add_diff₀ _ ht.NullMeasurableSet
 #align measure_theory.measure_inter_add_diff MeasureTheory.measure_inter_add_diff
 
-/- warning: measure_theory.measure_diff_add_inter -> MeasureTheory.measure_diff_add_inter is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_add_inter MeasureTheory.measure_diff_add_interₓ'. -/
 theorem measure_diff_add_inter (s : Set α) (ht : MeasurableSet t) : μ (s \ t) + μ (s ∩ t) = μ s :=
   (add_comm _ _).trans (measure_inter_add_diff s ht)
 #align measure_theory.measure_diff_add_inter MeasureTheory.measure_diff_add_inter
 
-/- warning: measure_theory.measure_union_add_inter -> MeasureTheory.measure_union_add_inter is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_add_inter MeasureTheory.measure_union_add_interₓ'. -/
 theorem measure_union_add_inter (s : Set α) (ht : MeasurableSet t) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t :=
   by
@@ -186,33 +156,15 @@ theorem measure_union_add_inter (s : Set α) (ht : MeasurableSet t) :
   ac_rfl
 #align measure_theory.measure_union_add_inter MeasureTheory.measure_union_add_inter
 
-/- warning: measure_theory.measure_union_add_inter' -> MeasureTheory.measure_union_add_inter' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_add_inter' MeasureTheory.measure_union_add_inter'ₓ'. -/
 theorem measure_union_add_inter' (hs : MeasurableSet s) (t : Set α) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by
   rw [union_comm, inter_comm, measure_union_add_inter t hs, add_comm]
 #align measure_theory.measure_union_add_inter' MeasureTheory.measure_union_add_inter'
 
-/- warning: measure_theory.measure_add_measure_compl -> MeasureTheory.measure_add_measure_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_add_measure_compl MeasureTheory.measure_add_measure_complₓ'. -/
 theorem measure_add_measure_compl (h : MeasurableSet s) : μ s + μ (sᶜ) = μ univ :=
   measure_add_measure_compl₀ h.NullMeasurableSet
 #align measure_theory.measure_add_measure_compl MeasureTheory.measure_add_measure_compl
 
-/- warning: measure_theory.measure_bUnion₀ -> MeasureTheory.measure_biUnion₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.Pairwise.{u2} β s (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (p : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) p)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.Pairwise.{u2} β s (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β s) (fun (p : Set.Elem.{u2} β s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) p)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion₀ MeasureTheory.measure_biUnion₀ₓ'. -/
 theorem measure_biUnion₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
     (hd : s.Pairwise (AEDisjoint μ on f)) (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
@@ -222,45 +174,21 @@ theorem measure_biUnion₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
   exact measure_Union₀ (hd.on_injective Subtype.coe_injective fun x => x.2) fun x => h x x.2
 #align measure_theory.measure_bUnion₀ MeasureTheory.measure_biUnion₀
 
-/- warning: measure_theory.measure_bUnion -> MeasureTheory.measure_biUnion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s f) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (p : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) p)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s f) -> (forall (b : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β s) (fun (p : Set.Elem.{u2} β s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) p)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion MeasureTheory.measure_biUnionₓ'. -/
 theorem measure_biUnion {s : Set β} {f : β → Set α} (hs : s.Countable) (hd : s.PairwiseDisjoint f)
     (h : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
   measure_biUnion₀ hs hd.AEDisjoint fun b hb => (h b hb).NullMeasurableSet
 #align measure_theory.measure_bUnion MeasureTheory.measure_biUnion
 
-/- warning: measure_theory.measure_sUnion₀ -> MeasureTheory.measure_sUnion₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (MeasureTheory.AEDisjoint.{u1} α m μ)) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (MeasureTheory.NullMeasurableSet.{u1} α m s μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.sUnion.{u1} α S)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (fun (s : coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeSubtype.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x S))))) s))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (MeasureTheory.AEDisjoint.{u1} α m μ)) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (MeasureTheory.NullMeasurableSet.{u1} α m s μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.sUnion.{u1} α S)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} (Set.{u1} α) S) (fun (s : Set.Elem.{u1} (Set.{u1} α) S) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Subtype.val.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) x S) s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_sUnion₀ MeasureTheory.measure_sUnion₀ₓ'. -/
 theorem measure_sUnion₀ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise (AEDisjoint μ))
     (h : ∀ s ∈ S, NullMeasurableSet s μ) : μ (⋃₀ S) = ∑' s : S, μ s := by
   rw [sUnion_eq_bUnion, measure_bUnion₀ hs hd h]
 #align measure_theory.measure_sUnion₀ MeasureTheory.measure_sUnion₀
 
-/- warning: measure_theory.measure_sUnion -> MeasureTheory.measure_sUnion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (MeasurableSet.{u1} α m s)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.sUnion.{u1} α S)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (fun (s : coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeSubtype.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x S))))) s))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (MeasurableSet.{u1} α m s)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.sUnion.{u1} α S)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} (Set.{u1} α) S) (fun (s : Set.Elem.{u1} (Set.{u1} α) S) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Subtype.val.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) x S) s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_sUnion MeasureTheory.measure_sUnionₓ'. -/
 theorem measure_sUnion {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise Disjoint)
     (h : ∀ s ∈ S, MeasurableSet s) : μ (⋃₀ S) = ∑' s : S, μ s := by
   rw [sUnion_eq_bUnion, measure_bUnion hs hd h]
 #align measure_theory.measure_sUnion MeasureTheory.measure_sUnion
 
-/- warning: measure_theory.measure_bUnion_finset₀ -> MeasureTheory.measure_biUnion_finset₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.Pairwise.{u2} ι ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α ι (fun (b : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (p : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f p))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.Pairwise.{u2} ι (Finset.toSet.{u2} ι s) (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α ι (fun (b : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (p : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f p))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_biUnion_finset₀ₓ'. -/
 theorem measure_biUnion_finset₀ {s : Finset ι} {f : ι → Set α}
     (hd : Set.Pairwise (↑s) (AEDisjoint μ on f)) (hm : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
@@ -269,23 +197,11 @@ theorem measure_biUnion_finset₀ {s : Finset ι} {f : ι → Set α}
   exact measure_bUnion₀ s.countable_to_set hd hm
 #align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_biUnion_finset₀
 
-/- warning: measure_theory.measure_bUnion_finset -> MeasureTheory.measure_biUnion_finset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f) -> (forall (b : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α ι (fun (b : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (p : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f p))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Finset.toSet.{u2} ι s) f) -> (forall (b : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α ι (fun (b : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (p : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f p))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_finset MeasureTheory.measure_biUnion_finsetₓ'. -/
 theorem measure_biUnion_finset {s : Finset ι} {f : ι → Set α} (hd : PairwiseDisjoint (↑s) f)
     (hm : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
   measure_biUnion_finset₀ hd.AEDisjoint fun b hb => (hm b hb).NullMeasurableSet
 #align measure_theory.measure_bUnion_finset MeasureTheory.measure_biUnion_finset
 
-/- warning: measure_theory.tsum_meas_le_meas_Union_of_disjoint -> MeasureTheory.tsum_meas_le_meas_iUnion_of_disjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (As i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (As i))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_iUnion_of_disjointₓ'. -/
 /-- The measure of a disjoint union (even uncountable) of measurable sets is at least the sum of
 the measures of the sets. -/
 theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type _} [MeasurableSpace α] (μ : Measure α)
@@ -300,12 +216,6 @@ theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type _} [MeasurableSpace α]
   exact measure_mono (Union₂_subset_Union (fun i : ι => i ∈ s) fun i : ι => As i)
 #align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_iUnion_of_disjoint
 
-/- warning: measure_theory.tsum_measure_preimage_singleton -> MeasureTheory.tsum_measure_preimage_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β}, (Set.Countable.{u2} β s) -> (forall {f : α -> β}, (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (MeasurableSet.{u1} α m (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) y)))) -> (Eq.{1} ENNReal (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (b : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) b))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.preimage.{u1, u2} α β f s))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β}, (Set.Countable.{u2} β s) -> (forall {f : α -> β}, (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (MeasurableSet.{u1} α m (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.instSingletonSet.{u2} β) y)))) -> (Eq.{1} ENNReal (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β s) (fun (b : Set.Elem.{u2} β s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.instSingletonSet.{u2} β) (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) b))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.preimage.{u1, u2} α β f s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_measure_preimage_singleton MeasureTheory.tsum_measure_preimage_singletonₓ'. -/
 /-- If `s` is a countable set, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem tsum_measure_preimage_singleton {s : Set β} (hs : s.Countable) {f : α → β}
@@ -313,12 +223,6 @@ theorem tsum_measure_preimage_singleton {s : Set β} (hs : s.Countable) {f : α
   rw [← Set.biUnion_preimage_singleton, measure_bUnion hs (pairwise_disjoint_fiber _ _) hf]
 #align measure_theory.tsum_measure_preimage_singleton MeasureTheory.tsum_measure_preimage_singleton
 
-/- warning: measure_theory.sum_measure_preimage_singleton -> MeasureTheory.sum_measure_preimage_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : α -> β}, (forall (y : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) y s) -> (MeasurableSet.{u1} α m (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) y)))) -> (Eq.{1} ENNReal (Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.preimage.{u1, u2} α β f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} β) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (Finset.Set.hasCoeT.{u2} β))) s))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : α -> β}, (forall (y : β), (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) y s) -> (MeasurableSet.{u1} α m (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.instSingletonSet.{u2} β) y)))) -> (Eq.{1} ENNReal (Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.instSingletonSet.{u2} β) b)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.preimage.{u1, u2} α β f (Finset.toSet.{u2} β s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.sum_measure_preimage_singleton MeasureTheory.sum_measure_preimage_singletonₓ'. -/
 /-- If `s` is a `finset`, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem sum_measure_preimage_singleton (s : Finset β) {f : α → β}
@@ -327,63 +231,27 @@ theorem sum_measure_preimage_singleton (s : Finset β) {f : α → β}
     Finset.set_biUnion_preimage_singleton]
 #align measure_theory.sum_measure_preimage_singleton MeasureTheory.sum_measure_preimage_singleton
 
-/- warning: measure_theory.measure_diff_null' -> MeasureTheory.measure_diff_null' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s₁ s₂)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s₁ s₂)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_null' MeasureTheory.measure_diff_null'ₓ'. -/
 theorem measure_diff_null' (h : μ (s₁ ∩ s₂) = 0) : μ (s₁ \ s₂) = μ s₁ :=
   measure_congr <| diff_ae_eq_self.2 h
 #align measure_theory.measure_diff_null' MeasureTheory.measure_diff_null'
 
-/- warning: measure_theory.measure_diff_null -> MeasureTheory.measure_diff_null is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_null MeasureTheory.measure_diff_nullₓ'. -/
 theorem measure_diff_null (h : μ s₂ = 0) : μ (s₁ \ s₂) = μ s₁ :=
   measure_diff_null' <| measure_mono_null (inter_subset_right _ _) h
 #align measure_theory.measure_diff_null MeasureTheory.measure_diff_null
 
-/- warning: measure_theory.measure_add_diff -> MeasureTheory.measure_add_diff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) t s))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_add_diff MeasureTheory.measure_add_diffₓ'. -/
 theorem measure_add_diff (hs : MeasurableSet s) (t : Set α) : μ s + μ (t \ s) = μ (s ∪ t) := by
   rw [← measure_union' disjoint_sdiff_right hs, union_diff_self]
 #align measure_theory.measure_add_diff MeasureTheory.measure_add_diff
 
-/- warning: measure_theory.measure_diff' -> MeasureTheory.measure_diff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff' MeasureTheory.measure_diff'ₓ'. -/
 theorem measure_diff' (s : Set α) (hm : MeasurableSet t) (h_fin : μ t ≠ ∞) :
     μ (s \ t) = μ (s ∪ t) - μ t :=
   Eq.symm <| ENNReal.sub_eq_of_add_eq h_fin <| by rw [add_comm, measure_add_diff hm, union_comm]
 #align measure_theory.measure_diff' MeasureTheory.measure_diff'
 
-/- warning: measure_theory.measure_diff -> MeasureTheory.measure_diff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₂ s₁) -> (MeasurableSet.{u1} α m s₂) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₂ s₁) -> (MeasurableSet.{u1} α m s₂) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff MeasureTheory.measure_diffₓ'. -/
 theorem measure_diff (h : s₂ ⊆ s₁) (h₂ : MeasurableSet s₂) (h_fin : μ s₂ ≠ ∞) :
     μ (s₁ \ s₂) = μ s₁ - μ s₂ := by rw [measure_diff' _ h₂ h_fin, union_eq_self_of_subset_right h]
 #align measure_theory.measure_diff MeasureTheory.measure_diff
 
-/- warning: measure_theory.le_measure_diff -> MeasureTheory.le_measure_diff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂))
-Case conversion may be inaccurate. Consider using '#align measure_theory.le_measure_diff MeasureTheory.le_measure_diffₓ'. -/
 theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
   tsub_le_iff_left.2 <|
     calc
@@ -393,12 +261,6 @@ theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
       
 #align measure_theory.le_measure_diff MeasureTheory.le_measure_diff
 
-/- warning: measure_theory.measure_diff_lt_of_lt_add -> MeasureTheory.measure_diff_lt_of_lt_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) ε)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) ε))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) ε)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) t s)) ε))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_lt_of_lt_add MeasureTheory.measure_diff_lt_of_lt_addₓ'. -/
 theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞}
     (h : μ t < μ s + ε) : μ (t \ s) < ε :=
   by
@@ -406,33 +268,15 @@ theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' :
   exact ENNReal.sub_lt_of_lt_add (measure_mono hst) h
 #align measure_theory.measure_diff_lt_of_lt_add MeasureTheory.measure_diff_lt_of_lt_add
 
-/- warning: measure_theory.measure_diff_le_iff_le_add -> MeasureTheory.measure_diff_le_iff_le_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) ε) (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) ε)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) t s)) ε) (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) ε)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_le_iff_le_add MeasureTheory.measure_diff_le_iff_le_addₓ'. -/
 theorem measure_diff_le_iff_le_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞} :
     μ (t \ s) ≤ ε ↔ μ t ≤ μ s + ε := by rwa [measure_diff hst hs hs', tsub_le_iff_left]
 #align measure_theory.measure_diff_le_iff_le_add MeasureTheory.measure_diff_le_iff_le_add
 
-/- warning: measure_theory.measure_eq_measure_of_null_diff -> MeasureTheory.measure_eq_measure_of_null_diff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_eq_measure_of_null_diff MeasureTheory.measure_eq_measure_of_null_diffₓ'. -/
 theorem measure_eq_measure_of_null_diff {s t : Set α} (hst : s ⊆ t) (h_nulldiff : μ (t \ s) = 0) :
     μ s = μ t :=
   measure_congr (hst.EventuallyLE.antisymm <| ae_le_set.mpr h_nulldiff)
 #align measure_theory.measure_eq_measure_of_null_diff MeasureTheory.measure_eq_measure_of_null_diff
 
-/- warning: measure_theory.measure_eq_measure_of_between_null_diff -> MeasureTheory.measure_eq_measure_of_between_null_diff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (And (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₃)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (And (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₃)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_eq_measure_of_between_null_diff MeasureTheory.measure_eq_measure_of_between_null_diffₓ'. -/
 theorem measure_eq_measure_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 : s₁ ⊆ s₂) (h23 : s₂ ⊆ s₃)
     (h_nulldiff : μ (s₃ \ s₁) = 0) : μ s₁ = μ s₂ ∧ μ s₂ = μ s₃ :=
   by
@@ -447,44 +291,20 @@ theorem measure_eq_measure_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 :
   exact ⟨le12.antisymm (le23.trans key), le23.antisymm (key.trans le12)⟩
 #align measure_theory.measure_eq_measure_of_between_null_diff MeasureTheory.measure_eq_measure_of_between_null_diff
 
-/- warning: measure_theory.measure_eq_measure_smaller_of_between_null_diff -> MeasureTheory.measure_eq_measure_smaller_of_between_null_diff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_eq_measure_smaller_of_between_null_diff MeasureTheory.measure_eq_measure_smaller_of_between_null_diffₓ'. -/
 theorem measure_eq_measure_smaller_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 : s₁ ⊆ s₂)
     (h23 : s₂ ⊆ s₃) (h_nulldiff : μ (s₃ \ s₁) = 0) : μ s₁ = μ s₂ :=
   (measure_eq_measure_of_between_null_diff h12 h23 h_nulldiff).1
 #align measure_theory.measure_eq_measure_smaller_of_between_null_diff MeasureTheory.measure_eq_measure_smaller_of_between_null_diff
 
-/- warning: measure_theory.measure_eq_measure_larger_of_between_null_diff -> MeasureTheory.measure_eq_measure_larger_of_between_null_diff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₃))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₃))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_eq_measure_larger_of_between_null_diff MeasureTheory.measure_eq_measure_larger_of_between_null_diffₓ'. -/
 theorem measure_eq_measure_larger_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 : s₁ ⊆ s₂)
     (h23 : s₂ ⊆ s₃) (h_nulldiff : μ (s₃ \ s₁) = 0) : μ s₂ = μ s₃ :=
   (measure_eq_measure_of_between_null_diff h12 h23 h_nulldiff).2
 #align measure_theory.measure_eq_measure_larger_of_between_null_diff MeasureTheory.measure_eq_measure_larger_of_between_null_diff
 
-/- warning: measure_theory.measure_compl -> MeasureTheory.measure_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_compl MeasureTheory.measure_complₓ'. -/
 theorem measure_compl (h₁ : MeasurableSet s) (h_fin : μ s ≠ ∞) : μ (sᶜ) = μ univ - μ s := by
   rw [compl_eq_univ_diff]; exact measure_diff (subset_univ s) h₁ h_fin
 #align measure_theory.measure_compl MeasureTheory.measure_compl
 
-/- warning: measure_theory.union_ae_eq_left_iff_ae_subset -> MeasureTheory.union_ae_eq_left_iff_ae_subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Iff (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t) s) (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) t s)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Iff (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t) s) (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) t s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.union_ae_eq_left_iff_ae_subset MeasureTheory.union_ae_eq_left_iff_ae_subsetₓ'. -/
 @[simp]
 theorem union_ae_eq_left_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] s ↔ t ≤ᵐ[μ] s :=
   by
@@ -496,23 +316,11 @@ theorem union_ae_eq_left_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] s ↔ t ≤
           HasSubset.Subset.eventuallyLE <| subset_union_left s t⟩⟩
 #align measure_theory.union_ae_eq_left_iff_ae_subset MeasureTheory.union_ae_eq_left_iff_ae_subset
 
-/- warning: measure_theory.union_ae_eq_right_iff_ae_subset -> MeasureTheory.union_ae_eq_right_iff_ae_subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Iff (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t) t) (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Iff (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t) t) (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t)
-Case conversion may be inaccurate. Consider using '#align measure_theory.union_ae_eq_right_iff_ae_subset MeasureTheory.union_ae_eq_right_iff_ae_subsetₓ'. -/
 @[simp]
 theorem union_ae_eq_right_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] t ↔ s ≤ᵐ[μ] t := by
   rw [union_comm, union_ae_eq_left_iff_ae_subset]
 #align measure_theory.union_ae_eq_right_iff_ae_subset MeasureTheory.union_ae_eq_right_iff_ae_subset
 
-/- warning: measure_theory.ae_eq_of_ae_subset_of_measure_ge -> MeasureTheory.ae_eq_of_ae_subset_of_measure_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_of_ae_subset_of_measure_ge MeasureTheory.ae_eq_of_ae_subset_of_measure_geₓ'. -/
 theorem ae_eq_of_ae_subset_of_measure_ge (h₁ : s ≤ᵐ[μ] t) (h₂ : μ t ≤ μ s) (hsm : MeasurableSet s)
     (ht : μ t ≠ ∞) : s =ᵐ[μ] t :=
   by
@@ -522,24 +330,12 @@ theorem ae_eq_of_ae_subset_of_measure_ge (h₁ : s ≤ᵐ[μ] t) (h₂ : μ t 
   rw [measure_diff' t hsm ht, measure_congr (union_ae_eq_left_iff_ae_subset.mpr h₁), h₂, tsub_self]
 #align measure_theory.ae_eq_of_ae_subset_of_measure_ge MeasureTheory.ae_eq_of_ae_subset_of_measure_ge
 
-/- warning: measure_theory.ae_eq_of_subset_of_measure_ge -> MeasureTheory.ae_eq_of_subset_of_measure_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_of_subset_of_measure_ge MeasureTheory.ae_eq_of_subset_of_measure_geₓ'. -/
 /-- If `s ⊆ t`, `μ t ≤ μ s`, `μ t ≠ ∞`, and `s` is measurable, then `s =ᵐ[μ] t`. -/
 theorem ae_eq_of_subset_of_measure_ge (h₁ : s ⊆ t) (h₂ : μ t ≤ μ s) (hsm : MeasurableSet s)
     (ht : μ t ≠ ∞) : s =ᵐ[μ] t :=
   ae_eq_of_ae_subset_of_measure_ge (HasSubset.Subset.eventuallyLE h₁) h₂ hsm ht
 #align measure_theory.ae_eq_of_subset_of_measure_ge MeasureTheory.ae_eq_of_subset_of_measure_ge
 
-/- warning: measure_theory.measure_Union_congr_of_subset -> MeasureTheory.measure_iUnion_congr_of_subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t b)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => s b))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => t b))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (t b)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α β (fun (b : β) => s b))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α β (fun (b : β) => t b))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_iUnion_congr_of_subsetₓ'. -/
 theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : β → Set α}
     (hsub : ∀ b, s b ⊆ t b) (h_le : ∀ b, μ (t b) ≤ μ (s b)) : μ (⋃ b, s b) = μ (⋃ b, t b) :=
   by
@@ -574,12 +370,6 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
     
 #align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_iUnion_congr_of_subset
 
-/- warning: measure_theory.measure_union_congr_of_subset -> MeasureTheory.measure_union_congr_of_subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {t₁ : Set.{u1} α} {t₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₁ s₂) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t₁ t₂) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t₁)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₁ t₁)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₂ t₂)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {t₁ : Set.{u1} α} {t₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₁ s₂) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t₁ t₂) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t₂) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t₁)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s₁ t₁)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s₂ t₂)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_congr_of_subset MeasureTheory.measure_union_congr_of_subsetₓ'. -/
 theorem measure_union_congr_of_subset {t₁ t₂ : Set α} (hs : s₁ ⊆ s₂) (hsμ : μ s₂ ≤ μ s₁)
     (ht : t₁ ⊆ t₂) (htμ : μ t₂ ≤ μ t₁) : μ (s₁ ∪ t₁) = μ (s₂ ∪ t₂) :=
   by
@@ -604,12 +394,6 @@ theorem measure_biUnion_toMeasurable {I : Set β} (hc : I.Countable) (s : β →
 #align measure_theory.measure_bUnion_to_measurable MeasureTheory.measure_biUnion_toMeasurable
 -/
 
-/- warning: measure_theory.measure_to_measurable_union -> MeasureTheory.measure_toMeasurable_union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) (MeasureTheory.toMeasurable.{u1} α m μ s) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m μ s) t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_to_measurable_union MeasureTheory.measure_toMeasurable_unionₓ'. -/
 @[simp]
 theorem measure_toMeasurable_union : μ (toMeasurable μ s ∪ t) = μ (s ∪ t) :=
   Eq.symm <|
@@ -617,12 +401,6 @@ theorem measure_toMeasurable_union : μ (toMeasurable μ s ∪ t) = μ (s ∪ t)
       le_rfl
 #align measure_theory.measure_to_measurable_union MeasureTheory.measure_toMeasurable_union
 
-/- warning: measure_theory.measure_union_to_measurable -> MeasureTheory.measure_union_toMeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s (MeasureTheory.toMeasurable.{u1} α m μ t))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s (MeasureTheory.toMeasurable.{u1} α m μ t))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_to_measurable MeasureTheory.measure_union_toMeasurableₓ'. -/
 @[simp]
 theorem measure_union_toMeasurable : μ (s ∪ toMeasurable μ t) = μ (s ∪ t) :=
   Eq.symm <|
@@ -630,24 +408,12 @@ theorem measure_union_toMeasurable : μ (s ∪ toMeasurable μ t) = μ (s ∪ t)
       (measure_toMeasurable _).le
 #align measure_theory.measure_union_to_measurable MeasureTheory.measure_union_toMeasurable
 
-/- warning: measure_theory.sum_measure_le_measure_univ -> MeasureTheory.sum_measure_le_measure_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Finset.toSet.{u2} ι s) t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (t i))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.sum_measure_le_measure_univ MeasureTheory.sum_measure_le_measure_univₓ'. -/
 theorem sum_measure_le_measure_univ {s : Finset ι} {t : ι → Set α}
     (h : ∀ i ∈ s, MeasurableSet (t i)) (H : Set.PairwiseDisjoint (↑s) t) :
     (∑ i in s, μ (t i)) ≤ μ (univ : Set α) := by rw [← measure_bUnion_finset H h];
   exact measure_mono (subset_univ _)
 #align measure_theory.sum_measure_le_measure_univ MeasureTheory.sum_measure_le_measure_univ
 
-/- warning: measure_theory.tsum_measure_le_measure_univ -> MeasureTheory.tsum_measure_le_measure_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {s : ι -> (Set.{u2} α)}, (forall (i : ι), MeasurableSet.{u2} α m (s i)) -> (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) s)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (s i))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.univ.{u2} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_measure_le_measure_univ MeasureTheory.tsum_measure_le_measure_univₓ'. -/
 theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i))
     (H : Pairwise (Disjoint on s)) : (∑' i, μ (s i)) ≤ μ (univ : Set α) :=
   by
@@ -655,12 +421,6 @@ theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, Measurable
   exact iSup_le fun s => sum_measure_le_measure_univ (fun i hi => hs i) fun i hi j hj hij => H hij
 #align measure_theory.tsum_measure_le_measure_univ MeasureTheory.tsum_measure_le_measure_univ
 
-/- warning: measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure -> MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)))) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι i j) (fun (h : Ne.{succ u2} ι i j) => Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (s i) (s j))))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) {s : ι -> (Set.{u2} α)}, (forall (i : ι), MeasurableSet.{u2} α m (s i)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.univ.{u2} α)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (s i)))) -> (Exists.{succ u1} ι (fun (i : ι) => Exists.{succ u1} ι (fun (j : ι) => Exists.{0} (Ne.{succ u1} ι i j) (fun (h : Ne.{succ u1} ι i j) => Set.Nonempty.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) (s i) (s j))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measureₓ'. -/
 /-- Pigeonhole principle for measure spaces: if `∑' i, μ (s i) > μ univ`, then
 one of the intersections `s i ∩ s j` is not empty. -/
 theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpace α}
@@ -674,12 +434,6 @@ theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpa
   exact fun x hx => H i j hij ⟨x, hx⟩
 #align measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure
 
-/- warning: measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure -> MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t i)))) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{0} (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) j s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) j s) => Exists.{0} (Ne.{succ u2} ι i j) (fun (h : Ne.{succ u2} ι i j) => Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (t i) (t j))))))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) {s : Finset.{u1} ι} {t : ι -> (Set.{u2} α)}, (forall (i : ι), (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i s) -> (MeasurableSet.{u2} α m (t i))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.univ.{u2} α)) (Finset.sum.{0, u1} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (t i)))) -> (Exists.{succ u1} ι (fun (i : ι) => And (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i s) (Exists.{succ u1} ι (fun (j : ι) => And (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) j s) (Exists.{0} (Ne.{succ u1} ι i j) (fun (_h : Ne.{succ u1} ι i j) => Set.Nonempty.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) (t i) (t j))))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measureₓ'. -/
 /-- Pigeonhole principle for measure spaces: if `s` is a `finset` and
 `∑ i in s, μ (t i) > μ univ`, then one of the intersections `t i ∩ t j` is not empty. -/
 theorem exists_nonempty_inter_of_measure_univ_lt_sum_measure {m : MeasurableSpace α} (μ : Measure α)
@@ -694,12 +448,6 @@ theorem exists_nonempty_inter_of_measure_univ_lt_sum_measure {m : MeasurableSpac
   exact fun x hx => H i hi j hj hij ⟨x, hx⟩
 #align measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measure
 
-/- warning: measure_theory.nonempty_inter_of_measure_lt_add -> MeasureTheory.nonempty_inter_of_measure_lt_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.nonempty_inter_of_measure_lt_add MeasureTheory.nonempty_inter_of_measure_lt_addₓ'. -/
 /-- If two sets `s` and `t` are included in a set `u`, and `μ s + μ t > μ u`,
 then `s` intersects `t`. Version assuming that `t` is measurable. -/
 theorem nonempty_inter_of_measure_lt_add {m : MeasurableSpace α} (μ : Measure α) {s t u : Set α}
@@ -713,12 +461,6 @@ theorem nonempty_inter_of_measure_lt_add {m : MeasurableSpace α} (μ : Measure
     
 #align measure_theory.nonempty_inter_of_measure_lt_add MeasureTheory.nonempty_inter_of_measure_lt_add
 
-/- warning: measure_theory.nonempty_inter_of_measure_lt_add' -> MeasureTheory.nonempty_inter_of_measure_lt_add' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.nonempty_inter_of_measure_lt_add' MeasureTheory.nonempty_inter_of_measure_lt_add'ₓ'. -/
 /-- If two sets `s` and `t` are included in a set `u`, and `μ s + μ t > μ u`,
 then `s` intersects `t`. Version assuming that `s` is measurable. -/
 theorem nonempty_inter_of_measure_lt_add' {m : MeasurableSpace α} (μ : Measure α) {s t u : Set α}
@@ -729,12 +471,6 @@ theorem nonempty_inter_of_measure_lt_add' {m : MeasurableSpace α} (μ : Measure
   exact nonempty_inter_of_measure_lt_add μ hs h't h's h
 #align measure_theory.nonempty_inter_of_measure_lt_add' MeasureTheory.nonempty_inter_of_measure_lt_add'
 
-/- warning: measure_theory.measure_Union_eq_supr -> MeasureTheory.measure_iUnion_eq_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6293 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6295 : Set.{u1} α) => HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6293 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6295) s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union_eq_supr MeasureTheory.measure_iUnion_eq_iSupₓ'. -/
 /-- Continuity from below: the measure of the union of a directed sequence of (not necessarily
 -measurable) sets is the supremum of the measures. -/
 theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s) :
@@ -775,12 +511,6 @@ theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed
     
 #align measure_theory.measure_Union_eq_supr MeasureTheory.measure_iUnion_eq_iSup
 
-/- warning: measure_theory.measure_bUnion_eq_supr -> MeasureTheory.measure_biUnion_eq_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : ι -> (Set.{u1} α)} {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (DirectedOn.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i)))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {s : ι -> (Set.{u2} α)} {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (DirectedOn.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7636 : Set.{u2} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7638 : Set.{u2} α) => HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7636 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7638) s) t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i)))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (s i)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_biUnion_eq_iSupₓ'. -/
 theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countable)
     (hd : DirectedOn ((· ⊆ ·) on s) t) : μ (⋃ i ∈ t, s i) = ⨆ i ∈ t, μ (s i) :=
   by
@@ -788,12 +518,6 @@ theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countab
   rw [bUnion_eq_Union, measure_Union_eq_supr hd.directed_coe, ← iSup_subtype'']
 #align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_biUnion_eq_iSup
 
-/- warning: measure_theory.measure_Inter_eq_infi -> MeasureTheory.measure_iInter_eq_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Directed.{u1, succ u2} (Set.{u1} α) ι (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iInter.{u1, succ u2} α ι (fun (i : ι) => s i))) (iInf.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7814 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7816 : Set.{u1} α) => Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7814 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7816) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iInter.{u1, succ u2} α ι (fun (i : ι) => s i))) (iInf.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_iInter_eq_iInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the infimum of the measures. -/
@@ -817,12 +541,6 @@ theorem measure_iInter_eq_iInf [Countable ι] {s : ι → Set α} (h : ∀ i, Me
   · exact hd.mono_comp _ fun _ _ => diff_subset_diff_right
 #align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_iInter_eq_iInf
 
-/- warning: measure_theory.tendsto_measure_Union -> MeasureTheory.tendsto_measure_iUnion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : SemilatticeSup.{u2} ι] [_inst_2 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Monotone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) s) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1))) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α ι (fun (n : ι) => s n)))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : SemilatticeSup.{u2} ι] [_inst_2 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Monotone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α ι (fun (n : ι) => s n)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_iUnionₓ'. -/
 /-- Continuity from below: the measure of the union of an increasing sequence of measurable sets
 is the limit of the measures. -/
 theorem tendsto_measure_iUnion [SemilatticeSup ι] [Countable ι] {s : ι → Set α} (hm : Monotone s) :
@@ -832,12 +550,6 @@ theorem tendsto_measure_iUnion [SemilatticeSup ι] [Countable ι] {s : ι → Se
   exact tendsto_atTop_iSup fun n m hnm => measure_mono <| hm hnm
 #align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_iUnion
 
-/- warning: measure_theory.tendsto_measure_Inter -> MeasureTheory.tendsto_measure_iInter is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : SemilatticeSup.{u2} ι] {s : ι -> (Set.{u1} α)}, (forall (n : ι), MeasurableSet.{u1} α m (s n)) -> (Antitone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2))) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iInter.{u1, succ u2} α ι (fun (n : ι) => s n)))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : SemilatticeSup.{u2} ι] {s : ι -> (Set.{u1} α)}, (forall (n : ι), MeasurableSet.{u1} α m (s n)) -> (Antitone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iInter.{u1, succ u2} α ι (fun (n : ι) => s n)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_iInterₓ'. -/
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the limit of the measures. -/
 theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Set α}
@@ -848,9 +560,6 @@ theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Se
   exact tendsto_atTop_iInf fun n m hnm => measure_mono <| hm hnm
 #align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_iInter
 
-/- warning: measure_theory.tendsto_measure_bInter_gt -> MeasureTheory.tendsto_measure_biInter_gt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gtₓ'. -/
 /-- The measure of the intersection of a decreasing sequence of measurable
 sets indexed by a linear order with first countable topology is the limit of the measures. -/
 theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSpace ι]
@@ -894,12 +603,6 @@ theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSp
   filter_upwards [this]with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
 #align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gt
 
-/- warning: measure_theory.measure_limsup_eq_zero -> MeasureTheory.measure_limsup_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_limsup_eq_zero MeasureTheory.measure_limsup_eq_zeroₓ'. -/
 /-- One direction of the **Borel-Cantelli lemma**: if (sᵢ) is a sequence of sets such
 that `∑ μ sᵢ` is finite, then the limit superior of the `sᵢ` is a null set. -/
 theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠ ∞) :
@@ -933,12 +636,6 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
   exact fun ⟨i, hi⟩ => ⟨i + (m - n), by simpa only [add_assoc, tsub_add_cancel_of_le hnm] using hi⟩
 #align measure_theory.measure_limsup_eq_zero MeasureTheory.measure_limsup_eq_zero
 
-/- warning: measure_theory.measure_liminf_eq_zero -> MeasureTheory.measure_liminf_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_liminf_eq_zero MeasureTheory.measure_liminf_eq_zeroₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠ ⊤) : μ (liminf s atTop) = 0 :=
@@ -955,12 +652,6 @@ theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠
   exact (μ.mono this).trans (by simp [measure_limsup_eq_zero h])
 #align measure_theory.measure_liminf_eq_zero MeasureTheory.measure_liminf_eq_zero
 
-/- warning: measure_theory.limsup_ae_eq_of_forall_ae_eq -> MeasureTheory.limsup_ae_eq_of_forall_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Nat -> (Set.{u1} α)) {t : Set.{u1} α}, (forall (n : Nat), Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (s n) t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) t)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Nat -> (Set.{u1} α)) {t : Set.{u1} α}, (forall (n : Nat), Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (s n) t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) t)
-Case conversion may be inaccurate. Consider using '#align measure_theory.limsup_ae_eq_of_forall_ae_eq MeasureTheory.limsup_ae_eq_of_forall_ae_eqₓ'. -/
 theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     (h : ∀ n, s n =ᵐ[μ] t) :-- Need `@` below because of diamond; see gh issue #16932
         @limsup
@@ -977,12 +668,6 @@ theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     simp [h]
 #align measure_theory.limsup_ae_eq_of_forall_ae_eq MeasureTheory.limsup_ae_eq_of_forall_ae_eq
 
-/- warning: measure_theory.liminf_ae_eq_of_forall_ae_eq -> MeasureTheory.liminf_ae_eq_of_forall_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Nat -> (Set.{u1} α)) {t : Set.{u1} α}, (forall (n : Nat), Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (s n) t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) t)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Nat -> (Set.{u1} α)) {t : Set.{u1} α}, (forall (n : Nat), Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (s n) t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) t)
-Case conversion may be inaccurate. Consider using '#align measure_theory.liminf_ae_eq_of_forall_ae_eq MeasureTheory.liminf_ae_eq_of_forall_ae_eqₓ'. -/
 theorem liminf_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     (h : ∀ n, s n =ᵐ[μ] t) :-- Need `@` below because of diamond; see gh issue #16932
         @liminf
@@ -999,12 +684,6 @@ theorem liminf_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     simp [h]
 #align measure_theory.liminf_ae_eq_of_forall_ae_eq MeasureTheory.liminf_ae_eq_of_forall_ae_eq
 
-/- warning: measure_theory.measure_if -> MeasureTheory.measure_if is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {x : β} {t : Set.{u2} β} {s : Set.{u1} α}, Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (ite.{succ u1} (Set.{u1} α) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (Classical.propDecidable (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t)) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))) (Set.indicator.{u2, 0} β ENNReal ENNReal.hasZero t (fun (_x : β) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) x)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {x : β} {t : Set.{u2} β} {s : Set.{u1} α}, Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (ite.{succ u1} (Set.{u1} α) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (Classical.propDecidable (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t)) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)))) (Set.indicator.{u2, 0} β ENNReal instENNRealZero t (fun (_x : β) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) x)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_if MeasureTheory.measure_ifₓ'. -/
 theorem measure_if {x : β} {t : Set β} {s : Set α} :
     μ (if x ∈ t then s else ∅) = indicator t (fun _ => μ s) x := by split_ifs <;> simp [h]
 #align measure_theory.measure_if MeasureTheory.measure_if
@@ -1048,12 +727,6 @@ theorem toMeasure_apply (m : OuterMeasure α) (h : ms ≤ m.caratheodory) {s : S
 #align measure_theory.to_measure_apply MeasureTheory.toMeasure_apply
 -/
 
-/- warning: measure_theory.le_to_measure_apply -> MeasureTheory.le_toMeasure_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [ms : MeasurableSpace.{u1} α] (m : MeasureTheory.OuterMeasure.{u1} α) (h : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) ms (MeasureTheory.OuterMeasure.caratheodory.{u1} α m)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u1} α) m s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α ms) (fun (_x : MeasureTheory.Measure.{u1} α ms) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α ms) (MeasureTheory.OuterMeasure.toMeasure.{u1} α ms m h) s)
-but is expected to have type
-  forall {α : Type.{u1}} [ms : MeasurableSpace.{u1} α] (m : MeasureTheory.OuterMeasure.{u1} α) (h : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) ms (MeasureTheory.OuterMeasure.caratheodory.{u1} α m)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α m s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α ms (MeasureTheory.OuterMeasure.toMeasure.{u1} α ms m h)) s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.le_to_measure_apply MeasureTheory.le_toMeasure_applyₓ'. -/
 theorem le_toMeasure_apply (m : OuterMeasure α) (h : ms ≤ m.caratheodory) (s : Set α) :
     m s ≤ m.toMeasure h s :=
   m.le_trim s
@@ -1096,12 +769,6 @@ variable {μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α} {s s' t : Set α
 
 namespace Measure
 
-/- warning: measure_theory.measure.measure_inter_eq_of_measure_eq -> MeasureTheory.Measure.measure_inter_eq_of_measure_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ u)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t u) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) u s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) u)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t u) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) u s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_inter_eq_of_measure_eq MeasureTheory.Measure.measure_inter_eq_of_measure_eqₓ'. -/
 /-- If `u` is a superset of `t` with the same (finite) measure (both sets possibly non-measurable),
 then for any measurable set `s` one also has `μ (t ∩ s) = μ (u ∩ s)`. -/
 theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (h : μ t = μ u)
@@ -1121,12 +788,6 @@ theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (
   exact ENNReal.le_of_add_le_add_right B A
 #align measure_theory.measure.measure_inter_eq_of_measure_eq MeasureTheory.Measure.measure_inter_eq_of_measure_eq
 
-/- warning: measure_theory.measure.measure_to_measurable_inter -> MeasureTheory.Measure.measure_toMeasurable_inter is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_inter MeasureTheory.Measure.measure_toMeasurable_interₓ'. -/
 /-- The measurable superset `to_measurable μ t` of `t` (which has the same measure as `t`)
 satisfies, for any measurable set `s`, the equality `μ (to_measurable μ t ∩ s) = μ (u ∩ s)`.
 Here, we require that the measure of `t` is finite. The conclusion holds without this assumption
@@ -1152,12 +813,6 @@ theorem zero_toOuterMeasure {m : MeasurableSpace α} : (0 : Measure α).toOuterM
 #align measure_theory.measure.zero_to_outer_measure MeasureTheory.Measure.zero_toOuterMeasure
 -/
 
-/- warning: measure_theory.measure.coe_zero -> MeasureTheory.Measure.coe_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α}, Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) (OfNat.ofNat.{u1} ((Set.{u1} α) -> ENNReal) 0 (OfNat.mk.{u1} ((Set.{u1} α) -> ENNReal) 0 (Zero.zero.{u1} ((Set.{u1} α) -> ENNReal) (Pi.instZero.{u1, 0} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => ENNReal) (fun (i : Set.{u1} α) => ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α}, Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) (OfNat.ofNat.{u1} ((Set.{u1} α) -> ENNReal) 0 (Zero.toOfNat0.{u1} ((Set.{u1} α) -> ENNReal) (Pi.instZero.{u1, 0} (Set.{u1} α) (fun (a._@.Mathlib.MeasureTheory.Measure.OuterMeasure._hyg.11 : Set.{u1} α) => ENNReal) (fun (i : Set.{u1} α) => instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.coe_zero MeasureTheory.Measure.coe_zeroₓ'. -/
 @[simp, norm_cast]
 theorem coe_zero {m : MeasurableSpace α} : ⇑(0 : Measure α) = 0 :=
   rfl
@@ -1191,23 +846,11 @@ theorem add_toOuterMeasure {m : MeasurableSpace α} (μ₁ μ₂ : Measure α) :
 #align measure_theory.measure.add_to_outer_measure MeasureTheory.Measure.add_toOuterMeasure
 -/
 
-/- warning: measure_theory.measure.coe_add -> MeasureTheory.Measure.coe_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ₁ : MeasureTheory.Measure.{u1} α m) (μ₂ : MeasureTheory.Measure.{u1} α m), Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ₁ μ₂)) (HAdd.hAdd.{u1, u1, u1} ((Set.{u1} α) -> ENNReal) ((Set.{u1} α) -> ENNReal) ((Set.{u1} α) -> ENNReal) (instHAdd.{u1} ((Set.{u1} α) -> ENNReal) (Pi.instAdd.{u1, 0} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => ENNReal) (fun (i : Set.{u1} α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ₂))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ₁ : MeasureTheory.Measure.{u1} α m) (μ₂ : MeasureTheory.Measure.{u1} α m), Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ₁ μ₂))) (HAdd.hAdd.{u1, u1, u1} ((Set.{u1} α) -> ENNReal) ((Set.{u1} α) -> ENNReal) ((Set.{u1} α) -> ENNReal) (instHAdd.{u1} ((Set.{u1} α) -> ENNReal) (Pi.instAdd.{u1, 0} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => ENNReal) (fun (i : Set.{u1} α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ₁)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ₂)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.coe_add MeasureTheory.Measure.coe_addₓ'. -/
 @[simp, norm_cast]
 theorem coe_add {m : MeasurableSpace α} (μ₁ μ₂ : Measure α) : ⇑(μ₁ + μ₂) = μ₁ + μ₂ :=
   rfl
 #align measure_theory.measure.coe_add MeasureTheory.Measure.coe_add
 
-/- warning: measure_theory.measure.add_apply -> MeasureTheory.Measure.add_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ₁ : MeasureTheory.Measure.{u1} α m) (μ₂ : MeasureTheory.Measure.{u1} α m) (s : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ₁ μ₂) s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ₁ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ₂ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ₁ : MeasureTheory.Measure.{u1} α m) (μ₂ : MeasureTheory.Measure.{u1} α m) (s : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ₁ μ₂)) s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ₁) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ₂) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.add_apply MeasureTheory.Measure.add_applyₓ'. -/
 theorem add_apply {m : MeasurableSpace α} (μ₁ μ₂ : Measure α) (s : Set α) :
     (μ₁ + μ₂) s = μ₁ s + μ₂ s :=
   rfl
@@ -1229,35 +872,17 @@ instance [MeasurableSpace α] : SMul R (Measure α) :=
         simp_rw [measure_Union hd hs, ENNReal.tsum_mul_left]
       trimmed := by rw [outer_measure.trim_smul, μ.trimmed] }⟩
 
-/- warning: measure_theory.measure.smul_to_outer_measure -> MeasureTheory.Measure.smul_toOuterMeasure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : SMul.{u2, 0} R ENNReal] [_inst_4 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_3 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_3] {m : MeasurableSpace.{u1} α} (c : R) (μ : MeasureTheory.Measure.{u1} α m), Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, u2} α R _inst_3 _inst_4 m) c μ)) (SMul.smul.{u2, u1} R (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.hasSmul.{u1, u2} α R _inst_3 _inst_4) c (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ))
-but is expected to have type
-  forall {α : Type.{u2}} {R : Type.{u1}} [_inst_3 : SMul.{u1, 0} R ENNReal] [_inst_4 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_3 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3] {m : MeasurableSpace.{u2} α} (c : R) (μ : MeasureTheory.Measure.{u2} α m), Eq.{succ u2} (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.Measure.toOuterMeasure.{u2} α m (HSMul.hSMul.{u1, u2, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.{u2} α m) (instHSMul.{u1, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instSMul.{u2, u1} α R _inst_3 _inst_4 m)) c μ)) (HSMul.hSMul.{u1, u2, u2} R (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u2} α) (instHSMul.{u1, u2} R (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.instSMul.{u2, u1} α R _inst_3 _inst_4)) c (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.smul_to_outer_measure MeasureTheory.Measure.smul_toOuterMeasureₓ'. -/
 @[simp]
 theorem smul_toOuterMeasure {m : MeasurableSpace α} (c : R) (μ : Measure α) :
     (c • μ).toOuterMeasure = c • μ.toOuterMeasure :=
   rfl
 #align measure_theory.measure.smul_to_outer_measure MeasureTheory.Measure.smul_toOuterMeasure
 
-/- warning: measure_theory.measure.coe_smul -> MeasureTheory.Measure.coe_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : SMul.{u2, 0} R ENNReal] [_inst_4 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_3 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_3] {m : MeasurableSpace.{u1} α} (c : R) (μ : MeasureTheory.Measure.{u1} α m), Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, u2} α R _inst_3 _inst_4 m) c μ)) (SMul.smul.{u2, u1} R ((Set.{u1} α) -> ENNReal) (Function.hasSMul.{u1, u2, 0} (Set.{u1} α) R ENNReal _inst_3) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ))
-but is expected to have type
-  forall {α : Type.{u2}} {R : Type.{u1}} [_inst_3 : SMul.{u1, 0} R ENNReal] [_inst_4 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_3 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3] {m : MeasurableSpace.{u2} α} (c : R) (μ : MeasureTheory.Measure.{u2} α m), Eq.{succ u2} ((Set.{u2} α) -> ENNReal) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (HSMul.hSMul.{u1, u2, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.{u2} α m) (instHSMul.{u1, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instSMul.{u2, u1} α R _inst_3 _inst_4 m)) c μ))) (HSMul.hSMul.{u1, u2, u2} R ((Set.{u2} α) -> ENNReal) ((Set.{u2} α) -> ENNReal) (instHSMul.{u1, u2} R ((Set.{u2} α) -> ENNReal) (Pi.instSMul.{u2, 0, u1} (Set.{u2} α) R (fun (a._@.Mathlib.MeasureTheory.Measure.OuterMeasure._hyg.11 : Set.{u2} α) => ENNReal) (fun (i : Set.{u2} α) => _inst_3))) c (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.coe_smul MeasureTheory.Measure.coe_smulₓ'. -/
 @[simp, norm_cast]
 theorem coe_smul {m : MeasurableSpace α} (c : R) (μ : Measure α) : ⇑(c • μ) = c • μ :=
   rfl
 #align measure_theory.measure.coe_smul MeasureTheory.Measure.coe_smul
 
-/- warning: measure_theory.measure.smul_apply -> MeasureTheory.Measure.smul_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : SMul.{u2, 0} R ENNReal] [_inst_4 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_3 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_3] {m : MeasurableSpace.{u1} α} (c : R) (μ : MeasureTheory.Measure.{u1} α m) (s : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, u2} α R _inst_3 _inst_4 m) c μ) s) (SMul.smul.{u2, 0} R ENNReal _inst_3 c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s))
-but is expected to have type
-  forall {α : Type.{u2}} {R : Type.{u1}} [_inst_3 : SMul.{u1, 0} R ENNReal] [_inst_4 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_3 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3] {m : MeasurableSpace.{u2} α} (c : R) (μ : MeasureTheory.Measure.{u2} α m) (s : Set.{u2} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (HSMul.hSMul.{u1, u2, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.{u2} α m) (instHSMul.{u1, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instSMul.{u2, u1} α R _inst_3 _inst_4 m)) c μ)) s) (HSMul.hSMul.{u1, 0, 0} R ENNReal ENNReal (instHSMul.{u1, 0} R ENNReal _inst_3) c (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.smul_apply MeasureTheory.Measure.smul_applyₓ'. -/
 @[simp]
 theorem smul_apply {m : MeasurableSpace α} (c : R) (μ : Measure α) (s : Set α) :
     (c • μ) s = c • μ s :=
@@ -1295,24 +920,12 @@ def coeAddHom {m : MeasurableSpace α} : Measure α →+ Set α → ℝ≥0∞ :
 #align measure_theory.measure.coe_add_hom MeasureTheory.Measure.coeAddHom
 -/
 
-/- warning: measure_theory.measure.coe_finset_sum -> MeasureTheory.Measure.coe_finset_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (I : Finset.{u2} ι) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (Finset.sum.{u1, u2} (MeasureTheory.Measure.{u1} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u1} α m) I (fun (i : ι) => μ i))) (Finset.sum.{u1, u2} ((Set.{u1} α) -> ENNReal) ι (Pi.addCommMonoid.{u1, 0} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => ENNReal) (fun (i : Set.{u1} α) => OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) I (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (μ i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} (I : Finset.{u1} ι) (μ : ι -> (MeasureTheory.Measure.{u2} α m)), Eq.{succ u2} ((Set.{u2} α) -> ENNReal) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (Finset.sum.{u2, u1} (MeasureTheory.Measure.{u2} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u2} α m) I (fun (i : ι) => μ i)))) (Finset.sum.{u2, u1} ((Set.{u2} α) -> ENNReal) ι (Pi.addCommMonoid.{u2, 0} (Set.{u2} α) (fun (ᾰ : Set.{u2} α) => ENNReal) (fun (i : Set.{u2} α) => LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal))) I (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (μ i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.coe_finset_sum MeasureTheory.Measure.coe_finset_sumₓ'. -/
 @[simp]
 theorem coe_finset_sum {m : MeasurableSpace α} (I : Finset ι) (μ : ι → Measure α) :
     ⇑(∑ i in I, μ i) = ∑ i in I, μ i :=
   (@coeAddHom α m).map_sum _ _
 #align measure_theory.measure.coe_finset_sum MeasureTheory.Measure.coe_finset_sum
 
-/- warning: measure_theory.measure.finset_sum_apply -> MeasureTheory.Measure.finset_sum_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (I : Finset.{u2} ι) (μ : ι -> (MeasureTheory.Measure.{u1} α m)) (s : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (Finset.sum.{u1, u2} (MeasureTheory.Measure.{u1} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u1} α m) I (fun (i : ι) => μ i)) s) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) I (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (μ i) s))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} (I : Finset.{u1} ι) (μ : ι -> (MeasureTheory.Measure.{u2} α m)) (s : Set.{u2} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (Finset.sum.{u2, u1} (MeasureTheory.Measure.{u2} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u2} α m) I (fun (i : ι) => μ i))) s) (Finset.sum.{0, u1} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) I (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (μ i)) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finset_sum_apply MeasureTheory.Measure.finset_sum_applyₓ'. -/
 theorem finset_sum_apply {m : MeasurableSpace α} (I : Finset ι) (μ : ι → Measure α) (s : Set α) :
     (∑ i in I, μ i) s = ∑ i in I, μ i s := by rw [coe_finset_sum, Finset.sum_apply]
 #align measure_theory.measure.finset_sum_apply MeasureTheory.Measure.finset_sum_apply
@@ -1327,34 +940,16 @@ instance [Semiring R] [Module R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0
   Injective.module R ⟨toOuterMeasure, zero_toOuterMeasure, add_toOuterMeasure⟩
     toOuterMeasure_injective smul_toOuterMeasure
 
-/- warning: measure_theory.measure.coe_nnreal_smul_apply -> MeasureTheory.Measure.coe_nnreal_smul_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (c : NNReal) (μ : MeasureTheory.Measure.{u1} α m) (s : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (SMul.smul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (MulAction.toHasSmul.{0, 0} NNReal ENNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (ENNReal.mulAction.{0} ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.isScalarTower.{0, 0} ENNReal ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) m) c μ) s) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) c) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (c : NNReal) (μ : MeasureTheory.Measure.{u1} α m) (s : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (HSMul.hSMul.{0, u1, u1} NNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHSMul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (ENNReal.instIsScalarTowerNNRealToSMulToMonoidToMonoidWithZeroInstNNRealSemiringInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiringToSMulInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0, 0} ENNReal ENNReal (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) m)) c μ)) s) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (ENNReal.some c) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.coe_nnreal_smul_apply MeasureTheory.Measure.coe_nnreal_smul_applyₓ'. -/
 @[simp]
 theorem coe_nnreal_smul_apply {m : MeasurableSpace α} (c : ℝ≥0) (μ : Measure α) (s : Set α) :
     (c • μ) s = c * μ s :=
   rfl
 #align measure_theory.measure.coe_nnreal_smul_apply MeasureTheory.Measure.coe_nnreal_smul_apply
 
-/- warning: measure_theory.measure.ae_smul_measure_iff -> MeasureTheory.Measure.ae_smul_measure_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop} {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ))) (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 μ)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop} {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ))) (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 μ)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_smul_measure_iff MeasureTheory.Measure.ae_smul_measure_iffₓ'. -/
 theorem ae_smul_measure_iff {p : α → Prop} {c : ℝ≥0∞} (hc : c ≠ 0) :
     (∀ᵐ x ∂c • μ, p x) ↔ ∀ᵐ x ∂μ, p x := by simp [ae_iff, hc]
 #align measure_theory.measure.ae_smul_measure_iff MeasureTheory.Measure.ae_smul_measure_iff
 
-/- warning: measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq -> MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eqₓ'. -/
 theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν) t ≠ ∞) (h' : s ⊆ t)
     (h'' : (μ + ν) s = (μ + ν) t) : μ s = μ t :=
   by
@@ -1369,12 +964,6 @@ theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν
   exact h.2
 #align measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eq
 
-/- warning: measure_theory.measure.measure_eq_right_of_subset_of_measure_add_eq -> MeasureTheory.Measure.measure_eq_right_of_subset_of_measure_add_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν t))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_eq_right_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_right_of_subset_of_measure_add_eqₓ'. -/
 theorem measure_eq_right_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν) t ≠ ∞) (h' : s ⊆ t)
     (h'' : (μ + ν) s = (μ + ν) t) : ν s = ν t :=
   by
@@ -1382,12 +971,6 @@ theorem measure_eq_right_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + 
   exact measure_eq_left_of_subset_of_measure_add_eq h h' h''
 #align measure_theory.measure.measure_eq_right_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_right_of_subset_of_measure_add_eq
 
-/- warning: measure_theory.measure.measure_to_measurable_add_inter_left -> MeasureTheory.Measure.measure_toMeasurable_add_inter_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_add_inter_left MeasureTheory.Measure.measure_toMeasurable_add_inter_leftₓ'. -/
 theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s)
     (ht : (μ + ν) t ≠ ∞) : μ (toMeasurable (μ + ν) t ∩ s) = μ (t ∩ s) :=
   by
@@ -1400,12 +983,6 @@ theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s
     exact ht.1
 #align measure_theory.measure.measure_to_measurable_add_inter_left MeasureTheory.Measure.measure_toMeasurable_add_inter_left
 
-/- warning: measure_theory.measure.measure_to_measurable_add_inter_right -> MeasureTheory.Measure.measure_toMeasurable_add_inter_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_add_inter_right MeasureTheory.Measure.measure_toMeasurable_add_inter_rightₓ'. -/
 theorem measure_toMeasurable_add_inter_right {s t : Set α} (hs : MeasurableSet s)
     (ht : (μ + ν) t ≠ ∞) : ν (toMeasurable (μ + ν) t ∩ s) = ν (t ∩ s) :=
   by
@@ -1429,83 +1006,35 @@ instance [MeasurableSpace α] : PartialOrder (Measure α)
   le_trans m₁ m₂ m₃ h₁ h₂ s hs := le_trans (h₁ s hs) (h₂ s hs)
   le_antisymm m₁ m₂ h₁ h₂ := ext fun s hs => le_antisymm (h₁ s hs) (h₂ s hs)
 
-/- warning: measure_theory.measure.le_iff -> MeasureTheory.Measure.le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₁ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₂ s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₁) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₂) s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_iff MeasureTheory.Measure.le_iffₓ'. -/
 theorem le_iff : μ₁ ≤ μ₂ ↔ ∀ s, MeasurableSet s → μ₁ s ≤ μ₂ s :=
   Iff.rfl
 #align measure_theory.measure.le_iff MeasureTheory.Measure.le_iff
 
-/- warning: measure_theory.measure.to_outer_measure_le -> MeasureTheory.Measure.toOuterMeasure_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.OuterMeasure.{u1} α) (Preorder.toHasLe.{u1} (MeasureTheory.OuterMeasure.{u1} α) (PartialOrder.toPreorder.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instPartialOrder.{u1} α))) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₁) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₂)) (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.OuterMeasure.{u1} α) (Preorder.toLE.{u1} (MeasureTheory.OuterMeasure.{u1} α) (PartialOrder.toPreorder.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instPartialOrder.{u1} α))) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₁) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₂)) (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.to_outer_measure_le MeasureTheory.Measure.toOuterMeasure_leₓ'. -/
 theorem toOuterMeasure_le : μ₁.toOuterMeasure ≤ μ₂.toOuterMeasure ↔ μ₁ ≤ μ₂ := by
   rw [← μ₂.trimmed, outer_measure.le_trim_iff] <;> rfl
 #align measure_theory.measure.to_outer_measure_le MeasureTheory.Measure.toOuterMeasure_le
 
-/- warning: measure_theory.measure.le_iff' -> MeasureTheory.Measure.le_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₁ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₂ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₁) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₂) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_iff' MeasureTheory.Measure.le_iff'ₓ'. -/
 theorem le_iff' : μ₁ ≤ μ₂ ↔ ∀ s, μ₁ s ≤ μ₂ s :=
   toOuterMeasure_le.symm
 #align measure_theory.measure.le_iff' MeasureTheory.Measure.le_iff'
 
-/- warning: measure_theory.measure.lt_iff -> MeasureTheory.Measure.lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLt.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (MeasurableSet.{u1} α m0 s) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLT.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (MeasurableSet.{u1} α m0 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lt_iff MeasureTheory.Measure.lt_iffₓ'. -/
 theorem lt_iff : μ < ν ↔ μ ≤ ν ∧ ∃ s, MeasurableSet s ∧ μ s < ν s :=
   lt_iff_le_not_le.trans <|
     and_congr Iff.rfl <| by simp only [le_iff, not_forall, not_le, exists_prop]
 #align measure_theory.measure.lt_iff MeasureTheory.Measure.lt_iff
 
-/- warning: measure_theory.measure.lt_iff' -> MeasureTheory.Measure.lt_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLt.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLT.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lt_iff' MeasureTheory.Measure.lt_iff'ₓ'. -/
 theorem lt_iff' : μ < ν ↔ μ ≤ ν ∧ ∃ s, μ s < ν s :=
   lt_iff_le_not_le.trans <| and_congr Iff.rfl <| by simp only [le_iff', not_forall, not_le]
 #align measure_theory.measure.lt_iff' MeasureTheory.Measure.lt_iff'
 
-/- warning: measure_theory.measure.covariant_add_le -> MeasureTheory.Measure.covariantAddLE is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], CovariantClass.{u1, u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAdd.{u1} α _inst_3))) (LE.le.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instPartialOrder.{u1} α _inst_3))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], CovariantClass.{u1, u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15375 : MeasureTheory.Measure.{u1} α _inst_3) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15377 : MeasureTheory.Measure.{u1} α _inst_3) => HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAdd.{u1} α _inst_3)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15375 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15377) (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15390 : MeasureTheory.Measure.{u1} α _inst_3) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15392 : MeasureTheory.Measure.{u1} α _inst_3) => LE.le.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instPartialOrder.{u1} α _inst_3))) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15390 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15392)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.covariant_add_le MeasureTheory.Measure.covariantAddLEₓ'. -/
 instance covariantAddLE [MeasurableSpace α] :
     CovariantClass (Measure α) (Measure α) (· + ·) (· ≤ ·) :=
   ⟨fun ν μ₁ μ₂ hμ s hs => add_le_add_left (hμ s hs) _⟩
 #align measure_theory.measure.covariant_add_le MeasureTheory.Measure.covariantAddLE
 
-/- warning: measure_theory.measure.le_add_left -> MeasureTheory.Measure.le_add_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {ν' : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) ν' ν))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {ν' : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) ν' ν))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_add_left MeasureTheory.Measure.le_add_leftₓ'. -/
 protected theorem le_add_left (h : μ ≤ ν) : μ ≤ ν' + ν := fun s hs => le_add_left (h s hs)
 #align measure_theory.measure.le_add_left MeasureTheory.Measure.le_add_left
 
-/- warning: measure_theory.measure.le_add_right -> MeasureTheory.Measure.le_add_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {ν' : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) ν ν'))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {ν' : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) ν ν'))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_add_right MeasureTheory.Measure.le_add_rightₓ'. -/
 protected theorem le_add_right (h : μ ≤ ν) : μ ≤ ν + ν' := fun s hs => le_add_right (h s hs)
 #align measure_theory.measure.le_add_right MeasureTheory.Measure.le_add_right
 
@@ -1513,12 +1042,6 @@ section Inf
 
 variable {m : Set (Measure α)}
 
-/- warning: measure_theory.measure.Inf_caratheodory -> MeasureTheory.Measure.sInf_caratheodory is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)} (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α (MeasureTheory.OuterMeasure.caratheodory.{u1} α (InfSet.sInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)} (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α (MeasureTheory.OuterMeasure.caratheodory.{u1} α (InfSet.sInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toInfSet.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m))) s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.Inf_caratheodory MeasureTheory.Measure.sInf_caratheodoryₓ'. -/
 theorem sInf_caratheodory (s : Set α) (hs : MeasurableSet s) :
     measurable_set[(sInf (toOuterMeasure '' m)).caratheodory] s :=
   by
@@ -1541,12 +1064,6 @@ theorem sInf_caratheodory (s : Set α) (hs : MeasurableSet s) :
 instance [MeasurableSpace α] : InfSet (Measure α) :=
   ⟨fun m => (sInf (toOuterMeasure '' m)).toMeasure <| sInf_caratheodory⟩
 
-/- warning: measure_theory.measure.Inf_apply -> MeasureTheory.Measure.sInf_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (InfSet.sInf.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.hasInf.{u1} α m0) m) s) (coeFn.{succ u1, succ u1} (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u1} α) (InfSet.sInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m)) s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (InfSet.sInf.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instInfSetMeasure.{u1} α m0) m)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (InfSet.sInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toInfSet.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m)) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.Inf_apply MeasureTheory.Measure.sInf_applyₓ'. -/
 theorem sInf_apply (hs : MeasurableSet s) : sInf m s = sInf (toOuterMeasure '' m) s :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.Inf_apply MeasureTheory.Measure.sInf_apply
@@ -1593,88 +1110,40 @@ theorem MeasureTheory.OuterMeasure.toMeasure_top [MeasurableSpace α] :
 #align measure_theory.outer_measure.to_measure_top MeasureTheory.OuterMeasure.toMeasure_top
 -/
 
-/- warning: measure_theory.measure.to_outer_measure_top -> MeasureTheory.Measure.toOuterMeasure_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (Top.top.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instCompleteLattice.{u1} α _inst_3)))) (Top.top.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toHasTop.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (Top.top.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (CompleteLattice.toTop.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instCompleteLattice.{u1} α _inst_3)))) (Top.top.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toTop.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.to_outer_measure_top MeasureTheory.Measure.toOuterMeasure_topₓ'. -/
 @[simp]
 theorem toOuterMeasure_top [MeasurableSpace α] :
     (⊤ : Measure α).toOuterMeasure = (⊤ : OuterMeasure α) := by
   rw [← outer_measure.to_measure_top, to_measure_to_outer_measure, outer_measure.trim_top]
 #align measure_theory.measure.to_outer_measure_top MeasureTheory.Measure.toOuterMeasure_top
 
-/- warning: measure_theory.measure.top_add -> MeasureTheory.Measure.top_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0))) μ) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0))) μ) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.top_add MeasureTheory.Measure.top_addₓ'. -/
 @[simp]
 theorem top_add : ⊤ + μ = ⊤ :=
   top_unique <| Measure.le_add_right le_rfl
 #align measure_theory.measure.top_add MeasureTheory.Measure.top_add
 
-/- warning: measure_theory.measure.add_top -> MeasureTheory.Measure.add_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.add_top MeasureTheory.Measure.add_topₓ'. -/
 @[simp]
 theorem add_top : μ + ⊤ = ⊤ :=
   top_unique <| Measure.le_add_left le_rfl
 #align measure_theory.measure.add_top MeasureTheory.Measure.add_top
 
-/- warning: measure_theory.measure.zero_le -> MeasureTheory.Measure.zero_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) μ
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))) μ
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.zero_le MeasureTheory.Measure.zero_leₓ'. -/
 protected theorem zero_le {m0 : MeasurableSpace α} (μ : Measure α) : 0 ≤ μ :=
   bot_le
 #align measure_theory.measure.zero_le MeasureTheory.Measure.zero_le
 
-/- warning: measure_theory.measure.nonpos_iff_eq_zero' -> MeasureTheory.Measure.nonpos_iff_eq_zero' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.nonpos_iff_eq_zero' MeasureTheory.Measure.nonpos_iff_eq_zero'ₓ'. -/
 theorem nonpos_iff_eq_zero' : μ ≤ 0 ↔ μ = 0 :=
   μ.zero_le.le_iff_eq
 #align measure_theory.measure.nonpos_iff_eq_zero' MeasureTheory.Measure.nonpos_iff_eq_zero'
 
-/- warning: measure_theory.measure.measure_univ_eq_zero -> MeasureTheory.Measure.measure_univ_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_univ_eq_zero MeasureTheory.Measure.measure_univ_eq_zeroₓ'. -/
 @[simp]
 theorem measure_univ_eq_zero : μ univ = 0 ↔ μ = 0 :=
   ⟨fun h => bot_unique fun s hs => trans_rel_left (· ≤ ·) (measure_mono (subset_univ s)) h, fun h =>
     h.symm ▸ rfl⟩
 #align measure_theory.measure.measure_univ_eq_zero MeasureTheory.Measure.measure_univ_eq_zero
 
-/- warning: measure_theory.measure.measure_univ_ne_zero -> MeasureTheory.Measure.measure_univ_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_univ_ne_zero MeasureTheory.Measure.measure_univ_ne_zeroₓ'. -/
 theorem measure_univ_ne_zero : μ univ ≠ 0 ↔ μ ≠ 0 :=
   measure_univ_eq_zero.Not
 #align measure_theory.measure.measure_univ_ne_zero MeasureTheory.Measure.measure_univ_ne_zero
 
-/- warning: measure_theory.measure.measure_univ_pos -> MeasureTheory.Measure.measure_univ_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_univ_pos MeasureTheory.Measure.measure_univ_posₓ'. -/
 @[simp]
 theorem measure_univ_pos : 0 < μ univ ↔ μ ≠ 0 :=
   pos_iff_ne_zero.trans measure_univ_ne_zero
@@ -1683,9 +1152,6 @@ theorem measure_univ_pos : 0 < μ univ ↔ μ ≠ 0 :=
 /-! ### Pushforward and pullback -/
 
 
-/- warning: measure_theory.measure.lift_linear -> MeasureTheory.Measure.liftLinear is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lift_linear MeasureTheory.Measure.liftLinearₓ'. -/
 /-- Lift a linear map between `outer_measure` spaces such that for each measure `μ` every measurable
 set is caratheodory-measurable w.r.t. `f μ` to a linear map between `measure` spaces. -/
 def liftLinear {m0 : MeasurableSpace α} (f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β)
@@ -1696,29 +1162,17 @@ def liftLinear {m0 : MeasurableSpace α} (f : OuterMeasure α →ₗ[ℝ≥0∞]
   map_smul' c μ := ext fun s hs => by simp [hs]
 #align measure_theory.measure.lift_linear MeasureTheory.Measure.liftLinear
 
-/- warning: measure_theory.measure.lift_linear_apply -> MeasureTheory.Measure.liftLinear_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lift_linear_apply MeasureTheory.Measure.liftLinear_applyₓ'. -/
 @[simp]
 theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) {s : Set β}
     (hs : MeasurableSet s) : liftLinear f hf μ s = f μ.toOuterMeasure s :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.lift_linear_apply MeasureTheory.Measure.liftLinear_apply
 
-/- warning: measure_theory.measure.le_lift_linear_apply -> MeasureTheory.Measure.le_liftLinear_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_lift_linear_apply MeasureTheory.Measure.le_liftLinear_applyₓ'. -/
 theorem le_liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) (s : Set β) :
     f μ.toOuterMeasure s ≤ liftLinear f hf μ s :=
   le_toMeasure_apply _ _ s
 #align measure_theory.measure.le_lift_linear_apply MeasureTheory.Measure.le_liftLinear_apply
 
-/- warning: measure_theory.measure.mapₗ -> MeasureTheory.Measure.mapₗ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α], (α -> β) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α], (α -> β) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ MeasureTheory.Measure.mapₗₓ'. -/
 /-- The pushforward of a measure as a linear map. It is defined to be `0` if `f` is not
 a measurable function. -/
 def mapₗ [MeasurableSpace α] (f : α → β) : Measure α →ₗ[ℝ≥0∞] Measure β :=
@@ -1728,9 +1182,6 @@ def mapₗ [MeasurableSpace α] (f : α → β) : Measure α →ₗ[ℝ≥0∞]
   else 0
 #align measure_theory.measure.mapₗ MeasureTheory.Measure.mapₗ
 
-/- warning: measure_theory.measure.mapₗ_congr -> MeasureTheory.Measure.mapₗ_congr is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_congr MeasureTheory.Measure.mapₗ_congrₓ'. -/
 theorem mapₗ_congr {f g : α → β} (hf : Measurable f) (hg : Measurable g) (h : f =ᵐ[μ] g) :
     mapₗ f μ = mapₗ g μ := by
   ext1 s hs
@@ -1748,16 +1199,10 @@ irreducible_def map [MeasurableSpace α] (f : α → β) (μ : Measure α) : Mea
 
 include m0
 
-/- warning: measure_theory.measure.mapₗ_mk_apply_of_ae_measurable -> MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurable is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurableₓ'. -/
 theorem mapₗ_mk_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) :
     mapₗ (hf.mk f) μ = map f μ := by simp [map, hf]
 #align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurable
 
-/- warning: measure_theory.measure.mapₗ_apply_of_measurable -> MeasureTheory.Measure.mapₗ_apply_of_measurable is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_apply_of_measurable MeasureTheory.Measure.mapₗ_apply_of_measurableₓ'. -/
 theorem mapₗ_apply_of_measurable {f : α → β} (hf : Measurable f) (μ : Measure α) :
     mapₗ f μ = map f μ :=
   by
@@ -1765,12 +1210,6 @@ theorem mapₗ_apply_of_measurable {f : α → β} (hf : Measurable f) (μ : Mea
   exact mapₗ_congr hf hf.ae_measurable.measurable_mk hf.ae_measurable.ae_eq_mk
 #align measure_theory.measure.mapₗ_apply_of_measurable MeasureTheory.Measure.mapₗ_apply_of_measurable
 
-/- warning: measure_theory.measure.map_add -> MeasureTheory.Measure.map_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] (μ : MeasureTheory.Measure.{u1} α m0) (ν : MeasureTheory.Measure.{u1} α m0) {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) (HAdd.hAdd.{u2, u2, u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.{u2} β _inst_1) (instHAdd.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAdd.{u2} β _inst_1)) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f ν)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] (μ : MeasureTheory.Measure.{u2} α m0) (ν : MeasureTheory.Measure.{u2} α m0) {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f (HAdd.hAdd.{u2, u2, u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u2} α m0) (instHAdd.{u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instAdd.{u2} α m0)) μ ν)) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.{u1} β _inst_1) (instHAdd.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAdd.{u1} β _inst_1)) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f ν)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_add MeasureTheory.Measure.map_addₓ'. -/
 @[simp]
 theorem map_add (μ ν : Measure α) {f : α → β} (hf : Measurable f) :
     (μ + ν).map f = μ.map f + ν.map f := by simp [← mapₗ_apply_of_measurable hf]
@@ -1783,22 +1222,10 @@ theorem map_zero (f : α → β) : (0 : Measure α).map f = 0 := by
 #align measure_theory.measure.map_zero MeasureTheory.Measure.map_zero
 -/
 
-/- warning: measure_theory.measure.map_of_not_ae_measurable -> MeasureTheory.Measure.map_of_not_aemeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α m0}, (Not (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ)) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} β _inst_1) 0 (OfNat.mk.{u2} (MeasureTheory.Measure.{u2} β _inst_1) 0 (Zero.zero.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instZero.{u2} β _inst_1)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {f : α -> β} {μ : MeasureTheory.Measure.{u2} α m0}, (Not (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ)) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} β _inst_1) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instZero.{u1} β _inst_1))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_of_not_ae_measurable MeasureTheory.Measure.map_of_not_aemeasurableₓ'. -/
 theorem map_of_not_aemeasurable {f : α → β} {μ : Measure α} (hf : ¬AEMeasurable f μ) :
     μ.map f = 0 := by simp [map, hf]
 #align measure_theory.measure.map_of_not_ae_measurable MeasureTheory.Measure.map_of_not_aemeasurable
 
-/- warning: measure_theory.measure.map_congr -> MeasureTheory.Measure.map_congr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 g μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m0 μ) f g) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 g μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_congr MeasureTheory.Measure.map_congrₓ'. -/
 theorem map_congr {f g : α → β} (h : f =ᵐ[μ] g) : Measure.map f μ = Measure.map g μ :=
   by
   by_cases hf : AEMeasurable f μ
@@ -1810,9 +1237,6 @@ theorem map_congr {f g : α → β} (h : f =ᵐ[μ] g) : Measure.map f μ = Meas
     simp [map_of_not_ae_measurable, hf, hg]
 #align measure_theory.measure.map_congr MeasureTheory.Measure.map_congr
 
-/- warning: measure_theory.measure.map_smul -> MeasureTheory.Measure.map_smul is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_smul MeasureTheory.Measure.map_smulₓ'. -/
 @[simp]
 protected theorem map_smul (c : ℝ≥0∞) (μ : Measure α) (f : α → β) : (c • μ).map f = c • μ.map f :=
   by
@@ -1831,21 +1255,12 @@ protected theorem map_smul (c : ℝ≥0∞) (μ : Measure α) (f : α → β) :
     simp [map_of_not_ae_measurable hf, map_of_not_ae_measurable hfc]
 #align measure_theory.measure.map_smul MeasureTheory.Measure.map_smul
 
-/- warning: measure_theory.measure.map_smul_nnreal -> MeasureTheory.Measure.map_smul_nnreal is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_smul_nnreal MeasureTheory.Measure.map_smul_nnrealₓ'. -/
 @[simp]
 protected theorem map_smul_nnreal (c : ℝ≥0) (μ : Measure α) (f : α → β) :
     (c • μ).map f = c • μ.map f :=
   μ.map_smul (c : ℝ≥0∞) f
 #align measure_theory.measure.map_smul_nnreal MeasureTheory.Measure.map_smul_nnreal
 
-/- warning: measure_theory.measure.map_apply_of_ae_measurable -> MeasureTheory.Measure.map_apply_of_aemeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_apply_of_ae_measurable MeasureTheory.Measure.map_apply_of_aemeasurableₓ'. -/
 /-- We can evaluate the pushforward on measurable sets. For non-measurable sets, see
   `measure_theory.measure.le_map_apply` and `measurable_equiv.map_apply`. -/
 @[simp]
@@ -1856,21 +1271,12 @@ theorem map_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) {s :
     measure_congr (hf.ae_eq_mk.symm.preimage s)
 #align measure_theory.measure.map_apply_of_ae_measurable MeasureTheory.Measure.map_apply_of_aemeasurable
 
-/- warning: measure_theory.measure.map_apply -> MeasureTheory.Measure.map_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (forall {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_apply MeasureTheory.Measure.map_applyₓ'. -/
 @[simp]
 theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
     μ.map f s = μ (f ⁻¹' s) :=
   map_apply_of_aemeasurable hf.AEMeasurable hs
 #align measure_theory.measure.map_apply MeasureTheory.Measure.map_apply
 
-/- warning: measure_theory.measure.map_to_outer_measure -> MeasureTheory.Measure.map_toOuterMeasure is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_to_outer_measure MeasureTheory.Measure.map_toOuterMeasureₓ'. -/
 theorem map_toOuterMeasure {f : α → β} (hf : AEMeasurable f μ) :
     (μ.map f).toOuterMeasure = (OuterMeasure.map f μ.toOuterMeasure).trim :=
   by
@@ -1894,34 +1300,16 @@ theorem map_id' : map (fun x => x) μ = μ :=
 #align measure_theory.measure.map_id' MeasureTheory.Measure.map_id'
 -/
 
-/- warning: measure_theory.measure.map_map -> MeasureTheory.Measure.map_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] [_inst_2 : MeasurableSpace.{u3} γ] {μ : MeasureTheory.Measure.{u1} α m0} {g : β -> γ} {f : α -> β}, (Measurable.{u2, u3} β γ _inst_1 _inst_2 g) -> (Measurable.{u1, u2} α β m0 _inst_1 f) -> (Eq.{succ u3} (MeasureTheory.Measure.{u3} γ _inst_2) (MeasureTheory.Measure.map.{u2, u3} β γ _inst_2 _inst_1 g (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)) (MeasureTheory.Measure.map.{u1, u3} α γ _inst_2 m0 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) μ))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u3} β] [_inst_2 : MeasurableSpace.{u2} γ] {μ : MeasureTheory.Measure.{u1} α m0} {g : β -> γ} {f : α -> β}, (Measurable.{u3, u2} β γ _inst_1 _inst_2 g) -> (Measurable.{u1, u3} α β m0 _inst_1 f) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} γ _inst_2) (MeasureTheory.Measure.map.{u3, u2} β γ _inst_2 _inst_1 g (MeasureTheory.Measure.map.{u1, u3} α β _inst_1 m0 f μ)) (MeasureTheory.Measure.map.{u1, u2} α γ _inst_2 m0 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_map MeasureTheory.Measure.map_mapₓ'. -/
 theorem map_map {g : β → γ} {f : α → β} (hg : Measurable g) (hf : Measurable f) :
     (μ.map f).map g = μ.map (g ∘ f) :=
   ext fun s hs => by simp [hf, hg, hs, hg hs, hg.comp hf, ← preimage_comp]
 #align measure_theory.measure.map_map MeasureTheory.Measure.map_map
 
-/- warning: measure_theory.measure.map_mono -> MeasureTheory.Measure.map_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (Measurable.{u1, u2} α β m0 _inst_1 f) -> (LE.le.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (Preorder.toHasLe.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instPartialOrder.{u2} β _inst_1))) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f ν))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (LE.le.{u2} (MeasureTheory.Measure.{u2} α m0) (Preorder.toLE.{u2} (MeasureTheory.Measure.{u2} α m0) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instPartialOrder.{u2} α m0))) μ ν) -> (Measurable.{u2, u1} α β m0 _inst_1 f) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instPartialOrder.{u1} β _inst_1))) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f ν))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_mono MeasureTheory.Measure.map_monoₓ'. -/
 @[mono]
 theorem map_mono {f : α → β} (h : μ ≤ ν) (hf : Measurable f) : μ.map f ≤ ν.map f := fun s hs => by
   simp [hf.ae_measurable, hs, h _ (hf hs)]
 #align measure_theory.measure.map_mono MeasureTheory.Measure.map_mono
 
-/- warning: measure_theory.measure.le_map_apply -> MeasureTheory.Measure.le_map_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall (s : Set.{u2} β), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall (s : Set.{u1} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s)) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_map_apply MeasureTheory.Measure.le_map_applyₓ'. -/
 /-- Even if `s` is not measurable, we can bound `map f μ s` from below.
   See also `measurable_equiv.map_apply`. -/
 theorem le_map_apply {f : α → β} (hf : AEMeasurable f μ) (s : Set β) : μ (f ⁻¹' s) ≤ μ.map f s :=
@@ -1934,36 +1322,18 @@ theorem le_map_apply {f : α → β} (hf : AEMeasurable f μ) (s : Set β) : μ
     
 #align measure_theory.measure.le_map_apply MeasureTheory.Measure.le_map_apply
 
-/- warning: measure_theory.measure.preimage_null_of_map_null -> MeasureTheory.Measure.preimage_null_of_map_null is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {s : Set.{u2} β}, (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {s : Set.{u1} β}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.preimage_null_of_map_null MeasureTheory.Measure.preimage_null_of_map_nullₓ'. -/
 /-- Even if `s` is not measurable, `map f μ s = 0` implies that `μ (f ⁻¹' s) = 0`. -/
 theorem preimage_null_of_map_null {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : μ.map f s = 0) : μ (f ⁻¹' s) = 0 :=
   nonpos_iff_eq_zero.mp <| (le_map_apply hf s).trans_eq hs
 #align measure_theory.measure.preimage_null_of_map_null MeasureTheory.Measure.preimage_null_of_map_null
 
-/- warning: measure_theory.measure.tendsto_ae_map -> MeasureTheory.Measure.tendsto_ae_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (Filter.Tendsto.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (Filter.Tendsto.{u2, u1} α β f (MeasureTheory.Measure.ae.{u2} α m0 μ) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.tendsto_ae_map MeasureTheory.Measure.tendsto_ae_mapₓ'. -/
 theorem tendsto_ae_map {f : α → β} (hf : AEMeasurable f μ) : Tendsto f μ.ae (μ.map f).ae :=
   fun s hs => preimage_null_of_map_null hf hs
 #align measure_theory.measure.tendsto_ae_map MeasureTheory.Measure.tendsto_ae_map
 
 omit m0
 
-/- warning: measure_theory.measure.comapₗ -> MeasureTheory.Measure.comapₗ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α], (α -> β) -> (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α], (α -> β) -> (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ MeasureTheory.Measure.comapₗₓ'. -/
 /-- Pullback of a `measure` as a linear map. If `f` sends each measurable set to a measurable
 set, then for each measurable set `s` we have `comapₗ f μ s = μ (f '' s)`.
 
@@ -1979,9 +1349,6 @@ def comapₗ [MeasurableSpace α] (f : α → β) : Measure β →ₗ[ℝ≥0∞
   else 0
 #align measure_theory.measure.comapₗ MeasureTheory.Measure.comapₗ
 
-/- warning: measure_theory.measure.comapₗ_apply -> MeasureTheory.Measure.comapₗ_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ_apply MeasureTheory.Measure.comapₗ_applyₓ'. -/
 theorem comapₗ_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
     (hs : MeasurableSet s) : comapₗ f μ s = μ (f '' s) :=
@@ -2003,12 +1370,6 @@ def comap [MeasurableSpace α] (f : α → β) (μ : Measure β) : Measure α :=
 #align measure_theory.measure.comap MeasureTheory.Measure.comap
 -/
 
-/- warning: measure_theory.measure.comap_apply₀ -> MeasureTheory.Measure.comap_apply₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] (f : α -> β) (μ : MeasureTheory.Measure.{u2} β _inst_1), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β _inst_1 (Set.image.{u1, u2} α β f s) μ)) -> (MeasureTheory.NullMeasurableSet.{u1} α _inst_3 s (MeasureTheory.Measure.comap.{u1, u2} α β _inst_1 _inst_3 f μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β _inst_1 _inst_3 f μ) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) μ (Set.image.{u1, u2} α β f s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] {s : Set.{u2} α} [_inst_3 : MeasurableSpace.{u2} α] (f : α -> β) (μ : MeasureTheory.Measure.{u1} β _inst_1), (Function.Injective.{succ u2, succ u1} α β f) -> (forall (s : Set.{u2} α), (MeasurableSet.{u2} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u1} β _inst_1 (Set.image.{u2, u1} α β f s) μ)) -> (MeasureTheory.NullMeasurableSet.{u2} α _inst_3 s (MeasureTheory.Measure.comap.{u2, u1} α β _inst_1 _inst_3 f μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_3 (MeasureTheory.Measure.comap.{u2, u1} α β _inst_1 _inst_3 f μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 μ) (Set.image.{u2, u1} α β f s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comap_apply₀ MeasureTheory.Measure.comap_apply₀ₓ'. -/
 theorem comap_apply₀ [MeasurableSpace α] (f : α → β) (μ : Measure β) (hfi : Injective f)
     (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ)
     (hs : NullMeasurableSet s (comap f μ)) : comap f μ s = μ (f '' s) :=
@@ -2017,12 +1378,6 @@ theorem comap_apply₀ [MeasurableSpace α] (f : α → β) (μ : Measure β) (h
   rw [to_measure_apply₀ _ _ hs, outer_measure.comap_apply, coe_to_outer_measure]
 #align measure_theory.measure.comap_apply₀ MeasureTheory.Measure.comap_apply₀
 
-/- warning: measure_theory.measure.le_comap_apply -> MeasureTheory.Measure.le_comap_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Set.image.{u1, u2} α β f s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) s))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_comap_apply MeasureTheory.Measure.le_comap_applyₓ'. -/
 theorem le_comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β) (μ : Measure β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ) (s : Set α) :
     μ (f '' s) ≤ comap f μ s := by rw [comap, dif_pos (And.intro hfi hf)];
@@ -2037,21 +1392,12 @@ theorem comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α
 #align measure_theory.measure.comap_apply MeasureTheory.Measure.comap_apply
 -/
 
-/- warning: measure_theory.measure.comapₗ_eq_comap -> MeasureTheory.Measure.comapₗ_eq_comap is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ_eq_comap MeasureTheory.Measure.comapₗ_eq_comapₓ'. -/
 theorem comapₗ_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
     (hs : MeasurableSet s) : comapₗ f μ s = comap f μ s :=
   (comapₗ_apply f hfi hf μ hs).trans (comap_apply f hfi hf μ hs).symm
 #align measure_theory.measure.comapₗ_eq_comap MeasureTheory.Measure.comapₗ_eq_comap
 
-/- warning: measure_theory.measure.measure_image_eq_zero_of_comap_eq_zero -> MeasureTheory.Measure.measure_image_eq_zero_of_comap_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall {s : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Set.image.{u1, u2} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall {s : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_image_eq_zero_of_comap_eq_zero MeasureTheory.Measure.measure_image_eq_zero_of_comap_eq_zeroₓ'. -/
 theorem measure_image_eq_zero_of_comap_eq_zero {β} [MeasurableSpace α] {mβ : MeasurableSpace β}
     (f : α → β) (μ : Measure β) (hfi : Injective f)
     (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ) {s : Set α} (hs : comap f μ s = 0) :
@@ -2090,12 +1436,6 @@ theorem NullMeasurableSet.image {β} [MeasurableSpace α] {mβ : MeasurableSpace
 #align measure_theory.measure.null_measurable_set.image MeasureTheory.Measure.NullMeasurableSet.image
 -/
 
-/- warning: measure_theory.measure.comap_preimage -> MeasureTheory.Measure.comap_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ) {s : Set.{u2} β}, (Function.Injective.{succ u1, succ u2} α β f) -> (Measurable.{u1, u2} α β _inst_3 mβ f) -> (forall (t : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 t) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f t) μ)) -> (MeasurableSet.{u2} β mβ s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) (Set.preimage.{u1, u2} α β f s)) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) s (Set.range.{u2, succ u1} β α f))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ) {s : Set.{u2} β}, (Function.Injective.{succ u1, succ u2} α β f) -> (Measurable.{u1, u2} α β _inst_3 mβ f) -> (forall (t : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 t) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f t) μ)) -> (MeasurableSet.{u2} β mβ s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) (Set.preimage.{u1, u2} α β f s)) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Inter.inter.{u2} (Set.{u2} β) (Set.instInterSet.{u2} β) s (Set.range.{u2, succ u1} β α f))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comap_preimage MeasureTheory.Measure.comap_preimageₓ'. -/
 theorem comap_preimage {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β) (μ : Measure β)
     {s : Set β} (hf : Injective f) (hf' : Measurable f)
     (h : ∀ t, MeasurableSet t → NullMeasurableSet (f '' t) μ) (hs : MeasurableSet s) :
@@ -2139,24 +1479,12 @@ theorem NullMeasurableSet.subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
 #align measure_theory.measure.null_measurable_set.subtype_coe MeasureTheory.Measure.NullMeasurableSet.subtype_coe
 -/
 
-/- warning: measure_theory.measure.measure_subtype_coe_le_comap -> MeasureTheory.Measure.measure_subtype_coe_le_comap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (fun (_x : MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) => (Set.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) μ) t))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} (Set.Elem.{u1} α s)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.image.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (MeasureTheory.OuterMeasure.measureOf.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (MeasureTheory.Measure.toOuterMeasure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) m0) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) μ)) t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_subtype_coe_le_comap MeasureTheory.Measure.measure_subtype_coe_le_comapₓ'. -/
 theorem measure_subtype_coe_le_comap (hs : NullMeasurableSet s μ) (t : Set s) :
     μ ((coe : s → α) '' t) ≤ μ.comap Subtype.val t :=
   le_comap_apply _ _ Subtype.coe_injective (fun t => MeasurableSet.nullMeasurableSet_subtype_coe hs)
     _
 #align measure_theory.measure.measure_subtype_coe_le_comap MeasureTheory.Measure.measure_subtype_coe_le_comap
 
-/- warning: measure_theory.measure.measure_subtype_coe_eq_zero_of_comap_eq_zero -> MeasureTheory.Measure.measure_subtype_coe_eq_zero_of_comap_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall {t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (fun (_x : MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) => (Set.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) μ) t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall {t : Set.{u1} (Set.Elem.{u1} α s)}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (MeasureTheory.Measure.toOuterMeasure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) m0) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) μ)) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.image.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_subtype_coe_eq_zero_of_comap_eq_zero MeasureTheory.Measure.measure_subtype_coe_eq_zero_of_comap_eq_zeroₓ'. -/
 theorem measure_subtype_coe_eq_zero_of_comap_eq_zero (hs : NullMeasurableSet s μ) {t : Set s}
     (ht : μ.comap Subtype.val t = 0) : μ ((coe : s → α) '' t) = 0 :=
   eq_bot_iff.mpr <| (measure_subtype_coe_le_comap hs t).trans ht.le
@@ -2190,23 +1518,11 @@ theorem Subtype.volume_univ (hs : NullMeasurableSet s) : volume (univ : Set s) =
 #align measure_theory.measure.subtype.volume_univ MeasureTheory.Measure.Subtype.volume_univ
 -/
 
-/- warning: measure_theory.measure.volume_subtype_coe_le_volume -> MeasureTheory.Measure.volume_subtype_coe_le_volume is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall (t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (fun (_x : MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3) (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (fun (_x : MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) => (Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (MeasureTheory.MeasureSpace.volume.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) t))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall (t : Set.{u1} (Set.Elem.{u1} α s)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) (Set.image.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (MeasureTheory.OuterMeasure.measureOf.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} (Set.Elem.{u1} α s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))) (MeasureTheory.MeasureSpace.volume.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)))) t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.volume_subtype_coe_le_volume MeasureTheory.Measure.volume_subtype_coe_le_volumeₓ'. -/
 theorem volume_subtype_coe_le_volume (hs : NullMeasurableSet s) (t : Set s) :
     volume ((coe : s → α) '' t) ≤ volume t :=
   measure_subtype_coe_le_comap hs t
 #align measure_theory.measure.volume_subtype_coe_le_volume MeasureTheory.Measure.volume_subtype_coe_le_volume
 
-/- warning: measure_theory.measure.volume_subtype_coe_eq_zero_of_volume_eq_zero -> MeasureTheory.Measure.volume_subtype_coe_eq_zero_of_volume_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall {t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (fun (_x : MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) => (Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (MeasureTheory.MeasureSpace.volume.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (fun (_x : MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3) (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall {t : Set.{u1} (Set.Elem.{u1} α s)}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} (Set.Elem.{u1} α s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))) (MeasureTheory.MeasureSpace.volume.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)))) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) (Set.image.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.volume_subtype_coe_eq_zero_of_volume_eq_zero MeasureTheory.Measure.volume_subtype_coe_eq_zero_of_volume_eq_zeroₓ'. -/
 theorem volume_subtype_coe_eq_zero_of_volume_eq_zero (hs : NullMeasurableSet s) {t : Set s}
     (ht : volume t = 0) : volume ((coe : s → α) '' t) = 0 :=
   measure_subtype_coe_eq_zero_of_comap_eq_zero hs ht
@@ -2219,12 +1535,6 @@ end Subtype
 /-! ### Restricting a measure -/
 
 
-/- warning: measure_theory.measure.restrictₗ -> MeasureTheory.Measure.restrictₗ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, (Set.{u1} α) -> (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, (Set.{u1} α) -> (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrictₗ MeasureTheory.Measure.restrictₗₓ'. -/
 /-- Restrict a measure `μ` to a set `s` as an `ℝ≥0∞`-linear map. -/
 def restrictₗ {m0 : MeasurableSpace α} (s : Set α) : Measure α →ₗ[ℝ≥0∞] Measure α :=
   liftLinear (OuterMeasure.restrict s) fun μ s' hs' t =>
@@ -2241,18 +1551,12 @@ def restrict {m0 : MeasurableSpace α} (μ : Measure α) (s : Set α) : Measure
 #align measure_theory.measure.restrict MeasureTheory.Measure.restrict
 -/
 
-/- warning: measure_theory.measure.restrictₗ_apply -> MeasureTheory.Measure.restrictₗ_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrictₗ_apply MeasureTheory.Measure.restrictₗ_applyₓ'. -/
 @[simp]
 theorem restrictₗ_apply {m0 : MeasurableSpace α} (s : Set α) (μ : Measure α) :
     restrictₗ s μ = μ.restrict s :=
   rfl
 #align measure_theory.measure.restrictₗ_apply MeasureTheory.Measure.restrictₗ_apply
 
-/- warning: measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict -> MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrict is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrictₓ'. -/
 /-- This lemma shows that `restrict` and `to_outer_measure` commute. Note that the LHS has a
 restrict on measures and the RHS has a restrict on outer measures. -/
 theorem restrict_toOuterMeasure_eq_toOuterMeasure_restrict (h : MeasurableSet s) :
@@ -2261,23 +1565,11 @@ theorem restrict_toOuterMeasure_eq_toOuterMeasure_restrict (h : MeasurableSet s)
     outer_measure.restrict_trim h, μ.trimmed]
 #align measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrict
 
-/- warning: measure_theory.measure.restrict_apply₀ -> MeasureTheory.Measure.restrict_apply₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 t (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 t (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply₀ MeasureTheory.Measure.restrict_apply₀ₓ'. -/
 theorem restrict_apply₀ (ht : NullMeasurableSet t (μ.restrict s)) : μ.restrict s t = μ (t ∩ s) :=
   (toMeasure_apply₀ _ _ ht).trans <| by
     simp only [coe_to_outer_measure, outer_measure.restrict_apply]
 #align measure_theory.measure.restrict_apply₀ MeasureTheory.Measure.restrict_apply₀
 
-/- warning: measure_theory.measure.restrict_apply -> MeasureTheory.Measure.restrict_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply MeasureTheory.Measure.restrict_applyₓ'. -/
 /-- If `t` is a measurable set, then the measure of `t` with respect to the restriction of
   the measure to `s` equals the outer measure of `t ∩ s`. An alternate version requiring that `s`
   be measurable instead of `t` exists as `measure.restrict_apply'`. -/
@@ -2286,12 +1578,6 @@ theorem restrict_apply (ht : MeasurableSet t) : μ.restrict s t = μ (t ∩ s) :
   restrict_apply₀ ht.NullMeasurableSet
 #align measure_theory.measure.restrict_apply MeasureTheory.Measure.restrict_apply
 
-/- warning: measure_theory.measure.restrict_mono' -> MeasureTheory.Measure.restrict_mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {{s : Set.{u1} α}} {{s' : Set.{u1} α}} {{μ : MeasureTheory.Measure.{u1} α m0}} {{ν : MeasureTheory.Measure.{u1} α m0}}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m0 μ) s s') -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 ν s'))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {{s : Set.{u1} α}} {{s' : Set.{u1} α}} {{μ : MeasureTheory.Measure.{u1} α m0}} {{ν : MeasureTheory.Measure.{u1} α m0}}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m0 μ) s s') -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 ν s'))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_mono' MeasureTheory.Measure.restrict_mono'ₓ'. -/
 /-- Restriction of a measure to a subset is monotone both in set and in measure. -/
 theorem restrict_mono' {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν : Measure α⦄ (hs : s ≤ᵐ[μ] s')
     (hμν : μ ≤ ν) : μ.restrict s ≤ ν.restrict s' := fun t ht =>
@@ -2303,12 +1589,6 @@ theorem restrict_mono' {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν :
     
 #align measure_theory.measure.restrict_mono' MeasureTheory.Measure.restrict_mono'
 
-/- warning: measure_theory.measure.restrict_mono -> MeasureTheory.Measure.restrict_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {{s : Set.{u1} α}} {{s' : Set.{u1} α}}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s s') -> (forall {{μ : MeasureTheory.Measure.{u1} α m0}} {{ν : MeasureTheory.Measure.{u1} α m0}}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 ν s')))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {{s : Set.{u1} α}} {{s' : Set.{u1} α}}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s s') -> (forall {{μ : MeasureTheory.Measure.{u1} α m0}} {{ν : MeasureTheory.Measure.{u1} α m0}}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 ν s')))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_mono MeasureTheory.Measure.restrict_monoₓ'. -/
 /-- Restriction of a measure to a subset is monotone both in set and in measure. -/
 @[mono]
 theorem restrict_mono {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ (hs : s ⊆ s') ⦃μ ν : Measure α⦄
@@ -2316,12 +1596,6 @@ theorem restrict_mono {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ (hs : s ⊆
   restrict_mono' (ae_of_all _ hs) hμν
 #align measure_theory.measure.restrict_mono MeasureTheory.Measure.restrict_mono
 
-/- warning: measure_theory.measure.restrict_mono_ae -> MeasureTheory.Measure.restrict_mono_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m0 μ) s t) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m0 μ) s t) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_mono_ae MeasureTheory.Measure.restrict_mono_aeₓ'. -/
 theorem restrict_mono_ae (h : s ≤ᵐ[μ] t) : μ.restrict s ≤ μ.restrict t :=
   restrict_mono' h (le_refl μ)
 #align measure_theory.measure.restrict_mono_ae MeasureTheory.Measure.restrict_mono_ae
@@ -2332,12 +1606,6 @@ theorem restrict_congr_set (h : s =ᵐ[μ] t) : μ.restrict s = μ.restrict t :=
 #align measure_theory.measure.restrict_congr_set MeasureTheory.Measure.restrict_congr_set
 -/
 
-/- warning: measure_theory.measure.restrict_apply' -> MeasureTheory.Measure.restrict_apply' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply' MeasureTheory.Measure.restrict_apply'ₓ'. -/
 /-- If `s` is a measurable set, then the outer measure of `t` with respect to the restriction of
 the measure to `s` equals the outer measure of `t ∩ s`. This is an alternate version of
 `measure.restrict_apply`, requiring that `s` is measurable instead of `t`. -/
@@ -2347,24 +1615,12 @@ theorem restrict_apply' (hs : MeasurableSet s) : μ.restrict s t = μ (t ∩ s)
     outer_measure.restrict_apply s t _, coe_to_outer_measure]
 #align measure_theory.measure.restrict_apply' MeasureTheory.Measure.restrict_apply'
 
-/- warning: measure_theory.measure.restrict_apply₀' -> MeasureTheory.Measure.restrict_apply₀' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply₀' MeasureTheory.Measure.restrict_apply₀'ₓ'. -/
 theorem restrict_apply₀' (hs : NullMeasurableSet s μ) : μ.restrict s t = μ (t ∩ s) := by
   rw [← restrict_congr_set hs.to_measurable_ae_eq,
     restrict_apply' (measurable_set_to_measurable _ _),
     measure_congr ((ae_eq_refl t).inter hs.to_measurable_ae_eq)]
 #align measure_theory.measure.restrict_apply₀' MeasureTheory.Measure.restrict_apply₀'
 
-/- warning: measure_theory.measure.restrict_le_self -> MeasureTheory.Measure.restrict_le_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) μ
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) μ
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_le_self MeasureTheory.Measure.restrict_le_selfₓ'. -/
 theorem restrict_le_self : μ.restrict s ≤ μ := fun t ht =>
   calc
     μ.restrict s t = μ (t ∩ s) := restrict_apply ht
@@ -2401,12 +1657,6 @@ theorem restrict_apply_univ (s : Set α) : μ.restrict s univ = μ s := by
 #align measure_theory.measure.restrict_apply_univ MeasureTheory.Measure.restrict_apply_univ
 -/
 
-/- warning: measure_theory.measure.le_restrict_apply -> MeasureTheory.Measure.le_restrict_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_restrict_apply MeasureTheory.Measure.le_restrict_applyₓ'. -/
 theorem le_restrict_apply (s t : Set α) : μ (t ∩ s) ≤ μ.restrict s t :=
   calc
     μ (t ∩ s) = μ.restrict s (t ∩ s) := (restrict_eq_self μ (inter_subset_right _ _)).symm
@@ -2490,53 +1740,23 @@ theorem restrict_comm (hs : MeasurableSet s) :
 #align measure_theory.measure.restrict_comm MeasureTheory.Measure.restrict_comm
 -/
 
-/- warning: measure_theory.measure.restrict_apply_eq_zero -> MeasureTheory.Measure.restrict_apply_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply_eq_zero MeasureTheory.Measure.restrict_apply_eq_zeroₓ'. -/
 theorem restrict_apply_eq_zero (ht : MeasurableSet t) : μ.restrict s t = 0 ↔ μ (t ∩ s) = 0 := by
   rw [restrict_apply ht]
 #align measure_theory.measure.restrict_apply_eq_zero MeasureTheory.Measure.restrict_apply_eq_zero
 
-/- warning: measure_theory.measure.measure_inter_eq_zero_of_restrict -> MeasureTheory.Measure.measure_inter_eq_zero_of_restrict is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_inter_eq_zero_of_restrict MeasureTheory.Measure.measure_inter_eq_zero_of_restrictₓ'. -/
 theorem measure_inter_eq_zero_of_restrict (h : μ.restrict s t = 0) : μ (t ∩ s) = 0 :=
   nonpos_iff_eq_zero.1 (h ▸ le_restrict_apply _ _)
 #align measure_theory.measure.measure_inter_eq_zero_of_restrict MeasureTheory.Measure.measure_inter_eq_zero_of_restrict
 
-/- warning: measure_theory.measure.restrict_apply_eq_zero' -> MeasureTheory.Measure.restrict_apply_eq_zero' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply_eq_zero' MeasureTheory.Measure.restrict_apply_eq_zero'ₓ'. -/
 theorem restrict_apply_eq_zero' (hs : MeasurableSet s) : μ.restrict s t = 0 ↔ μ (t ∩ s) = 0 := by
   rw [restrict_apply' hs]
 #align measure_theory.measure.restrict_apply_eq_zero' MeasureTheory.Measure.restrict_apply_eq_zero'
 
-/- warning: measure_theory.measure.restrict_eq_zero -> MeasureTheory.Measure.restrict_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_eq_zero MeasureTheory.Measure.restrict_eq_zeroₓ'. -/
 @[simp]
 theorem restrict_eq_zero : μ.restrict s = 0 ↔ μ s = 0 := by
   rw [← measure_univ_eq_zero, restrict_apply_univ]
 #align measure_theory.measure.restrict_eq_zero MeasureTheory.Measure.restrict_eq_zero
 
-/- warning: measure_theory.measure.restrict_zero_set -> MeasureTheory.Measure.restrict_zero_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_zero_set MeasureTheory.Measure.restrict_zero_setₓ'. -/
 theorem restrict_zero_set {s : Set α} (h : μ s = 0) : μ.restrict s = 0 :=
   restrict_eq_zero.2 h
 #align measure_theory.measure.restrict_zero_set MeasureTheory.Measure.restrict_zero_set
@@ -2601,23 +1821,11 @@ theorem restrict_union₀ (h : AEDisjoint μ s t) (ht : NullMeasurableSet t μ)
 #align measure_theory.measure.restrict_union₀ MeasureTheory.Measure.restrict_union₀
 -/
 
-/- warning: measure_theory.measure.restrict_union -> MeasureTheory.Measure.restrict_union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s t) -> (MeasurableSet.{u1} α m0 t) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s t) -> (MeasurableSet.{u1} α m0 t) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_union MeasureTheory.Measure.restrict_unionₓ'. -/
 theorem restrict_union (h : Disjoint s t) (ht : MeasurableSet t) :
     μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t :=
   restrict_union₀ h.AEDisjoint ht.NullMeasurableSet
 #align measure_theory.measure.restrict_union MeasureTheory.Measure.restrict_union
 
-/- warning: measure_theory.measure.restrict_union' -> MeasureTheory.Measure.restrict_union' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s t) -> (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s t) -> (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_union' MeasureTheory.Measure.restrict_union'ₓ'. -/
 theorem restrict_union' (h : Disjoint s t) (hs : MeasurableSet s) :
     μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t := by
   rw [union_comm, restrict_union h.symm hs, add_comm]
@@ -2639,12 +1847,6 @@ theorem restrict_compl_add_restrict (hs : MeasurableSet s) : μ.restrict (sᶜ)
 #align measure_theory.measure.restrict_compl_add_restrict MeasureTheory.Measure.restrict_compl_add_restrict
 -/
 
-/- warning: measure_theory.measure.restrict_union_le -> MeasureTheory.Measure.restrict_union_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (s' : Set.{u1} α), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s s')) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ s'))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (s' : Set.{u1} α), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s s')) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ s'))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_leₓ'. -/
 theorem restrict_union_le (s s' : Set α) : μ.restrict (s ∪ s') ≤ μ.restrict s + μ.restrict s' :=
   by
   intro t ht
@@ -2652,12 +1854,6 @@ theorem restrict_union_le (s s' : Set α) : μ.restrict (s ∪ s') ≤ μ.restri
   apply measure_union_le
 #align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_le
 
-/- warning: measure_theory.measure.restrict_Union_apply_ae -> MeasureTheory.Measure.restrict_iUnion_apply_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) s)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (s i) μ) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) s)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (s i) μ) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_iUnion_apply_aeₓ'. -/
 theorem restrict_iUnion_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
@@ -2668,24 +1864,12 @@ theorem restrict_iUnion_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwi
       fun i => ht.null_measurable_set.inter (hm i)
 #align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_iUnion_apply_ae
 
-/- warning: measure_theory.measure.restrict_Union_apply -> MeasureTheory.Measure.restrict_iUnion_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_iUnion_applyₓ'. -/
 theorem restrict_iUnion_apply [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
   restrict_iUnion_apply_ae hd.AEDisjoint (fun i => (hm i).NullMeasurableSet) ht
 #align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_iUnion_apply
 
-/- warning: measure_theory.measure.restrict_Union_apply_eq_supr -> MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26558 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26560 : Set.{u1} α) => HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26558 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26560) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_iUnion_apply_eq_iSupₓ'. -/
 theorem restrict_iUnion_apply_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s)
     {t : Set α} (ht : MeasurableSet t) : μ.restrict (⋃ i, s i) t = ⨆ i, μ.restrict (s i) t :=
   by
@@ -2694,12 +1878,6 @@ theorem restrict_iUnion_apply_eq_iSup [Countable ι] {s : ι → Set α} (hd : D
   exacts[hd.mono_comp _ fun s₁ s₂ => inter_subset_inter_right _]
 #align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup
 
-/- warning: measure_theory.measure.restrict_map -> MeasureTheory.Measure.restrict_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (forall {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.restrict.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.preimage.{u1, u2} α β f s)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.restrict.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) s) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.preimage.{u2, u1} α β f s)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_map MeasureTheory.Measure.restrict_mapₓ'. -/
 /-- The restriction of the pushforward measure is the pushforward of the restriction. For a version
 assuming only `ae_measurable`, see `restrict_map_of_ae_measurable`. -/
 theorem restrict_map {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
@@ -2707,12 +1885,6 @@ theorem restrict_map {f : α → β} (hf : Measurable f) {s : Set β} (hs : Meas
   ext fun t ht => by simp [*, hf ht]
 #align measure_theory.measure.restrict_map MeasureTheory.Measure.restrict_map
 
-/- warning: measure_theory.measure.restrict_to_measurable -> MeasureTheory.Measure.restrict_toMeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_to_measurable MeasureTheory.Measure.restrict_toMeasurableₓ'. -/
 theorem restrict_toMeasurable (h : μ s ≠ ∞) : μ.restrict (toMeasurable μ s) = μ.restrict s :=
   ext fun t ht => by
     rw [restrict_apply ht, restrict_apply ht, inter_comm, measure_to_measurable_inter ht h,
@@ -2832,12 +2004,6 @@ theorem restrict_sInf_eq_sInf_restrict {m0 : MeasurableSpace α} {m : Set (Measu
 #align measure_theory.measure.restrict_Inf_eq_Inf_restrict MeasureTheory.Measure.restrict_sInf_eq_sInf_restrict
 -/
 
-/- warning: measure_theory.measure.exists_mem_of_measure_ne_zero_of_ae -> MeasureTheory.Measure.exists_mem_of_measure_ne_zero_of_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) -> (Exists.{succ u1} α (fun (x : α) => And (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (p x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) -> (Exists.{succ u1} α (fun (x : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (p x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_mem_of_measure_ne_zero_of_ae MeasureTheory.Measure.exists_mem_of_measure_ne_zero_of_aeₓ'. -/
 theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
     (hp : ∀ᵐ x ∂μ.restrict s, p x) : ∃ x, x ∈ s ∧ p x :=
   by
@@ -2884,12 +2050,6 @@ theorem ext_iff_of_sUnion_eq_univ {S : Set (Set α)} (hc : S.Countable) (hs : 
 alias ext_iff_of_sUnion_eq_univ ↔ _ ext_of_sUnion_eq_univ
 #align measure_theory.measure.ext_of_sUnion_eq_univ MeasureTheory.Measure.ext_of_sUnion_eq_univ
 
-/- warning: measure_theory.measure.ext_of_generate_from_of_cover -> MeasureTheory.Measure.ext_of_generateFrom_of_cover is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (IsPiSystem.{u1} α S) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α T) (Set.univ.{u1} α)) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))))) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν t))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (IsPiSystem.{u1} α S) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α T) (Set.univ.{u1} α)) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))))) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) t))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_coverₓ'. -/
 theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = generateFrom S)
     (hc : T.Countable) (h_inter : IsPiSystem S) (hU : ⋃₀ T = univ) (htop : ∀ t ∈ T, μ t ≠ ∞)
     (ST_eq : ∀ t ∈ T, ∀ s ∈ S, μ (s ∩ t) = ν (s ∩ t)) (T_eq : ∀ t ∈ T, μ t = ν t) : μ = ν :=
@@ -2910,12 +2070,6 @@ theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = gen
     simp only [measure_Union hfd hfm, h_eq]
 #align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_cover
 
-/- warning: measure_theory.measure.ext_of_generate_from_of_cover_subset -> MeasureTheory.Measure.ext_of_generateFrom_of_cover_subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (IsPiSystem.{u1} α S) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) T S) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α T) (Set.univ.{u1} α)) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s T) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (IsPiSystem.{u1} α S) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) T S) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α T) (Set.univ.{u1} α)) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s T) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ext_of_generate_from_of_cover_subset MeasureTheory.Measure.ext_of_generateFrom_of_cover_subsetₓ'. -/
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
   and they are both finite on a increasing spanning sequence of sets in the π-system.
   This lemma is formulated using `sUnion`. -/
@@ -2929,12 +2083,6 @@ theorem ext_of_generateFrom_of_cover_subset {S T : Set (Set α)} (h_gen : ‹_
   · exact h_eq _ (h_inter _ hs _ (h_sub ht) H)
 #align measure_theory.measure.ext_of_generate_from_of_cover_subset MeasureTheory.Measure.ext_of_generateFrom_of_cover_subset
 
-/- warning: measure_theory.measure.ext_of_generate_from_of_Union -> MeasureTheory.Measure.ext_of_generateFrom_of_iUnion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} (C : Set.{u1} (Set.{u1} α)) (B : Nat -> (Set.{u1} α)), (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α C)) -> (IsPiSystem.{u1} α C) -> (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, 1} α Nat (fun (i : Nat) => B i)) (Set.univ.{u1} α)) -> (forall (i : Nat), Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (B i) C) -> (forall (i : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (B i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s C) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} (C : Set.{u1} (Set.{u1} α)) (B : Nat -> (Set.{u1} α)), (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α C)) -> (IsPiSystem.{u1} α C) -> (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, 1} α Nat (fun (i : Nat) => B i)) (Set.univ.{u1} α)) -> (forall (i : Nat), Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (B i) C) -> (forall (i : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (B i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s C) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_iUnionₓ'. -/
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
   and they are both finite on a increasing spanning sequence of sets in the π-system.
   This lemma is formulated using `Union`.
@@ -2962,22 +2110,10 @@ def dirac (a : α) : Measure α :=
 instance : MeasureSpace PUnit :=
   ⟨dirac PUnit.unit⟩
 
-/- warning: measure_theory.measure.le_dirac_apply -> MeasureTheory.Measure.le_dirac_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] {a : α}, LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (OfNat.mk.{u1} (α -> ENNReal) 1 (One.one.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] {a : α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Set.indicator.{u1, 0} α ENNReal instENNRealZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (One.toOfNat1.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (a._@.Mathlib.Algebra.IndicatorFunction._hyg.77 : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_dirac_apply MeasureTheory.Measure.le_dirac_applyₓ'. -/
 theorem le_dirac_apply {a} : s.indicator 1 a ≤ dirac a s :=
   OuterMeasure.dirac_apply a s ▸ le_toMeasure_apply _ _ _
 #align measure_theory.measure.le_dirac_apply MeasureTheory.Measure.le_dirac_apply
 
-/- warning: measure_theory.measure.dirac_apply' -> MeasureTheory.Measure.dirac_apply' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] (a : α), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a) s) (Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (OfNat.mk.{u1} (α -> ENNReal) 1 (One.one.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) a))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] (a : α), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) s) (Set.indicator.{u1, 0} α ENNReal instENNRealZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (One.toOfNat1.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (a._@.Mathlib.Algebra.IndicatorFunction._hyg.77 : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.dirac_apply' MeasureTheory.Measure.dirac_apply'ₓ'. -/
 @[simp]
 theorem dirac_apply' (a : α) (hs : MeasurableSet s) : dirac a s = s.indicator 1 a :=
   toMeasure_apply _ _ hs
@@ -2994,12 +2130,6 @@ theorem dirac_apply_of_mem {a : α} (h : a ∈ s) : dirac a s = 1 :=
 #align measure_theory.measure.dirac_apply_of_mem MeasureTheory.Measure.dirac_apply_of_mem
 -/
 
-/- warning: measure_theory.measure.dirac_apply -> MeasureTheory.Measure.dirac_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3] (a : α) (s : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a) s) (Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (OfNat.mk.{u1} (α -> ENNReal) 1 (One.one.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3] (a : α) (s : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) s) (Set.indicator.{u1, 0} α ENNReal instENNRealZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (One.toOfNat1.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (a._@.Mathlib.Algebra.IndicatorFunction._hyg.77 : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) a)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.dirac_apply MeasureTheory.Measure.dirac_applyₓ'. -/
 @[simp]
 theorem dirac_apply [MeasurableSingletonClass α] (a : α) (s : Set α) :
     dirac a s = s.indicator 1 a := by
@@ -3011,22 +2141,10 @@ theorem dirac_apply [MeasurableSingletonClass α] (a : α) (s : Set α) :
     
 #align measure_theory.measure.dirac_apply MeasureTheory.Measure.dirac_apply
 
-/- warning: measure_theory.measure.map_dirac -> MeasureTheory.Measure.map_dirac is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α] {f : α -> β}, (Measurable.{u1, u2} α β _inst_3 _inst_1 f) -> (forall (a : α), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 _inst_3 f (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) (MeasureTheory.Measure.dirac.{u2} β _inst_1 (f a)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] [_inst_3 : MeasurableSpace.{u2} α] {f : α -> β}, (Measurable.{u2, u1} α β _inst_3 _inst_1 f) -> (forall (a : α), Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 _inst_3 f (MeasureTheory.Measure.dirac.{u2} α _inst_3 a)) (MeasureTheory.Measure.dirac.{u1} β _inst_1 (f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_dirac MeasureTheory.Measure.map_diracₓ'. -/
 theorem map_dirac {f : α → β} (hf : Measurable f) (a : α) : (dirac a).map f = dirac (f a) :=
   ext fun s hs => by simp [hs, map_apply hf hs, hf hs, indicator_apply]
 #align measure_theory.measure.map_dirac MeasureTheory.Measure.map_dirac
 
-/- warning: measure_theory.measure.restrict_singleton -> MeasureTheory.Measure.restrict_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) (a : α), Eq.{succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.restrict.{u1} α _inst_3 μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) _inst_3) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) (a : α), Eq.{succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.restrict.{u1} α _inst_3 μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_singleton MeasureTheory.Measure.restrict_singletonₓ'. -/
 @[simp]
 theorem restrict_singleton (μ : Measure α) (a : α) : μ.restrict {a} = μ {a} • dirac a :=
   by
@@ -3053,43 +2171,19 @@ def sum (f : ι → Measure α) : Measure α :=
 #align measure_theory.measure.sum MeasureTheory.Measure.sum
 -/
 
-/- warning: measure_theory.measure.le_sum_apply -> MeasureTheory.Measure.le_sum_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (f : ι -> (MeasureTheory.Measure.{u1} α m0)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (f i) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 f) s)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} (f : ι -> (MeasureTheory.Measure.{u2} α m0)) (s : Set.{u2} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (f i)) s)) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 f)) s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_sum_apply MeasureTheory.Measure.le_sum_applyₓ'. -/
 theorem le_sum_apply (f : ι → Measure α) (s : Set α) : (∑' i, f i s) ≤ sum f s :=
   le_toMeasure_apply _ _ _
 #align measure_theory.measure.le_sum_apply MeasureTheory.Measure.le_sum_apply
 
-/- warning: measure_theory.measure.sum_apply -> MeasureTheory.Measure.sum_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (f : ι -> (MeasureTheory.Measure.{u1} α m0)) {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 f) s) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (f i) s)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} (f : ι -> (MeasureTheory.Measure.{u2} α m0)) {s : Set.{u2} α}, (MeasurableSet.{u2} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 f)) s) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (f i)) s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sum_apply MeasureTheory.Measure.sum_applyₓ'. -/
 @[simp]
 theorem sum_apply (f : ι → Measure α) {s : Set α} (hs : MeasurableSet s) : sum f s = ∑' i, f i s :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.sum_apply MeasureTheory.Measure.sum_apply
 
-/- warning: measure_theory.measure.le_sum -> MeasureTheory.Measure.le_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (μ : ι -> (MeasureTheory.Measure.{u1} α m0)) (i : ι), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (μ i) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} (μ : ι -> (MeasureTheory.Measure.{u2} α m0)) (i : ι), LE.le.{u2} (MeasureTheory.Measure.{u2} α m0) (Preorder.toLE.{u2} (MeasureTheory.Measure.{u2} α m0) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instPartialOrder.{u2} α m0))) (μ i) (MeasureTheory.Measure.sum.{u2, u1} α ι m0 μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_sum MeasureTheory.Measure.le_sumₓ'. -/
 theorem le_sum (μ : ι → Measure α) (i : ι) : μ i ≤ sum μ := fun s hs => by
   simp only [sum_apply μ hs, ENNReal.le_tsum i]
 #align measure_theory.measure.le_sum MeasureTheory.Measure.le_sum
 
-/- warning: measure_theory.measure.sum_apply_eq_zero -> MeasureTheory.Measure.sum_apply_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] {μ : ι -> (MeasureTheory.Measure.{u1} α m0)} {s : Set.{u1} α}, Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (forall (i : ι), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (μ i) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] {μ : ι -> (MeasureTheory.Measure.{u1} α m0)} {s : Set.{u1} α}, Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (forall (i : ι), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (μ i)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sum_apply_eq_zero MeasureTheory.Measure.sum_apply_eq_zeroₓ'. -/
 @[simp]
 theorem sum_apply_eq_zero [Countable ι] {μ : ι → Measure α} {s : Set α} :
     sum μ s = 0 ↔ ∀ i, μ i s = 0 :=
@@ -3104,22 +2198,10 @@ theorem sum_apply_eq_zero [Countable ι] {μ : ι → Measure α} {s : Set α} :
     
 #align measure_theory.measure.sum_apply_eq_zero MeasureTheory.Measure.sum_apply_eq_zero
 
-/- warning: measure_theory.measure.sum_apply_eq_zero' -> MeasureTheory.Measure.sum_apply_eq_zero' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : ι -> (MeasureTheory.Measure.{u1} α m0)} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (forall (i : ι), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (μ i) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : ι -> (MeasureTheory.Measure.{u2} α m0)} {s : Set.{u2} α}, (MeasurableSet.{u2} α m0 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 μ)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (forall (i : ι), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (μ i)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sum_apply_eq_zero' MeasureTheory.Measure.sum_apply_eq_zero'ₓ'. -/
 theorem sum_apply_eq_zero' {μ : ι → Measure α} {s : Set α} (hs : MeasurableSet s) :
     sum μ s = 0 ↔ ∀ i, μ i s = 0 := by simp [hs]
 #align measure_theory.measure.sum_apply_eq_zero' MeasureTheory.Measure.sum_apply_eq_zero'
 
-/- warning: measure_theory.measure.sum_comm -> MeasureTheory.Measure.sum_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {ι' : Type.{u3}} (μ : ι -> ι' -> (MeasureTheory.Measure.{u1} α m0)), Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (n : ι) => MeasureTheory.Measure.sum.{u1, u3} α ι' m0 (μ n))) (MeasureTheory.Measure.sum.{u1, u3} α ι' m0 (fun (m : ι') => MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (n : ι) => μ n m)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {ι' : Type.{u3}} (μ : ι -> ι' -> (MeasureTheory.Measure.{u2} α m0)), Eq.{succ u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.sum.{u2, u1} α ι m0 (fun (n : ι) => MeasureTheory.Measure.sum.{u2, u3} α ι' m0 (μ n))) (MeasureTheory.Measure.sum.{u2, u3} α ι' m0 (fun (m : ι') => MeasureTheory.Measure.sum.{u2, u1} α ι m0 (fun (n : ι) => μ n m)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sum_comm MeasureTheory.Measure.sum_commₓ'. -/
 theorem sum_comm {ι' : Type _} (μ : ι → ι' → Measure α) :
     (sum fun n => sum (μ n)) = sum fun m => sum fun n => μ n m := by ext1 s hs;
   simp_rw [sum_apply _ hs]; rw [ENNReal.tsum_comm]
@@ -3132,12 +2214,6 @@ theorem ae_sum_iff [Countable ι] {μ : ι → Measure α} {p : α → Prop} :
 #align measure_theory.measure.ae_sum_iff MeasureTheory.Measure.ae_sum_iff
 -/
 
-/- warning: measure_theory.measure.ae_sum_iff' -> MeasureTheory.Measure.ae_sum_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : ι -> (MeasureTheory.Measure.{u1} α m0)} {p : α -> Prop}, (MeasurableSet.{u1} α m0 (setOf.{u1} α (fun (x : α) => p x))) -> (Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ))) (forall (i : ι), Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (μ i))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : ι -> (MeasureTheory.Measure.{u2} α m0)} {p : α -> Prop}, (MeasurableSet.{u2} α m0 (setOf.{u2} α (fun (x : α) => p x))) -> (Iff (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 μ))) (forall (i : ι), Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (μ i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_sum_iff' MeasureTheory.Measure.ae_sum_iff'ₓ'. -/
 theorem ae_sum_iff' {μ : ι → Measure α} {p : α → Prop} (h : MeasurableSet { x | p x }) :
     (∀ᵐ x ∂sum μ, p x) ↔ ∀ i, ∀ᵐ x ∂μ i, p x :=
   sum_apply_eq_zero' h.compl
@@ -3157,12 +2233,6 @@ theorem sum_coe_finset (s : Finset ι) (μ : ι → Measure α) :
 #align measure_theory.measure.sum_coe_finset MeasureTheory.Measure.sum_coe_finset
 -/
 
-/- warning: measure_theory.measure.ae_sum_eq -> MeasureTheory.Measure.ae_sum_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] (μ : ι -> (MeasureTheory.Measure.{u1} α m0)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (μ i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] (μ : ι -> (MeasureTheory.Measure.{u1} α m0)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toSupSet.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (μ i)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_sum_eq MeasureTheory.Measure.ae_sum_eqₓ'. -/
 @[simp]
 theorem ae_sum_eq [Countable ι] (μ : ι → Measure α) : (sum μ).ae = ⨆ i, (μ i).ae :=
   Filter.ext fun s => ae_sum_iff.trans mem_iSup.symm
@@ -3182,12 +2252,6 @@ theorem sum_cond (μ ν : Measure α) : (sum fun b => cond b μ ν) = μ + ν :=
 #align measure_theory.measure.sum_cond MeasureTheory.Measure.sum_cond
 -/
 
-/- warning: measure_theory.measure.restrict_sum -> MeasureTheory.Measure.restrict_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (μ : ι -> (MeasureTheory.Measure.{u1} α m0)) {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ) s) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 (μ i) s)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} (μ : ι -> (MeasureTheory.Measure.{u2} α m0)) {s : Set.{u2} α}, (MeasurableSet.{u2} α m0 s) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.restrict.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 μ) s) (MeasureTheory.Measure.sum.{u2, u1} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u2} α m0 (μ i) s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_sum MeasureTheory.Measure.restrict_sumₓ'. -/
 @[simp]
 theorem restrict_sum (μ : ι → Measure α) {s : Set α} (hs : MeasurableSet s) :
     (sum μ).restrict s = sum fun i => (μ i).restrict s :=
@@ -3246,12 +2310,6 @@ theorem sum_smul_dirac [Countable α] [MeasurableSingletonClass α] (μ : Measur
 #align measure_theory.measure.sum_smul_dirac MeasureTheory.Measure.sum_smul_dirac
 -/
 
-/- warning: measure_theory.measure.tsum_indicator_apply_singleton -> MeasureTheory.Measure.tsum_indicator_apply_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α m0] (μ : MeasureTheory.Measure.{u1} α m0) (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (fun (x : α) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) x)) x)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α m0] (μ : MeasureTheory.Measure.{u1} α m0) (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => Set.indicator.{u1, 0} α ENNReal instENNRealZero s (fun (x : α) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) x)) x)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.tsum_indicator_apply_singleton MeasureTheory.Measure.tsum_indicator_apply_singletonₓ'. -/
 /-- Given that `α` is a countable, measurable space with all singleton sets measurable,
 write the measure of a set `s` as the sum of the measure of `{x}` for all `x ∈ s`. -/
 theorem tsum_indicator_apply_singleton [Countable α] [MeasurableSingletonClass α] (μ : Measure α)
@@ -3276,23 +2334,11 @@ theorem restrict_iUnion_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AE
 #align measure_theory.measure.restrict_Union_ae MeasureTheory.Measure.restrict_iUnion_ae
 -/
 
-/- warning: measure_theory.measure.restrict_Union -> MeasureTheory.Measure.restrict_iUnion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_iUnionₓ'. -/
 theorem restrict_iUnion [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
   restrict_iUnion_ae hd.AEDisjoint fun i => (hm i).NullMeasurableSet
 #align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_iUnion
 
-/- warning: measure_theory.measure.restrict_Union_le -> MeasureTheory.Measure.restrict_iUnion_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_iUnion_leₓ'. -/
 theorem restrict_iUnion_le [Countable ι] {s : ι → Set α} :
     μ.restrict (⋃ i, s i) ≤ sum fun i => μ.restrict (s i) :=
   by
@@ -3312,12 +2358,6 @@ def count : Measure α :=
 #align measure_theory.measure.count MeasureTheory.Measure.count
 -/
 
-/- warning: measure_theory.measure.le_count_apply -> MeasureTheory.Measure.le_count_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (i : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (i : Set.Elem.{u1} α s) => OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_applyₓ'. -/
 theorem le_count_apply : (∑' i : s, 1 : ℝ≥0∞) ≤ count s :=
   calc
     (∑' i : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i := tsum_subtype s 1
@@ -3326,22 +2366,10 @@ theorem le_count_apply : (∑' i : s, 1 : ℝ≥0∞) ≤ count s :=
     
 #align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_apply
 
-/- warning: measure_theory.measure.count_apply -> MeasureTheory.Measure.count_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (i : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (i : Set.Elem.{u1} α s) => OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply MeasureTheory.Measure.count_applyₓ'. -/
 theorem count_apply (hs : MeasurableSet s) : count s = ∑' i : s, 1 := by
   simp only [count, sum_apply, hs, dirac_apply', ← tsum_subtype s 1, Pi.one_apply]
 #align measure_theory.measure.count_apply MeasureTheory.Measure.count_apply
 
-/- warning: measure_theory.measure.count_empty -> MeasureTheory.Measure.count_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_empty MeasureTheory.Measure.count_emptyₓ'. -/
 @[simp]
 theorem count_empty : count (∅ : Set α) = 0 := by rw [count_apply MeasurableSet.empty, tsum_empty]
 #align measure_theory.measure.count_empty MeasureTheory.Measure.count_empty
@@ -3380,12 +2408,6 @@ theorem count_apply_finite [MeasurableSingletonClass α] (s : Set α) (hs : s.Fi
 #align measure_theory.measure.count_apply_finite MeasureTheory.Measure.count_apply_finite
 -/
 
-/- warning: measure_theory.measure.count_apply_infinite -> MeasureTheory.Measure.count_apply_infinite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (Set.Infinite.{u1} α s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (Set.Infinite.{u1} α s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_infinite MeasureTheory.Measure.count_apply_infiniteₓ'. -/
 /-- `count` measure evaluates to infinity at infinite sets. -/
 theorem count_apply_infinite (hs : s.Infinite) : count s = ∞ :=
   by
@@ -3399,12 +2421,6 @@ theorem count_apply_infinite (hs : s.Infinite) : count s = ∞ :=
     
 #align measure_theory.measure.count_apply_infinite MeasureTheory.Measure.count_apply_infinite
 
-/- warning: measure_theory.measure.count_apply_eq_top' -> MeasureTheory.Measure.count_apply_eq_top' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Infinite.{u1} α s))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Set.Infinite.{u1} α s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_eq_top' MeasureTheory.Measure.count_apply_eq_top'ₓ'. -/
 @[simp]
 theorem count_apply_eq_top' (s_mble : MeasurableSet s) : count s = ∞ ↔ s.Infinite :=
   by
@@ -3414,12 +2430,6 @@ theorem count_apply_eq_top' (s_mble : MeasurableSet s) : count s = ∞ ↔ s.Inf
     simp [hs, count_apply_infinite]
 #align measure_theory.measure.count_apply_eq_top' MeasureTheory.Measure.count_apply_eq_top'
 
-/- warning: measure_theory.measure.count_apply_eq_top -> MeasureTheory.Measure.count_apply_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Infinite.{u1} α s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Set.Infinite.{u1} α s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_eq_top MeasureTheory.Measure.count_apply_eq_topₓ'. -/
 @[simp]
 theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.Infinite :=
   by
@@ -3429,12 +2439,6 @@ theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.I
     simp [hs, count_apply_infinite]
 #align measure_theory.measure.count_apply_eq_top MeasureTheory.Measure.count_apply_eq_top
 
-/- warning: measure_theory.measure.count_apply_lt_top' -> MeasureTheory.Measure.count_apply_lt_top' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Finite.{u1} α s))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Set.Finite.{u1} α s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_lt_top' MeasureTheory.Measure.count_apply_lt_top'ₓ'. -/
 @[simp]
 theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Finite :=
   calc
@@ -3444,12 +2448,6 @@ theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Fin
     
 #align measure_theory.measure.count_apply_lt_top' MeasureTheory.Measure.count_apply_lt_top'
 
-/- warning: measure_theory.measure.count_apply_lt_top -> MeasureTheory.Measure.count_apply_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Finite.{u1} α s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Set.Finite.{u1} α s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_lt_top MeasureTheory.Measure.count_apply_lt_topₓ'. -/
 @[simp]
 theorem count_apply_lt_top [MeasurableSingletonClass α] : count s < ∞ ↔ s.Finite :=
   calc
@@ -3459,12 +2457,6 @@ theorem count_apply_lt_top [MeasurableSingletonClass α] : count s < ∞ ↔ s.F
     
 #align measure_theory.measure.count_apply_lt_top MeasureTheory.Measure.count_apply_lt_top
 
-/- warning: measure_theory.measure.empty_of_count_eq_zero' -> MeasureTheory.Measure.empty_of_count_eq_zero' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.empty_of_count_eq_zero' MeasureTheory.Measure.empty_of_count_eq_zero'ₓ'. -/
 theorem empty_of_count_eq_zero' (s_mble : MeasurableSet s) (hsc : count s = 0) : s = ∅ :=
   by
   have hs : s.finite := by
@@ -3473,12 +2465,6 @@ theorem empty_of_count_eq_zero' (s_mble : MeasurableSet s) (hsc : count s = 0) :
   simpa [count_apply_finite' hs s_mble] using hsc
 #align measure_theory.measure.empty_of_count_eq_zero' MeasureTheory.Measure.empty_of_count_eq_zero'
 
-/- warning: measure_theory.measure.empty_of_count_eq_zero -> MeasureTheory.Measure.empty_of_count_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.empty_of_count_eq_zero MeasureTheory.Measure.empty_of_count_eq_zeroₓ'. -/
 theorem empty_of_count_eq_zero [MeasurableSingletonClass α] (hsc : count s = 0) : s = ∅ :=
   by
   have hs : s.finite := by
@@ -3487,46 +2473,22 @@ theorem empty_of_count_eq_zero [MeasurableSingletonClass α] (hsc : count s = 0)
   simpa [count_apply_finite _ hs] using hsc
 #align measure_theory.measure.empty_of_count_eq_zero MeasureTheory.Measure.empty_of_count_eq_zero
 
-/- warning: measure_theory.measure.count_eq_zero_iff' -> MeasureTheory.Measure.count_eq_zero_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_eq_zero_iff' MeasureTheory.Measure.count_eq_zero_iff'ₓ'. -/
 @[simp]
 theorem count_eq_zero_iff' (s_mble : MeasurableSet s) : count s = 0 ↔ s = ∅ :=
   ⟨empty_of_count_eq_zero' s_mble, fun h => h.symm ▸ count_empty⟩
 #align measure_theory.measure.count_eq_zero_iff' MeasureTheory.Measure.count_eq_zero_iff'
 
-/- warning: measure_theory.measure.count_eq_zero_iff -> MeasureTheory.Measure.count_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_eq_zero_iff MeasureTheory.Measure.count_eq_zero_iffₓ'. -/
 @[simp]
 theorem count_eq_zero_iff [MeasurableSingletonClass α] : count s = 0 ↔ s = ∅ :=
   ⟨empty_of_count_eq_zero, fun h => h.symm ▸ count_empty⟩
 #align measure_theory.measure.count_eq_zero_iff MeasureTheory.Measure.count_eq_zero_iff
 
-/- warning: measure_theory.measure.count_ne_zero' -> MeasureTheory.Measure.count_ne_zero' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (Set.Nonempty.{u1} α s) -> (MeasurableSet.{u1} α _inst_3 s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (Set.Nonempty.{u1} α s) -> (MeasurableSet.{u1} α _inst_3 s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_ne_zero' MeasureTheory.Measure.count_ne_zero'ₓ'. -/
 theorem count_ne_zero' (hs' : s.Nonempty) (s_mble : MeasurableSet s) : count s ≠ 0 :=
   by
   rw [Ne.def, count_eq_zero_iff' s_mble]
   exact hs'.ne_empty
 #align measure_theory.measure.count_ne_zero' MeasureTheory.Measure.count_ne_zero'
 
-/- warning: measure_theory.measure.count_ne_zero -> MeasureTheory.Measure.count_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], (Set.Nonempty.{u1} α s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], (Set.Nonempty.{u1} α s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_ne_zero MeasureTheory.Measure.count_ne_zeroₓ'. -/
 theorem count_ne_zero [MeasurableSingletonClass α] (hs' : s.Nonempty) : count s ≠ 0 :=
   by
   rw [Ne.def, count_eq_zero_iff]
@@ -3564,12 +2526,6 @@ theorem count_injective_image' {f : β → α} (hf : Function.Injective f) {s :
 #align measure_theory.measure.count_injective_image' MeasureTheory.Measure.count_injective_image'
 -/
 
-/- warning: measure_theory.measure.count_injective_image -> MeasureTheory.Measure.count_injective_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3] [_inst_5 : MeasurableSingletonClass.{u2} β _inst_1] {f : β -> α}, (Function.Injective.{succ u2, succ u1} β α f) -> (forall (s : Set.{u2} β), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) (Set.image.{u2, u1} β α f s)) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.count.{u2} β _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] [_inst_3 : MeasurableSpace.{u2} α] [_inst_4 : MeasurableSingletonClass.{u2} α _inst_3] [_inst_5 : MeasurableSingletonClass.{u1} β _inst_1] {f : β -> α}, (Function.Injective.{succ u1, succ u2} β α f) -> (forall (s : Set.{u1} β), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_3 (MeasureTheory.Measure.count.{u2} α _inst_3)) (Set.image.{u1, u2} β α f s)) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.count.{u1} β _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_injective_image MeasureTheory.Measure.count_injective_imageₓ'. -/
 theorem count_injective_image [MeasurableSingletonClass α] [MeasurableSingletonClass β] {f : β → α}
     (hf : Function.Injective f) (s : Set β) : count (f '' s) = count s :=
   by
@@ -3596,22 +2552,10 @@ def AbsolutelyContinuous {m0 : MeasurableSpace α} (μ ν : Measure α) : Prop :
 -- mathport name: measure.absolutely_continuous
 scoped[MeasureTheory] infixl:50 " ≪ " => MeasureTheory.Measure.AbsolutelyContinuous
 
-/- warning: measure_theory.measure.absolutely_continuous_of_le -> MeasureTheory.Measure.absolutelyContinuous_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous_of_le MeasureTheory.Measure.absolutelyContinuous_of_leₓ'. -/
 theorem absolutelyContinuous_of_le (h : μ ≤ ν) : μ ≪ ν := fun s hs =>
   nonpos_iff_eq_zero.1 <| hs ▸ le_iff'.1 h s
 #align measure_theory.measure.absolutely_continuous_of_le MeasureTheory.Measure.absolutelyContinuous_of_le
 
-/- warning: has_le.le.absolutely_continuous -> LE.le.absolutelyContinuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
-Case conversion may be inaccurate. Consider using '#align has_le.le.absolutely_continuous LE.le.absolutelyContinuousₓ'. -/
 alias absolutely_continuous_of_le ← _root_.has_le.le.absolutely_continuous
 #align has_le.le.absolutely_continuous LE.le.absolutelyContinuous
 
@@ -3626,12 +2570,6 @@ alias absolutely_continuous_of_eq ← _root_.eq.absolutely_continuous
 
 namespace AbsolutelyContinuous
 
-/- warning: measure_theory.measure.absolutely_continuous.mk -> MeasureTheory.Measure.AbsolutelyContinuous.mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (forall {{s : Set.{u1} α}}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (forall {{s : Set.{u1} α}}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.mk MeasureTheory.Measure.AbsolutelyContinuous.mkₓ'. -/
 theorem mk (h : ∀ ⦃s : Set α⦄, MeasurableSet s → ν s = 0 → μ s = 0) : μ ≪ ν :=
   by
   intro s hs
@@ -3660,83 +2598,35 @@ protected theorem trans (h1 : μ₁ ≪ μ₂) (h2 : μ₂ ≪ μ₃) : μ₁ 
 #align measure_theory.measure.absolutely_continuous.trans MeasureTheory.Measure.AbsolutelyContinuous.trans
 -/
 
-/- warning: measure_theory.measure.absolutely_continuous.map -> MeasureTheory.Measure.AbsolutelyContinuous.map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (forall {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f ν)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u2} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m0 μ ν) -> (forall {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f ν)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.map MeasureTheory.Measure.AbsolutelyContinuous.mapₓ'. -/
 @[mono]
 protected theorem map (h : μ ≪ ν) {f : α → β} (hf : Measurable f) : μ.map f ≪ ν.map f :=
   AbsolutelyContinuous.mk fun s hs => by simpa [hf, hs] using @h _
 #align measure_theory.measure.absolutely_continuous.map MeasureTheory.Measure.AbsolutelyContinuous.map
 
-/- warning: measure_theory.measure.absolutely_continuous.smul -> MeasureTheory.Measure.AbsolutelyContinuous.smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {R : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Monoid.{u2} R] [_inst_4 : DistribMulAction.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))] [_inst_5 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4)))], (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (forall (c : R), MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4))) _inst_5 m0) c μ) ν)
-but is expected to have type
-  forall {α : Type.{u1}} {R : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Monoid.{u2} R] [_inst_4 : DistribMulAction.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))] [_inst_5 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4)))], (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (forall (c : R), MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 (HSMul.hSMul.{u2, u1, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4))) _inst_5 m0)) c μ) ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.smul MeasureTheory.Measure.AbsolutelyContinuous.smulₓ'. -/
 protected theorem smul [Monoid R] [DistribMulAction R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (h : μ ≪ ν)
     (c : R) : c • μ ≪ ν := fun s hνs => by simp only [h hνs, smul_eq_mul, smul_apply, smul_zero]
 #align measure_theory.measure.absolutely_continuous.smul MeasureTheory.Measure.AbsolutelyContinuous.smul
 
 end AbsolutelyContinuous
 
-/- warning: measure_theory.measure.absolutely_continuous_of_le_smul -> MeasureTheory.Measure.absolutelyContinuous_of_le_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {μ' : MeasureTheory.Measure.{u1} α m0} {c : ENNReal}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ' (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ' μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {μ' : MeasureTheory.Measure.{u1} α m0} {c : ENNReal}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ' (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ' μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous_of_le_smul MeasureTheory.Measure.absolutelyContinuous_of_le_smulₓ'. -/
 theorem absolutelyContinuous_of_le_smul {μ' : Measure α} {c : ℝ≥0∞} (hμ'_le : μ' ≤ c • μ) :
     μ' ≪ μ :=
   (Measure.absolutelyContinuous_of_le hμ'_le).trans (Measure.AbsolutelyContinuous.rfl.smul c)
 #align measure_theory.measure.absolutely_continuous_of_le_smul MeasureTheory.Measure.absolutelyContinuous_of_le_smul
 
-/- warning: measure_theory.measure.ae_le_iff_absolutely_continuous -> MeasureTheory.Measure.ae_le_iff_absolutelyContinuous is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuousₓ'. -/
 theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
   ⟨fun h s => by rw [measure_zero_iff_ae_nmem, measure_zero_iff_ae_nmem]; exact fun hs => h hs,
     fun h s hs => h hs⟩
 #align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuous
 
-/- warning: has_le.le.absolutely_continuous_of_ae -> LE.le.absolutelyContinuous_of_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
-Case conversion may be inaccurate. Consider using '#align has_le.le.absolutely_continuous_of_ae LE.le.absolutelyContinuous_of_aeₓ'. -/
-/- warning: measure_theory.measure.absolutely_continuous.ae_le -> MeasureTheory.Measure.AbsolutelyContinuous.ae_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.ae_le MeasureTheory.Measure.AbsolutelyContinuous.ae_leₓ'. -/
 alias ae_le_iff_absolutely_continuous ↔
   _root_.has_le.le.absolutely_continuous_of_ae absolutely_continuous.ae_le
 #align has_le.le.absolutely_continuous_of_ae LE.le.absolutelyContinuous_of_ae
 #align measure_theory.measure.absolutely_continuous.ae_le MeasureTheory.Measure.AbsolutelyContinuous.ae_le
 
-/- warning: measure_theory.measure.ae_mono' -> MeasureTheory.Measure.ae_mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_mono' MeasureTheory.Measure.ae_mono'ₓ'. -/
 alias absolutely_continuous.ae_le ← ae_mono'
 #align measure_theory.measure.ae_mono' MeasureTheory.Measure.ae_mono'
 
-/- warning: measure_theory.measure.absolutely_continuous.ae_eq -> MeasureTheory.Measure.AbsolutelyContinuous.ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (forall {f : α -> δ} {g : α -> δ}, (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 ν) f g) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 μ) f g))
-but is expected to have type
-  forall {α : Type.{u2}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u2} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m0 μ ν) -> (forall {f : α -> δ} {g : α -> δ}, (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 ν) f g) -> (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 μ) f g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.ae_eq MeasureTheory.Measure.AbsolutelyContinuous.ae_eqₓ'. -/
 theorem AbsolutelyContinuous.ae_eq (h : μ ≪ ν) {f g : α → δ} (h' : f =ᵐ[ν] g) : f =ᵐ[μ] g :=
   h.ae_le h'
 #align measure_theory.measure.absolutely_continuous.ae_eq MeasureTheory.Measure.AbsolutelyContinuous.ae_eq
@@ -3766,57 +2656,27 @@ protected theorem id {m0 : MeasurableSpace α} (μ : Measure α) : QuasiMeasureP
 
 variable {μa μa' : Measure α} {μb μb' : Measure β} {μc : Measure γ} {f : α → β}
 
-/- warning: measurable.quasi_measure_preserving -> Measurable.quasiMeasurePreserving is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {f : α -> β} {m0 : MeasurableSpace.{u1} α}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u1} α m0), MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μ (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] {f : α -> β} {m0 : MeasurableSpace.{u2} α}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0), MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μ (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
-Case conversion may be inaccurate. Consider using '#align measurable.quasi_measure_preserving Measurable.quasiMeasurePreservingₓ'. -/
 protected theorem Measurable.quasiMeasurePreserving {m0 : MeasurableSpace α} (hf : Measurable f)
     (μ : Measure α) : QuasiMeasurePreserving f μ (μ.map f) :=
   ⟨hf, AbsolutelyContinuous.rfl⟩
 #align measurable.quasi_measure_preserving Measurable.quasiMeasurePreserving
 
-/- warning: measure_theory.measure.quasi_measure_preserving.mono_left -> MeasureTheory.Measure.QuasiMeasurePreserving.mono_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μa' : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μa' μa) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa' μb)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μa' : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m0 μa' μa) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa' μb)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.mono_left MeasureTheory.Measure.QuasiMeasurePreserving.mono_leftₓ'. -/
 theorem mono_left (h : QuasiMeasurePreserving f μa μb) (ha : μa' ≪ μa) :
     QuasiMeasurePreserving f μa' μb :=
   ⟨h.1, (ha.map h.1).trans h.2⟩
 #align measure_theory.measure.quasi_measure_preserving.mono_left MeasureTheory.Measure.QuasiMeasurePreserving.mono_left
 
-/- warning: measure_theory.measure.quasi_measure_preserving.mono_right -> MeasureTheory.Measure.QuasiMeasurePreserving.mono_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {μb' : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u2} β _inst_1 μb μb') -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb')
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {μb' : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} β _inst_1 μb μb') -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb')
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.mono_right MeasureTheory.Measure.QuasiMeasurePreserving.mono_rightₓ'. -/
 theorem mono_right (h : QuasiMeasurePreserving f μa μb) (ha : μb ≪ μb') :
     QuasiMeasurePreserving f μa μb' :=
   ⟨h.1, h.2.trans ha⟩
 #align measure_theory.measure.quasi_measure_preserving.mono_right MeasureTheory.Measure.QuasiMeasurePreserving.mono_right
 
-/- warning: measure_theory.measure.quasi_measure_preserving.mono -> MeasureTheory.Measure.QuasiMeasurePreserving.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μa' : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {μb' : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μa' μa) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u2} β _inst_1 μb μb') -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa' μb')
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μa' : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {μb' : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m0 μa' μa) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} β _inst_1 μb μb') -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa' μb')
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.mono MeasureTheory.Measure.QuasiMeasurePreserving.monoₓ'. -/
 @[mono]
 theorem mono (ha : μa' ≪ μa) (hb : μb ≪ μb') (h : QuasiMeasurePreserving f μa μb) :
     QuasiMeasurePreserving f μa' μb' :=
   (h.mono_left ha).mono_right hb
 #align measure_theory.measure.quasi_measure_preserving.mono MeasureTheory.Measure.QuasiMeasurePreserving.mono
 
-/- warning: measure_theory.measure.quasi_measure_preserving.comp -> MeasureTheory.Measure.QuasiMeasurePreserving.comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] [_inst_2 : MeasurableSpace.{u3} γ] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {μc : MeasureTheory.Measure.{u3} γ _inst_2} {g : β -> γ} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u3} β γ _inst_2 _inst_1 g μb μc) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u3} α γ _inst_2 m0 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) μa μc)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u3} β] [_inst_2 : MeasurableSpace.{u2} γ] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u3} β _inst_1} {μc : MeasureTheory.Measure.{u2} γ _inst_2} {g : β -> γ} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u3, u2} β γ _inst_2 _inst_1 g μb μc) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u3} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α γ _inst_2 m0 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) μa μc)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.comp MeasureTheory.Measure.QuasiMeasurePreserving.compₓ'. -/
 protected theorem comp {g : β → γ} {f : α → β} (hg : QuasiMeasurePreserving g μb μc)
     (hf : QuasiMeasurePreserving f μa μb) : QuasiMeasurePreserving (g ∘ f) μa μc :=
   ⟨hg.Measurable.comp hf.Measurable, by rw [← map_map hg.1 hf.1]; exact (hf.2.map hg.1).trans hg.2⟩
@@ -3830,64 +2690,28 @@ protected theorem iterate {f : α → α} (hf : QuasiMeasurePreserving f μa μa
 #align measure_theory.measure.quasi_measure_preserving.iterate MeasureTheory.Measure.QuasiMeasurePreserving.iterate
 -/
 
-/- warning: measure_theory.measure.quasi_measure_preserving.ae_measurable -> MeasureTheory.Measure.QuasiMeasurePreserving.aemeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (AEMeasurable.{u1, u2} α β _inst_1 m0 f μa)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (AEMeasurable.{u2, u1} α β _inst_1 m0 f μa)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae_measurable MeasureTheory.Measure.QuasiMeasurePreserving.aemeasurableₓ'. -/
 protected theorem aemeasurable (hf : QuasiMeasurePreserving f μa μb) : AEMeasurable f μa :=
   hf.1.AEMeasurable
 #align measure_theory.measure.quasi_measure_preserving.ae_measurable MeasureTheory.Measure.QuasiMeasurePreserving.aemeasurable
 
-/- warning: measure_theory.measure.quasi_measure_preserving.ae_map_le -> MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μa)) (MeasureTheory.Measure.ae.{u2} β _inst_1 μb))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μa)) (MeasureTheory.Measure.ae.{u1} β _inst_1 μb))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae_map_le MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_leₓ'. -/
 theorem ae_map_le (h : QuasiMeasurePreserving f μa μb) : (μa.map f).ae ≤ μb.ae :=
   h.2.ae_le
 #align measure_theory.measure.quasi_measure_preserving.ae_map_le MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_le
 
-/- warning: measure_theory.measure.quasi_measure_preserving.tendsto_ae -> MeasureTheory.Measure.QuasiMeasurePreserving.tendsto_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (Filter.Tendsto.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α m0 μa) (MeasureTheory.Measure.ae.{u2} β _inst_1 μb))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (Filter.Tendsto.{u2, u1} α β f (MeasureTheory.Measure.ae.{u2} α m0 μa) (MeasureTheory.Measure.ae.{u1} β _inst_1 μb))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.tendsto_ae MeasureTheory.Measure.QuasiMeasurePreserving.tendsto_aeₓ'. -/
 theorem tendsto_ae (h : QuasiMeasurePreserving f μa μb) : Tendsto f μa.ae μb.ae :=
   (tendsto_ae_map h.AEMeasurable).mono_right h.ae_map_le
 #align measure_theory.measure.quasi_measure_preserving.tendsto_ae MeasureTheory.Measure.QuasiMeasurePreserving.tendsto_ae
 
-/- warning: measure_theory.measure.quasi_measure_preserving.ae -> MeasureTheory.Measure.QuasiMeasurePreserving.ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (forall {p : β -> Prop}, (Filter.Eventually.{u2} β (fun (x : β) => p x) (MeasureTheory.Measure.ae.{u2} β _inst_1 μb)) -> (Filter.Eventually.{u1} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u1} α m0 μa)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (forall {p : β -> Prop}, (Filter.Eventually.{u1} β (fun (x : β) => p x) (MeasureTheory.Measure.ae.{u1} β _inst_1 μb)) -> (Filter.Eventually.{u2} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u2} α m0 μa)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae MeasureTheory.Measure.QuasiMeasurePreserving.aeₓ'. -/
 theorem ae (h : QuasiMeasurePreserving f μa μb) {p : β → Prop} (hg : ∀ᵐ x ∂μb, p x) :
     ∀ᵐ x ∂μa, p (f x) :=
   h.tendsto_ae hg
 #align measure_theory.measure.quasi_measure_preserving.ae MeasureTheory.Measure.QuasiMeasurePreserving.ae
 
-/- warning: measure_theory.measure.quasi_measure_preserving.ae_eq -> MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {δ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (forall {g₁ : β -> δ} {g₂ : β -> δ}, (Filter.EventuallyEq.{u2, u3} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 μb) g₁ g₂) -> (Filter.EventuallyEq.{u1, u3} α δ (MeasureTheory.Measure.ae.{u1} α m0 μa) (Function.comp.{succ u1, succ u2, succ u3} α β δ g₁ f) (Function.comp.{succ u1, succ u2, succ u3} α β δ g₂ f)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u3} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u3} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u3, u2} α β _inst_1 m0 f μa μb) -> (forall {g₁ : β -> δ} {g₂ : β -> δ}, (Filter.EventuallyEq.{u2, u1} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 μb) g₁ g₂) -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 μa) (Function.comp.{succ u3, succ u2, succ u1} α β δ g₁ f) (Function.comp.{succ u3, succ u2, succ u1} α β δ g₂ f)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.ae_eqₓ'. -/
 theorem ae_eq (h : QuasiMeasurePreserving f μa μb) {g₁ g₂ : β → δ} (hg : g₁ =ᵐ[μb] g₂) :
     g₁ ∘ f =ᵐ[μa] g₂ ∘ f :=
   h.ae hg
 #align measure_theory.measure.quasi_measure_preserving.ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq
 
-/- warning: measure_theory.measure.quasi_measure_preserving.preimage_null -> MeasureTheory.Measure.QuasiMeasurePreserving.preimage_null is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (forall {s : Set.{u2} β}, (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) μb s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μa (Set.preimage.{u1, u2} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (forall {s : Set.{u1} β}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 μb) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μa) (Set.preimage.{u2, u1} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.preimage_null MeasureTheory.Measure.QuasiMeasurePreserving.preimage_nullₓ'. -/
 theorem preimage_null (h : QuasiMeasurePreserving f μa μb) {s : Set β} (hs : μb s = 0) :
     μa (f ⁻¹' s) = 0 :=
   preimage_null_of_map_null h.AEMeasurable (h.2 hs)
@@ -3934,12 +2758,6 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
 #align measure_theory.measure.quasi_measure_preserving.image_zpow_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq
 -/
 
-/- warning: measure_theory.measure.quasi_measure_preserving.limsup_preimage_iterate_ae_eq -> MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {f : α -> α}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α m0 m0 f μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.preimage.{u1, u1} α α f s) s) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) (fun (n : Nat) => Nat.iterate.{succ u1} (Set.{u1} α) (Set.preimage.{u1, u1} α α f) n s) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {f : α -> α}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α m0 m0 f μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.preimage.{u1, u1} α α f s) s) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) (fun (n : Nat) => Nat.iterate.{succ u1} (Set.{u1} α) (Set.preimage.{u1, u1} α α f) n s) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.limsup_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eqₓ'. -/
 theorem limsup_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreserving f μ μ)
     (hs : f ⁻¹' s =ᵐ[μ] s) :-- Need `@` below because of diamond; see gh issue #16932
         @limsup
@@ -3952,12 +2770,6 @@ theorem limsup_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreservi
   (limsup_ae_eq_of_forall_ae_eq (fun n => (preimage f^[n]) s) this).trans (ae_eq_refl _)
 #align measure_theory.measure.quasi_measure_preserving.limsup_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq
 
-/- warning: measure_theory.measure.quasi_measure_preserving.liminf_preimage_iterate_ae_eq -> MeasureTheory.Measure.QuasiMeasurePreserving.liminf_preimage_iterate_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {f : α -> α}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α m0 m0 f μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.preimage.{u1, u1} α α f s) s) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) (fun (n : Nat) => Nat.iterate.{succ u1} (Set.{u1} α) (Set.preimage.{u1, u1} α α f) n s) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {f : α -> α}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α m0 m0 f μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.preimage.{u1, u1} α α f s) s) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) (fun (n : Nat) => Nat.iterate.{succ u1} (Set.{u1} α) (Set.preimage.{u1, u1} α α f) n s) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.liminf_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.liminf_preimage_iterate_ae_eqₓ'. -/
 theorem liminf_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreserving f μ μ)
     (hs : f ⁻¹' s =ᵐ[μ] s) :-- Need `@` below because of diamond; see gh issue #16932
         @liminf
@@ -3989,12 +2801,6 @@ theorem exists_preimage_eq_of_preimage_ae {f : α → α} (h : QuasiMeasurePrese
 
 open Pointwise
 
-/- warning: measure_theory.measure.quasi_measure_preserving.smul_ae_eq_of_ae_eq -> MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {G : Type.{u1}} {α : Type.{u2}} [_inst_3 : Group.{u1} G] [_inst_4 : MulAction.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3))] [_inst_5 : MeasurableSpace.{u2} α] {s : Set.{u2} α} {t : Set.{u2} α} {μ : MeasureTheory.Measure.{u2} α _inst_5} (g : G), (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u2} α α _inst_5 _inst_5 (SMul.smul.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4) (Inv.inv.{u1} G (DivInvMonoid.toHasInv.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) g)) μ μ) -> (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_5 μ) s t) -> (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_5 μ) (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s) (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g t))
-but is expected to have type
-  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α} {μ : MeasureTheory.Measure.{u1} α _inst_5} (g : G), (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40330 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40332 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40330 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40332) (Inv.inv.{u2} G (InvOneClass.toInv.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3)))) g)) μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) s t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g t))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.smul_ae_eq_of_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eqₓ'. -/
 @[to_additive]
 theorem smul_ae_eq_of_ae_eq {G α : Type _} [Group G] [MulAction G α] [MeasurableSpace α]
     {s t : Set α} {μ : Measure α} (g : G) (h_qmp : QuasiMeasurePreserving ((· • ·) g⁻¹ : α → α) μ μ)
@@ -4009,12 +2815,6 @@ section Pointwise
 
 open Pointwise
 
-/- warning: measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one -> MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_one is a dubious translation:
-lean 3 declaration is
-  forall {G : Type.{u1}} {α : Type.{u2}} [_inst_3 : Group.{u1} G] [_inst_4 : MulAction.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3))] [_inst_5 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_5} {s : Set.{u2} α}, (forall (g : G), (Ne.{succ u1} G g (OfNat.ofNat.{u1} G 1 (OfNat.mk.{u1} G 1 (One.one.{u1} G (MulOneClass.toHasOne.{u1} G (Monoid.toMulOneClass.{u1} G (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)))))))) -> (MeasureTheory.AEDisjoint.{u2} α _inst_5 μ (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s) s)) -> (forall (g : G), MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u2} α α _inst_5 _inst_5 (SMul.smul.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4) g) μ μ) -> (Pairwise.{u1} G (Function.onFun.{succ u1, succ u2, 1} G (Set.{u2} α) Prop (MeasureTheory.AEDisjoint.{u2} α _inst_5 μ) (fun (g : G) => SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s)))
-but is expected to have type
-  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_5} {s : Set.{u1} α}, (forall (g : G), (Ne.{succ u2} G g (OfNat.ofNat.{u2} G 1 (One.toOfNat1.{u2} G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3))))))) -> (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) s)) -> (forall (g : G), MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40487 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40489 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40487 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40489) g) μ μ) -> (Pairwise.{u2} G (Function.onFun.{succ u2, succ u1, 1} G (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ) (fun (g : G) => HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_oneₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 @[to_additive]
 theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
@@ -4055,31 +2855,13 @@ def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α
 #align measure_theory.measure.cofinite MeasureTheory.Measure.cofinite
 -/
 
-/- warning: measure_theory.measure.mem_cofinite -> MeasureTheory.Measure.mem_cofinite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mem_cofinite MeasureTheory.Measure.mem_cofiniteₓ'. -/
 theorem mem_cofinite : s ∈ μ.cofinite ↔ μ (sᶜ) < ∞ :=
   Iff.rfl
 #align measure_theory.measure.mem_cofinite MeasureTheory.Measure.mem_cofinite
 
-/- warning: measure_theory.measure.compl_mem_cofinite -> MeasureTheory.Measure.compl_mem_cofinite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.compl_mem_cofinite MeasureTheory.Measure.compl_mem_cofiniteₓ'. -/
 theorem compl_mem_cofinite : sᶜ ∈ μ.cofinite ↔ μ s < ∞ := by rw [mem_cofinite, compl_compl]
 #align measure_theory.measure.compl_mem_cofinite MeasureTheory.Measure.compl_mem_cofinite
 
-/- warning: measure_theory.measure.eventually_cofinite -> MeasureTheory.Measure.eventually_cofinite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop}, Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (setOf.{u1} α (fun (x : α) => Not (p x)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop}, Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (setOf.{u1} α (fun (x : α) => Not (p x)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eventually_cofinite MeasureTheory.Measure.eventually_cofiniteₓ'. -/
 theorem eventually_cofinite {p : α → Prop} : (∀ᶠ x in μ.cofinite, p x) ↔ μ { x | ¬p x } < ∞ :=
   Iff.rfl
 #align measure_theory.measure.eventually_cofinite MeasureTheory.Measure.eventually_cofinite
@@ -4108,12 +2890,6 @@ theorem NullMeasurableSet.mono_ac (h : NullMeasurableSet s μ) (hle : ν ≪ μ)
 #align measure_theory.null_measurable_set.mono_ac MeasureTheory.NullMeasurableSet.mono_ac
 -/
 
-/- warning: measure_theory.null_measurable_set.mono -> MeasureTheory.NullMeasurableSet.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.mono MeasureTheory.NullMeasurableSet.monoₓ'. -/
 theorem NullMeasurableSet.mono (h : NullMeasurableSet s μ) (hle : ν ≤ μ) : NullMeasurableSet s ν :=
   h.mono_ac hle.AbsolutelyContinuous
 #align measure_theory.null_measurable_set.mono MeasureTheory.NullMeasurableSet.mono
@@ -4125,12 +2901,6 @@ theorem AeDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht
 #align measure_theory.ae_disjoint.preimage MeasureTheory.AeDisjoint.preimage
 -/
 
-/- warning: measure_theory.ae_eq_bot -> MeasureTheory.ae_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toHasBot.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α)))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toBot.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α)))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_bot MeasureTheory.ae_eq_botₓ'. -/
 @[simp]
 theorem ae_eq_bot : μ.ae = ⊥ ↔ μ = 0 := by
   rw [← empty_mem_iff_bot, mem_ae_iff, compl_empty, measure_univ_eq_zero]
@@ -4143,78 +2913,36 @@ theorem ae_neBot : μ.ae.ne_bot ↔ μ ≠ 0 :=
 #align measure_theory.ae_ne_bot MeasureTheory.ae_neBot
 -/
 
-/- warning: measure_theory.ae_zero -> MeasureTheory.ae_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toHasBot.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toBot.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_zero MeasureTheory.ae_zeroₓ'. -/
 @[simp]
 theorem ae_zero {m0 : MeasurableSpace α} : (0 : Measure α).ae = ⊥ :=
   ae_eq_bot.2 rfl
 #align measure_theory.ae_zero MeasureTheory.ae_zero
 
-/- warning: measure_theory.ae_mono -> MeasureTheory.ae_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_mono MeasureTheory.ae_monoₓ'. -/
 @[mono]
 theorem ae_mono (h : μ ≤ ν) : μ.ae ≤ ν.ae :=
   h.AbsolutelyContinuous.ae_le
 #align measure_theory.ae_mono MeasureTheory.ae_mono
 
-/- warning: measure_theory.mem_ae_map_iff -> MeasureTheory.mem_ae_map_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Iff (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))) (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) (Set.preimage.{u1, u2} α β f s) (MeasureTheory.Measure.ae.{u1} α m0 μ))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Iff (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))) (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) (Set.preimage.{u2, u1} α β f s) (MeasureTheory.Measure.ae.{u2} α m0 μ))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.mem_ae_map_iff MeasureTheory.mem_ae_map_iffₓ'. -/
 theorem mem_ae_map_iff {f : α → β} (hf : AEMeasurable f μ) {s : Set β} (hs : MeasurableSet s) :
     s ∈ (μ.map f).ae ↔ f ⁻¹' s ∈ μ.ae := by
   simp only [mem_ae_iff, map_apply_of_ae_measurable hf hs.compl, preimage_compl]
 #align measure_theory.mem_ae_map_iff MeasureTheory.mem_ae_map_iff
 
-/- warning: measure_theory.mem_ae_of_mem_ae_map -> MeasureTheory.mem_ae_of_mem_ae_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {s : Set.{u2} β}, (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) (Set.preimage.{u1, u2} α β f s) (MeasureTheory.Measure.ae.{u1} α m0 μ)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {s : Set.{u1} β}, (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) (Set.preimage.{u2, u1} α β f s) (MeasureTheory.Measure.ae.{u2} α m0 μ)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.mem_ae_of_mem_ae_map MeasureTheory.mem_ae_of_mem_ae_mapₓ'. -/
 theorem mem_ae_of_mem_ae_map {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : s ∈ (μ.map f).ae) : f ⁻¹' s ∈ μ.ae :=
   (tendsto_ae_map hf).Eventually hs
 #align measure_theory.mem_ae_of_mem_ae_map MeasureTheory.mem_ae_of_mem_ae_map
 
-/- warning: measure_theory.ae_map_iff -> MeasureTheory.ae_map_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {p : β -> Prop}, (MeasurableSet.{u2} β _inst_1 (setOf.{u2} β (fun (x : β) => p x))) -> (Iff (Filter.Eventually.{u2} β (fun (y : β) => p y) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))) (Filter.Eventually.{u1} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u1} α m0 μ))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {p : β -> Prop}, (MeasurableSet.{u1} β _inst_1 (setOf.{u1} β (fun (x : β) => p x))) -> (Iff (Filter.Eventually.{u1} β (fun (y : β) => p y) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))) (Filter.Eventually.{u2} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u2} α m0 μ))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_map_iff MeasureTheory.ae_map_iffₓ'. -/
 theorem ae_map_iff {f : α → β} (hf : AEMeasurable f μ) {p : β → Prop}
     (hp : MeasurableSet { x | p x }) : (∀ᵐ y ∂μ.map f, p y) ↔ ∀ᵐ x ∂μ, p (f x) :=
   mem_ae_map_iff hf hp
 #align measure_theory.ae_map_iff MeasureTheory.ae_map_iff
 
-/- warning: measure_theory.ae_of_ae_map -> MeasureTheory.ae_of_ae_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {p : β -> Prop}, (Filter.Eventually.{u2} β (fun (y : β) => p y) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))) -> (Filter.Eventually.{u1} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u1} α m0 μ)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {p : β -> Prop}, (Filter.Eventually.{u1} β (fun (y : β) => p y) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))) -> (Filter.Eventually.{u2} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u2} α m0 μ)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_of_ae_map MeasureTheory.ae_of_ae_mapₓ'. -/
 theorem ae_of_ae_map {f : α → β} (hf : AEMeasurable f μ) {p : β → Prop} (h : ∀ᵐ y ∂μ.map f, p y) :
     ∀ᵐ x ∂μ, p (f x) :=
   mem_ae_of_mem_ae_map hf h
 #align measure_theory.ae_of_ae_map MeasureTheory.ae_of_ae_map
 
-/- warning: measure_theory.ae_map_mem_range -> MeasureTheory.ae_map_mem_range is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : α -> β), (MeasurableSet.{u2} β _inst_1 (Set.range.{u2, succ u1} β α f)) -> (forall (μ : MeasureTheory.Measure.{u1} α m0), Filter.Eventually.{u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.range.{u2, succ u1} β α f)) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] {m0 : MeasurableSpace.{u2} α} (f : α -> β), (MeasurableSet.{u1} β _inst_1 (Set.range.{u1, succ u2} β α f)) -> (forall (μ : MeasureTheory.Measure.{u2} α m0), Filter.Eventually.{u1} β (fun (x : β) => Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.range.{u1, succ u2} β α f)) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_map_mem_range MeasureTheory.ae_map_mem_rangeₓ'. -/
 theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : MeasurableSet (range f))
     (μ : Measure α) : ∀ᵐ x ∂μ.map f, x ∈ range f :=
   by
@@ -4226,12 +2954,6 @@ theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : Measura
   · simp [map_of_not_ae_measurable h]
 #align measure_theory.ae_map_mem_range MeasureTheory.ae_map_mem_range
 
-/- warning: measure_theory.ae_restrict_Union_eq -> MeasureTheory.ae_restrict_iUnion_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] (s : ι -> (Set.{u1} α)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] (s : ι -> (Set.{u1} α)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toSupSet.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_iUnion_eqₓ'. -/
 @[simp]
 theorem ae_restrict_iUnion_eq [Countable ι] (s : ι → Set α) :
     (μ.restrict (⋃ i, s i)).ae = ⨆ i, (μ.restrict (s i)).ae :=
@@ -4247,12 +2969,6 @@ theorem ae_restrict_union_eq (s t : Set α) :
 #align measure_theory.ae_restrict_union_eq MeasureTheory.ae_restrict_union_eq
 -/
 
-/- warning: measure_theory.ae_restrict_bUnion_eq -> MeasureTheory.ae_restrict_biUnion_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i))))) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => iSup.{u1, 0} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (Eq.{succ u2} (Filter.{u2} α) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i))))) (iSup.{u2, succ u1} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι (fun (i : ι) => iSup.{u2, 0} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_biUnion_eqₓ'. -/
 theorem ae_restrict_biUnion_eq (s : ι → Set α) {t : Set ι} (ht : t.Countable) :
     (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae :=
   by
@@ -4260,12 +2976,6 @@ theorem ae_restrict_biUnion_eq (s : ι → Set α) {t : Set ι} (ht : t.Countabl
   rw [bUnion_eq_Union, ae_restrict_Union_eq, ← iSup_subtype'']
 #align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_biUnion_eq
 
-/- warning: measure_theory.ae_restrict_bUnion_finset_eq -> MeasureTheory.ae_restrict_biUnion_finset_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u2} ι), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => s i))))) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => iSup.{u1, 0} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) (t : Finset.{u1} ι), Eq.{succ u2} (Filter.{u2} α) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => s i))))) (iSup.{u2, succ u1} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι (fun (i : ι) => iSup.{u2, 0} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_biUnion_finset_eqₓ'. -/
 theorem ae_restrict_biUnion_finset_eq (s : ι → Set α) (t : Finset ι) :
     (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae :=
   ae_restrict_biUnion_eq s t.countable_toSet
@@ -4283,68 +2993,32 @@ theorem ae_restrict_union_iff (s t : Set α) (p : α → Prop) :
 #align measure_theory.ae_restrict_union_iff MeasureTheory.ae_restrict_union_iff
 -/
 
-/- warning: measure_theory.ae_restrict_bUnion_iff -> MeasureTheory.ae_restrict_biUnion_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (forall (p : α -> Prop), Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i)))))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) -> (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (forall (p : α -> Prop), Iff (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i)))))) (forall (i : ι), (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) -> (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_biUnion_iffₓ'. -/
 theorem ae_restrict_biUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
   simp_rw [Filter.Eventually, ae_restrict_bUnion_eq s ht, mem_supr]
 #align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_biUnion_iff
 
-/- warning: measure_theory.ae_restrict_bUnion_finset_iff -> MeasureTheory.ae_restrict_biUnion_finset_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u2} ι) (p : α -> Prop), Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => s i)))))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) -> (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) (t : Finset.{u1} ι) (p : α -> Prop), Iff (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => s i)))))) (forall (i : ι), (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) -> (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_biUnion_finset_iffₓ'. -/
 @[simp]
 theorem ae_restrict_biUnion_finset_iff (s : ι → Set α) (t : Finset ι) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
   simp_rw [Filter.Eventually, ae_restrict_bUnion_finset_eq s, mem_supr]
 #align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_biUnion_finset_iff
 
-/- warning: measure_theory.ae_eq_restrict_Union_iff -> MeasureTheory.ae_eq_restrict_iUnion_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u3} ι] (s : ι -> (Set.{u1} α)) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u3} α ι (fun (i : ι) => s i)))) f g) (forall (i : ι), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g)
-but is expected to have type
-  forall {α : Type.{u2}} {δ : Type.{u1}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_3 : Countable.{succ u3} ι] (s : ι -> (Set.{u2} α)) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.iUnion.{u2, succ u3} α ι (fun (i : ι) => s i)))) f g) (forall (i : ι), Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_iUnion_iffₓ'. -/
 theorem ae_eq_restrict_iUnion_iff [Countable ι] (s : ι → Set α) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i, s i)] g ↔ ∀ i, f =ᵐ[μ.restrict (s i)] g := by
   simp_rw [eventually_eq, ae_restrict_Union_eq, eventually_supr]
 #align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_iUnion_iff
 
-/- warning: measure_theory.ae_eq_restrict_bUnion_iff -> MeasureTheory.ae_eq_restrict_biUnion_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u3} ι}, (Set.Countable.{u3} ι t) -> (forall (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u3} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) (fun (H : Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g)))
-but is expected to have type
-  forall {α : Type.{u3}} {δ : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m0} (s : ι -> (Set.{u3} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (forall (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (Set.iUnion.{u3, succ u2} α ι (fun (i : ι) => Set.iUnion.{u3, 0} α (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (s i))) f g)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_biUnion_iffₓ'. -/
 theorem ae_eq_restrict_biUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g := by
   simp_rw [ae_restrict_bUnion_eq s ht, eventually_eq, eventually_supr]
 #align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_biUnion_iff
 
-/- warning: measure_theory.ae_eq_restrict_bUnion_finset_iff -> MeasureTheory.ae_eq_restrict_biUnion_finset_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u3} ι) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u3} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) (fun (H : Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g))
-but is expected to have type
-  forall {α : Type.{u3}} {δ : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m0} (s : ι -> (Set.{u3} α)) (t : Finset.{u2} ι) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (Set.iUnion.{u3, succ u2} α ι (fun (i : ι) => Set.iUnion.{u3, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (s i))) f g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_biUnion_finset_iffₓ'. -/
 theorem ae_eq_restrict_biUnion_finset_iff (s : ι → Set α) (t : Finset ι) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g :=
   ae_eq_restrict_biUnion_iff s t.countable_toSet f g
 #align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_biUnion_finset_iff
 
-/- warning: measure_theory.ae_restrict_uIoc_eq -> MeasureTheory.ae_restrict_uIoc_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : LinearOrder.{u1} α] (a : α) (b : α), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.uIoc.{u1} α _inst_3 a b))) (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))))) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) a b))) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) b a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : LinearOrder.{u1} α] (a : α) (b : α), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.uIoc.{u1} α _inst_3 a b))) (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))))) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_3))))) a b))) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_3))))) b a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_uIoc_eq MeasureTheory.ae_restrict_uIoc_eqₓ'. -/
 theorem ae_restrict_uIoc_eq [LinearOrder α] (a b : α) :
     (μ.restrict (Ι a b)).ae = (μ.restrict (Ioc a b)).ae ⊔ (μ.restrict (Ioc b a)).ae := by
   simp only [uIoc_eq_union, ae_restrict_union_eq]
@@ -4385,12 +3059,6 @@ theorem ae_restrict_iff' {p : α → Prop} (hs : MeasurableSet s) :
 #align measure_theory.ae_restrict_iff' MeasureTheory.ae_restrict_iff'
 -/
 
-/- warning: filter.eventually_eq.restrict -> Filter.EventuallyEq.restrict is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> δ} {g : α -> δ} {s : Set.{u1} α}, (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 μ) f g) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) f g)
-but is expected to have type
-  forall {α : Type.{u2}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> δ} {g : α -> δ} {s : Set.{u2} α}, (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 μ) f g) -> (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ s)) f g)
-Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.restrict Filter.EventuallyEq.restrictₓ'. -/
 theorem Filter.EventuallyEq.restrict {f g : α → δ} {s : Set α} (hfg : f =ᵐ[μ] g) :
     f =ᵐ[μ.restrict s] g :=
   by
@@ -4452,23 +3120,11 @@ theorem ae_of_ae_restrict_of_ae_restrict_compl (t : Set α) {p : α → Prop}
 #align measure_theory.ae_of_ae_restrict_of_ae_restrict_compl MeasureTheory.ae_of_ae_restrict_of_ae_restrict_compl
 -/
 
-/- warning: measure_theory.mem_map_restrict_ae_iff -> MeasureTheory.mem_map_restrict_ae_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} {s : Set.{u1} α} {t : Set.{u2} β} {f : α -> β}, (MeasurableSet.{u1} α m0 s) -> (Iff (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (Set.preimage.{u1, u2} α β f t)) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} {s : Set.{u1} α} {t : Set.{u2} β} {f : α -> β}, (MeasurableSet.{u1} α m0 s) -> (Iff (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) t (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (Set.preimage.{u1, u2} α β f t)) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.mem_map_restrict_ae_iff MeasureTheory.mem_map_restrict_ae_iffₓ'. -/
 theorem mem_map_restrict_ae_iff {β} {s : Set α} {t : Set β} {f : α → β} (hs : MeasurableSet s) :
     t ∈ Filter.map f (μ.restrict s).ae ↔ μ ((f ⁻¹' t)ᶜ ∩ s) = 0 := by
   rw [mem_map, mem_ae_iff, measure.restrict_apply' hs]
 #align measure_theory.mem_map_restrict_ae_iff MeasureTheory.mem_map_restrict_ae_iff
 
-/- warning: measure_theory.ae_smul_measure -> MeasureTheory.ae_smul_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {R : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop} [_inst_3 : Monoid.{u2} R] [_inst_4 : DistribMulAction.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))] [_inst_5 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4)))], (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (forall (c : R), Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4))) _inst_5 m0) c μ)))
-but is expected to have type
-  forall {α : Type.{u1}} {R : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop} [_inst_3 : Monoid.{u2} R] [_inst_4 : DistribMulAction.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))] [_inst_5 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4)))], (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (forall (c : R), Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (HSMul.hSMul.{u2, u1, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4))) _inst_5 m0)) c μ)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_smul_measure MeasureTheory.ae_smul_measureₓ'. -/
 theorem ae_smul_measure {p : α → Prop} [Monoid R] [DistribMulAction R ℝ≥0∞]
     [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (h : ∀ᵐ x ∂μ, p x) (c : R) : ∀ᵐ x ∂c • μ, p x :=
   ae_iff.2 <| by rw [smul_apply, ae_iff.1 h, smul_zero]
@@ -4481,45 +3137,21 @@ theorem ae_add_measure_iff {p : α → Prop} {ν} :
 #align measure_theory.ae_add_measure_iff MeasureTheory.ae_add_measure_iff
 -/
 
-/- warning: measure_theory.ae_eq_comp' -> MeasureTheory.ae_eq_comp' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {δ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (Filter.EventuallyEq.{u2, u3} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 ν) g g') -> (MeasureTheory.Measure.AbsolutelyContinuous.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) ν) -> (Filter.EventuallyEq.{u1, u3} α δ (MeasureTheory.Measure.ae.{u1} α m0 μ) (Function.comp.{succ u1, succ u2, succ u3} α β δ g f) (Function.comp.{succ u1, succ u2, succ u3} α β δ g' f))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u3} β] {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u3} β _inst_1} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (AEMeasurable.{u2, u3} α β _inst_1 m0 f μ) -> (Filter.EventuallyEq.{u3, u1} β δ (MeasureTheory.Measure.ae.{u3} β _inst_1 ν) g g') -> (MeasureTheory.Measure.AbsolutelyContinuous.{u3} β _inst_1 (MeasureTheory.Measure.map.{u2, u3} α β _inst_1 m0 f μ) ν) -> (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 μ) (Function.comp.{succ u2, succ u3, succ u1} α β δ g f) (Function.comp.{succ u2, succ u3, succ u1} α β δ g' f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_comp' MeasureTheory.ae_eq_comp'ₓ'. -/
 theorem ae_eq_comp' {ν : Measure β} {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ)
     (h : g =ᵐ[ν] g') (h2 : μ.map f ≪ ν) : g ∘ f =ᵐ[μ] g' ∘ f :=
   (tendsto_ae_map hf).mono_right h2.ae_le h
 #align measure_theory.ae_eq_comp' MeasureTheory.ae_eq_comp'
 
-/- warning: measure_theory.measure.quasi_measure_preserving.ae_eq_comp -> MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {δ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μ ν) -> (Filter.EventuallyEq.{u2, u3} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 ν) g g') -> (Filter.EventuallyEq.{u1, u3} α δ (MeasureTheory.Measure.ae.{u1} α m0 μ) (Function.comp.{succ u1, succ u2, succ u3} α β δ g f) (Function.comp.{succ u1, succ u2, succ u3} α β δ g' f))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u3} β] {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u3} β _inst_1} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u3} α β _inst_1 m0 f μ ν) -> (Filter.EventuallyEq.{u3, u1} β δ (MeasureTheory.Measure.ae.{u3} β _inst_1 ν) g g') -> (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 μ) (Function.comp.{succ u2, succ u3, succ u1} α β δ g f) (Function.comp.{succ u2, succ u3, succ u1} α β δ g' f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae_eq_comp MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq_compₓ'. -/
 theorem Measure.QuasiMeasurePreserving.ae_eq_comp {ν : Measure β} {f : α → β} {g g' : β → δ}
     (hf : QuasiMeasurePreserving f μ ν) (h : g =ᵐ[ν] g') : g ∘ f =ᵐ[μ] g' ∘ f :=
   ae_eq_comp' hf.AEMeasurable h hf.AbsolutelyContinuous
 #align measure_theory.measure.quasi_measure_preserving.ae_eq_comp MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq_comp
 
-/- warning: measure_theory.ae_eq_comp -> MeasureTheory.ae_eq_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {δ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (Filter.EventuallyEq.{u2, u3} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)) g g') -> (Filter.EventuallyEq.{u1, u3} α δ (MeasureTheory.Measure.ae.{u1} α m0 μ) (Function.comp.{succ u1, succ u2, succ u3} α β δ g f) (Function.comp.{succ u1, succ u2, succ u3} α β δ g' f))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u3} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u3} α m0} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (AEMeasurable.{u3, u2} α β _inst_1 m0 f μ) -> (Filter.EventuallyEq.{u2, u1} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u3, u2} α β _inst_1 m0 f μ)) g g') -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 μ) (Function.comp.{succ u3, succ u2, succ u1} α β δ g f) (Function.comp.{succ u3, succ u2, succ u1} α β δ g' f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_comp MeasureTheory.ae_eq_compₓ'. -/
 theorem ae_eq_comp {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ) (h : g =ᵐ[μ.map f] g') :
     g ∘ f =ᵐ[μ] g' ∘ f :=
   ae_eq_comp' hf h AbsolutelyContinuous.rfl
 #align measure_theory.ae_eq_comp MeasureTheory.ae_eq_comp
 
-/- warning: measure_theory.sub_ae_eq_zero -> MeasureTheory.sub_ae_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : AddGroup.{u2} β] (f : α -> β) (g : α -> β), Iff (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (α -> β) (α -> β) (α -> β) (instHSub.{max u1 u2} (α -> β) (Pi.instSub.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) f g) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))))))))) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : AddGroup.{u2} β] (f : α -> β) (g : α -> β), Iff (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (α -> β) (α -> β) (α -> β) (instHSub.{max u1 u2} (α -> β) (Pi.instSub.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SubNegMonoid.toSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) f g) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (Zero.toOfNat0.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => NegZeroClass.toZero.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_3)))))))) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.sub_ae_eq_zero MeasureTheory.sub_ae_eq_zeroₓ'. -/
 theorem sub_ae_eq_zero {β} [AddGroup β] (f g : α → β) : f - g =ᵐ[μ] 0 ↔ f =ᵐ[μ] g :=
   by
   refine' ⟨fun h => h.mono fun x hx => _, fun h => h.mono fun x hx => _⟩
@@ -4527,22 +3159,10 @@ theorem sub_ae_eq_zero {β} [AddGroup β] (f g : α → β) : f - g =ᵐ[μ] 0 
   · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero]
 #align measure_theory.sub_ae_eq_zero MeasureTheory.sub_ae_eq_zero
 
-/- warning: measure_theory.le_ae_restrict -> MeasureTheory.le_ae_restrict is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.le_ae_restrict MeasureTheory.le_ae_restrictₓ'. -/
 theorem le_ae_restrict : μ.ae ⊓ 𝓟 s ≤ (μ.restrict s).ae := fun s hs =>
   eventually_inf_principal.2 (ae_imp_of_ae_restrict hs)
 #align measure_theory.le_ae_restrict MeasureTheory.le_ae_restrict
 
-/- warning: measure_theory.ae_restrict_eq -> MeasureTheory.ae_restrict_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_eq MeasureTheory.ae_restrict_eqₓ'. -/
 @[simp]
 theorem ae_restrict_eq (hs : MeasurableSet s) : (μ.restrict s).ae = μ.ae ⊓ 𝓟 s :=
   by
@@ -4552,23 +3172,11 @@ theorem ae_restrict_eq (hs : MeasurableSet s) : (μ.restrict s).ae = μ.ae ⊓ 
   rfl
 #align measure_theory.ae_restrict_eq MeasureTheory.ae_restrict_eq
 
-/- warning: measure_theory.ae_restrict_eq_bot -> MeasureTheory.ae_restrict_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toHasBot.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toBot.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α)))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_eq_bot MeasureTheory.ae_restrict_eq_botₓ'. -/
 @[simp]
 theorem ae_restrict_eq_bot {s} : (μ.restrict s).ae = ⊥ ↔ μ s = 0 :=
   ae_eq_bot.trans restrict_eq_zero
 #align measure_theory.ae_restrict_eq_bot MeasureTheory.ae_restrict_eq_bot
 
-/- warning: measure_theory.ae_restrict_ne_bot -> MeasureTheory.ae_restrict_neBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_ne_bot MeasureTheory.ae_restrict_neBotₓ'. -/
 @[simp]
 theorem ae_restrict_neBot {s} : (μ.restrict s).ae.ne_bot ↔ 0 < μ s :=
   neBot_iff.trans <| (not_congr ae_restrict_eq_bot).trans pos_iff_ne_zero.symm
@@ -4598,12 +3206,6 @@ theorem ae_restrict_congr_set {s t} (hst : s =ᵐ[μ] t) {p : α → Prop} :
 #align measure_theory.ae_restrict_congr_set MeasureTheory.ae_restrict_congr_set
 -/
 
-/- warning: measure_theory.measure_set_of_frequently_eq_zero -> MeasureTheory.measure_setOf_frequently_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : Nat -> α -> Prop}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (setOf.{u1} α (fun (x : α) => p i x)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (setOf.{u1} α (fun (x : α) => Filter.Frequently.{0} Nat (fun (n : Nat) => p n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : Nat -> α -> Prop}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (setOf.{u1} α (fun (x : α) => p i x)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (setOf.{u1} α (fun (x : α) => Filter.Frequently.{0} Nat (fun (n : Nat) => p n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_set_of_frequently_eq_zero MeasureTheory.measure_setOf_frequently_eq_zeroₓ'. -/
 /-- A version of the **Borel-Cantelli lemma**: if `pᵢ` is a sequence of predicates such that
 `∑ μ {x | pᵢ x}` is finite, then the measure of `x` such that `pᵢ x` holds frequently as `i → ∞` (or
 equivalently, `pᵢ x` holds for infinitely many `i`) is equal to zero. -/
@@ -4613,12 +3215,6 @@ theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : (∑' i
     measure_limsup_eq_zero hp
 #align measure_theory.measure_set_of_frequently_eq_zero MeasureTheory.measure_setOf_frequently_eq_zero
 
-/- warning: measure_theory.ae_eventually_not_mem -> MeasureTheory.ae_eventually_not_mem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (s i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => Filter.Eventually.{0} Nat (fun (n : Nat) => Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (s n))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (MeasureTheory.Measure.ae.{u1} α m0 μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (s i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => Filter.Eventually.{0} Nat (fun (n : Nat) => Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (s n))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (MeasureTheory.Measure.ae.{u1} α m0 μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eventually_not_mem MeasureTheory.ae_eventually_not_memₓ'. -/
 /-- A version of the **Borel-Cantelli lemma**: if `sᵢ` is a sequence of sets such that
 `∑ μ sᵢ` exists, then for almost all `x`, `x` does not belong to almost all `sᵢ`. -/
 theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠ ∞) :
@@ -4628,12 +3224,6 @@ theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
 
 section Intervals
 
-/- warning: measure_theory.bsupr_measure_Iic -> MeasureTheory.biSup_measure_Iic is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_3)) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.Iic.{u1} α _inst_3 x)))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.47102 : α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.47104 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.47102 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.47104) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.Iic.{u1} α _inst_3 x)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iicₓ'. -/
 theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
     (hst : ∀ x : α, ∃ y ∈ s, x ≤ y) (hdir : DirectedOn (· ≤ ·) s) : (⨆ x ∈ s, μ (Iic x)) = μ univ :=
   by
@@ -4644,82 +3234,34 @@ theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
 
 variable [PartialOrder α] {a b : α}
 
-/- warning: measure_theory.Iio_ae_eq_Iic' -> MeasureTheory.Iio_ae_eq_Iic' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.Iio_ae_eq_Iic' MeasureTheory.Iio_ae_eq_Iic'ₓ'. -/
 theorem Iio_ae_eq_Iic' (ha : μ {a} = 0) : Iio a =ᵐ[μ] Iic a := by
   rw [← Iic_diff_right, diff_ae_eq_self, measure_mono_null (Set.inter_subset_right _ _) ha]
 #align measure_theory.Iio_ae_eq_Iic' MeasureTheory.Iio_ae_eq_Iic'
 
-/- warning: measure_theory.Ioi_ae_eq_Ici' -> MeasureTheory.Ioi_ae_eq_Ici' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.Ioi_ae_eq_Ici' MeasureTheory.Ioi_ae_eq_Ici'ₓ'. -/
 theorem Ioi_ae_eq_Ici' (ha : μ {a} = 0) : Ioi a =ᵐ[μ] Ici a :=
   @Iio_ae_eq_Iic' αᵒᵈ ‹_› ‹_› _ _ ha
 #align measure_theory.Ioi_ae_eq_Ici' MeasureTheory.Ioi_ae_eq_Ici'
 
-/- warning: measure_theory.Ioo_ae_eq_Ioc' -> MeasureTheory.Ioo_ae_eq_Ioc' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-Case conversion may be inaccurate. Consider using '#align measure_theory.Ioo_ae_eq_Ioc' MeasureTheory.Ioo_ae_eq_Ioc'ₓ'. -/
 theorem Ioo_ae_eq_Ioc' (hb : μ {b} = 0) : Ioo a b =ᵐ[μ] Ioc a b :=
   (ae_eq_refl _).inter (Iio_ae_eq_Iic' hb)
 #align measure_theory.Ioo_ae_eq_Ioc' MeasureTheory.Ioo_ae_eq_Ioc'
 
-/- warning: measure_theory.Ioc_ae_eq_Icc' -> MeasureTheory.Ioc_ae_eq_Icc' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-Case conversion may be inaccurate. Consider using '#align measure_theory.Ioc_ae_eq_Icc' MeasureTheory.Ioc_ae_eq_Icc'ₓ'. -/
 theorem Ioc_ae_eq_Icc' (ha : μ {a} = 0) : Ioc a b =ᵐ[μ] Icc a b :=
   (Ioi_ae_eq_Ici' ha).inter (ae_eq_refl _)
 #align measure_theory.Ioc_ae_eq_Icc' MeasureTheory.Ioc_ae_eq_Icc'
 
-/- warning: measure_theory.Ioo_ae_eq_Ico' -> MeasureTheory.Ioo_ae_eq_Ico' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-Case conversion may be inaccurate. Consider using '#align measure_theory.Ioo_ae_eq_Ico' MeasureTheory.Ioo_ae_eq_Ico'ₓ'. -/
 theorem Ioo_ae_eq_Ico' (ha : μ {a} = 0) : Ioo a b =ᵐ[μ] Ico a b :=
   (Ioi_ae_eq_Ici' ha).inter (ae_eq_refl _)
 #align measure_theory.Ioo_ae_eq_Ico' MeasureTheory.Ioo_ae_eq_Ico'
 
-/- warning: measure_theory.Ioo_ae_eq_Icc' -> MeasureTheory.Ioo_ae_eq_Icc' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-Case conversion may be inaccurate. Consider using '#align measure_theory.Ioo_ae_eq_Icc' MeasureTheory.Ioo_ae_eq_Icc'ₓ'. -/
 theorem Ioo_ae_eq_Icc' (ha : μ {a} = 0) (hb : μ {b} = 0) : Ioo a b =ᵐ[μ] Icc a b :=
   (Ioi_ae_eq_Ici' ha).inter (Iio_ae_eq_Iic' hb)
 #align measure_theory.Ioo_ae_eq_Icc' MeasureTheory.Ioo_ae_eq_Icc'
 
-/- warning: measure_theory.Ico_ae_eq_Icc' -> MeasureTheory.Ico_ae_eq_Icc' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-Case conversion may be inaccurate. Consider using '#align measure_theory.Ico_ae_eq_Icc' MeasureTheory.Ico_ae_eq_Icc'ₓ'. -/
 theorem Ico_ae_eq_Icc' (hb : μ {b} = 0) : Ico a b =ᵐ[μ] Icc a b :=
   (ae_eq_refl _).inter (Iio_ae_eq_Iic' hb)
 #align measure_theory.Ico_ae_eq_Icc' MeasureTheory.Ico_ae_eq_Icc'
 
-/- warning: measure_theory.Ico_ae_eq_Ioc' -> MeasureTheory.Ico_ae_eq_Ioc' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
-Case conversion may be inaccurate. Consider using '#align measure_theory.Ico_ae_eq_Ioc' MeasureTheory.Ico_ae_eq_Ioc'ₓ'. -/
 theorem Ico_ae_eq_Ioc' (ha : μ {a} = 0) (hb : μ {b} = 0) : Ico a b =ᵐ[μ] Ioc a b :=
   (Ioo_ae_eq_Ico' ha).symm.trans (Ioo_ae_eq_Ioc' hb)
 #align measure_theory.Ico_ae_eq_Ioc' MeasureTheory.Ico_ae_eq_Ioc'
@@ -4757,12 +3299,6 @@ theorem ae_eq_dirac' [MeasurableSingletonClass β] {a : α} {f : α → β} (hf
 #align measure_theory.ae_eq_dirac' MeasureTheory.ae_eq_dirac'
 -/
 
-/- warning: measure_theory.ae_eq_dirac -> MeasureTheory.ae_eq_dirac is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3] {a : α} (f : α -> δ), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α _inst_3 (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) f (Function.const.{succ u2, succ u1} δ α (f a))
-but is expected to have type
-  forall {α : Type.{u2}} {δ : Type.{u1}} [_inst_3 : MeasurableSpace.{u2} α] [_inst_4 : MeasurableSingletonClass.{u2} α _inst_3] {a : α} (f : α -> δ), Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α _inst_3 (MeasureTheory.Measure.dirac.{u2} α _inst_3 a)) f (Function.const.{succ u1, succ u2} δ α (f a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_dirac MeasureTheory.ae_eq_diracₓ'. -/
 theorem ae_eq_dirac [MeasurableSingletonClass α] {a : α} (f : α → δ) :
     f =ᵐ[dirac a] const α (f a) := by simp [Filter.EventuallyEq]
 #align measure_theory.ae_eq_dirac MeasureTheory.ae_eq_dirac
@@ -4780,12 +3316,6 @@ class FiniteMeasure (μ : Measure α) : Prop where
 #align measure_theory.is_finite_measure MeasureTheory.FiniteMeasure
 -/
 
-/- warning: measure_theory.not_is_finite_measure_iff -> MeasureTheory.not_finiteMeasure_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Not (MeasureTheory.FiniteMeasure.{u1} α m0 μ)) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Not (MeasureTheory.FiniteMeasure.{u1} α m0 μ)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.not_is_finite_measure_iff MeasureTheory.not_finiteMeasure_iffₓ'. -/
 theorem not_finiteMeasure_iff : ¬FiniteMeasure μ ↔ μ Set.univ = ∞ :=
   by
   refine' ⟨fun h => _, fun h => fun h' => h'.measure_univ_lt_top.ne h⟩
@@ -4793,23 +3323,11 @@ theorem not_finiteMeasure_iff : ¬FiniteMeasure μ ↔ μ Set.univ = ∞ :=
   exact h ⟨lt_top_iff_ne_top.mpr h'⟩
 #align measure_theory.not_is_finite_measure_iff MeasureTheory.not_finiteMeasure_iff
 
-/- warning: measure_theory.restrict.is_finite_measure -> MeasureTheory.Restrict.finiteMeasure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [hs : Fact (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))], MeasureTheory.FiniteMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [hs : Fact (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))], MeasureTheory.FiniteMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.finiteMeasureₓ'. -/
 instance Restrict.finiteMeasure (μ : Measure α) [hs : Fact (μ s < ∞)] :
     FiniteMeasure (μ.restrict s) :=
   ⟨by simp [hs.elim]⟩
 #align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.finiteMeasure
 
-/- warning: measure_theory.measure_lt_top -> MeasureTheory.measure_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_lt_top MeasureTheory.measure_lt_topₓ'. -/
 theorem measure_lt_top (μ : Measure α) [FiniteMeasure μ] (s : Set α) : μ s < ∞ :=
   (measure_mono (subset_univ s)).trans_lt FiniteMeasure.measure_univ_lt_top
 #align measure_theory.measure_lt_top MeasureTheory.measure_lt_top
@@ -4821,22 +3339,10 @@ instance finiteMeasureRestrict (μ : Measure α) (s : Set α) [h : FiniteMeasure
 #align measure_theory.is_finite_measure_restrict MeasureTheory.finiteMeasureRestrict
 -/
 
-/- warning: measure_theory.measure_ne_top -> MeasureTheory.measure_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_ne_top MeasureTheory.measure_ne_topₓ'. -/
 theorem measure_ne_top (μ : Measure α) [FiniteMeasure μ] (s : Set α) : μ s ≠ ∞ :=
   ne_of_lt (measure_lt_top μ s)
 #align measure_theory.measure_ne_top MeasureTheory.measure_ne_top
 
-/- warning: measure_theory.measure_compl_le_add_of_le_add -> MeasureTheory.measure_compl_le_add_of_le_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) ε)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) ε)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) ε)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) ε)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_addₓ'. -/
 theorem measure_compl_le_add_of_le_add [FiniteMeasure μ] (hs : MeasurableSet s)
     (ht : MeasurableSet t) {ε : ℝ≥0∞} (h : μ s ≤ μ t + ε) : μ (tᶜ) ≤ μ (sᶜ) + ε :=
   by
@@ -4849,12 +3355,6 @@ theorem measure_compl_le_add_of_le_add [FiniteMeasure μ] (hs : MeasurableSet s)
     
 #align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_add
 
-/- warning: measure_theory.measure_compl_le_add_iff -> MeasureTheory.measure_compl_le_add_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t)) ε)) (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) ε)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) t)) ε)) (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) ε)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_compl_le_add_iff MeasureTheory.measure_compl_le_add_iffₓ'. -/
 theorem measure_compl_le_add_iff [FiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
     {ε : ℝ≥0∞} : μ (sᶜ) ≤ μ (tᶜ) + ε ↔ μ t ≤ μ s + ε :=
   ⟨fun h => compl_compl s ▸ compl_compl t ▸ measure_compl_le_add_of_le_add hs.compl ht.compl h,
@@ -4887,12 +3387,6 @@ instance (priority := 100) finiteMeasureOfIsEmpty [IsEmpty α] : FiniteMeasure 
 #align measure_theory.is_finite_measure_of_is_empty MeasureTheory.finiteMeasureOfIsEmpty
 -/
 
-/- warning: measure_theory.measure_univ_nnreal_zero -> MeasureTheory.measureUnivNNReal_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, Eq.{1} NNReal (MeasureTheory.measureUnivNNReal.{u1} α m0 (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, Eq.{1} NNReal (MeasureTheory.measureUnivNNReal.{u1} α m0 (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_univ_nnreal_zero MeasureTheory.measureUnivNNReal_zeroₓ'. -/
 @[simp]
 theorem measureUnivNNReal_zero : measureUnivNNReal (0 : Measure α) = 0 :=
   rfl
@@ -4909,22 +3403,10 @@ instance finiteMeasureAdd [FiniteMeasure μ] [FiniteMeasure ν] : FiniteMeasure
 #align measure_theory.is_finite_measure_add MeasureTheory.finiteMeasureAdd
 -/
 
-/- warning: measure_theory.is_finite_measure_smul_nnreal -> MeasureTheory.finiteMeasureSmulNNReal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {r : NNReal}, MeasureTheory.FiniteMeasure.{u1} α m0 (SMul.smul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (MulAction.toHasSmul.{0, 0} NNReal ENNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (ENNReal.mulAction.{0} ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.isScalarTower.{0, 0} ENNReal ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) m0) r μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {r : NNReal}, MeasureTheory.FiniteMeasure.{u1} α m0 (HSMul.hSMul.{0, u1, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (ENNReal.instIsScalarTowerNNRealToSMulToMonoidToMonoidWithZeroInstNNRealSemiringInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiringToSMulInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0, 0} ENNReal ENNReal (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) m0)) r μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.finiteMeasureSmulNNRealₓ'. -/
 instance finiteMeasureSmulNNReal [FiniteMeasure μ] {r : ℝ≥0} : FiniteMeasure (r • μ)
     where measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
 #align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.finiteMeasureSmulNNReal
 
-/- warning: measure_theory.is_finite_measure_smul_of_nnreal_tower -> MeasureTheory.finiteMeasureSmulOfNNRealTower is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {R : Type.{u2}} [_inst_3 : SMul.{u2, 0} R NNReal] [_inst_4 : SMul.{u2, 0} R ENNReal] [_inst_5 : IsScalarTower.{u2, 0, 0} R NNReal ENNReal _inst_3 (SMulZeroClass.toHasSmul.{0, 0} NNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} NNReal ENNReal (MulZeroClass.toHasZero.{0} NNReal (MulZeroOneClass.toMulZeroClass.{0} NNReal (MonoidWithZero.toMulZeroOneClass.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} NNReal ENNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} NNReal ENNReal NNReal.semiring (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (ENNReal.module.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) _inst_4] [_inst_6 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_4 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_4] [_inst_7 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {r : R}, MeasureTheory.FiniteMeasure.{u1} α m0 (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R _inst_4 _inst_6 m0) r μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {R : Type.{u2}} [_inst_3 : SMul.{u2, 0} R NNReal] [_inst_4 : SMul.{u2, 0} R ENNReal] [_inst_5 : IsScalarTower.{u2, 0, 0} R NNReal ENNReal _inst_3 (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) _inst_4] [_inst_6 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_4 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_4] [_inst_7 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {r : R}, MeasureTheory.FiniteMeasure.{u1} α m0 (HSMul.hSMul.{u2, u1, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R _inst_4 _inst_6 m0)) r μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.finiteMeasureSmulOfNNRealTowerₓ'. -/
 instance finiteMeasureSmulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
     [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [FiniteMeasure μ] {r : R} : FiniteMeasure (r • μ) :=
   by
@@ -4932,22 +3414,10 @@ instance finiteMeasureSmulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞]
   infer_instance
 #align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.finiteMeasureSmulOfNNRealTower
 
-/- warning: measure_theory.is_finite_measure_of_le -> MeasureTheory.finiteMeasureOfLe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {ν : MeasureTheory.Measure.{u1} α m0} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.FiniteMeasure.{u1} α m0 ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {ν : MeasureTheory.Measure.{u1} α m0} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.FiniteMeasure.{u1} α m0 ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.is_finite_measure_of_le MeasureTheory.finiteMeasureOfLeₓ'. -/
 theorem finiteMeasureOfLe (μ : Measure α) [FiniteMeasure μ] (h : ν ≤ μ) : FiniteMeasure ν :=
   { measure_univ_lt_top := lt_of_le_of_lt (h Set.univ MeasurableSet.univ) (measure_lt_top _ _) }
 #align measure_theory.is_finite_measure_of_le MeasureTheory.finiteMeasureOfLe
 
-/- warning: measure_theory.measure.is_finite_measure_map -> MeasureTheory.Measure.finiteMeasureMap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m μ] (f : α -> β), MeasureTheory.FiniteMeasure.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m f μ)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) [_inst_3 : MeasureTheory.FiniteMeasure.{u2} α m μ] (f : α -> β), MeasureTheory.FiniteMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m f μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.finiteMeasureMapₓ'. -/
 @[instance]
 theorem Measure.finiteMeasureMap {m : MeasurableSpace α} (μ : Measure α) [FiniteMeasure μ]
     (f : α → β) : FiniteMeasure (μ.map f) :=
@@ -4957,12 +3427,6 @@ theorem Measure.finiteMeasureMap {m : MeasurableSpace α} (μ : Measure α) [Fin
   · rw [map_of_not_ae_measurable hf]; exact MeasureTheory.finiteMeasureZero
 #align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.finiteMeasureMap
 
-/- warning: measure_theory.measure_univ_nnreal_eq_zero -> MeasureTheory.measureUnivNNReal_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], Iff (Eq.{1} NNReal (MeasureTheory.measureUnivNNReal.{u1} α m0 μ) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], Iff (Eq.{1} NNReal (MeasureTheory.measureUnivNNReal.{u1} α m0 μ) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_univ_nnreal_eq_zero MeasureTheory.measureUnivNNReal_eq_zeroₓ'. -/
 @[simp]
 theorem measureUnivNNReal_eq_zero [FiniteMeasure μ] : measureUnivNNReal μ = 0 ↔ μ = 0 :=
   by
@@ -4970,36 +3434,18 @@ theorem measureUnivNNReal_eq_zero [FiniteMeasure μ] : measureUnivNNReal μ = 0
   norm_cast
 #align measure_theory.measure_univ_nnreal_eq_zero MeasureTheory.measureUnivNNReal_eq_zero
 
-/- warning: measure_theory.measure_univ_nnreal_pos -> MeasureTheory.measureUnivNNReal_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (MeasureTheory.measureUnivNNReal.{u1} α m0 μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (MeasureTheory.measureUnivNNReal.{u1} α m0 μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNNReal_posₓ'. -/
 theorem measureUnivNNReal_pos [FiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureUnivNNReal μ :=
   by
   contrapose! hμ
   simpa [measure_univ_nnreal_eq_zero, le_zero_iff] using hμ
 #align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNNReal_pos
 
-/- warning: measure_theory.measure.le_of_add_le_add_left -> MeasureTheory.Measure.le_of_add_le_add_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν₁ : MeasureTheory.Measure.{u1} α m0} {ν₂ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν₁) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν₂)) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν₁ ν₂)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν₁ : MeasureTheory.Measure.{u1} α m0} {ν₂ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν₁) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν₂)) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν₁ ν₂)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_leftₓ'. -/
 /-- `le_of_add_le_add_left` is normally applicable to `ordered_cancel_add_comm_monoid`,
 but it holds for measures with the additional assumption that μ is finite. -/
 theorem Measure.le_of_add_le_add_left [FiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
   fun S B1 => ENNReal.le_of_add_le_add_left (MeasureTheory.measure_ne_top μ S) (A2 S B1)
 #align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_left
 
-/- warning: measure_theory.summable_measure_to_real -> MeasureTheory.summable_measure_toReal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [hμ : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {f : Nat -> (Set.{u1} α)}, (forall (i : Nat), MeasurableSet.{u1} α m0 (f i)) -> (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) f)) -> (Summable.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : Nat) => ENNReal.toReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [hμ : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {f : Nat -> (Set.{u1} α)}, (forall (i : Nat), MeasurableSet.{u1} α m0 (f i)) -> (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) f)) -> (Summable.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : Nat) => ENNReal.toReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (f x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.summable_measure_to_real MeasureTheory.summable_measure_toRealₓ'. -/
 theorem summable_measure_toReal [hμ : FiniteMeasure μ] {f : ℕ → Set α}
     (hf₁ : ∀ i : ℕ, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
     Summable fun x => (μ (f x)).toReal :=
@@ -5086,32 +3532,14 @@ instance Measure.dirac.isProbabilityMeasure [MeasurableSpace α] {x : α} :
 #align measure_theory.measure.dirac.is_probability_measure MeasureTheory.Measure.dirac.isProbabilityMeasure
 -/
 
-/- warning: measure_theory.prob_add_prob_compl -> MeasureTheory.prob_add_prob_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s))) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.prob_add_prob_compl MeasureTheory.prob_add_prob_complₓ'. -/
 theorem prob_add_prob_compl [ProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ (sᶜ) = 1 :=
   (measure_add_measure_compl h).trans measure_univ
 #align measure_theory.prob_add_prob_compl MeasureTheory.prob_add_prob_compl
 
-/- warning: measure_theory.prob_le_one -> MeasureTheory.prob_le_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.prob_le_one MeasureTheory.prob_le_oneₓ'. -/
 theorem prob_le_one [ProbabilityMeasure μ] : μ s ≤ 1 :=
   (measure_mono <| Set.subset_univ _).trans_eq measure_univ
 #align measure_theory.prob_le_one MeasureTheory.prob_le_one
 
-/- warning: measure_theory.is_probability_measure_smul -> MeasureTheory.isProbabilityMeasureSmul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (MeasureTheory.ProbabilityMeasure.{u1} α m0 (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) (Inv.inv.{0} ENNReal ENNReal.hasInv (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α))) μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (MeasureTheory.ProbabilityMeasure.{u1} α m0 (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α))) μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmulₓ'. -/
 theorem isProbabilityMeasureSmul [FiniteMeasure μ] (h : μ ≠ 0) :
     ProbabilityMeasure ((μ univ)⁻¹ • μ) := by
   constructor
@@ -5120,34 +3548,16 @@ theorem isProbabilityMeasureSmul [FiniteMeasure μ] (h : μ ≠ 0) :
   · exact measure_ne_top _ _
 #align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmul
 
-/- warning: measure_theory.is_probability_measure_map -> MeasureTheory.isProbabilityMeasureMap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ] {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (MeasureTheory.ProbabilityMeasure.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u2} α m0 μ] {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (MeasureTheory.ProbabilityMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasureMapₓ'. -/
 theorem isProbabilityMeasureMap [ProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
     ProbabilityMeasure (map f μ) :=
   ⟨by simp [map_apply_of_ae_measurable, hf]⟩
 #align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasureMap
 
-/- warning: measure_theory.one_le_prob_iff -> MeasureTheory.one_le_prob_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], Iff (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.one_le_prob_iff MeasureTheory.one_le_prob_iffₓ'. -/
 @[simp]
 theorem one_le_prob_iff [ProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
   ⟨fun h => le_antisymm prob_le_one h, fun h => h ▸ le_refl _⟩
 #align measure_theory.one_le_prob_iff MeasureTheory.one_le_prob_iff
 
-/- warning: measure_theory.prob_compl_eq_one_sub -> MeasureTheory.prob_compl_eq_one_sub is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.prob_compl_eq_one_sub MeasureTheory.prob_compl_eq_one_subₓ'. -/
 /-- Note that this is not quite as useful as it looks because the measure takes values in `ℝ≥0∞`.
 Thus the subtraction appearing is the truncated subtraction of `ℝ≥0∞`, rather than the
 better-behaved subtraction of `ℝ`. -/
@@ -5155,24 +3565,12 @@ theorem prob_compl_eq_one_sub [ProbabilityMeasure μ] (hs : MeasurableSet s) : 
   simpa only [measure_univ] using measure_compl hs (measure_lt_top μ s).Ne
 #align measure_theory.prob_compl_eq_one_sub MeasureTheory.prob_compl_eq_one_sub
 
-/- warning: measure_theory.prob_compl_eq_zero_iff -> MeasureTheory.prob_compl_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.prob_compl_eq_zero_iff MeasureTheory.prob_compl_eq_zero_iffₓ'. -/
 @[simp]
 theorem prob_compl_eq_zero_iff [ProbabilityMeasure μ] (hs : MeasurableSet s) :
     μ (sᶜ) = 0 ↔ μ s = 1 := by
   simp only [prob_compl_eq_one_sub hs, tsub_eq_zero_iff_le, one_le_prob_iff]
 #align measure_theory.prob_compl_eq_zero_iff MeasureTheory.prob_compl_eq_zero_iff
 
-/- warning: measure_theory.prob_compl_eq_one_iff -> MeasureTheory.prob_compl_eq_one_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.prob_compl_eq_one_iff MeasureTheory.prob_compl_eq_one_iffₓ'. -/
 @[simp]
 theorem prob_compl_eq_one_iff [ProbabilityMeasure μ] (hs : MeasurableSet s) :
     μ (sᶜ) = 1 ↔ μ s = 0 := by rwa [← prob_compl_eq_zero_iff hs.compl, compl_compl]
@@ -5199,12 +3597,6 @@ attribute [simp] measure_singleton
 
 variable [NoAtoms μ]
 
-/- warning: set.subsingleton.measure_zero -> Set.Subsingleton.measure_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Subsingleton.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Subsingleton.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align set.subsingleton.measure_zero Set.Subsingleton.measure_zeroₓ'. -/
 theorem Set.Subsingleton.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α}
     (hs : s.Subsingleton) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   hs.inductionOn measure_empty measure_singleton
@@ -5224,12 +3616,6 @@ instance (s : Set α) : NoAtoms (μ.restrict s) :=
   rw [measure.restrict_apply ht1]
   apply measure_mono_null (inter_subset_left t s) ht2
 
-/- warning: set.countable.measure_zero -> Set.Countable.measure_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align set.countable.measure_zero Set.Countable.measure_zeroₓ'. -/
 theorem Set.Countable.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α}
     (h : s.Countable) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   by
@@ -5245,23 +3631,11 @@ theorem Set.Countable.ae_not_mem {α : Type _} {m : MeasurableSpace α} {s : Set
 #align set.countable.ae_not_mem Set.Countable.ae_not_mem
 -/
 
-/- warning: set.finite.measure_zero -> Set.Finite.measure_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align set.finite.measure_zero Set.Finite.measure_zeroₓ'. -/
 theorem Set.Finite.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α} (h : s.Finite)
     (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   h.Countable.measure_zero μ
 #align set.finite.measure_zero Set.Finite.measure_zero
 
-/- warning: finset.measure_zero -> Finset.measure_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (s : Finset.{u1} α) (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (s : Finset.{u1} α) (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Finset.toSet.{u1} α s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
-Case conversion may be inaccurate. Consider using '#align finset.measure_zero Finset.measure_zeroₓ'. -/
 theorem Finset.measure_zero {α : Type _} {m : MeasurableSpace α} (s : Finset α) (μ : Measure α)
     [NoAtoms μ] : μ s = 0 :=
   s.finite_toSet.measure_zero μ
@@ -5337,12 +3711,6 @@ theorem uIoc_ae_eq_interval [LinearOrder α] {a b : α} : Ι a b =ᵐ[μ] [a, b]
 
 end NoAtoms
 
-/- warning: measure_theory.ite_ae_eq_of_measure_zero -> MeasureTheory.ite_ae_eq_of_measure_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {γ : Type.{u2}} (f : α -> γ) (g : α -> γ) (s : Set.{u1} α), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α m0 μ) (fun (x : α) => ite.{succ u2} γ (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (f x) (g x)) g)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {γ : Type.{u2}} (f : α -> γ) (g : α -> γ) (s : Set.{u1} α), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α m0 μ) (fun (x : α) => ite.{succ u2} γ (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (Classical.propDecidable (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (f x) (g x)) g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ite_ae_eq_of_measure_zero MeasureTheory.ite_ae_eq_of_measure_zeroₓ'. -/
 theorem ite_ae_eq_of_measure_zero {γ} (f : α → γ) (g : α → γ) (s : Set α) (hs_zero : μ s = 0) :
     (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] g :=
   by
@@ -5353,12 +3721,6 @@ theorem ite_ae_eq_of_measure_zero {γ} (f : α → γ) (g : α → γ) (s : Set
   rwa [Set.compl_subset_compl]
 #align measure_theory.ite_ae_eq_of_measure_zero MeasureTheory.ite_ae_eq_of_measure_zero
 
-/- warning: measure_theory.ite_ae_eq_of_measure_compl_zero -> MeasureTheory.ite_ae_eq_of_measure_compl_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {γ : Type.{u2}} (f : α -> γ) (g : α -> γ) (s : Set.{u1} α), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α m0 μ) (fun (x : α) => ite.{succ u2} γ (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (f x) (g x)) f)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {γ : Type.{u2}} (f : α -> γ) (g : α -> γ) (s : Set.{u1} α), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α m0 μ) (fun (x : α) => ite.{succ u2} γ (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (Classical.propDecidable (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (f x) (g x)) f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ite_ae_eq_of_measure_compl_zero MeasureTheory.ite_ae_eq_of_measure_compl_zeroₓ'. -/
 theorem ite_ae_eq_of_measure_compl_zero {γ} (f : α → γ) (g : α → γ) (s : Set α)
     (hs_zero : μ (sᶜ) = 0) : (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] f := by
   filter_upwards [hs_zero]; intros ; split_ifs; rfl
@@ -5381,23 +3743,11 @@ theorem finiteAtFilterOfFinite {m0 : MeasurableSpace α} (μ : Measure α) [Fini
 #align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilterOfFinite
 -/
 
-/- warning: measure_theory.measure.finite_at_filter.exists_mem_basis -> MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (forall {p : ι -> Prop} {s : ι -> (Set.{u1} α)}, (Filter.HasBasis.{u1, succ u2} α ι f p s) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {f : Filter.{u2} α}, (MeasureTheory.Measure.FiniteAtFilter.{u2} α m0 μ f) -> (forall {p : ι -> Prop} {s : ι -> (Set.{u2} α)}, (Filter.HasBasis.{u2, succ u1} α ι f p s) -> (Exists.{succ u1} ι (fun (i : ι) => And (p i) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.exists_mem_basis MeasureTheory.Measure.FiniteAtFilter.exists_mem_basisₓ'. -/
 theorem FiniteAtFilter.exists_mem_basis {f : Filter α} (hμ : FiniteAtFilter μ f) {p : ι → Prop}
     {s : ι → Set α} (hf : f.HasBasis p s) : ∃ (i : _)(hi : p i), μ (s i) < ∞ :=
   (hf.exists_iff fun s t hst ht => (measure_mono hst).trans_lt ht).1 hμ
 #align measure_theory.measure.finite_at_filter.exists_mem_basis MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis
 
-/- warning: measure_theory.measure.finite_at_bot -> MeasureTheory.Measure.finiteAtBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0), MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toHasBot.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0), MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toBot.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_bot MeasureTheory.Measure.finiteAtBotₓ'. -/
 theorem finiteAtBot {m0 : MeasurableSpace α} (μ : Measure α) : μ.FiniteAtFilter ⊥ :=
   ⟨∅, mem_bot, by simp only [measure_empty, WithTop.zero_lt_top]⟩
 #align measure_theory.measure.finite_at_bot MeasureTheory.Measure.finiteAtBot
@@ -5464,12 +3814,6 @@ def spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) : Set α :=
 #align measure_theory.spanning_sets MeasureTheory.spanningSets
 -/
 
-/- warning: measure_theory.monotone_spanning_sets -> MeasureTheory.monotone_spanningSets is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], Monotone.{0, u1} Nat (Set.{u1} α) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], Monotone.{0, u1} Nat (Set.{u1} α) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3)
-Case conversion may be inaccurate. Consider using '#align measure_theory.monotone_spanning_sets MeasureTheory.monotone_spanningSetsₓ'. -/
 theorem monotone_spanningSets (μ : Measure α) [SigmaFinite μ] : Monotone (spanningSets μ) :=
   monotone_accumulate
 #align measure_theory.monotone_spanning_sets MeasureTheory.monotone_spanningSets
@@ -5481,12 +3825,6 @@ theorem measurable_spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
 #align measure_theory.measurable_spanning_sets MeasureTheory.measurable_spanningSets
 -/
 
-/- warning: measure_theory.measure_spanning_sets_lt_top -> MeasureTheory.measure_spanningSets_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (i : Nat), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (i : Nat), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_topₓ'. -/
 theorem measure_spanningSets_lt_top (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
     μ (spanningSets μ i) < ∞ :=
   measure_biUnion_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.Finite j).Ne
@@ -5519,34 +3857,16 @@ theorem measurable_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] :
 #align measure_theory.measurable_spanning_sets_index MeasureTheory.measurable_spanningSetsIndex
 -/
 
-/- warning: measure_theory.preimage_spanning_sets_index_singleton -> MeasureTheory.preimage_spanningSetsIndex_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (n : Nat), Eq.{succ u1} (Set.{u1} α) (Set.preimage.{u1, 0} α Nat (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3) (Singleton.singleton.{0, 0} Nat (Set.{0} Nat) (Set.hasSingleton.{0} Nat) n)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) n)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (n : Nat), Eq.{succ u1} (Set.{u1} α) (Set.preimage.{u1, 0} α Nat (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3) (Singleton.singleton.{0, 0} Nat (Set.{0} Nat) (Set.instSingletonSet.{0} Nat) n)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) n)
-Case conversion may be inaccurate. Consider using '#align measure_theory.preimage_spanning_sets_index_singleton MeasureTheory.preimage_spanningSetsIndex_singletonₓ'. -/
 theorem preimage_spanningSetsIndex_singleton (μ : Measure α) [SigmaFinite μ] (n : ℕ) :
     spanningSetsIndex μ ⁻¹' {n} = disjointed (spanningSets μ) n :=
   preimage_find_eq_disjointed _ _ _
 #align measure_theory.preimage_spanning_sets_index_singleton MeasureTheory.preimage_spanningSetsIndex_singleton
 
-/- warning: measure_theory.spanning_sets_index_eq_iff -> MeasureTheory.spanningSetsIndex_eq_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {x : α} {n : Nat}, Iff (Eq.{1} Nat (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3 x) n) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) n))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {x : α} {n : Nat}, Iff (Eq.{1} Nat (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3 x) n) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) n))
-Case conversion may be inaccurate. Consider using '#align measure_theory.spanning_sets_index_eq_iff MeasureTheory.spanningSetsIndex_eq_iffₓ'. -/
 theorem spanningSetsIndex_eq_iff (μ : Measure α) [SigmaFinite μ] {x : α} {n : ℕ} :
     spanningSetsIndex μ x = n ↔ x ∈ disjointed (spanningSets μ) n := by
   convert Set.ext_iff.1 (preimage_spanning_sets_index_singleton μ n) x
 #align measure_theory.spanning_sets_index_eq_iff MeasureTheory.spanningSetsIndex_eq_iff
 
-/- warning: measure_theory.mem_disjointed_spanning_sets_index -> MeasureTheory.mem_disjointed_spanningSetsIndex is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (x : α), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3 x))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (x : α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3 x))
-Case conversion may be inaccurate. Consider using '#align measure_theory.mem_disjointed_spanning_sets_index MeasureTheory.mem_disjointed_spanningSetsIndexₓ'. -/
 theorem mem_disjointed_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) :
     x ∈ disjointed (spanningSets μ) (spanningSetsIndex μ x) :=
   (spanningSetsIndex_eq_iff μ).1 rfl
@@ -5577,12 +3897,6 @@ omit m0
 
 namespace Measure
 
-/- warning: measure_theory.measure.supr_restrict_spanning_sets -> MeasureTheory.Measure.iSup_restrict_spanningSets is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i))) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.iSup_restrict_spanningSetsₓ'. -/
 theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
     (⨆ i, μ.restrict (spanningSets μ i) s) = μ s :=
   calc
@@ -5592,12 +3906,6 @@ theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
     
 #align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.iSup_restrict_spanningSets
 
-/- warning: measure_theory.measure.exists_subset_measure_lt_top -> MeasureTheory.Measure.exists_subset_measure_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {r : ENNReal}, (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) r (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (MeasurableSet.{u1} α m0 t) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) (And (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) r (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {r : ENNReal}, (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) r (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s)) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (MeasurableSet.{u1} α m0 t) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t s) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) r (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_subset_measure_lt_top MeasureTheory.Measure.exists_subset_measure_lt_topₓ'. -/
 /-- In a σ-finite space, any measurable set of measure `> r` contains a measurable subset of
 finite measure `> r`. -/
 theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : MeasurableSet s)
@@ -5612,12 +3920,6 @@ theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : Mea
   exact (measure_mono (inter_subset_right _ _)).trans_lt (measure_spanning_sets_lt_top _ _)
 #align measure_theory.measure.exists_subset_measure_lt_top MeasureTheory.Measure.exists_subset_measure_lt_top
 
-/- warning: measure_theory.measure.forall_measure_inter_spanning_sets_eq_zero -> MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (forall (n : Nat), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (forall (n : Nat), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.forall_measure_inter_spanning_sets_eq_zero MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zeroₓ'. -/
 /-- A set in a σ-finite space has zero measure if and only if its intersection with
 all members of the countable family of finite measure spanning sets has zero measure. -/
 theorem forall_measure_inter_spanningSets_eq_zero [MeasurableSpace α] {μ : Measure α}
@@ -5628,12 +3930,6 @@ theorem forall_measure_inter_spanningSets_eq_zero [MeasurableSpace α] {μ : Mea
   rw [measure_Union_null_iff]
 #align measure_theory.measure.forall_measure_inter_spanning_sets_eq_zero MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zero
 
-/- warning: measure_theory.measure.exists_measure_inter_spanning_sets_pos -> MeasureTheory.Measure.exists_measure_inter_spanningSets_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))))) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_measure_inter_spanning_sets_pos MeasureTheory.Measure.exists_measure_inter_spanningSets_posₓ'. -/
 /-- A set in a σ-finite space has positive measure if and only if its intersection with
 some member of the countable family of finite measure spanning sets has positive measure. -/
 theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure α} [SigmaFinite μ]
@@ -5644,12 +3940,6 @@ theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure
   exact forall_measure_inter_spanning_sets_eq_zero s
 #align measure_theory.measure.exists_measure_inter_spanning_sets_pos MeasureTheory.Measure.exists_measure_inter_spanningSets_pos
 
-/- warning: measure_theory.measure.finite_const_le_meas_of_disjoint_Union -> MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i))))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnionₓ'. -/
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 finitely many members of the union whose measure exceeds any given positive number. -/
 theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] (μ : Measure α)
@@ -5663,12 +3953,6 @@ theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type _} [MeasurableSpace 
   exact Con (ENNReal.finite_const_le_of_tsum_ne_top aux.ne ε_pos.ne.symm)
 #align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion
 
-/- warning: measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top -> MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_topₓ'. -/
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 countably many members of the union whose measure is positive. -/
 theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [MeasurableSpace α]
@@ -5691,12 +3975,6 @@ theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [Meas
   refine' finite_const_le_meas_of_disjoint_Union μ (as_mem n).1 As_mble As_disj Union_As_finite
 #align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top
 
-/- warning: measure_theory.measure.countable_meas_pos_of_disjoint_Union -> MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnionₓ'. -/
 /-- In a σ-finite space, among disjoint measurable sets, only countably many can have positive
 measure. -/
 theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] {μ : Measure α}
@@ -5719,12 +3997,6 @@ theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α]
     exact Union_subset fun i => inter_subset_right _ _
 #align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion
 
-/- warning: measure_theory.measure.countable_meas_level_set_pos -> MeasureTheory.Measure.countable_meas_level_set_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : MeasurableSingletonClass.{u2} β _inst_5] {g : α -> β}, (Measurable.{u1, u2} α β _inst_3 _inst_5 g) -> (Set.Countable.{u2} β (setOf.{u2} β (fun (t : β) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (setOf.{u1} α (fun (a : α) => Eq.{succ u2} β (g a) t))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u2} α _inst_3 μ] [_inst_5 : MeasurableSpace.{u1} β] [_inst_6 : MeasurableSingletonClass.{u1} β _inst_5] {g : α -> β}, (Measurable.{u2, u1} α β _inst_3 _inst_5 g) -> (Set.Countable.{u1} β (setOf.{u1} β (fun (t : β) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_3 μ) (setOf.{u2} α (fun (a : α) => Eq.{succ u1} β (g a) t))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_posₓ'. -/
 theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] [MeasurableSpace β] [MeasurableSingletonClass β] {g : α → β}
     (g_mble : Measurable g) : Set.Countable { t : β | 0 < μ { a : α | g a = t } } :=
@@ -5734,12 +4006,6 @@ theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ :
     (fun b => g_mble (‹MeasurableSingletonClass β›.measurableSet_singleton b)) level_sets_disjoint
 #align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
 
-/- warning: measure_theory.measure.measure_to_measurable_inter_of_cover -> MeasureTheory.Measure.measure_toMeasurable_inter_of_cover is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall {t : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t (v n))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall {t : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t (v n))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_inter_of_cover MeasureTheory.Measure.measure_toMeasurable_inter_of_coverₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
 /-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
 superset `to_measurable μ t` (which has the same measure as `t`) satisfies,
@@ -5816,24 +4082,12 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
   · exact A.some_spec.snd.2 s hs
 #align measure_theory.measure.measure_to_measurable_inter_of_cover MeasureTheory.Measure.measure_toMeasurable_inter_of_cover
 
-/- warning: measure_theory.measure.restrict_to_measurable_of_cover -> MeasureTheory.Measure.restrict_toMeasurable_of_cover is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (v n))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (v n))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_to_measurable_of_cover MeasureTheory.Measure.restrict_toMeasurable_of_coverₓ'. -/
 theorem restrict_toMeasurable_of_cover {s : Set α} {v : ℕ → Set α} (hv : s ⊆ ⋃ n, v n)
     (h'v : ∀ n, μ (s ∩ v n) ≠ ∞) : μ.restrict (toMeasurable μ s) = μ.restrict s :=
   ext fun t ht => by
     simp only [restrict_apply ht, inter_comm t, measure_to_measurable_inter_of_cover ht hv h'v]
 #align measure_theory.measure.restrict_to_measurable_of_cover MeasureTheory.Measure.restrict_toMeasurable_of_cover
 
-/- warning: measure_theory.measure.measure_to_measurable_inter_of_sigma_finite -> MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFinite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_inter_of_sigma_finite MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFiniteₓ'. -/
 /-- The measurable superset `to_measurable μ t` of `t` (which has the same measure as `t`)
 satisfies, for any measurable set `s`, the equality `μ (to_measurable μ t ∩ s) = μ (t ∩ s)`.
 This only holds when `μ` is σ-finite. For a version without this assumption (but requiring
@@ -5862,12 +4116,6 @@ namespace FiniteSpanningSetsIn
 
 variable {C D : Set (Set α)}
 
-/- warning: measure_theory.measure.finite_spanning_sets_in.mono' -> MeasureTheory.Measure.FiniteSpanningSetsIn.mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {C : Set.{u1} (Set.{u1} α)} {D : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) (Inter.inter.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasInter.{u1} (Set.{u1} α)) C (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) D) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ D)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {C : Set.{u1} (Set.{u1} α)} {D : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) (Inter.inter.{u1} (Set.{u1} (Set.{u1} α)) (Set.instInterSet.{u1} (Set.{u1} α)) C (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) D) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ D)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_spanning_sets_in.mono' MeasureTheory.Measure.FiniteSpanningSetsIn.mono'ₓ'. -/
 /-- If `μ` has finite spanning sets in `C` and `C ∩ {s | μ s < ∞} ⊆ D` then `μ` has finite spanning
 sets in `D`. -/
 protected def mono' (h : μ.FiniteSpanningSetsIn C) (hC : C ∩ { s | μ s < ∞ } ⊆ D) :
@@ -5907,12 +4155,6 @@ protected theorem isCountablySpanning (h : μ.FiniteSpanningSetsIn C) : IsCounta
 
 end FiniteSpanningSetsIn
 
-/- warning: measure_theory.measure.sigma_finite_of_countable -> MeasureTheory.Measure.sigmaFinite_of_countable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countableₓ'. -/
 theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : ∀ s ∈ S, μ s < ∞)
     (hU : ⋃₀ S = univ) : SigmaFinite μ :=
   by
@@ -5921,12 +4163,6 @@ theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : 
   exact ⟨⟨⟨fun n => s n, fun n => trivial, hμ, hs⟩⟩⟩
 #align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countable
 
-/- warning: measure_theory.measure.finite_spanning_sets_in.of_le -> MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (forall {C : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν C))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (forall {C : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν C))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_spanning_sets_in.of_le MeasureTheory.Measure.FiniteSpanningSetsIn.ofLEₓ'. -/
 /-- Given measures `μ`, `ν` where `ν ≤ μ`, `finite_spanning_sets_in.of_le` provides the induced
 `finite_spanning_set` with respect to `ν` from a `finite_spanning_set` with respect to `μ`. -/
 def FiniteSpanningSetsIn.ofLE (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteSpanningSetsIn C) :
@@ -5937,12 +4173,6 @@ def FiniteSpanningSetsIn.ofLE (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteS
   spanning := S.spanning
 #align measure_theory.measure.finite_spanning_sets_in.of_le MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE
 
-/- warning: measure_theory.measure.sigma_finite_of_le -> MeasureTheory.Measure.sigmaFinite_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {ν : MeasureTheory.Measure.{u1} α m0} (μ : MeasureTheory.Measure.{u1} α m0) [hs : MeasureTheory.SigmaFinite.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.SigmaFinite.{u1} α m0 ν)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {ν : MeasureTheory.Measure.{u1} α m0} (μ : MeasureTheory.Measure.{u1} α m0) [hs : MeasureTheory.SigmaFinite.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.SigmaFinite.{u1} α m0 ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sigma_finite_of_le MeasureTheory.Measure.sigmaFinite_of_leₓ'. -/
 theorem sigmaFinite_of_le (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ) : SigmaFinite ν :=
   ⟨hs.out.map <| FiniteSpanningSetsIn.ofLE h⟩
 #align measure_theory.measure.sigma_finite_of_le MeasureTheory.Measure.sigmaFinite_of_le
@@ -5957,12 +4187,6 @@ instance (priority := 100) FiniteMeasure.toSigmaFinite {m0 : MeasurableSpace α}
 #align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.FiniteMeasure.toSigmaFinite
 -/
 
-/- warning: measure_theory.sigma_finite_bot_iff -> MeasureTheory.sigmaFinite_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} (μ : MeasureTheory.Measure.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toHasBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α)))), Iff (MeasureTheory.SigmaFinite.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toHasBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α))) μ) (MeasureTheory.FiniteMeasure.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toHasBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α))) μ)
-but is expected to have type
-  forall {α : Type.{u1}} (μ : MeasureTheory.Measure.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α)))), Iff (MeasureTheory.SigmaFinite.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α))) μ) (MeasureTheory.FiniteMeasure.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α))) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.sigma_finite_bot_iff MeasureTheory.sigmaFinite_bot_iffₓ'. -/
 theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ FiniteMeasure μ :=
   by
   refine' ⟨fun h => ⟨_⟩, fun h => by haveI := h; infer_instance⟩
@@ -6017,12 +4241,6 @@ instance Add.sigmaFinite (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν]
 #align measure_theory.add.sigma_finite MeasureTheory.Add.sigmaFinite
 -/
 
-/- warning: measure_theory.sigma_finite.of_map -> MeasureTheory.SigmaFinite.of_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] (μ : MeasureTheory.Measure.{u1} α m0) {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (MeasureTheory.SigmaFinite.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] (μ : MeasureTheory.Measure.{u2} α m0) {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (MeasureTheory.SigmaFinite.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) -> (MeasureTheory.SigmaFinite.{u2} α m0 μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.sigma_finite.of_map MeasureTheory.SigmaFinite.of_mapₓ'. -/
 theorem SigmaFinite.of_map (μ : Measure α) {f : α → β} (hf : AEMeasurable f μ)
     (h : SigmaFinite (μ.map f)) : SigmaFinite μ :=
   ⟨⟨⟨fun n => f ⁻¹' spanningSets (μ.map f) n, fun n => trivial, fun n => by
@@ -6031,12 +4249,6 @@ theorem SigmaFinite.of_map (μ : Measure α) {f : α → β} (hf : AEMeasurable
         by rw [← preimage_Union, Union_spanning_sets, preimage_univ]⟩⟩⟩
 #align measure_theory.sigma_finite.of_map MeasureTheory.SigmaFinite.of_map
 
-/- warning: measurable_equiv.sigma_finite_map -> MeasurableEquiv.sigmaFinite_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} (f : MeasurableEquiv.{u1, u2} α β m0 _inst_1), (MeasureTheory.SigmaFinite.{u1} α m0 μ) -> (MeasureTheory.SigmaFinite.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β m0 _inst_1) (fun (_x : MeasurableEquiv.{u1, u2} α β m0 _inst_1) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β m0 _inst_1) f) μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} (f : MeasurableEquiv.{u2, u1} α β m0 _inst_1), (MeasureTheory.SigmaFinite.{u2} α m0 μ) -> (MeasureTheory.SigmaFinite.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β m0 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β m0 _inst_1) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β m0 _inst_1) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β m0 _inst_1))) f) μ))
-Case conversion may be inaccurate. Consider using '#align measurable_equiv.sigma_finite_map MeasurableEquiv.sigmaFinite_mapₓ'. -/
 theorem MeasurableEquiv.sigmaFinite_map {μ : Measure α} (f : α ≃ᵐ β) (h : SigmaFinite μ) :
     SigmaFinite (μ.map f) :=
   by
@@ -6044,12 +4256,6 @@ theorem MeasurableEquiv.sigmaFinite_map {μ : Measure α} (f : α ≃ᵐ β) (h
   rwa [map_map f.symm.measurable f.measurable, f.symm_comp_self, measure.map_id]
 #align measurable_equiv.sigma_finite_map MeasurableEquiv.sigmaFinite_map
 
-/- warning: measure_theory.ae_of_forall_measure_lt_top_ae_restrict' -> MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_of_forall_measure_lt_top_ae_restrict' MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict'ₓ'. -/
 /-- Similar to `ae_of_forall_measure_lt_top_ae_restrict`, but where you additionally get the
   hypothesis that another σ-finite measure has finite values on `s`. -/
 theorem ae_of_forall_measure_lt_top_ae_restrict' {μ : Measure α} (ν : Measure α) [SigmaFinite μ]
@@ -6066,12 +4272,6 @@ theorem ae_of_forall_measure_lt_top_ae_restrict' {μ : Measure α} (ν : Measure
   filter_upwards [ae_all_iff.2 this]with _ hx using hx _ (mem_spanning_sets_index _ _)
 #align measure_theory.ae_of_forall_measure_lt_top_ae_restrict' MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict'
 
-/- warning: measure_theory.ae_of_forall_measure_lt_top_ae_restrict -> MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_of_forall_measure_lt_top_ae_restrict MeasureTheory.ae_of_forall_measure_lt_top_ae_restrictₓ'. -/
 /-- To prove something for almost all `x` w.r.t. a σ-finite measure, it is sufficient to show that
   this holds almost everywhere in sets where the measure has finite value. -/
 theorem ae_of_forall_measure_lt_top_ae_restrict {μ : Measure α} [SigmaFinite μ] (P : α → Prop)
@@ -6101,36 +4301,18 @@ theorem Measure.finiteAt_nhds [TopologicalSpace α] (μ : Measure α) [LocallyFi
 #align measure_theory.measure.finite_at_nhds MeasureTheory.Measure.finiteAt_nhds
 -/
 
-/- warning: measure_theory.measure.smul_finite -> MeasureTheory.Measure.smul_finite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (MeasureTheory.FiniteMeasure.{u1} α m0 (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (MeasureTheory.FiniteMeasure.{u1} α m0 (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.smul_finite MeasureTheory.Measure.smul_finiteₓ'. -/
 theorem Measure.smul_finite (μ : Measure α) [FiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
     FiniteMeasure (c • μ) := by
   lift c to ℝ≥0 using hc
   exact MeasureTheory.finiteMeasureSmulNNReal
 #align measure_theory.measure.smul_finite MeasureTheory.Measure.smul_finite
 
-/- warning: measure_theory.measure.exists_is_open_measure_lt_top -> MeasureTheory.Measure.exists_isOpen_measure_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (x : α), Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (x : α), Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_topₓ'. -/
 theorem Measure.exists_isOpen_measure_lt_top [TopologicalSpace α] (μ : Measure α)
     [LocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
   simpa only [exists_prop, and_assoc] using
     (μ.finite_at_nhds x).exists_mem_basis (nhds_basis_opens x)
 #align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_top
 
-/- warning: measure_theory.is_locally_finite_measure_smul_nnreal -> MeasureTheory.locallyFiniteMeasureSmulNnreal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (c : NNReal), MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 (SMul.smul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (MulAction.toHasSmul.{0, 0} NNReal ENNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (ENNReal.mulAction.{0} ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.isScalarTower.{0, 0} ENNReal ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) m0) c μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (c : NNReal), MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 (HSMul.hSMul.{0, u1, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (ENNReal.instIsScalarTowerNNRealToSMulToMonoidToMonoidWithZeroInstNNRealSemiringInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiringToSMulInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0, 0} ENNReal ENNReal (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) m0)) c μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.locallyFiniteMeasureSmulNnrealₓ'. -/
 instance locallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α)
     [LocallyFiniteMeasure μ] (c : ℝ≥0) : LocallyFiniteMeasure (c • μ) :=
   by
@@ -6142,12 +4324,6 @@ instance locallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α)
     Ne.def, not_false_iff]
 #align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.locallyFiniteMeasureSmulNnreal
 
-/- warning: measure_theory.measure.is_topological_basis_is_open_lt_top -> MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ], TopologicalSpace.IsTopologicalBasis.{u1} α _inst_3 (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ], TopologicalSpace.IsTopologicalBasis.{u1} α _inst_3 (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_topological_basis_is_open_lt_top MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_topₓ'. -/
 protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α] (μ : Measure α)
     [LocallyFiniteMeasure μ] : TopologicalSpace.IsTopologicalBasis { s | IsOpen s ∧ μ s < ∞ } :=
   by
@@ -6166,24 +4342,12 @@ class FiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop whe
 #align measure_theory.is_finite_measure_on_compacts MeasureTheory.FiniteMeasureOnCompacts
 -/
 
-/- warning: is_compact.measure_lt_top -> IsCompact.measure_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {{K : Set.{u1} α}}, (IsCompact.{u1} α _inst_3 K) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ K) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {{K : Set.{u1} α}}, (IsCompact.{u1} α _inst_3 K) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) K) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align is_compact.measure_lt_top IsCompact.measure_lt_topₓ'. -/
 /-- A compact subset has finite measure for a measure which is finite on compacts. -/
 theorem IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α} [FiniteMeasureOnCompacts μ]
     ⦃K : Set α⦄ (hK : IsCompact K) : μ K < ∞ :=
   FiniteMeasureOnCompacts.lt_top_of_isCompact hK
 #align is_compact.measure_lt_top IsCompact.measure_lt_top
 
-/- warning: metric.bounded.measure_lt_top -> Metric.Bounded.measure_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {{s : Set.{u1} α}}, (Metric.Bounded.{u1} α _inst_3 s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {{s : Set.{u1} α}}, (Metric.Bounded.{u1} α _inst_3 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_topₓ'. -/
 /-- A bounded subset has finite measure for a measure which is finite on compact sets, in a
 proper space. -/
 theorem Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
@@ -6194,34 +4358,16 @@ theorem Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {
     
 #align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_top
 
-/- warning: measure_theory.measure_closed_ball_lt_top -> MeasureTheory.measure_closedBall_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.closedBall.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Metric.closedBall.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_topₓ'. -/
 theorem measure_closedBall_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
     [FiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
   Metric.bounded_closedBall.measure_lt_top
 #align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_top
 
-/- warning: measure_theory.measure_ball_lt_top -> MeasureTheory.measure_ball_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.ball.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Metric.ball.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_topₓ'. -/
 theorem measure_ball_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
     [FiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
   Metric.bounded_ball.measure_lt_top
 #align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_top
 
-/- warning: measure_theory.is_finite_measure_on_compacts.smul -> MeasureTheory.FiniteMeasureOnCompacts.smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.FiniteMeasureOnCompacts.smulₓ'. -/
 protected theorem FiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
     [FiniteMeasureOnCompacts μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : FiniteMeasureOnCompacts (c • μ) :=
   ⟨fun K hK => ENNReal.mul_lt_top hc hK.measure_lt_top.Ne⟩
@@ -6262,12 +4408,6 @@ theorem locallyFiniteMeasure_of_finiteMeasureOnCompacts [TopologicalSpace α] [L
 #align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.locallyFiniteMeasure_of_finiteMeasureOnCompacts
 -/
 
-/- warning: measure_theory.exists_pos_measure_of_cover -> MeasureTheory.exists_pos_measure_of_cover is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (U i))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (U i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_measure_of_cover MeasureTheory.exists_pos_measure_of_coverₓ'. -/
 theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (⋃ i, U i) = univ)
     (hμ : μ ≠ 0) : ∃ i, 0 < μ (U i) := by
   contrapose! hμ with H
@@ -6275,34 +4415,16 @@ theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (
   exact measure_Union_null fun i => nonpos_iff_eq_zero.1 (H i)
 #align measure_theory.exists_pos_measure_of_cover MeasureTheory.exists_pos_measure_of_cover
 
-/- warning: measure_theory.exists_pos_preimage_ball -> MeasureTheory.exists_pos_preimage_ball is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u2} δ] (f : α -> δ) (x : δ), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α δ f (Metric.ball.{u2} δ _inst_3 x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n))))))
-but is expected to have type
-  forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u2} δ] (f : α -> δ) (x : δ), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.preimage.{u1, u2} α δ f (Metric.ball.{u2} δ _inst_3 x (Nat.cast.{0} Real Real.natCast n))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_preimage_ball MeasureTheory.exists_pos_preimage_ballₓ'. -/
 theorem exists_pos_preimage_ball [PseudoMetricSpace δ] (f : α → δ) (x : δ) (hμ : μ ≠ 0) :
     ∃ n : ℕ, 0 < μ (f ⁻¹' Metric.ball x n) :=
   exists_pos_measure_of_cover (by rw [← preimage_Union, Metric.iUnion_ball_nat, preimage_univ]) hμ
 #align measure_theory.exists_pos_preimage_ball MeasureTheory.exists_pos_preimage_ball
 
-/- warning: measure_theory.exists_pos_ball -> MeasureTheory.exists_pos_ball is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u1} α] (x : α), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.ball.{u1} α _inst_3 x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u1} α] (x : α), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Metric.ball.{u1} α _inst_3 x (Nat.cast.{0} Real Real.natCast n)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_ball MeasureTheory.exists_pos_ballₓ'. -/
 theorem exists_pos_ball [PseudoMetricSpace α] (x : α) (hμ : μ ≠ 0) :
     ∃ n : ℕ, 0 < μ (Metric.ball x n) :=
   exists_pos_preimage_ball id x hμ
 #align measure_theory.exists_pos_ball MeasureTheory.exists_pos_ball
 
-/- warning: measure_theory.null_of_locally_null -> MeasureTheory.null_of_locally_null is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] (s : Set.{u1} α), (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} (Set.{u1} α) (fun (u : Set.{u1} α) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) u (nhdsWithin.{u1} α _inst_3 x s)) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) u (nhdsWithin.{u1} α _inst_3 x s)) => Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ u) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] (s : Set.{u1} α), (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Exists.{succ u1} (Set.{u1} α) (fun (u : Set.{u1} α) => And (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) u (nhdsWithin.{u1} α _inst_3 x s)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) u) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_of_locally_null MeasureTheory.null_of_locally_nullₓ'. -/
 /-- If a set has zero measure in a neighborhood of each of its points, then it has zero measure
 in a second-countable space. -/
 theorem null_of_locally_null [TopologicalSpace α] [SecondCountableTopology α] (s : Set α)
@@ -6310,23 +4432,11 @@ theorem null_of_locally_null [TopologicalSpace α] [SecondCountableTopology α]
   μ.toOuterMeasure.null_of_locally_null s hs
 #align measure_theory.null_of_locally_null MeasureTheory.null_of_locally_null
 
-/- warning: measure_theory.exists_mem_forall_mem_nhds_within_pos_measure -> MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} α (fun (x : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t (nhdsWithin.{u1} α _inst_3 x s)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} α (fun (x : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) t (nhdsWithin.{u1} α _inst_3 x s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_mem_forall_mem_nhds_within_pos_measure MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measureₓ'. -/
 theorem exists_mem_forall_mem_nhdsWithin_pos_measure [TopologicalSpace α]
     [SecondCountableTopology α] {s : Set α} (hs : μ s ≠ 0) : ∃ x ∈ s, ∀ t ∈ 𝓝[s] x, 0 < μ t :=
   μ.toOuterMeasure.exists_mem_forall_mem_nhds_within_pos hs
 #align measure_theory.exists_mem_forall_mem_nhds_within_pos_measure MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measure
 
-/- warning: measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage -> MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : TopologicalSpace.{u2} β] [_inst_4 : T1Space.{u2} β _inst_3] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_3] [_inst_6 : Nonempty.{succ u2} β] {f : α -> β}, (forall (b : β), Filter.Frequently.{u1} α (fun (x : α) => Ne.{succ u2} β (f x) b) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (Exists.{succ u2} β (fun (a : β) => Exists.{succ u2} β (fun (b : β) => And (Ne.{succ u2} β a b) (And (forall (s : Set.{u2} β), (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (nhds.{u2} β _inst_3 a)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)))) (forall (t : Set.{u2} β), (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (nhds.{u2} β _inst_3 b)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f t))))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : TopologicalSpace.{u2} β] [_inst_4 : T1Space.{u2} β _inst_3] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_3] [_inst_6 : Nonempty.{succ u2} β] {f : α -> β}, (forall (b : β), Filter.Frequently.{u1} α (fun (x : α) => Ne.{succ u2} β (f x) b) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (Exists.{succ u2} β (fun (a : β) => Exists.{succ u2} β (fun (b : β) => And (Ne.{succ u2} β a b) (And (forall (s : Set.{u2} β), (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) s (nhds.{u2} β _inst_3 a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.preimage.{u1, u2} α β f s)))) (forall (t : Set.{u2} β), (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) t (nhds.{u2} β _inst_3 b)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.preimage.{u1, u2} α β f t))))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimageₓ'. -/
 theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β] [T1Space β]
     [SecondCountableTopology β] [Nonempty β] {f : α → β} (h : ∀ b, ∃ᵐ x ∂μ, f x ≠ b) :
     ∃ a b : β, a ≠ b ∧ (∀ s ∈ 𝓝 a, 0 < μ (f ⁻¹' s)) ∧ ∀ t ∈ 𝓝 b, 0 < μ (f ⁻¹' t) :=
@@ -6395,23 +4505,11 @@ protected def FiniteSpanningSetsIn.disjointed {μ : Measure α}
 #align measure_theory.measure.finite_spanning_sets_in.disjointed MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed
 -/
 
-/- warning: measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq -> MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))), Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) (MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed.{u1} α m0 μ S)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))), Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) (MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed.{u1} α m0 μ S)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eqₓ'. -/
 theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
     (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) : S.disjointed.Set = disjointed S.Set :=
   rfl
 #align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq
 
-/- warning: measure_theory.measure.exists_eq_disjoint_finite_spanning_sets_in -> MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsIn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν], Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (T : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => And (Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) T)) (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν], Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (T : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => And (Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) T)) (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_eq_disjoint_finite_spanning_sets_in MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsInₓ'. -/
 theorem exists_eq_disjoint_finiteSpanningSetsIn (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] :
     ∃ (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s })(T :
       ν.FiniteSpanningSetsIn { s | MeasurableSet s }),
@@ -6427,42 +4525,18 @@ namespace FiniteAtFilter
 
 variable {f g : Filter α}
 
-/- warning: measure_theory.measure.finite_at_filter.filter_mono -> MeasureTheory.Measure.FiniteAtFilter.filter_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) f g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.filter_mono MeasureTheory.Measure.FiniteAtFilter.filter_monoₓ'. -/
 theorem filter_mono (h : f ≤ g) : μ.FiniteAtFilter g → μ.FiniteAtFilter f := fun ⟨s, hs, hμ⟩ =>
   ⟨s, h hs, hμ⟩
 #align measure_theory.measure.finite_at_filter.filter_mono MeasureTheory.Measure.FiniteAtFilter.filter_mono
 
-/- warning: measure_theory.measure.finite_at_filter.inf_of_left -> MeasureTheory.Measure.FiniteAtFilter.inf_of_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.inf_of_left MeasureTheory.Measure.FiniteAtFilter.inf_of_leftₓ'. -/
 theorem inf_of_left (h : μ.FiniteAtFilter f) : μ.FiniteAtFilter (f ⊓ g) :=
   h.filter_mono inf_le_left
 #align measure_theory.measure.finite_at_filter.inf_of_left MeasureTheory.Measure.FiniteAtFilter.inf_of_left
 
-/- warning: measure_theory.measure.finite_at_filter.inf_of_right -> MeasureTheory.Measure.FiniteAtFilter.inf_of_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.inf_of_right MeasureTheory.Measure.FiniteAtFilter.inf_of_rightₓ'. -/
 theorem inf_of_right (h : μ.FiniteAtFilter g) : μ.FiniteAtFilter (f ⊓ g) :=
   h.filter_mono inf_le_right
 #align measure_theory.measure.finite_at_filter.inf_of_right MeasureTheory.Measure.FiniteAtFilter.inf_of_right
 
-/- warning: measure_theory.measure.finite_at_filter.inf_ae_iff -> MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ))) (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ))) (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.inf_ae_iff MeasureTheory.Measure.FiniteAtFilter.inf_ae_iffₓ'. -/
 @[simp]
 theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f :=
   by
@@ -6472,62 +4546,26 @@ theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f :=
   exact measure_mono_ae (mem_of_superset hu fun x hu ht => ⟨ht, hu⟩)
 #align measure_theory.measure.finite_at_filter.inf_ae_iff MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff
 
-/- warning: measure_theory.measure.finite_at_filter.of_inf_ae -> MeasureTheory.Measure.FiniteAtFilter.of_inf_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ))) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ))) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.of_inf_ae MeasureTheory.Measure.FiniteAtFilter.of_inf_aeₓ'. -/
 alias inf_ae_iff ↔ of_inf_ae _
 #align measure_theory.measure.finite_at_filter.of_inf_ae MeasureTheory.Measure.FiniteAtFilter.of_inf_ae
 
-/- warning: measure_theory.measure.finite_at_filter.filter_mono_ae -> MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ)) g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ)) g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filter_mono_aeₓ'. -/
 theorem filter_mono_ae (h : f ⊓ μ.ae ≤ g) (hg : μ.FiniteAtFilter g) : μ.FiniteAtFilter f :=
   inf_ae_iff.1 (hg.filter_mono h)
 #align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae
 
-/- warning: measure_theory.measure.finite_at_filter.measure_mono -> MeasureTheory.Measure.FiniteAtFilter.measure_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.measure_mono MeasureTheory.Measure.FiniteAtFilter.measure_monoₓ'. -/
 protected theorem measure_mono (h : μ ≤ ν) : ν.FiniteAtFilter f → μ.FiniteAtFilter f :=
   fun ⟨s, hs, hν⟩ => ⟨s, hs, (Measure.le_iff'.1 h s).trans_lt hν⟩
 #align measure_theory.measure.finite_at_filter.measure_mono MeasureTheory.Measure.FiniteAtFilter.measure_mono
 
-/- warning: measure_theory.measure.finite_at_filter.mono -> MeasureTheory.Measure.FiniteAtFilter.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f g) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) f g) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.mono MeasureTheory.Measure.FiniteAtFilter.monoₓ'. -/
 @[mono]
 protected theorem mono (hf : f ≤ g) (hμ : μ ≤ ν) : ν.FiniteAtFilter g → μ.FiniteAtFilter f :=
   fun h => (h.filter_mono hf).measure_mono hμ
 #align measure_theory.measure.finite_at_filter.mono MeasureTheory.Measure.FiniteAtFilter.mono
 
-/- warning: measure_theory.measure.finite_at_filter.eventually -> MeasureTheory.Measure.FiniteAtFilter.eventually is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (Filter.Eventually.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Filter.smallSets.{u1} α f))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (Filter.Eventually.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Filter.smallSets.{u1} α f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.eventually MeasureTheory.Measure.FiniteAtFilter.eventuallyₓ'. -/
 protected theorem eventually (h : μ.FiniteAtFilter f) : ∀ᶠ s in f.smallSets, μ s < ∞ :=
   (eventually_small_sets' fun s t hst ht => (measure_mono hst).trans_lt ht).2 h
 #align measure_theory.measure.finite_at_filter.eventually MeasureTheory.Measure.FiniteAtFilter.eventually
 
-/- warning: measure_theory.measure.finite_at_filter.filter_sup -> MeasureTheory.Measure.FiniteAtFilter.filterSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))))) f g))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))))) f g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.filter_sup MeasureTheory.Measure.FiniteAtFilter.filterSupₓ'. -/
 theorem filterSup : μ.FiniteAtFilter f → μ.FiniteAtFilter g → μ.FiniteAtFilter (f ⊔ g) :=
   fun ⟨s, hsf, hsμ⟩ ⟨t, htg, htμ⟩ =>
   ⟨s ∪ t, union_mem_sup hsf htg, (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hsμ, htμ⟩)⟩
@@ -6542,23 +4580,11 @@ theorem finiteAt_nhdsWithin [TopologicalSpace α] {m0 : MeasurableSpace α} (μ
 #align measure_theory.measure.finite_at_nhds_within MeasureTheory.Measure.finiteAt_nhdsWithin
 -/
 
-/- warning: measure_theory.measure.finite_at_principal -> MeasureTheory.Measure.finiteAt_principal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Filter.principal.{u1} α s)) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Filter.principal.{u1} α s)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principalₓ'. -/
 @[simp]
 theorem finiteAt_principal : μ.FiniteAtFilter (𝓟 s) ↔ μ s < ∞ :=
   ⟨fun ⟨t, ht, hμ⟩ => (measure_mono ht).trans_lt hμ, fun h => ⟨s, mem_principal_self s, h⟩⟩
 #align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principal
 
-/- warning: measure_theory.measure.is_locally_finite_measure_of_le -> MeasureTheory.Measure.locallyFiniteMeasure_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : TopologicalSpace.{u1} α] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ν : MeasureTheory.Measure.{u1} α m} [H : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_3 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instPartialOrder.{u1} α m))) ν μ) -> (MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_3 ν)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_3 : TopologicalSpace.{u1} α] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ν : MeasureTheory.Measure.{u1} α m} [H : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_3 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instPartialOrder.{u1} α m))) ν μ) -> (MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_3 ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.locallyFiniteMeasure_of_leₓ'. -/
 theorem locallyFiniteMeasure_of_le [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
     [H : LocallyFiniteMeasure μ] (h : ν ≤ μ) : LocallyFiniteMeasure ν :=
   let F := H.finiteAtNhds
@@ -6577,12 +4603,6 @@ variable {m0 : MeasurableSpace α} {m1 : MeasurableSpace β} {f : α → β} (hf
 
 include hf
 
-/- warning: measurable_embedding.map_apply -> MeasurableEmbedding.map_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasurableEmbedding.{u1, u2} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u1} α m0) (s : Set.{u2} β), Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β m1) (fun (_x : MeasureTheory.Measure.{u2} β m1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β m1) (MeasureTheory.Measure.map.{u1, u2} α β m1 m0 f μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {m1 : MeasurableSpace.{u1} β} {f : α -> β}, (MeasurableEmbedding.{u2, u1} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0) (s : Set.{u1} β), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β m1 (MeasureTheory.Measure.map.{u2, u1} α β m1 m0 f μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s)))
-Case conversion may be inaccurate. Consider using '#align measurable_embedding.map_apply MeasurableEmbedding.map_applyₓ'. -/
 theorem map_apply (μ : Measure α) (s : Set β) : μ.map f s = μ (f ⁻¹' s) :=
   by
   refine' le_antisymm _ (le_map_apply hf.measurable.ae_measurable s)
@@ -6624,33 +4644,15 @@ theorem comap_apply (μ : Measure β) (s : Set α) : comap f μ s = μ (f '' s)
 #align measurable_embedding.comap_apply MeasurableEmbedding.comap_apply
 -/
 
-/- warning: measurable_embedding.ae_map_iff -> MeasurableEmbedding.ae_map_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasurableEmbedding.{u1, u2} α β m0 m1 f) -> (forall {p : β -> Prop} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Filter.Eventually.{u2} β (fun (x : β) => p x) (MeasureTheory.Measure.ae.{u2} β m1 (MeasureTheory.Measure.map.{u1, u2} α β m1 m0 f μ))) (Filter.Eventually.{u1} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u1} α m0 μ)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {m1 : MeasurableSpace.{u1} β} {f : α -> β}, (MeasurableEmbedding.{u2, u1} α β m0 m1 f) -> (forall {p : β -> Prop} {μ : MeasureTheory.Measure.{u2} α m0}, Iff (Filter.Eventually.{u1} β (fun (x : β) => p x) (MeasureTheory.Measure.ae.{u1} β m1 (MeasureTheory.Measure.map.{u2, u1} α β m1 m0 f μ))) (Filter.Eventually.{u2} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u2} α m0 μ)))
-Case conversion may be inaccurate. Consider using '#align measurable_embedding.ae_map_iff MeasurableEmbedding.ae_map_iffₓ'. -/
 theorem ae_map_iff {p : β → Prop} {μ : Measure α} : (∀ᵐ x ∂μ.map f, p x) ↔ ∀ᵐ x ∂μ, p (f x) := by
   simp only [ae_iff, hf.map_apply, preimage_set_of_eq]
 #align measurable_embedding.ae_map_iff MeasurableEmbedding.ae_map_iff
 
-/- warning: measurable_embedding.restrict_map -> MeasurableEmbedding.restrict_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasurableEmbedding.{u1, u2} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u1} α m0) (s : Set.{u2} β), Eq.{succ u2} (MeasureTheory.Measure.{u2} β m1) (MeasureTheory.Measure.restrict.{u2} β m1 (MeasureTheory.Measure.map.{u1, u2} α β m1 m0 f μ) s) (MeasureTheory.Measure.map.{u1, u2} α β m1 m0 f (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.preimage.{u1, u2} α β f s))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {m1 : MeasurableSpace.{u1} β} {f : α -> β}, (MeasurableEmbedding.{u2, u1} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0) (s : Set.{u1} β), Eq.{succ u1} (MeasureTheory.Measure.{u1} β m1) (MeasureTheory.Measure.restrict.{u1} β m1 (MeasureTheory.Measure.map.{u2, u1} α β m1 m0 f μ) s) (MeasureTheory.Measure.map.{u2, u1} α β m1 m0 f (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.preimage.{u2, u1} α β f s))))
-Case conversion may be inaccurate. Consider using '#align measurable_embedding.restrict_map MeasurableEmbedding.restrict_mapₓ'. -/
 theorem restrict_map (μ : Measure α) (s : Set β) :
     (μ.map f).restrict s = (μ.restrict <| f ⁻¹' s).map f :=
   Measure.ext fun t ht => by simp [hf.map_apply, ht, hf.measurable ht]
 #align measurable_embedding.restrict_map MeasurableEmbedding.restrict_map
 
-/- warning: measurable_embedding.comap_preimage -> MeasurableEmbedding.comap_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasurableEmbedding.{u1, u2} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u2} β m1) {s : Set.{u2} β}, (MeasurableSet.{u2} β m1 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.comap.{u1, u2} α β m1 m0 f μ) (Set.preimage.{u1, u2} α β f s)) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β m1) (fun (_x : MeasureTheory.Measure.{u2} β m1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β m1) μ (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) s (Set.range.{u2, succ u1} β α f)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasurableEmbedding.{u1, u2} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u2} β m1) {s : Set.{u2} β}, (MeasurableSet.{u2} β m1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.comap.{u1, u2} α β m1 m0 f μ)) (Set.preimage.{u1, u2} α β f s)) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β m1 μ) (Inter.inter.{u2} (Set.{u2} β) (Set.instInterSet.{u2} β) s (Set.range.{u2, succ u1} β α f)))))
-Case conversion may be inaccurate. Consider using '#align measurable_embedding.comap_preimage MeasurableEmbedding.comap_preimageₓ'. -/
 protected theorem comap_preimage (μ : Measure β) {s : Set β} (hs : MeasurableSet s) :
     μ.comap f (f ⁻¹' s) = μ (s ∩ range f) :=
   comap_preimage _ _ hf.Injective hf.Measurable
@@ -6716,12 +4718,6 @@ theorem volume_image_subtype_coe {s : Set α} (hs : MeasurableSet s) (t : Set s)
 #align volume_image_subtype_coe volume_image_subtype_coe
 -/
 
-/- warning: volume_preimage_coe -> volume_preimage_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasureTheory.MeasureSpace.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_1)) -> (MeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1) t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (SetCoe.measureSpace.{u1} α _inst_1 s))) (fun (_x : MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (SetCoe.measureSpace.{u1} α _inst_1 s))) => (Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (SetCoe.measureSpace.{u1} α _inst_1 s))) (MeasureTheory.MeasureSpace.volume.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (SetCoe.measureSpace.{u1} α _inst_1 s)) (Set.preimage.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1)) (fun (_x : MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1)) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1)) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasureTheory.MeasureSpace.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_1)) -> (MeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1) t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (MeasureTheory.Measure.toOuterMeasure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (SetCoe.measureSpace.{u1} α _inst_1 s)) (MeasureTheory.MeasureSpace.volume.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (SetCoe.measureSpace.{u1} α _inst_1 s))) (Set.preimage.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
-Case conversion may be inaccurate. Consider using '#align volume_preimage_coe volume_preimage_coeₓ'. -/
 @[simp]
 theorem volume_preimage_coe (hs : NullMeasurableSet s) (ht : MeasurableSet t) :
     volume ((coe : s → α) ⁻¹' t) = volume (t ∩ s) := by
@@ -6743,87 +4739,39 @@ open Equiv MeasureTheory.Measure
 
 variable [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β}
 
-/- warning: measurable_equiv.map_apply -> MeasurableEquiv.map_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (s : Set.{u2} β), Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_2) (fun (_x : MeasureTheory.Measure.{u2} β _inst_2) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_2) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α _inst_1} (f : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) (s : Set.{u1} β), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_2 (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_1 μ) (Set.preimage.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) f) s))
-Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_apply MeasurableEquiv.map_applyₓ'. -/
 /-- If we map a measure along a measurable equivalence, we can compute the measure on all sets
   (not just the measurable ones). -/
 protected theorem map_apply (f : α ≃ᵐ β) (s : Set β) : μ.map f s = μ (f ⁻¹' s) :=
   f.MeasurableEmbedding.map_apply _ _
 #align measurable_equiv.map_apply MeasurableEquiv.map_apply
 
-/- warning: measurable_equiv.map_symm_map -> MeasurableEquiv.map_symm_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α _inst_1} (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2), Eq.{succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (MeasureTheory.Measure.map.{u2, u1} β α _inst_1 _inst_2 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) (fun (_x : MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) => β -> α) (MeasurableEquiv.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (MeasurableEquiv.symm.{u1, u2} α β _inst_1 _inst_2 e)) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) μ)) μ
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α _inst_1} (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), Eq.{succ u2} (MeasureTheory.Measure.{u2} α _inst_1) (MeasureTheory.Measure.map.{u1, u2} β α _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (MeasurableEquiv.instEquivLike.{u1, u2} β α _inst_2 _inst_1))) (MeasurableEquiv.symm.{u2, u1} α β _inst_1 _inst_2 e)) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) μ)) μ
-Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_symm_map MeasurableEquiv.map_symm_mapₓ'. -/
 @[simp]
 theorem map_symm_map (e : α ≃ᵐ β) : (μ.map e).map e.symm = μ := by
   simp [map_map e.symm.measurable e.measurable]
 #align measurable_equiv.map_symm_map MeasurableEquiv.map_symm_map
 
-/- warning: measurable_equiv.map_map_symm -> MeasurableEquiv.map_map_symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {ν : MeasureTheory.Measure.{u2} β _inst_2} (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_2) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) (MeasureTheory.Measure.map.{u2, u1} β α _inst_1 _inst_2 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) (fun (_x : MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) => β -> α) (MeasurableEquiv.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (MeasurableEquiv.symm.{u1, u2} α β _inst_1 _inst_2 e)) ν)) ν
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {ν : MeasureTheory.Measure.{u1} β _inst_2} (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_2) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) (MeasureTheory.Measure.map.{u1, u2} β α _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (MeasurableEquiv.instEquivLike.{u1, u2} β α _inst_2 _inst_1))) (MeasurableEquiv.symm.{u2, u1} α β _inst_1 _inst_2 e)) ν)) ν
-Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_map_symm MeasurableEquiv.map_map_symmₓ'. -/
 @[simp]
 theorem map_map_symm (e : α ≃ᵐ β) : (ν.map e.symm).map e = ν := by
   simp [map_map e.measurable e.symm.measurable]
 #align measurable_equiv.map_map_symm MeasurableEquiv.map_map_symm
 
-/- warning: measurable_equiv.map_measurable_equiv_injective -> MeasurableEquiv.map_measurableEquiv_injective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2), Function.Injective.{succ u1, succ u2} (MeasureTheory.Measure.{u1} α _inst_1) (MeasureTheory.Measure.{u2} β _inst_2) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), Function.Injective.{succ u2, succ u1} (MeasureTheory.Measure.{u2} α _inst_1) (MeasureTheory.Measure.{u1} β _inst_2) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e))
-Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injectiveₓ'. -/
 theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (map e) := by intro μ₁ μ₂ hμ;
   apply_fun map e.symm  at hμ; simpa [map_symm_map e] using hμ
 #align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injective
 
-/- warning: measurable_equiv.map_apply_eq_iff_map_symm_apply_eq -> MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α _inst_1} {ν : MeasureTheory.Measure.{u2} β _inst_2} (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2), Iff (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_2) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) μ) ν) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (MeasureTheory.Measure.map.{u2, u1} β α _inst_1 _inst_2 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) (fun (_x : MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) => β -> α) (MeasurableEquiv.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (MeasurableEquiv.symm.{u1, u2} α β _inst_1 _inst_2 e)) ν) μ)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α _inst_1} {ν : MeasureTheory.Measure.{u1} β _inst_2} (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), Iff (Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_2) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) μ) ν) (Eq.{succ u2} (MeasureTheory.Measure.{u2} α _inst_1) (MeasureTheory.Measure.map.{u1, u2} β α _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (MeasurableEquiv.instEquivLike.{u1, u2} β α _inst_2 _inst_1))) (MeasurableEquiv.symm.{u2, u1} α β _inst_1 _inst_2 e)) ν) μ)
-Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_apply_eq_iff_map_symm_apply_eq MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eqₓ'. -/
 theorem map_apply_eq_iff_map_symm_apply_eq (e : α ≃ᵐ β) : μ.map e = ν ↔ ν.map e.symm = μ := by
   rw [← (map_measurable_equiv_injective e).eq_iff, map_map_symm, eq_comm]
 #align measurable_equiv.map_apply_eq_iff_map_symm_apply_eq MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eq
 
-/- warning: measurable_equiv.restrict_map -> MeasurableEquiv.restrict_map is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α _inst_1} (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (s : Set.{u2} β), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_2) (MeasureTheory.Measure.restrict.{u2} β _inst_2 (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) μ) s) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α _inst_1} (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) (s : Set.{u1} β), Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_2) (MeasureTheory.Measure.restrict.{u1} β _inst_2 (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) μ) s) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (Set.preimage.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) s)))
-Case conversion may be inaccurate. Consider using '#align measurable_equiv.restrict_map MeasurableEquiv.restrict_mapₓ'. -/
 theorem restrict_map (e : α ≃ᵐ β) (s : Set β) :
     (μ.map e).restrict s = (μ.restrict <| e ⁻¹' s).map e :=
   e.MeasurableEmbedding.restrict_map _ _
 #align measurable_equiv.restrict_map MeasurableEquiv.restrict_map
 
-/- warning: measurable_equiv.map_ae -> MeasurableEquiv.map_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] (f : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (μ : MeasureTheory.Measure.{u1} α _inst_1), Eq.{succ u2} (Filter.{u2} β) (Filter.map.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)) (MeasureTheory.Measure.ae.{u2} β _inst_2 (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] (f : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) (μ : MeasureTheory.Measure.{u2} α _inst_1), Eq.{succ u1} (Filter.{u1} β) (Filter.map.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) f) (MeasureTheory.Measure.ae.{u2} α _inst_1 μ)) (MeasureTheory.Measure.ae.{u1} β _inst_2 (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) f) μ))
-Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_ae MeasurableEquiv.map_aeₓ'. -/
 theorem map_ae (f : α ≃ᵐ β) (μ : Measure α) : Filter.map f μ.ae = (map f μ).ae := by ext s;
   simp_rw [mem_map, mem_ae_iff, ← preimage_compl, f.map_apply]
 #align measurable_equiv.map_ae MeasurableEquiv.map_ae
 
-/- warning: measurable_equiv.quasi_measure_preserving_symm -> MeasurableEquiv.quasiMeasurePreserving_symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] (μ : MeasureTheory.Measure.{u1} α _inst_1) (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2), MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} β α _inst_1 _inst_2 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) (fun (_x : MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) => β -> α) (MeasurableEquiv.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (MeasurableEquiv.symm.{u1, u2} α β _inst_1 _inst_2 e)) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) μ) μ
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] (μ : MeasureTheory.Measure.{u2} α _inst_1) (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} β α _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (MeasurableEquiv.instEquivLike.{u1, u2} β α _inst_2 _inst_1))) (MeasurableEquiv.symm.{u2, u1} α β _inst_1 _inst_2 e)) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) μ) μ
-Case conversion may be inaccurate. Consider using '#align measurable_equiv.quasi_measure_preserving_symm MeasurableEquiv.quasiMeasurePreserving_symmₓ'. -/
 theorem quasiMeasurePreserving_symm (μ : Measure α) (e : α ≃ᵐ β) :
     QuasiMeasurePreserving e.symm (map e μ) μ :=
   ⟨e.symm.Measurable, by rw [measure.map_map, e.symm_comp_self, measure.map_id] <;> measurability⟩
@@ -6885,32 +4833,14 @@ theorem trim_measurableSet_eq (hm : m ≤ m0) (hs : @MeasurableSet α m s) : μ.
 #align measure_theory.trim_measurable_set_eq MeasureTheory.trim_measurableSet_eq
 -/
 
-/- warning: measure_theory.le_trim -> MeasureTheory.le_trim is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)) s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.le_trim MeasureTheory.le_trimₓ'. -/
 theorem le_trim (hm : m ≤ m0) : μ s ≤ μ.trim hm s := by simp_rw [measure.trim];
   exact @le_to_measure_apply _ m _ _ _
 #align measure_theory.le_trim MeasureTheory.le_trim
 
-/- warning: measure_theory.measure_eq_zero_of_trim_eq_zero -> MeasureTheory.measure_eq_zero_of_trim_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_eq_zero_of_trim_eq_zero MeasureTheory.measure_eq_zero_of_trim_eq_zeroₓ'. -/
 theorem measure_eq_zero_of_trim_eq_zero (hm : m ≤ m0) (h : μ.trim hm s = 0) : μ s = 0 :=
   le_antisymm ((le_trim hm).trans (le_of_eq h)) (zero_le _)
 #align measure_theory.measure_eq_zero_of_trim_eq_zero MeasureTheory.measure_eq_zero_of_trim_eq_zero
 
-/- warning: measure_theory.measure_trim_to_measurable_eq_zero -> MeasureTheory.measure_trim_toMeasurable_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (MeasureTheory.toMeasurable.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (MeasureTheory.toMeasurable.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_trim_to_measurable_eq_zero MeasureTheory.measure_trim_toMeasurable_eq_zeroₓ'. -/
 theorem measure_trim_toMeasurable_eq_zero {hm : m ≤ m0} (hs : μ.trim hm s = 0) :
     μ (@toMeasurable α m (μ.trim hm) s) = 0 :=
   measure_eq_zero_of_trim_eq_zero hm (by rwa [measure_to_measurable])
@@ -6989,12 +4919,6 @@ theorem sigmaFiniteTrim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α}
 #align measure_theory.sigma_finite_trim_mono MeasureTheory.sigmaFiniteTrim_mono
 -/
 
-/- warning: measure_theory.sigma_finite_trim_bot_iff -> MeasureTheory.sigmaFinite_trim_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (MeasureTheory.SigmaFinite.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (OrderBot.toHasBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α))))) (MeasureTheory.Measure.trim.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (OrderBot.toHasBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α))))) m0 μ (bot_le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α))) m0))) (MeasureTheory.FiniteMeasure.{u1} α m0 μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (MeasureTheory.SigmaFinite.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (OrderBot.toBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α))))) (MeasureTheory.Measure.trim.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (OrderBot.toBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α))))) m0 μ (bot_le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α))) m0))) (MeasureTheory.FiniteMeasure.{u1} α m0 μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.sigma_finite_trim_bot_iff MeasureTheory.sigmaFinite_trim_bot_iffₓ'. -/
 theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ FiniteMeasure μ :=
   by
   rw [sigma_finite_bot_iff]
@@ -7011,12 +4935,6 @@ namespace IsCompact
 
 variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set α}
 
-/- warning: is_compact.exists_open_superset_measure_lt_top' -> IsCompact.exists_open_superset_measure_lt_top' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhds.{u1} α _inst_1 x))) -> (Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ U) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhds.{u1} α _inst_1 x))) -> (Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) U) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
 superset of finite measure. -/
@@ -7035,12 +4953,6 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
     exact ⟨U, nhdsWithin_le_nhds (hUo.mem_nhds hx), U, subset.rfl, hUo, hU⟩
 #align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'
 
-/- warning: is_compact.exists_open_superset_measure_lt_top -> IsCompact.exists_open_superset_measure_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) [_inst_3 : MeasureTheory.LocallyFiniteMeasure.{u1} α _inst_2 _inst_1 μ], Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ U) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) [_inst_3 : MeasureTheory.LocallyFiniteMeasure.{u1} α _inst_2 _inst_1 μ], Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) U) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))))
-Case conversion may be inaccurate. Consider using '#align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
@@ -7049,24 +4961,12 @@ theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
   h.exists_open_superset_measure_lt_top' fun x hx => μ.finiteAtNhds x
 #align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_top
 
-/- warning: is_compact.measure_lt_top_of_nhds_within -> IsCompact.measure_lt_top_of_nhdsWithin is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhdsWithin.{u1} α _inst_1 x s))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhdsWithin.{u1} α _inst_1 x s))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align is_compact.measure_lt_top_of_nhds_within IsCompact.measure_lt_top_of_nhdsWithinₓ'. -/
 theorem measure_lt_top_of_nhdsWithin (h : IsCompact s) (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝[s] x)) :
     μ s < ∞ :=
   IsCompact.induction_on h (by simp) (fun s t hst ht => (measure_mono hst).trans_lt ht)
     (fun s t hs ht => (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hs, ht⟩)) hμ
 #align is_compact.measure_lt_top_of_nhds_within IsCompact.measure_lt_top_of_nhdsWithin
 
-/- warning: is_compact.measure_zero_of_nhds_within -> IsCompact.measure_zero_of_nhdsWithin is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t (nhdsWithin.{u1} α _inst_1 a s)) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t (nhdsWithin.{u1} α _inst_1 a s)) => Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) t (nhdsWithin.{u1} α _inst_1 a s)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align is_compact.measure_zero_of_nhds_within IsCompact.measure_zero_of_nhdsWithinₓ'. -/
 theorem measure_zero_of_nhdsWithin (hs : IsCompact s) :
     (∀ a ∈ s, ∃ t ∈ 𝓝[s] a, μ t = 0) → μ s = 0 := by
   simpa only [← compl_mem_ae_iff] using hs.compl_mem_sets_of_nhds_within
@@ -7179,42 +5079,18 @@ section MeasureIxx
 variable [Preorder α] [TopologicalSpace α] [CompactIccSpace α] {m : MeasurableSpace α}
   {μ : Measure α} [LocallyFiniteMeasure μ] {a b : α}
 
-/- warning: measure_Icc_lt_top -> measure_Icc_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Icc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Icc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align measure_Icc_lt_top measure_Icc_lt_topₓ'. -/
 theorem measure_Icc_lt_top : μ (Icc a b) < ∞ :=
   isCompact_Icc.measure_lt_top
 #align measure_Icc_lt_top measure_Icc_lt_top
 
-/- warning: measure_Ico_lt_top -> measure_Ico_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ico.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Ico.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align measure_Ico_lt_top measure_Ico_lt_topₓ'. -/
 theorem measure_Ico_lt_top : μ (Ico a b) < ∞ :=
   (measure_mono Ico_subset_Icc_self).trans_lt measure_Icc_lt_top
 #align measure_Ico_lt_top measure_Ico_lt_top
 
-/- warning: measure_Ioc_lt_top -> measure_Ioc_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ioc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Ioc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align measure_Ioc_lt_top measure_Ioc_lt_topₓ'. -/
 theorem measure_Ioc_lt_top : μ (Ioc a b) < ∞ :=
   (measure_mono Ioc_subset_Icc_self).trans_lt measure_Icc_lt_top
 #align measure_Ioc_lt_top measure_Ioc_lt_top
 
-/- warning: measure_Ioo_lt_top -> measure_Ioo_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ioo.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Ioo.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
-Case conversion may be inaccurate. Consider using '#align measure_Ioo_lt_top measure_Ioo_lt_topₓ'. -/
 theorem measure_Ioo_lt_top : μ (Ioo a b) < ∞ :=
   (measure_mono Ioo_subset_Icc_self).trans_lt measure_Icc_lt_top
 #align measure_Ioo_lt_top measure_Ioo_lt_top
@@ -7225,24 +5101,12 @@ section Piecewise
 
 variable [MeasurableSpace α] {μ : Measure α} {s t : Set α} {f g : α → β}
 
-/- warning: piecewise_ae_eq_restrict -> piecewise_ae_eq_restrict is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} {g : α -> β}, (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s)) (Set.piecewise.{u1, succ u2} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s))) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} {g : α -> β}, (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ s)) (Set.piecewise.{u2, succ u1} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j s))) f)
-Case conversion may be inaccurate. Consider using '#align piecewise_ae_eq_restrict piecewise_ae_eq_restrictₓ'. -/
 theorem piecewise_ae_eq_restrict (hs : MeasurableSet s) : piecewise s f g =ᵐ[μ.restrict s] f :=
   by
   rw [ae_restrict_eq hs]
   exact (piecewise_eq_on s f g).EventuallyEq.filter_mono inf_le_right
 #align piecewise_ae_eq_restrict piecewise_ae_eq_restrict
 
-/- warning: piecewise_ae_eq_restrict_compl -> piecewise_ae_eq_restrict_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} {g : α -> β}, (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (Set.piecewise.{u1, succ u2} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s))) g)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} {g : α -> β}, (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (HasCompl.compl.{u2} (Set.{u2} α) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} α) (Set.instBooleanAlgebraSet.{u2} α)) s))) (Set.piecewise.{u2, succ u1} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j s))) g)
-Case conversion may be inaccurate. Consider using '#align piecewise_ae_eq_restrict_compl piecewise_ae_eq_restrict_complₓ'. -/
 theorem piecewise_ae_eq_restrict_compl (hs : MeasurableSet s) :
     piecewise s f g =ᵐ[μ.restrict (sᶜ)] g :=
   by
@@ -7250,12 +5114,6 @@ theorem piecewise_ae_eq_restrict_compl (hs : MeasurableSet s) :
   exact (piecewise_eq_on_compl s f g).EventuallyEq.filter_mono inf_le_right
 #align piecewise_ae_eq_restrict_compl piecewise_ae_eq_restrict_compl
 
-/- warning: piecewise_ae_eq_of_ae_eq_set -> piecewise_ae_eq_of_ae_eq_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) s t) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.piecewise.{u1, succ u2} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s))) (Set.piecewise.{u1, succ u2} α (fun (ᾰ : α) => β) t f g (fun (j : α) => Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j t))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {t : Set.{u2} α} {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) s t) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.piecewise.{u2, succ u1} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j s))) (Set.piecewise.{u2, succ u1} α (fun (ᾰ : α) => β) t f g (fun (j : α) => Classical.propDecidable (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j t))))
-Case conversion may be inaccurate. Consider using '#align piecewise_ae_eq_of_ae_eq_set piecewise_ae_eq_of_ae_eq_setₓ'. -/
 theorem piecewise_ae_eq_of_ae_eq_set (hst : s =ᵐ[μ] t) : s.piecewise f g =ᵐ[μ] t.piecewise f g :=
   hst.mem_iff.mono fun x hx => by simp [piecewise, hx]
 #align piecewise_ae_eq_of_ae_eq_set piecewise_ae_eq_of_ae_eq_set
@@ -7281,12 +5139,6 @@ theorem mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem [Zero β] {t :
 #align mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem
 -/
 
-/- warning: mem_map_indicator_ae_iff_of_zero_nmem -> mem_map_indicator_ae_iff_of_zero_nmem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β] {t : Set.{u2} β}, (Not (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_2))) t)) -> (Iff (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (Set.preimage.{u1, u2} α β f t)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β] {t : Set.{u2} β}, (Not (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β _inst_2)) t)) -> (Iff (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) t (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (Set.preimage.{u1, u2} α β f t)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align mem_map_indicator_ae_iff_of_zero_nmem mem_map_indicator_ae_iff_of_zero_nmemₓ'. -/
 theorem mem_map_indicator_ae_iff_of_zero_nmem [Zero β] {t : Set β} (ht : (0 : β) ∉ t) :
     t ∈ Filter.map (s.indicator f) μ.ae ↔ μ ((f ⁻¹' t)ᶜ ∪ sᶜ) = 0 :=
   by
@@ -7295,12 +5147,6 @@ theorem mem_map_indicator_ae_iff_of_zero_nmem [Zero β] {t : Set β} (ht : (0 :
   simp only [ht, if_false, Set.compl_empty, Set.empty_diff, Set.inter_univ, Set.preimage_const]
 #align mem_map_indicator_ae_iff_of_zero_nmem mem_map_indicator_ae_iff_of_zero_nmem
 
-/- warning: map_restrict_ae_le_map_indicator_ae -> map_restrict_ae_le_map_indicator_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s))) (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β))) (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s))) (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))
-Case conversion may be inaccurate. Consider using '#align map_restrict_ae_le_map_indicator_ae map_restrict_ae_le_map_indicator_aeₓ'. -/
 theorem map_restrict_ae_le_map_indicator_ae [Zero β] (hs : MeasurableSet s) :
     Filter.map f (μ.restrict s).ae ≤ Filter.map (s.indicator f) μ.ae :=
   by
@@ -7313,33 +5159,15 @@ theorem map_restrict_ae_le_map_indicator_ae [Zero β] (hs : MeasurableSet s) :
 
 variable [Zero β]
 
-/- warning: indicator_ae_eq_restrict -> indicator_ae_eq_restrict is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s)) (Set.indicator.{u1, u2} α β _inst_2 s f) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ s)) (Set.indicator.{u2, u1} α β _inst_2 s f) f)
-Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_restrict indicator_ae_eq_restrictₓ'. -/
 theorem indicator_ae_eq_restrict (hs : MeasurableSet s) : indicator s f =ᵐ[μ.restrict s] f :=
   piecewise_ae_eq_restrict hs
 #align indicator_ae_eq_restrict indicator_ae_eq_restrict
 
-/- warning: indicator_ae_eq_restrict_compl -> indicator_ae_eq_restrict_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (Set.indicator.{u1, u2} α β _inst_2 s f) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (HasCompl.compl.{u2} (Set.{u2} α) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} α) (Set.instBooleanAlgebraSet.{u2} α)) s))) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => _inst_2)))))
-Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_restrict_compl indicator_ae_eq_restrict_complₓ'. -/
 theorem indicator_ae_eq_restrict_compl (hs : MeasurableSet s) :
     indicator s f =ᵐ[μ.restrict (sᶜ)] 0 :=
   piecewise_ae_eq_restrict_compl hs
 #align indicator_ae_eq_restrict_compl indicator_ae_eq_restrict_compl
 
-/- warning: indicator_ae_eq_of_restrict_compl_ae_eq_zero -> indicator_ae_eq_of_restrict_compl_ae_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) f (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2)))))) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (HasCompl.compl.{u2} (Set.{u2} α) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} α) (Set.instBooleanAlgebraSet.{u2} α)) s))) f (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => _inst_2))))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) f)
-Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_of_restrict_compl_ae_eq_zero indicator_ae_eq_of_restrict_compl_ae_eq_zeroₓ'. -/
 theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict (sᶜ)] 0) : s.indicator f =ᵐ[μ] f :=
   by
@@ -7350,12 +5178,6 @@ theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
   · simp only [hx hxs, Pi.zero_apply, Set.indicator_apply_eq_zero, eq_self_iff_true, imp_true_iff]
 #align indicator_ae_eq_of_restrict_compl_ae_eq_zero indicator_ae_eq_of_restrict_compl_ae_eq_zero
 
-/- warning: indicator_ae_eq_zero_of_restrict_ae_eq_zero -> indicator_ae_eq_zero_of_restrict_ae_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s)) f (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2)))))) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ s)) f (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => _inst_2))))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => _inst_2)))))
-Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_zero_of_restrict_ae_eq_zero indicator_ae_eq_zero_of_restrict_ae_eq_zeroₓ'. -/
 theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict s] 0) : s.indicator f =ᵐ[μ] 0 :=
   by
@@ -7366,32 +5188,14 @@ theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
   · simp [hx, hxs]
 #align indicator_ae_eq_zero_of_restrict_ae_eq_zero indicator_ae_eq_zero_of_restrict_ae_eq_zero
 
-/- warning: indicator_ae_eq_of_ae_eq_set -> indicator_ae_eq_of_ae_eq_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) s t) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) (Set.indicator.{u1, u2} α β _inst_2 t f))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {t : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) s t) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (Set.indicator.{u2, u1} α β _inst_2 t f))
-Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_of_ae_eq_set indicator_ae_eq_of_ae_eq_setₓ'. -/
 theorem indicator_ae_eq_of_ae_eq_set (hst : s =ᵐ[μ] t) : s.indicator f =ᵐ[μ] t.indicator f :=
   piecewise_ae_eq_of_ae_eq_set hst
 #align indicator_ae_eq_of_ae_eq_set indicator_ae_eq_of_ae_eq_set
 
-/- warning: indicator_meas_zero -> indicator_meas_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_1 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => _inst_2)))))
-Case conversion may be inaccurate. Consider using '#align indicator_meas_zero indicator_meas_zeroₓ'. -/
 theorem indicator_meas_zero (hs : μ s = 0) : indicator s f =ᵐ[μ] 0 :=
   indicator_empty' f ▸ indicator_ae_eq_of_ae_eq_set (ae_eq_empty.2 hs)
 #align indicator_meas_zero indicator_meas_zero
 
-/- warning: ae_eq_restrict_iff_indicator_ae_eq -> ae_eq_restrict_iff_indicator_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β] {g : α -> β}, (MeasurableSet.{u1} α _inst_1 s) -> (Iff (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s)) f g) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) (Set.indicator.{u1, u2} α β _inst_2 s g)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β] {g : α -> β}, (MeasurableSet.{u2} α _inst_1 s) -> (Iff (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ s)) f g) (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (Set.indicator.{u2, u1} α β _inst_2 s g)))
-Case conversion may be inaccurate. Consider using '#align ae_eq_restrict_iff_indicator_ae_eq ae_eq_restrict_iff_indicator_ae_eqₓ'. -/
 theorem ae_eq_restrict_iff_indicator_ae_eq {g : α → β} (hs : MeasurableSet s) :
     f =ᵐ[μ.restrict s] g ↔ s.indicator f =ᵐ[μ] s.indicator g :=
   by
Diff
@@ -475,10 +475,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_compl MeasureTheory.measure_complₓ'. -/
-theorem measure_compl (h₁ : MeasurableSet s) (h_fin : μ s ≠ ∞) : μ (sᶜ) = μ univ - μ s :=
-  by
-  rw [compl_eq_univ_diff]
-  exact measure_diff (subset_univ s) h₁ h_fin
+theorem measure_compl (h₁ : MeasurableSet s) (h_fin : μ s ≠ ∞) : μ (sᶜ) = μ univ - μ s := by
+  rw [compl_eq_univ_diff]; exact measure_diff (subset_univ s) h₁ h_fin
 #align measure_theory.measure_compl MeasureTheory.measure_compl
 
 /- warning: measure_theory.union_ae_eq_left_iff_ae_subset -> MeasureTheory.union_ae_eq_left_iff_ae_subset is a dubious translation:
@@ -567,8 +565,7 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
               ((subset_Union _ _).trans <| subset_to_measurable _ _)
         
     · exact (measurable_set_to_measurable _ _).inter (measurable_set_to_measurable _ _)
-    · rw [measure_to_measurable]
-      exact htop b
+    · rw [measure_to_measurable]; exact htop b
   calc
     μ (⋃ b, t b) ≤ μ (⋃ b, M (t b)) := measure_mono (Union_mono fun b => subset_to_measurable _ _)
     _ = μ (⋃ b, M (t b) ∩ M (⋃ b, s b)) := (measure_congr (EventuallyEq.countable_iUnion H).symm)
@@ -602,9 +599,7 @@ theorem measure_iUnion_toMeasurable [Countable β] (s : β → Set α) :
 
 #print MeasureTheory.measure_biUnion_toMeasurable /-
 theorem measure_biUnion_toMeasurable {I : Set β} (hc : I.Countable) (s : β → Set α) :
-    μ (⋃ b ∈ I, toMeasurable μ (s b)) = μ (⋃ b ∈ I, s b) :=
-  by
-  haveI := hc.to_encodable
+    μ (⋃ b ∈ I, toMeasurable μ (s b)) = μ (⋃ b ∈ I, s b) := by haveI := hc.to_encodable;
   simp only [bUnion_eq_Union, measure_Union_to_measurable]
 #align measure_theory.measure_bUnion_to_measurable MeasureTheory.measure_biUnion_toMeasurable
 -/
@@ -643,9 +638,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align measure_theory.sum_measure_le_measure_univ MeasureTheory.sum_measure_le_measure_univₓ'. -/
 theorem sum_measure_le_measure_univ {s : Finset ι} {t : ι → Set α}
     (h : ∀ i ∈ s, MeasurableSet (t i)) (H : Set.PairwiseDisjoint (↑s) t) :
-    (∑ i in s, μ (t i)) ≤ μ (univ : Set α) :=
-  by
-  rw [← measure_bUnion_finset H h]
+    (∑ i in s, μ (t i)) ≤ μ (univ : Set α) := by rw [← measure_bUnion_finset H h];
   exact measure_mono (subset_univ _)
 #align measure_theory.sum_measure_le_measure_univ MeasureTheory.sum_measure_le_measure_univ
 
@@ -1171,9 +1164,7 @@ theorem coe_zero {m : MeasurableSpace α} : ⇑(0 : Measure α) = 0 :=
 #align measure_theory.measure.coe_zero MeasureTheory.Measure.coe_zero
 
 instance [IsEmpty α] {m : MeasurableSpace α} : Subsingleton (Measure α) :=
-  ⟨fun μ ν => by
-    ext1 s hs
-    simp only [eq_empty_of_is_empty s, measure_empty]⟩
+  ⟨fun μ ν => by ext1 s hs; simp only [eq_empty_of_is_empty s, measure_empty]⟩
 
 #print MeasureTheory.Measure.eq_zero_of_isEmpty /-
 theorem eq_zero_of_isEmpty [IsEmpty α] {m : MeasurableSpace α} (μ : Measure α) : μ = 0 :=
@@ -2034,9 +2025,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_comap_apply MeasureTheory.Measure.le_comap_applyₓ'. -/
 theorem le_comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β) (μ : Measure β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ) (s : Set α) :
-    μ (f '' s) ≤ comap f μ s :=
-  by
-  rw [comap, dif_pos (And.intro hfi hf)]
+    μ (f '' s) ≤ comap f μ s := by rw [comap, dif_pos (And.intro hfi hf)];
   exact le_to_measure_apply _ _ _
 #align measure_theory.measure.le_comap_apply MeasureTheory.Measure.le_comap_apply
 
@@ -2076,16 +2065,10 @@ theorem ae_eq_image_of_ae_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSp
     {s t : Set α} (hst : s =ᵐ[comap f μ] t) : f '' s =ᵐ[μ] f '' t :=
   by
   rw [eventually_eq, ae_iff] at hst⊢
-  have h_eq_α : { a : α | ¬s a = t a } = s \ t ∪ t \ s :=
-    by
-    ext1 x
-    simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]
-    tauto
-  have h_eq_β : { a : β | ¬(f '' s) a = (f '' t) a } = f '' s \ f '' t ∪ f '' t \ f '' s :=
-    by
-    ext1 x
-    simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]
-    tauto
+  have h_eq_α : { a : α | ¬s a = t a } = s \ t ∪ t \ s := by ext1 x;
+    simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]; tauto
+  have h_eq_β : { a : β | ¬(f '' s) a = (f '' t) a } = f '' s \ f '' t ∪ f '' t \ f '' s := by
+    ext1 x; simp only [eq_iff_iff, mem_set_of_eq, mem_union, mem_diff]; tauto
   rw [← Set.image_diff hfi, ← Set.image_diff hfi, ← Set.image_union] at h_eq_β
   rw [h_eq_β]
   rw [h_eq_α] at hst
@@ -2100,8 +2083,7 @@ theorem NullMeasurableSet.image {β} [MeasurableSpace α] {mβ : MeasurableSpace
   by
   refine' ⟨to_measurable μ (f '' to_measurable (μ.comap f) s), measurable_set_to_measurable _ _, _⟩
   refine' eventually_eq.trans _ (null_measurable_set.to_measurable_ae_eq _).symm
-  swap
-  · exact hf _ (measurable_set_to_measurable _ _)
+  swap; · exact hf _ (measurable_set_to_measurable _ _)
   have h : to_measurable (comap f μ) s =ᵐ[comap f μ] s :=
     @null_measurable_set.to_measurable_ae_eq _ _ (μ.comap f : Measure α) s hs
   exact ae_eq_image_of_ae_eq_comap f μ hfi hf h.symm
@@ -2202,8 +2184,7 @@ theorem Subtype.volume_def : (volume : Measure s) = volume.comap Subtype.val :=
 theorem Subtype.volume_univ (hs : NullMeasurableSet s) : volume (univ : Set s) = volume s :=
   by
   rw [subtype.volume_def, comap_apply₀ _ _ _ _ measurable_set.univ.null_measurable_set]
-  · congr
-    simp only [Subtype.val_eq_coe, image_univ, Subtype.range_coe_subtype, set_of_mem_eq]
+  · congr ; simp only [Subtype.val_eq_coe, image_univ, Subtype.range_coe_subtype, set_of_mem_eq]
   · exact Subtype.coe_injective
   · exact fun t => measurable_set.null_measurable_set_subtype_coe hs
 #align measure_theory.measure.subtype.volume_univ MeasureTheory.Measure.Subtype.volume_univ
@@ -2963,10 +2944,8 @@ theorem ext_of_generateFrom_of_iUnion (C : Set (Set α)) (B : ℕ → Set α) (h
     (h_eq : ∀ s ∈ C, μ s = ν s) : μ = ν :=
   by
   refine' ext_of_generate_from_of_cover_subset hA hC _ (countable_range B) h1B _ h_eq
-  · rintro _ ⟨i, rfl⟩
-    apply h2B
-  · rintro _ ⟨i, rfl⟩
-    apply hμB
+  · rintro _ ⟨i, rfl⟩; apply h2B
+  · rintro _ ⟨i, rfl⟩; apply hμB
 #align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_iUnion
 
 section Dirac
@@ -3142,11 +3121,8 @@ but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {ι' : Type.{u3}} (μ : ι -> ι' -> (MeasureTheory.Measure.{u2} α m0)), Eq.{succ u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.sum.{u2, u1} α ι m0 (fun (n : ι) => MeasureTheory.Measure.sum.{u2, u3} α ι' m0 (μ n))) (MeasureTheory.Measure.sum.{u2, u3} α ι' m0 (fun (m : ι') => MeasureTheory.Measure.sum.{u2, u1} α ι m0 (fun (n : ι) => μ n m)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sum_comm MeasureTheory.Measure.sum_commₓ'. -/
 theorem sum_comm {ι' : Type _} (μ : ι → ι' → Measure α) :
-    (sum fun n => sum (μ n)) = sum fun m => sum fun n => μ n m :=
-  by
-  ext1 s hs
-  simp_rw [sum_apply _ hs]
-  rw [ENNReal.tsum_comm]
+    (sum fun n => sum (μ n)) = sum fun m => sum fun n => μ n m := by ext1 s hs;
+  simp_rw [sum_apply _ hs]; rw [ENNReal.tsum_comm]
 #align measure_theory.measure.sum_comm MeasureTheory.Measure.sum_comm
 
 #print MeasureTheory.Measure.ae_sum_iff /-
@@ -3169,9 +3145,7 @@ theorem ae_sum_iff' {μ : ι → Measure α} {p : α → Prop} (h : MeasurableSe
 
 #print MeasureTheory.Measure.sum_fintype /-
 @[simp]
-theorem sum_fintype [Fintype ι] (μ : ι → Measure α) : sum μ = ∑ i, μ i :=
-  by
-  ext1 s hs
+theorem sum_fintype [Fintype ι] (μ : ι → Measure α) : sum μ = ∑ i, μ i := by ext1 s hs;
   simp only [sum_apply, finset_sum_apply, hs, tsum_fintype]
 #align measure_theory.measure.sum_fintype MeasureTheory.Measure.sum_fintype
 -/
@@ -3727,9 +3701,8 @@ but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuousₓ'. -/
 theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
-  ⟨fun h s => by
-    rw [measure_zero_iff_ae_nmem, measure_zero_iff_ae_nmem]
-    exact fun hs => h hs, fun h s hs => h hs⟩
+  ⟨fun h s => by rw [measure_zero_iff_ae_nmem, measure_zero_iff_ae_nmem]; exact fun hs => h hs,
+    fun h s hs => h hs⟩
 #align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuous
 
 /- warning: has_le.le.absolutely_continuous_of_ae -> LE.le.absolutelyContinuous_of_ae is a dubious translation:
@@ -3846,9 +3819,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.comp MeasureTheory.Measure.QuasiMeasurePreserving.compₓ'. -/
 protected theorem comp {g : β → γ} {f : α → β} (hg : QuasiMeasurePreserving g μb μc)
     (hf : QuasiMeasurePreserving f μa μb) : QuasiMeasurePreserving (g ∘ f) μa μc :=
-  ⟨hg.Measurable.comp hf.Measurable, by
-    rw [← map_map hg.1 hf.1]
-    exact (hf.2.map hg.1).trans hg.2⟩
+  ⟨hg.Measurable.comp hf.Measurable, by rw [← map_map hg.1 hf.1]; exact (hf.2.map hg.1).trans hg.2⟩
 #align measure_theory.measure.quasi_measure_preserving.comp MeasureTheory.Measure.QuasiMeasurePreserving.comp
 
 #print MeasureTheory.Measure.QuasiMeasurePreserving.iterate /-
@@ -3953,14 +3924,11 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
     ⇑(e ^ k) '' s =ᵐ[μ] s := by
   rw [Equiv.image_eq_preimage]
   obtain ⟨k, rfl | rfl⟩ := k.eq_coe_or_neg
-  · replace hs : ⇑e⁻¹ ⁻¹' s =ᵐ[μ] s
-    · rwa [Equiv.image_eq_preimage] at hs
+  · replace hs : ⇑e⁻¹ ⁻¹' s =ᵐ[μ] s; · rwa [Equiv.image_eq_preimage] at hs
     replace he' : ⇑e⁻¹^[k] ⁻¹' s =ᵐ[μ] s := he'.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e⁻¹ k, inv_pow e k] at he'
   · rw [zpow_neg, zpow_ofNat]
-    replace hs : e ⁻¹' s =ᵐ[μ] s
-    · convert he.preimage_ae_eq hs.symm
-      rw [Equiv.preimage_image]
+    replace hs : e ⁻¹' s =ᵐ[μ] s; · convert he.preimage_ae_eq hs.symm; rw [Equiv.preimage_image]
     replace he : ⇑e^[k] ⁻¹' s =ᵐ[μ] s := he.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e k] at he
 #align measure_theory.measure.quasi_measure_preserving.image_zpow_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq
@@ -3979,8 +3947,7 @@ theorem limsup_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreservi
       s :=
   haveI : ∀ n, (preimage f^[n]) s =ᵐ[μ] s := by
     intro n
-    induction' n with n ih
-    · simp
+    induction' n with n ih; · simp
     simpa only [iterate_succ', comp_app] using ae_eq_trans (hf.ae_eq ih) hs
   (limsup_ae_eq_of_forall_ae_eq (fun n => (preimage f^[n]) s) this).trans (ae_eq_refl _)
 #align measure_theory.measure.quasi_measure_preserving.limsup_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq
@@ -4058,9 +4025,7 @@ theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type _} [Group G
   by
   intro g₁ g₂ hg
   let g := g₂⁻¹ * g₁
-  replace hg : g ≠ 1
-  · rw [Ne.def, inv_mul_eq_one]
-    exact hg.symm
+  replace hg : g ≠ 1; · rw [Ne.def, inv_mul_eq_one]; exact hg.symm
   have : (· • ·) g₂⁻¹ ⁻¹' (g • s ∩ s) = g₁ • s ∩ g₂ • s := by
     rw [preimage_eq_iff_eq_image (MulAction.bijective g₂⁻¹), image_smul, smul_set_inter, smul_smul,
       smul_smul, inv_mul_self, one_smul]
@@ -4673,8 +4638,7 @@ theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
     (hst : ∀ x : α, ∃ y ∈ s, x ≤ y) (hdir : DirectedOn (· ≤ ·) s) : (⨆ x ∈ s, μ (Iic x)) = μ univ :=
   by
   rw [← measure_bUnion_eq_supr hsc]
-  · congr
-    exact Union₂_eq_univ_iff.2 hst
+  · congr ; exact Union₂_eq_univ_iff.2 hst
   · exact directedOn_iff_directed.2 (hdir.directed_coe.mono_comp _ fun x y => Iic_subset_Iic.2)
 #align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iic
 
@@ -4781,9 +4745,7 @@ theorem ae_dirac_iff {a : α} {p : α → Prop} (hp : MeasurableSet { x | p x })
 
 #print MeasureTheory.ae_dirac_eq /-
 @[simp]
-theorem ae_dirac_eq [MeasurableSingletonClass α] (a : α) : (dirac a).ae = pure a :=
-  by
-  ext s
+theorem ae_dirac_eq [MeasurableSingletonClass α] (a : α) : (dirac a).ae = pure a := by ext s;
   simp [mem_ae_iff, imp_false]
 #align measure_theory.ae_dirac_eq MeasureTheory.ae_dirac_eq
 -/
@@ -4920,10 +4882,8 @@ instance finiteMeasureZero : FiniteMeasure (0 : Measure α) :=
 -/
 
 #print MeasureTheory.finiteMeasureOfIsEmpty /-
-instance (priority := 100) finiteMeasureOfIsEmpty [IsEmpty α] : FiniteMeasure μ :=
-  by
-  rw [eq_zero_of_is_empty μ]
-  infer_instance
+instance (priority := 100) finiteMeasureOfIsEmpty [IsEmpty α] : FiniteMeasure μ := by
+  rw [eq_zero_of_is_empty μ]; infer_instance
 #align measure_theory.is_finite_measure_of_is_empty MeasureTheory.finiteMeasureOfIsEmpty
 -/
 
@@ -4993,11 +4953,8 @@ theorem Measure.finiteMeasureMap {m : MeasurableSpace α} (μ : Measure α) [Fin
     (f : α → β) : FiniteMeasure (μ.map f) :=
   by
   by_cases hf : AEMeasurable f μ
-  · constructor
-    rw [map_apply_of_ae_measurable hf MeasurableSet.univ]
-    exact measure_lt_top μ _
-  · rw [map_of_not_ae_measurable hf]
-    exact MeasureTheory.finiteMeasureZero
+  · constructor; rw [map_apply_of_ae_measurable hf MeasurableSet.univ]; exact measure_lt_top μ _
+  · rw [map_of_not_ae_measurable hf]; exact MeasureTheory.finiteMeasureZero
 #align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.finiteMeasureMap
 
 /- warning: measure_theory.measure_univ_nnreal_eq_zero -> MeasureTheory.measureUnivNNReal_eq_zero is a dubious translation:
@@ -5403,12 +5360,8 @@ but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {γ : Type.{u2}} (f : α -> γ) (g : α -> γ) (s : Set.{u1} α), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α m0 μ) (fun (x : α) => ite.{succ u2} γ (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (Classical.propDecidable (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (f x) (g x)) f)
 Case conversion may be inaccurate. Consider using '#align measure_theory.ite_ae_eq_of_measure_compl_zero MeasureTheory.ite_ae_eq_of_measure_compl_zeroₓ'. -/
 theorem ite_ae_eq_of_measure_compl_zero {γ} (f : α → γ) (g : α → γ) (s : Set α)
-    (hs_zero : μ (sᶜ) = 0) : (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] f :=
-  by
-  filter_upwards [hs_zero]
-  intros
-  split_ifs
-  rfl
+    (hs_zero : μ (sᶜ) = 0) : (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] f := by
+  filter_upwards [hs_zero]; intros ; split_ifs; rfl
 #align measure_theory.ite_ae_eq_of_measure_compl_zero MeasureTheory.ite_ae_eq_of_measure_compl_zero
 
 namespace Measure
@@ -5497,9 +5450,7 @@ def Measure.toFiniteSpanningSetsIn (μ : Measure α) [h : SigmaFinite μ] :
     where
   Set n := toMeasurable μ (h.out.some.Set n)
   set_mem n := measurableSet_toMeasurable _ _
-  Finite n := by
-    rw [measure_to_measurable]
-    exact h.out.some.finite n
+  Finite n := by rw [measure_to_measurable]; exact h.out.some.finite n
   spanning := eq_univ_of_subset (iUnion_mono fun n => subset_toMeasurable _ _) h.out.some.spanning
 #align measure_theory.measure.to_finite_spanning_sets_in MeasureTheory.Measure.toFiniteSpanningSetsIn
 -/
@@ -5826,9 +5777,7 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
     refine' ⟨t', tt', MeasurableSet.iUnion fun n => measurable_set_to_measurable μ _, fun u hu => _⟩
     apply le_antisymm _ (measure_mono (inter_subset_inter tt' subset.rfl))
     calc
-      μ (t' ∩ u) ≤ ∑' n, μ (to_measurable μ (t ∩ disjointed w n) ∩ u) :=
-        by
-        rw [ht', Union_inter]
+      μ (t' ∩ u) ≤ ∑' n, μ (to_measurable μ (t ∩ disjointed w n) ∩ u) := by rw [ht', Union_inter];
         exact measure_Union_le _
       _ = ∑' n, μ (t ∩ disjointed w n ∩ u) := by
         congr 1
@@ -5892,10 +5841,7 @@ that `t` has finite measure), see `measure_to_measurable_inter`. -/
 theorem measure_toMeasurable_inter_of_sigmaFinite [SigmaFinite μ] {s : Set α} (hs : MeasurableSet s)
     (t : Set α) : μ (toMeasurable μ t ∩ s) = μ (t ∩ s) :=
   by
-  have : t ⊆ ⋃ n, spanning_sets μ n :=
-    by
-    rw [Union_spanning_sets]
-    exact subset_univ _
+  have : t ⊆ ⋃ n, spanning_sets μ n := by rw [Union_spanning_sets]; exact subset_univ _
   apply measure_to_measurable_inter_of_cover hs this fun n => ne_of_lt _
   calc
     μ (t ∩ spanning_sets μ n) ≤ μ (spanning_sets μ n) := measure_mono (inter_subset_right _ _)
@@ -6019,18 +5965,14 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align measure_theory.sigma_finite_bot_iff MeasureTheory.sigmaFinite_bot_iffₓ'. -/
 theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ FiniteMeasure μ :=
   by
-  refine'
-    ⟨fun h => ⟨_⟩, fun h => by
-      haveI := h
-      infer_instance⟩
+  refine' ⟨fun h => ⟨_⟩, fun h => by haveI := h; infer_instance⟩
   haveI : sigma_finite μ := h
   let s := spanning_sets μ
   have hs_univ : (⋃ i, s i) = Set.univ := Union_spanning_sets μ
   have hs_meas : ∀ i, measurable_set[⊥] (s i) := measurable_spanning_sets μ
   simp_rw [MeasurableSpace.measurableSet_bot_iff] at hs_meas
   by_cases h_univ_empty : Set.univ = ∅
-  · rw [h_univ_empty, measure_empty]
-    exact ennreal.zero_ne_top.lt_top
+  · rw [h_univ_empty, measure_empty]; exact ennreal.zero_ne_top.lt_top
   obtain ⟨i, hsi⟩ : ∃ i, s i = Set.univ :=
     by
     by_contra h_not_univ
@@ -6064,17 +6006,14 @@ instance sum.sigmaFinite {ι} [Finite ι] (μ : ι → Measure α) [∀ i, Sigma
   · rw [sum_apply _ (this n), tsum_fintype, ENNReal.sum_lt_top_iff]
     rintro i -
     exact (measure_mono <| Inter_subset _ i).trans_lt (measure_spanning_sets_lt_top (μ i) n)
-  · rw [Union_Inter_of_monotone]
-    simp_rw [Union_spanning_sets, Inter_univ]
+  · rw [Union_Inter_of_monotone]; simp_rw [Union_spanning_sets, Inter_univ]
     exact fun i => monotone_spanning_sets (μ i)
 #align measure_theory.sum.sigma_finite MeasureTheory.sum.sigmaFinite
 -/
 
 #print MeasureTheory.Add.sigmaFinite /-
 instance Add.sigmaFinite (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] : SigmaFinite (μ + ν) :=
-  by
-  rw [← sum_cond]
-  refine' @sum.sigma_finite _ _ _ _ _ (Bool.rec _ _) <;> simpa
+  by rw [← sum_cond]; refine' @sum.sigma_finite _ _ _ _ _ (Bool.rec _ _) <;> simpa
 #align measure_theory.add.sigma_finite MeasureTheory.Add.sigmaFinite
 -/
 
@@ -6844,11 +6783,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), Function.Injective.{succ u2, succ u1} (MeasureTheory.Measure.{u2} α _inst_1) (MeasureTheory.Measure.{u1} β _inst_2) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e))
 Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injectiveₓ'. -/
-theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (map e) :=
-  by
-  intro μ₁ μ₂ hμ
-  apply_fun map e.symm  at hμ
-  simpa [map_symm_map e] using hμ
+theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (map e) := by intro μ₁ μ₂ hμ;
+  apply_fun map e.symm  at hμ; simpa [map_symm_map e] using hμ
 #align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injective
 
 /- warning: measurable_equiv.map_apply_eq_iff_map_symm_apply_eq -> MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eq is a dubious translation:
@@ -6878,9 +6814,7 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] (f : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) (μ : MeasureTheory.Measure.{u2} α _inst_1), Eq.{succ u1} (Filter.{u1} β) (Filter.map.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) f) (MeasureTheory.Measure.ae.{u2} α _inst_1 μ)) (MeasureTheory.Measure.ae.{u1} β _inst_2 (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) f) μ))
 Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_ae MeasurableEquiv.map_aeₓ'. -/
-theorem map_ae (f : α ≃ᵐ β) (μ : Measure α) : Filter.map f μ.ae = (map f μ).ae :=
-  by
-  ext s
+theorem map_ae (f : α ≃ᵐ β) (μ : Measure α) : Filter.map f μ.ae = (map f μ).ae := by ext s;
   simp_rw [mem_map, mem_ae_iff, ← preimage_compl, f.map_apply]
 #align measurable_equiv.map_ae MeasurableEquiv.map_ae
 
@@ -6957,9 +6891,7 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)) s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.le_trim MeasureTheory.le_trimₓ'. -/
-theorem le_trim (hm : m ≤ m0) : μ s ≤ μ.trim hm s :=
-  by
-  simp_rw [measure.trim]
+theorem le_trim (hm : m ≤ m0) : μ s ≤ μ.trim hm s := by simp_rw [measure.trim];
   exact @le_to_measure_apply _ m _ _ _
 #align measure_theory.le_trim MeasureTheory.le_trim
 
@@ -7028,9 +6960,7 @@ theorem restrict_trim (hm : m ≤ m0) (μ : Measure α) (hs : @MeasurableSet α
 
 #print MeasureTheory.finiteMeasure_trim /-
 instance finiteMeasure_trim (hm : m ≤ m0) [FiniteMeasure μ] : FiniteMeasure (μ.trim hm)
-    where measure_univ_lt_top :=
-    by
-    rw [trim_measurable_set_eq hm (@MeasurableSet.univ _ m)]
+    where measure_univ_lt_top := by rw [trim_measurable_set_eq hm (@MeasurableSet.univ _ m)];
     exact measure_lt_top _ _
 #align measure_theory.is_finite_measure_trim MeasureTheory.finiteMeasure_trim
 -/
@@ -7094,10 +7024,8 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
     (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝 x)) : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
   by
   refine' IsCompact.induction_on h _ _ _ _
-  · use ∅
-    simp [Superset]
-  · rintro s t hst ⟨U, htU, hUo, hU⟩
-    exact ⟨U, hst.trans htU, hUo, hU⟩
+  · use ∅; simp [Superset]
+  · rintro s t hst ⟨U, htU, hUo, hU⟩; exact ⟨U, hst.trans htU, hUo, hU⟩
   · rintro s t ⟨U, hsU, hUo, hU⟩ ⟨V, htV, hVo, hV⟩
     refine'
       ⟨U ∪ V, union_subset_union hsU htV, hUo.union hVo,
@@ -7208,8 +7136,7 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
   [SecondCountableTopology α] {m : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
   μ.FiniteSpanningSetsIn { K | IsOpen K } :=
   by
-  suffices H : Nonempty (μ.finite_spanning_sets_in { K | IsOpen K })
-  exact H.some
+  suffices H : Nonempty (μ.finite_spanning_sets_in { K | IsOpen K }); exact H.some
   cases isEmpty_or_nonempty α
   ·
     exact
@@ -7226,8 +7153,7 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
     by_contra h'T
     simp only [not_nonempty_iff_eq_empty.1 h'T, sUnion_empty] at hT
     simpa only [← hT] using mem_univ (default : α)
-  obtain ⟨f, hf⟩ : ∃ f : ℕ → Set α, T = range f
-  exact T_count.exists_eq_range T_ne
+  obtain ⟨f, hf⟩ : ∃ f : ℕ → Set α, T = range f; exact T_count.exists_eq_range T_ne
   have fS : ∀ n, f n ∈ S := by
     intro n
     apply TS
@@ -7380,8 +7306,7 @@ theorem map_restrict_ae_le_map_indicator_ae [Zero β] (hs : MeasurableSet s) :
   by
   intro t
   by_cases ht : (0 : β) ∈ t
-  · rw [mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem ht hs]
-    exact id
+  · rw [mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem ht hs]; exact id
   rw [mem_map_indicator_ae_iff_of_zero_nmem ht, mem_map_restrict_ae_iff hs]
   exact fun h => measure_mono_null ((Set.inter_subset_left _ _).trans (Set.subset_union_left _ _)) h
 #align map_restrict_ae_le_map_indicator_ae map_restrict_ae_le_map_indicator_ae
Diff
@@ -856,10 +856,7 @@ theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Se
 #align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_iInter
 
 /- warning: measure_theory.tendsto_measure_bInter_gt -> MeasureTheory.tendsto_measure_biInter_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) a i) -> (LE.le.{u2} ι (Preorder.toHasLe.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => Exists.{0} (GT.gt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))) a)) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iInter.{u1, succ u2} α ι (fun (r : ι) => Set.iInter.{u1, 0} α (GT.gt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => s r))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1))))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) a i) -> (LE.le.{u2} ι (Preorder.toLE.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => And (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1))))) a)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iInter.{u1, succ u2} α ι (fun (r : ι) => Set.iInter.{u1, 0} α (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) => s r))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gtₓ'. -/
 /-- The measure of the intersection of a decreasing sequence of measurable
 sets indexed by a linear order with first countable topology is the limit of the measures. -/
@@ -1566,13 +1563,11 @@ theorem sInf_apply (hs : MeasurableSet s) : sInf m s = sInf (toOuterMeasure '' m
 private theorem measure_Inf_le (h : μ ∈ m) : sInf m ≤ μ :=
   have : sInf (toOuterMeasure '' m) ≤ μ.toOuterMeasure := sInf_le (mem_image_of_mem _ h)
   fun s hs => by rw [sInf_apply hs, ← to_outer_measure_apply] <;> exact this s
-#align measure_theory.measure.measure_Inf_le measure_theory.measure.measure_Inf_le
 
 private theorem measure_le_Inf (h : ∀ μ' ∈ m, μ ≤ μ') : μ ≤ sInf m :=
   have : μ.toOuterMeasure ≤ sInf (toOuterMeasure '' m) :=
     le_sInf <| ball_image_of_ball fun μ hμ => toOuterMeasure_le.2 <| h _ hμ
   fun s hs => by rw [sInf_apply hs, ← to_outer_measure_apply] <;> exact this s
-#align measure_theory.measure.measure_le_Inf measure_theory.measure.measure_le_Inf
 
 instance [MeasurableSpace α] : CompleteSemilatticeInf (Measure α) :=
   { (by infer_instance : PartialOrder (Measure α)),
@@ -1698,10 +1693,7 @@ theorem measure_univ_pos : 0 < μ univ ↔ μ ≠ 0 :=
 
 
 /- warning: measure_theory.measure.lift_linear -> MeasureTheory.Measure.liftLinear is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)), (forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))), (forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.instLEMeasurableSpace.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u2} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lift_linear MeasureTheory.Measure.liftLinearₓ'. -/
 /-- Lift a linear map between `outer_measure` spaces such that for each measure `μ` every measurable
 set is caratheodory-measurable w.r.t. `f μ` to a linear map between `measure` spaces. -/
@@ -1714,10 +1706,7 @@ def liftLinear {m0 : MeasurableSpace α} (f : OuterMeasure α →ₗ[ℝ≥0∞]
 #align measure_theory.measure.lift_linear MeasureTheory.Measure.liftLinear
 
 /- warning: measure_theory.measure.lift_linear_apply -> MeasureTheory.Measure.liftLinear_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))} (hf : forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.liftLinear.{u1, u2} α β _inst_1 m0 f hf) μ) s) (coeFn.{succ u2, succ u2} (MeasureTheory.OuterMeasure.{u2} β) (fun (_x : MeasureTheory.OuterMeasure.{u2} β) => (Set.{u2} β) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u2} β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lift_linear_apply MeasureTheory.Measure.liftLinear_applyₓ'. -/
 @[simp]
 theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) {s : Set β}
@@ -1726,10 +1715,7 @@ theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β
 #align measure_theory.measure.lift_linear_apply MeasureTheory.Measure.liftLinear_apply
 
 /- warning: measure_theory.measure.le_lift_linear_apply -> MeasureTheory.Measure.le_liftLinear_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))} (hf : forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) (s : Set.{u2} β), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u2, succ u2} (MeasureTheory.OuterMeasure.{u2} β) (fun (_x : MeasureTheory.OuterMeasure.{u2} β) => (Set.{u2} β) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u2} β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.liftLinear.{u1, u2} α β _inst_1 m0 f hf) μ) s)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) (s : Set.{u1} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s)
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_lift_linear_apply MeasureTheory.Measure.le_liftLinear_applyₓ'. -/
 theorem le_liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) (s : Set β) :
     f μ.toOuterMeasure s ≤ liftLinear f hf μ s :=
@@ -1752,10 +1738,7 @@ def mapₗ [MeasurableSpace α] (f : α → β) : Measure α →ₗ[ℝ≥0∞]
 #align measure_theory.measure.mapₗ MeasureTheory.Measure.mapₗ
 
 /- warning: measure_theory.measure.mapₗ_congr -> MeasureTheory.Measure.mapₗ_congr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} {g : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (Measurable.{u1, u2} α β m0 _inst_1 g) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 f) μ) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 g) μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} {g : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (Measurable.{u2, u1} α β m0 _inst_1 g) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m0 μ) f g) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 g) μ))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_congr MeasureTheory.Measure.mapₗ_congrₓ'. -/
 theorem mapₗ_congr {f g : α → β} (hf : Measurable f) (hg : Measurable g) (h : f =ᵐ[μ] g) :
     mapₗ f μ = mapₗ g μ := by
@@ -1775,20 +1758,14 @@ irreducible_def map [MeasurableSpace α] (f : α → β) (μ : Measure α) : Mea
 include m0
 
 /- warning: measure_theory.measure.mapₗ_mk_apply_of_ae_measurable -> MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} (hf : AEMeasurable.{u1, u2} α β _inst_1 m0 f μ), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 (AEMeasurable.mk.{u1, u2} α β m0 _inst_1 μ f hf)) μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} (hf : AEMeasurable.{u2, u1} α β _inst_1 m0 f μ), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 (AEMeasurable.mk.{u2, u1} α β m0 _inst_1 μ f hf)) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurableₓ'. -/
 theorem mapₗ_mk_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) :
     mapₗ (hf.mk f) μ = map f μ := by simp [map, hf]
 #align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurable
 
 /- warning: measure_theory.measure.mapₗ_apply_of_measurable -> MeasureTheory.Measure.mapₗ_apply_of_measurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 f) μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_apply_of_measurable MeasureTheory.Measure.mapₗ_apply_of_measurableₓ'. -/
 theorem mapₗ_apply_of_measurable {f : α → β} (hf : Measurable f) (μ : Measure α) :
     mapₗ f μ = map f μ :=
@@ -1843,10 +1820,7 @@ theorem map_congr {f g : α → β} (h : f =ᵐ[μ] g) : Measure.map f μ = Meas
 #align measure_theory.measure.map_congr MeasureTheory.Measure.map_congr
 
 /- warning: measure_theory.measure.map_smul -> MeasureTheory.Measure.map_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] (c : ENNReal) (μ : MeasureTheory.Measure.{u1} α m0) (f : α -> β), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ)) (SMul.smul.{0, u2} ENNReal (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instSMul.{u2, 0} β ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) _inst_1) c (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] (c : ENNReal) (μ : MeasureTheory.Measure.{u2} α m0) (f : α -> β), Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f (HSMul.hSMul.{0, u2, u2} ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u2} α m0) (instHSMul.{0, u2} ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instSMul.{u2, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ)) (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.{u1} β _inst_1) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instSMul.{u1, 0} β ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) c (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_smul MeasureTheory.Measure.map_smulₓ'. -/
 @[simp]
 protected theorem map_smul (c : ℝ≥0∞) (μ : Measure α) (f : α → β) : (c • μ).map f = c • μ.map f :=
@@ -1867,10 +1841,7 @@ protected theorem map_smul (c : ℝ≥0∞) (μ : Measure α) (f : α → β) :
 #align measure_theory.measure.map_smul MeasureTheory.Measure.map_smul
 
 /- warning: measure_theory.measure.map_smul_nnreal -> MeasureTheory.Measure.map_smul_nnreal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] (c : NNReal) (μ : MeasureTheory.Measure.{u1} α m0) (f : α -> β), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f (SMul.smul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (MulAction.toHasSmul.{0, 0} NNReal ENNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (ENNReal.mulAction.{0} ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.isScalarTower.{0, 0} ENNReal ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) m0) c μ)) (SMul.smul.{0, u2} NNReal (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instSMul.{u2, 0} β NNReal (MulAction.toHasSmul.{0, 0} NNReal ENNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (ENNReal.mulAction.{0} ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.isScalarTower.{0, 0} ENNReal ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) _inst_1) c (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] (c : NNReal) (μ : MeasureTheory.Measure.{u2} α m0) (f : α -> β), Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f (HSMul.hSMul.{0, u2, u2} NNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u2} α m0) (instHSMul.{0, u2} NNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instSMul.{u2, 0} α NNReal (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (ENNReal.instIsScalarTowerNNRealToSMulToMonoidToMonoidWithZeroInstNNRealSemiringInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiringToSMulInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0, 0} ENNReal ENNReal (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) m0)) c μ)) (HSMul.hSMul.{0, u1, u1} NNReal (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.{u1} β _inst_1) (instHSMul.{0, u1} NNReal (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instSMul.{u1, 0} β NNReal (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (ENNReal.instIsScalarTowerNNRealToSMulToMonoidToMonoidWithZeroInstNNRealSemiringInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiringToSMulInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0, 0} ENNReal ENNReal (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) _inst_1)) c (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_smul_nnreal MeasureTheory.Measure.map_smul_nnrealₓ'. -/
 @[simp]
 protected theorem map_smul_nnreal (c : ℝ≥0) (μ : Measure α) (f : α → β) :
@@ -1907,10 +1878,7 @@ theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : Measura
 #align measure_theory.measure.map_apply MeasureTheory.Measure.map_apply
 
 /- warning: measure_theory.measure.map_to_outer_measure -> MeasureTheory.Measure.map_toOuterMeasure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (Eq.{succ u2} (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.Measure.toOuterMeasure.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)) (MeasureTheory.OuterMeasure.trim.{u2} β _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.OuterMeasure.map.{u1, u2} α β f) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) (MeasureTheory.OuterMeasure.trim.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.map.{u2, u1} α β f) (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_to_outer_measure MeasureTheory.Measure.map_toOuterMeasureₓ'. -/
 theorem map_toOuterMeasure {f : α → β} (hf : AEMeasurable f μ) :
     (μ.map f).toOuterMeasure = (OuterMeasure.map f μ.toOuterMeasure).trim :=
@@ -2021,10 +1989,7 @@ def comapₗ [MeasurableSpace α] (f : α → β) : Measure β →ₗ[ℝ≥0∞
 #align measure_theory.measure.comapₗ MeasureTheory.Measure.comapₗ
 
 /- warning: measure_theory.measure.comapₗ_apply -> MeasureTheory.Measure.comapₗ_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) (fun (_x : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) => (MeasureTheory.Measure.{u2} β mβ) -> (MeasureTheory.Measure.{u1} α _inst_3)) (LinearMap.hasCoeToFun.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Set.image.{u1, u2} α β f s))))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ_apply MeasureTheory.Measure.comapₗ_applyₓ'. -/
 theorem comapₗ_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
@@ -2084,10 +2049,7 @@ theorem comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α
 -/
 
 /- warning: measure_theory.measure.comapₗ_eq_comap -> MeasureTheory.Measure.comapₗ_eq_comap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) (fun (_x : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) => (MeasureTheory.Measure.{u2} β mβ) -> (MeasureTheory.Measure.{u1} α _inst_3)) (LinearMap.hasCoeToFun.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) s)))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ_eq_comap MeasureTheory.Measure.comapₗ_eq_comapₓ'. -/
 theorem comapₗ_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
@@ -2299,10 +2261,7 @@ def restrict {m0 : MeasurableSpace α} (μ : Measure α) (s : Set α) : Measure
 -/
 
 /- warning: measure_theory.measure.restrictₗ_apply -> MeasureTheory.Measure.restrictₗ_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (s : Set.{u1} α) (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0)) (fun (_x : LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u1} α m0)) (LinearMap.hasCoeToFun.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.restrictₗ.{u1} α m0 s) μ) (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (s : Set.{u1} α) (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) μ) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.restrictₗ.{u1} α m0 s) μ) (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrictₗ_apply MeasureTheory.Measure.restrictₗ_applyₓ'. -/
 @[simp]
 theorem restrictₗ_apply {m0 : MeasurableSpace α} (s : Set α) (μ : Measure α) :
@@ -2311,10 +2270,7 @@ theorem restrictₗ_apply {m0 : MeasurableSpace α} (s : Set α) (μ : Measure 
 #align measure_theory.measure.restrictₗ_apply MeasureTheory.Measure.restrictₗ_apply
 
 /- warning: measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict -> MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrict is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1)) (fun (_x : LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u1} α)) (LinearMap.hasCoeToFun.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.OuterMeasure.restrict.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u1} α) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.restrict.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrictₓ'. -/
 /-- This lemma shows that `restrict` and `to_outer_measure` commute. Note that the LHS has a
 restrict on measures and the RHS has a restrict on outer measures. -/
Diff
@@ -1701,7 +1701,7 @@ theorem measure_univ_pos : 0 < μ univ ↔ μ ≠ 0 :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)), (forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))), (forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.instLEMeasurableSpace.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u2} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))), (forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.instLEMeasurableSpace.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u2} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lift_linear MeasureTheory.Measure.liftLinearₓ'. -/
 /-- Lift a linear map between `outer_measure` spaces such that for each measure `μ` every measurable
 set is caratheodory-measurable w.r.t. `f μ` to a linear map between `measure` spaces. -/
@@ -1717,7 +1717,7 @@ def liftLinear {m0 : MeasurableSpace α} (f : OuterMeasure α →ₗ[ℝ≥0∞]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))} (hf : forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.liftLinear.{u1, u2} α β _inst_1 m0 f hf) μ) s) (coeFn.{succ u2, succ u2} (MeasureTheory.OuterMeasure.{u2} β) (fun (_x : MeasureTheory.OuterMeasure.{u2} β) => (Set.{u2} β) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u2} β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s))
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lift_linear_apply MeasureTheory.Measure.liftLinear_applyₓ'. -/
 @[simp]
 theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) {s : Set β}
@@ -1729,7 +1729,7 @@ theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))} (hf : forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) (s : Set.{u2} β), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u2, succ u2} (MeasureTheory.OuterMeasure.{u2} β) (fun (_x : MeasureTheory.OuterMeasure.{u2} β) => (Set.{u2} β) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u2} β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.liftLinear.{u1, u2} α β _inst_1 m0 f hf) μ) s)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) (s : Set.{u1} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s)
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) (s : Set.{u1} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_lift_linear_apply MeasureTheory.Measure.le_liftLinear_applyₓ'. -/
 theorem le_liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) (s : Set β) :
     f μ.toOuterMeasure s ≤ liftLinear f hf μ s :=
@@ -1755,7 +1755,7 @@ def mapₗ [MeasurableSpace α] (f : α → β) : Measure α →ₗ[ℝ≥0∞]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} {g : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (Measurable.{u1, u2} α β m0 _inst_1 g) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 f) μ) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 g) μ))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} {g : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (Measurable.{u2, u1} α β m0 _inst_1 g) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m0 μ) f g) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 g) μ))
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} {g : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (Measurable.{u2, u1} α β m0 _inst_1 g) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m0 μ) f g) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 g) μ))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_congr MeasureTheory.Measure.mapₗ_congrₓ'. -/
 theorem mapₗ_congr {f g : α → β} (hf : Measurable f) (hg : Measurable g) (h : f =ᵐ[μ] g) :
     mapₗ f μ = mapₗ g μ := by
@@ -1778,7 +1778,7 @@ include m0
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} (hf : AEMeasurable.{u1, u2} α β _inst_1 m0 f μ), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 (AEMeasurable.mk.{u1, u2} α β m0 _inst_1 μ f hf)) μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} (hf : AEMeasurable.{u2, u1} α β _inst_1 m0 f μ), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 (AEMeasurable.mk.{u2, u1} α β m0 _inst_1 μ f hf)) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} (hf : AEMeasurable.{u2, u1} α β _inst_1 m0 f μ), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 (AEMeasurable.mk.{u2, u1} α β m0 _inst_1 μ f hf)) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurableₓ'. -/
 theorem mapₗ_mk_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) :
     mapₗ (hf.mk f) μ = map f μ := by simp [map, hf]
@@ -1788,7 +1788,7 @@ theorem mapₗ_mk_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 f) μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_apply_of_measurable MeasureTheory.Measure.mapₗ_apply_of_measurableₓ'. -/
 theorem mapₗ_apply_of_measurable {f : α → β} (hf : Measurable f) (μ : Measure α) :
     mapₗ f μ = map f μ :=
@@ -1910,7 +1910,7 @@ theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : Measura
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (Eq.{succ u2} (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.Measure.toOuterMeasure.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)) (MeasureTheory.OuterMeasure.trim.{u2} β _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.OuterMeasure.map.{u1, u2} α β f) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) (MeasureTheory.OuterMeasure.trim.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.map.{u2, u1} α β f) (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ))))
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) (MeasureTheory.OuterMeasure.trim.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.map.{u2, u1} α β f) (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_to_outer_measure MeasureTheory.Measure.map_toOuterMeasureₓ'. -/
 theorem map_toOuterMeasure {f : α → β} (hf : AEMeasurable f μ) :
     (μ.map f).toOuterMeasure = (OuterMeasure.map f μ.toOuterMeasure).trim :=
@@ -2024,7 +2024,7 @@ def comapₗ [MeasurableSpace α] (f : α → β) : Measure β →ₗ[ℝ≥0∞
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) (fun (_x : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) => (MeasureTheory.Measure.{u2} β mβ) -> (MeasureTheory.Measure.{u1} α _inst_3)) (LinearMap.hasCoeToFun.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Set.image.{u1, u2} α β f s))))
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s))))
+  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ_apply MeasureTheory.Measure.comapₗ_applyₓ'. -/
 theorem comapₗ_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
@@ -2087,7 +2087,7 @@ theorem comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) (fun (_x : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) => (MeasureTheory.Measure.{u2} β mβ) -> (MeasureTheory.Measure.{u1} α _inst_3)) (LinearMap.hasCoeToFun.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) s)))
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s)))
+  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ_eq_comap MeasureTheory.Measure.comapₗ_eq_comapₓ'. -/
 theorem comapₗ_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
@@ -2302,7 +2302,7 @@ def restrict {m0 : MeasurableSpace α} (μ : Measure α) (s : Set α) : Measure
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (s : Set.{u1} α) (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0)) (fun (_x : LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u1} α m0)) (LinearMap.hasCoeToFun.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.restrictₗ.{u1} α m0 s) μ) (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (s : Set.{u1} α) (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) μ) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.restrictₗ.{u1} α m0 s) μ) (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (s : Set.{u1} α) (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) μ) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.restrictₗ.{u1} α m0 s) μ) (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrictₗ_apply MeasureTheory.Measure.restrictₗ_applyₓ'. -/
 @[simp]
 theorem restrictₗ_apply {m0 : MeasurableSpace α} (s : Set α) (μ : Measure α) :
@@ -2314,7 +2314,7 @@ theorem restrictₗ_apply {m0 : MeasurableSpace α} (s : Set α) (μ : Measure 
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1)) (fun (_x : LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u1} α)) (LinearMap.hasCoeToFun.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.OuterMeasure.restrict.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u1} α) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.restrict.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u1} α) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.restrict.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrictₓ'. -/
 /-- This lemma shows that `restrict` and `to_outer_measure` commute. Note that the LHS has a
 restrict on measures and the RHS has a restrict on outer measures. -/
Diff
@@ -1596,6 +1596,7 @@ instance [MeasurableSpace α] : CompleteLattice (Measure α) :=
 
 end Inf
 
+#print MeasureTheory.OuterMeasure.toMeasure_top /-
 @[simp]
 theorem MeasureTheory.OuterMeasure.toMeasure_top [MeasurableSpace α] :
     (⊤ : OuterMeasure α).toMeasure (by rw [outer_measure.top_caratheodory] <;> exact le_top) =
@@ -1604,7 +1605,14 @@ theorem MeasureTheory.OuterMeasure.toMeasure_top [MeasurableSpace α] :
     cases' s.eq_empty_or_nonempty with h h <;>
       simp [h, to_measure_apply ⊤ _ hs, outer_measure.top_apply]
 #align measure_theory.outer_measure.to_measure_top MeasureTheory.OuterMeasure.toMeasure_top
+-/
 
+/- warning: measure_theory.measure.to_outer_measure_top -> MeasureTheory.Measure.toOuterMeasure_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (Top.top.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instCompleteLattice.{u1} α _inst_3)))) (Top.top.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toHasTop.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (Top.top.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (CompleteLattice.toTop.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instCompleteLattice.{u1} α _inst_3)))) (Top.top.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toTop.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.to_outer_measure_top MeasureTheory.Measure.toOuterMeasure_topₓ'. -/
 @[simp]
 theorem toOuterMeasure_top [MeasurableSpace α] :
     (⊤ : Measure α).toOuterMeasure = (⊤ : OuterMeasure α) := by
@@ -2739,7 +2747,7 @@ theorem restrict_iUnion_apply [Countable ι] {s : ι → Set α} (hd : Pairwise
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26330 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26332 : Set.{u1} α) => HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26330 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26332) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26558 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26560 : Set.{u1} α) => HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26558 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26560) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_iUnion_apply_eq_iSupₓ'. -/
 theorem restrict_iUnion_apply_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s)
     {t : Set α} (ht : MeasurableSet t) : μ.restrict (⋃ i, s i) t = ⨆ i, μ.restrict (s i) t :=
@@ -4062,7 +4070,7 @@ open Pointwise
 lean 3 declaration is
   forall {G : Type.{u1}} {α : Type.{u2}} [_inst_3 : Group.{u1} G] [_inst_4 : MulAction.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3))] [_inst_5 : MeasurableSpace.{u2} α] {s : Set.{u2} α} {t : Set.{u2} α} {μ : MeasureTheory.Measure.{u2} α _inst_5} (g : G), (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u2} α α _inst_5 _inst_5 (SMul.smul.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4) (Inv.inv.{u1} G (DivInvMonoid.toHasInv.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) g)) μ μ) -> (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_5 μ) s t) -> (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_5 μ) (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s) (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g t))
 but is expected to have type
-  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α} {μ : MeasureTheory.Measure.{u1} α _inst_5} (g : G), (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40102 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40104 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40102 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40104) (Inv.inv.{u2} G (InvOneClass.toInv.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3)))) g)) μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) s t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g t))
+  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α} {μ : MeasureTheory.Measure.{u1} α _inst_5} (g : G), (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40330 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40332 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40330 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40332) (Inv.inv.{u2} G (InvOneClass.toInv.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3)))) g)) μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) s t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g t))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.smul_ae_eq_of_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eqₓ'. -/
 @[to_additive]
 theorem smul_ae_eq_of_ae_eq {G α : Type _} [Group G] [MulAction G α] [MeasurableSpace α]
@@ -4082,7 +4090,7 @@ open Pointwise
 lean 3 declaration is
   forall {G : Type.{u1}} {α : Type.{u2}} [_inst_3 : Group.{u1} G] [_inst_4 : MulAction.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3))] [_inst_5 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_5} {s : Set.{u2} α}, (forall (g : G), (Ne.{succ u1} G g (OfNat.ofNat.{u1} G 1 (OfNat.mk.{u1} G 1 (One.one.{u1} G (MulOneClass.toHasOne.{u1} G (Monoid.toMulOneClass.{u1} G (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)))))))) -> (MeasureTheory.AEDisjoint.{u2} α _inst_5 μ (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s) s)) -> (forall (g : G), MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u2} α α _inst_5 _inst_5 (SMul.smul.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4) g) μ μ) -> (Pairwise.{u1} G (Function.onFun.{succ u1, succ u2, 1} G (Set.{u2} α) Prop (MeasureTheory.AEDisjoint.{u2} α _inst_5 μ) (fun (g : G) => SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s)))
 but is expected to have type
-  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_5} {s : Set.{u1} α}, (forall (g : G), (Ne.{succ u2} G g (OfNat.ofNat.{u2} G 1 (One.toOfNat1.{u2} G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3))))))) -> (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) s)) -> (forall (g : G), MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40259 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40261 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40259 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40261) g) μ μ) -> (Pairwise.{u2} G (Function.onFun.{succ u2, succ u1, 1} G (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ) (fun (g : G) => HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s)))
+  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_5} {s : Set.{u1} α}, (forall (g : G), (Ne.{succ u2} G g (OfNat.ofNat.{u2} G 1 (One.toOfNat1.{u2} G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3))))))) -> (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) s)) -> (forall (g : G), MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40487 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40489 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40487 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40489) g) μ μ) -> (Pairwise.{u2} G (Function.onFun.{succ u2, succ u1, 1} G (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ) (fun (g : G) => HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_oneₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 @[to_additive]
@@ -4703,7 +4711,7 @@ section Intervals
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_3)) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.Iic.{u1} α _inst_3 x)))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874 : α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46876 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46876) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.Iic.{u1} α _inst_3 x)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.47102 : α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.47104 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.47102 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.47104) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.Iic.{u1} α _inst_3 x)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iicₓ'. -/
 theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
     (hst : ∀ x : α, ∃ y ∈ s, x ≤ y) (hdir : DirectedOn (· ≤ ·) s) : (⨆ x ∈ s, μ (Iic x)) = μ univ :=
Diff
@@ -4062,7 +4062,7 @@ open Pointwise
 lean 3 declaration is
   forall {G : Type.{u1}} {α : Type.{u2}} [_inst_3 : Group.{u1} G] [_inst_4 : MulAction.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3))] [_inst_5 : MeasurableSpace.{u2} α] {s : Set.{u2} α} {t : Set.{u2} α} {μ : MeasureTheory.Measure.{u2} α _inst_5} (g : G), (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u2} α α _inst_5 _inst_5 (SMul.smul.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4) (Inv.inv.{u1} G (DivInvMonoid.toHasInv.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) g)) μ μ) -> (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_5 μ) s t) -> (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_5 μ) (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s) (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g t))
 but is expected to have type
-  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α} {μ : MeasureTheory.Measure.{u1} α _inst_5} (g : G), (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40100 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40102 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40100 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40102) (Inv.inv.{u2} G (InvOneClass.toInv.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3)))) g)) μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) s t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g t))
+  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α} {μ : MeasureTheory.Measure.{u1} α _inst_5} (g : G), (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40102 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40104 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40102 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40104) (Inv.inv.{u2} G (InvOneClass.toInv.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3)))) g)) μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) s t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g t))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.smul_ae_eq_of_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eqₓ'. -/
 @[to_additive]
 theorem smul_ae_eq_of_ae_eq {G α : Type _} [Group G] [MulAction G α] [MeasurableSpace α]
@@ -4082,7 +4082,7 @@ open Pointwise
 lean 3 declaration is
   forall {G : Type.{u1}} {α : Type.{u2}} [_inst_3 : Group.{u1} G] [_inst_4 : MulAction.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3))] [_inst_5 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_5} {s : Set.{u2} α}, (forall (g : G), (Ne.{succ u1} G g (OfNat.ofNat.{u1} G 1 (OfNat.mk.{u1} G 1 (One.one.{u1} G (MulOneClass.toHasOne.{u1} G (Monoid.toMulOneClass.{u1} G (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)))))))) -> (MeasureTheory.AEDisjoint.{u2} α _inst_5 μ (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s) s)) -> (forall (g : G), MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u2} α α _inst_5 _inst_5 (SMul.smul.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4) g) μ μ) -> (Pairwise.{u1} G (Function.onFun.{succ u1, succ u2, 1} G (Set.{u2} α) Prop (MeasureTheory.AEDisjoint.{u2} α _inst_5 μ) (fun (g : G) => SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s)))
 but is expected to have type
-  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_5} {s : Set.{u1} α}, (forall (g : G), (Ne.{succ u2} G g (OfNat.ofNat.{u2} G 1 (One.toOfNat1.{u2} G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3))))))) -> (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) s)) -> (forall (g : G), MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40257 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40259 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40257 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40259) g) μ μ) -> (Pairwise.{u2} G (Function.onFun.{succ u2, succ u1, 1} G (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ) (fun (g : G) => HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s)))
+  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_5} {s : Set.{u1} α}, (forall (g : G), (Ne.{succ u2} G g (OfNat.ofNat.{u2} G 1 (One.toOfNat1.{u2} G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3))))))) -> (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) s)) -> (forall (g : G), MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40259 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40261 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40259 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40261) g) μ μ) -> (Pairwise.{u2} G (Function.onFun.{succ u2, succ u1, 1} G (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ) (fun (g : G) => HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_oneₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 @[to_additive]
@@ -4703,7 +4703,7 @@ section Intervals
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_3)) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.Iic.{u1} α _inst_3 x)))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46872 : α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46872 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.Iic.{u1} α _inst_3 x)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874 : α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46876 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46876) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.Iic.{u1} α _inst_3 x)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iicₓ'. -/
 theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
     (hst : ∀ x : α, ∃ y ∈ s, x ≤ y) (hdir : DirectedOn (· ≤ ·) s) : (⨆ x ∈ s, μ (Iic x)) = μ univ :=
@@ -6179,7 +6179,7 @@ theorem ae_of_forall_measure_lt_top_ae_restrict {μ : Measure α} [SigmaFinite 
 #print MeasureTheory.LocallyFiniteMeasure /-
 /-- A measure is called locally finite if it is finite in some neighborhood of each point. -/
 class LocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α) : Prop where
-  finite_at_nhds : ∀ x, μ.FiniteAtFilter (𝓝 x)
+  finiteAtNhds : ∀ x, μ.FiniteAtFilter (𝓝 x)
 #align measure_theory.is_locally_finite_measure MeasureTheory.LocallyFiniteMeasure
 -/
 
@@ -6194,7 +6194,7 @@ instance (priority := 100) FiniteMeasure.toLocallyFiniteMeasure [TopologicalSpac
 #print MeasureTheory.Measure.finiteAt_nhds /-
 theorem Measure.finiteAt_nhds [TopologicalSpace α] (μ : Measure α) [LocallyFiniteMeasure μ]
     (x : α) : μ.FiniteAtFilter (𝓝 x) :=
-  LocallyFiniteMeasure.finite_at_nhds x
+  LocallyFiniteMeasure.finiteAtNhds x
 #align measure_theory.measure.finite_at_nhds MeasureTheory.Measure.finiteAt_nhds
 -/
 
@@ -6496,7 +6496,7 @@ protected def FiniteSpanningSetsIn.disjointed {μ : Measure α}
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))), Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) (MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed.{u1} α m0 μ S)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))), Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.Set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) (MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed.{u1} α m0 μ S)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.Set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))), Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) (MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed.{u1} α m0 μ S)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eqₓ'. -/
 theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
     (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) : S.disjointed.Set = disjointed S.Set :=
@@ -6507,7 +6507,7 @@ theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν], Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (T : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => And (Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) T)) (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S)))))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν], Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (T : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => And (Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.Set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S) (MeasureTheory.Measure.FiniteSpanningSetsIn.Set.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) T)) (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (MeasureTheory.Measure.FiniteSpanningSetsIn.Set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S)))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν], Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (T : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => And (Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) T)) (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S)))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_eq_disjoint_finite_spanning_sets_in MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsInₓ'. -/
 theorem exists_eq_disjoint_finiteSpanningSetsIn (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] :
     ∃ (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s })(T :
@@ -6658,7 +6658,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.locallyFiniteMeasure_of_leₓ'. -/
 theorem locallyFiniteMeasure_of_le [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
     [H : LocallyFiniteMeasure μ] (h : ν ≤ μ) : LocallyFiniteMeasure ν :=
-  let F := H.finite_at_nhds
+  let F := H.finiteAtNhds
   ⟨fun x => (F x).measure_mono h⟩
 #align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.locallyFiniteMeasure_of_le
 
@@ -7154,7 +7154,7 @@ Case conversion may be inaccurate. Consider using '#align is_compact.exists_open
 finite measure. -/
 theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
     [LocallyFiniteMeasure μ] : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
-  h.exists_open_superset_measure_lt_top' fun x hx => μ.finite_at_nhds x
+  h.exists_open_superset_measure_lt_top' fun x hx => μ.finiteAtNhds x
 #align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_top
 
 /- warning: is_compact.measure_lt_top_of_nhds_within -> IsCompact.measure_lt_top_of_nhdsWithin is a dubious translation:
Diff
@@ -1693,7 +1693,7 @@ theorem measure_univ_pos : 0 < μ univ ↔ μ ≠ 0 :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)), (forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))), (forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.instLEMeasurableSpace.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u2} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))), (forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.instLEMeasurableSpace.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u2} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lift_linear MeasureTheory.Measure.liftLinearₓ'. -/
 /-- Lift a linear map between `outer_measure` spaces such that for each measure `μ` every measurable
 set is caratheodory-measurable w.r.t. `f μ` to a linear map between `measure` spaces. -/
@@ -1709,7 +1709,7 @@ def liftLinear {m0 : MeasurableSpace α} (f : OuterMeasure α →ₗ[ℝ≥0∞]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))} (hf : forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.liftLinear.{u1, u2} α β _inst_1 m0 f hf) μ) s) (coeFn.{succ u2, succ u2} (MeasureTheory.OuterMeasure.{u2} β) (fun (_x : MeasureTheory.OuterMeasure.{u2} β) => (Set.{u2} β) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u2} β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s))
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lift_linear_apply MeasureTheory.Measure.liftLinear_applyₓ'. -/
 @[simp]
 theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) {s : Set β}
@@ -1721,7 +1721,7 @@ theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))} (hf : forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) (s : Set.{u2} β), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u2, succ u2} (MeasureTheory.OuterMeasure.{u2} β) (fun (_x : MeasureTheory.OuterMeasure.{u2} β) => (Set.{u2} β) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u2} β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.liftLinear.{u1, u2} α β _inst_1 m0 f hf) μ) s)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) (s : Set.{u1} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s)
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) (s : Set.{u1} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_lift_linear_apply MeasureTheory.Measure.le_liftLinear_applyₓ'. -/
 theorem le_liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) (s : Set β) :
     f μ.toOuterMeasure s ≤ liftLinear f hf μ s :=
@@ -1747,7 +1747,7 @@ def mapₗ [MeasurableSpace α] (f : α → β) : Measure α →ₗ[ℝ≥0∞]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} {g : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (Measurable.{u1, u2} α β m0 _inst_1 g) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 f) μ) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 g) μ))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} {g : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (Measurable.{u2, u1} α β m0 _inst_1 g) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m0 μ) f g) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 g) μ))
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} {g : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (Measurable.{u2, u1} α β m0 _inst_1 g) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m0 μ) f g) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 g) μ))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_congr MeasureTheory.Measure.mapₗ_congrₓ'. -/
 theorem mapₗ_congr {f g : α → β} (hf : Measurable f) (hg : Measurable g) (h : f =ᵐ[μ] g) :
     mapₗ f μ = mapₗ g μ := by
@@ -1770,7 +1770,7 @@ include m0
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} (hf : AEMeasurable.{u1, u2} α β _inst_1 m0 f μ), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 (AEMeasurable.mk.{u1, u2} α β m0 _inst_1 μ f hf)) μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} (hf : AEMeasurable.{u2, u1} α β _inst_1 m0 f μ), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 (AEMeasurable.mk.{u2, u1} α β m0 _inst_1 μ f hf)) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} (hf : AEMeasurable.{u2, u1} α β _inst_1 m0 f μ), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 (AEMeasurable.mk.{u2, u1} α β m0 _inst_1 μ f hf)) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurableₓ'. -/
 theorem mapₗ_mk_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) :
     mapₗ (hf.mk f) μ = map f μ := by simp [map, hf]
@@ -1780,7 +1780,7 @@ theorem mapₗ_mk_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 f) μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_apply_of_measurable MeasureTheory.Measure.mapₗ_apply_of_measurableₓ'. -/
 theorem mapₗ_apply_of_measurable {f : α → β} (hf : Measurable f) (μ : Measure α) :
     mapₗ f μ = map f μ :=
@@ -1902,7 +1902,7 @@ theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : Measura
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (Eq.{succ u2} (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.Measure.toOuterMeasure.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)) (MeasureTheory.OuterMeasure.trim.{u2} β _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.OuterMeasure.map.{u1, u2} α β f) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) (MeasureTheory.OuterMeasure.trim.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.map.{u2, u1} α β f) (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ))))
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) (MeasureTheory.OuterMeasure.trim.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.map.{u2, u1} α β f) (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_to_outer_measure MeasureTheory.Measure.map_toOuterMeasureₓ'. -/
 theorem map_toOuterMeasure {f : α → β} (hf : AEMeasurable f μ) :
     (μ.map f).toOuterMeasure = (OuterMeasure.map f μ.toOuterMeasure).trim :=
@@ -2016,7 +2016,7 @@ def comapₗ [MeasurableSpace α] (f : α → β) : Measure β →ₗ[ℝ≥0∞
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) (fun (_x : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) => (MeasureTheory.Measure.{u2} β mβ) -> (MeasureTheory.Measure.{u1} α _inst_3)) (LinearMap.hasCoeToFun.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Set.image.{u1, u2} α β f s))))
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s))))
+  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ_apply MeasureTheory.Measure.comapₗ_applyₓ'. -/
 theorem comapₗ_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
@@ -2079,7 +2079,7 @@ theorem comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) (fun (_x : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) => (MeasureTheory.Measure.{u2} β mβ) -> (MeasureTheory.Measure.{u1} α _inst_3)) (LinearMap.hasCoeToFun.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) s)))
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s)))
+  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ_eq_comap MeasureTheory.Measure.comapₗ_eq_comapₓ'. -/
 theorem comapₗ_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
@@ -2294,7 +2294,7 @@ def restrict {m0 : MeasurableSpace α} (μ : Measure α) (s : Set α) : Measure
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (s : Set.{u1} α) (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0)) (fun (_x : LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u1} α m0)) (LinearMap.hasCoeToFun.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.restrictₗ.{u1} α m0 s) μ) (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (s : Set.{u1} α) (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) μ) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.restrictₗ.{u1} α m0 s) μ) (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (s : Set.{u1} α) (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) μ) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.restrictₗ.{u1} α m0 s) μ) (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrictₗ_apply MeasureTheory.Measure.restrictₗ_applyₓ'. -/
 @[simp]
 theorem restrictₗ_apply {m0 : MeasurableSpace α} (s : Set α) (μ : Measure α) :
@@ -2306,7 +2306,7 @@ theorem restrictₗ_apply {m0 : MeasurableSpace α} (s : Set α) (μ : Measure 
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1)) (fun (_x : LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u1} α)) (LinearMap.hasCoeToFun.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.OuterMeasure.restrict.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u1} α) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.restrict.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u1} α) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.restrict.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrictₓ'. -/
 /-- This lemma shows that `restrict` and `to_outer_measure` commute. Note that the LHS has a
 restrict on measures and the RHS has a restrict on outer measures. -/
Diff
@@ -282,7 +282,7 @@ theorem measure_biUnion_finset {s : Finset ι} {f : ι → Set α} (hd : Pairwis
 
 /- warning: measure_theory.tsum_meas_le_meas_Union_of_disjoint -> MeasureTheory.tsum_meas_le_meas_iUnion_of_disjoint is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (As i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (As i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (As i))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_iUnion_of_disjointₓ'. -/
@@ -380,7 +380,7 @@ theorem measure_diff (h : s₂ ⊆ s₁) (h₂ : MeasurableSet s₂) (h_fin : μ
 
 /- warning: measure_theory.le_measure_diff -> MeasureTheory.le_measure_diff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂))
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂))
 Case conversion may be inaccurate. Consider using '#align measure_theory.le_measure_diff MeasureTheory.le_measure_diffₓ'. -/
@@ -395,7 +395,7 @@ theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
 
 /- warning: measure_theory.measure_diff_lt_of_lt_add -> MeasureTheory.measure_diff_lt_of_lt_add is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) ε)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) ε))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) ε)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) ε))
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) ε)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) t s)) ε))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_lt_of_lt_add MeasureTheory.measure_diff_lt_of_lt_addₓ'. -/
@@ -408,7 +408,7 @@ theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' :
 
 /- warning: measure_theory.measure_diff_le_iff_le_add -> MeasureTheory.measure_diff_le_iff_le_add is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) ε) (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) ε)))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) ε) (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) ε)))
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) t s)) ε) (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) ε)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_le_iff_le_add MeasureTheory.measure_diff_le_iff_le_addₓ'. -/
@@ -511,7 +511,7 @@ theorem union_ae_eq_right_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] t ↔ s 
 
 /- warning: measure_theory.ae_eq_of_ae_subset_of_measure_ge -> MeasureTheory.ae_eq_of_ae_subset_of_measure_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_of_ae_subset_of_measure_ge MeasureTheory.ae_eq_of_ae_subset_of_measure_geₓ'. -/
@@ -526,7 +526,7 @@ theorem ae_eq_of_ae_subset_of_measure_ge (h₁ : s ≤ᵐ[μ] t) (h₂ : μ t 
 
 /- warning: measure_theory.ae_eq_of_subset_of_measure_ge -> MeasureTheory.ae_eq_of_subset_of_measure_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_of_subset_of_measure_ge MeasureTheory.ae_eq_of_subset_of_measure_geₓ'. -/
@@ -538,7 +538,7 @@ theorem ae_eq_of_subset_of_measure_ge (h₁ : s ⊆ t) (h₂ : μ t ≤ μ s) (h
 
 /- warning: measure_theory.measure_Union_congr_of_subset -> MeasureTheory.measure_iUnion_congr_of_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t b)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => s b))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => t b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t b)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => s b))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => t b))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (t b)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α β (fun (b : β) => s b))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α β (fun (b : β) => t b))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_iUnion_congr_of_subsetₓ'. -/
@@ -579,7 +579,7 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
 
 /- warning: measure_theory.measure_union_congr_of_subset -> MeasureTheory.measure_union_congr_of_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {t₁ : Set.{u1} α} {t₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₁ s₂) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t₁ t₂) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t₁)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₁ t₁)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₂ t₂)))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {t₁ : Set.{u1} α} {t₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₁ s₂) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t₁ t₂) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t₁)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₁ t₁)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₂ t₂)))
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {t₁ : Set.{u1} α} {t₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₁ s₂) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t₁ t₂) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t₂) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t₁)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s₁ t₁)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s₂ t₂)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_congr_of_subset MeasureTheory.measure_union_congr_of_subsetₓ'. -/
@@ -637,7 +637,7 @@ theorem measure_union_toMeasurable : μ (s ∪ toMeasurable μ t) = μ (s ∪ t)
 
 /- warning: measure_theory.sum_measure_le_measure_univ -> MeasureTheory.sum_measure_le_measure_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Finset.toSet.{u2} ι s) t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (t i))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.sum_measure_le_measure_univ MeasureTheory.sum_measure_le_measure_univₓ'. -/
@@ -651,7 +651,7 @@ theorem sum_measure_le_measure_univ {s : Finset ι} {t : ι → Set α}
 
 /- warning: measure_theory.tsum_measure_le_measure_univ -> MeasureTheory.tsum_measure_le_measure_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {s : ι -> (Set.{u2} α)}, (forall (i : ι), MeasurableSet.{u2} α m (s i)) -> (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) s)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (s i))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.univ.{u2} α)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_measure_le_measure_univ MeasureTheory.tsum_measure_le_measure_univₓ'. -/
@@ -664,7 +664,7 @@ theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, Measurable
 
 /- warning: measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure -> MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)))) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι i j) (fun (h : Ne.{succ u2} ι i j) => Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (s i) (s j))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)))) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι i j) (fun (h : Ne.{succ u2} ι i j) => Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (s i) (s j))))))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) {s : ι -> (Set.{u2} α)}, (forall (i : ι), MeasurableSet.{u2} α m (s i)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.univ.{u2} α)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (s i)))) -> (Exists.{succ u1} ι (fun (i : ι) => Exists.{succ u1} ι (fun (j : ι) => Exists.{0} (Ne.{succ u1} ι i j) (fun (h : Ne.{succ u1} ι i j) => Set.Nonempty.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) (s i) (s j))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measureₓ'. -/
@@ -683,7 +683,7 @@ theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpa
 
 /- warning: measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure -> MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measure is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t i)))) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{0} (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) j s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) j s) => Exists.{0} (Ne.{succ u2} ι i j) (fun (h : Ne.{succ u2} ι i j) => Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (t i) (t j))))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t i)))) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{0} (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) j s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) j s) => Exists.{0} (Ne.{succ u2} ι i j) (fun (h : Ne.{succ u2} ι i j) => Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (t i) (t j))))))))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) {s : Finset.{u1} ι} {t : ι -> (Set.{u2} α)}, (forall (i : ι), (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i s) -> (MeasurableSet.{u2} α m (t i))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.univ.{u2} α)) (Finset.sum.{0, u1} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (t i)))) -> (Exists.{succ u1} ι (fun (i : ι) => And (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i s) (Exists.{succ u1} ι (fun (j : ι) => And (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) j s) (Exists.{0} (Ne.{succ u1} ι i j) (fun (_h : Ne.{succ u1} ι i j) => Set.Nonempty.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) (t i) (t j))))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measureₓ'. -/
@@ -703,7 +703,7 @@ theorem exists_nonempty_inter_of_measure_univ_lt_sum_measure {m : MeasurableSpac
 
 /- warning: measure_theory.nonempty_inter_of_measure_lt_add -> MeasureTheory.nonempty_inter_of_measure_lt_add is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
 Case conversion may be inaccurate. Consider using '#align measure_theory.nonempty_inter_of_measure_lt_add MeasureTheory.nonempty_inter_of_measure_lt_addₓ'. -/
@@ -722,7 +722,7 @@ theorem nonempty_inter_of_measure_lt_add {m : MeasurableSpace α} (μ : Measure
 
 /- warning: measure_theory.nonempty_inter_of_measure_lt_add' -> MeasureTheory.nonempty_inter_of_measure_lt_add' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
 Case conversion may be inaccurate. Consider using '#align measure_theory.nonempty_inter_of_measure_lt_add' MeasureTheory.nonempty_inter_of_measure_lt_add'ₓ'. -/
@@ -857,7 +857,7 @@ theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Se
 
 /- warning: measure_theory.tendsto_measure_bInter_gt -> MeasureTheory.tendsto_measure_biInter_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) a i) -> (LE.le.{u2} ι (Preorder.toLE.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => Exists.{0} (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))) a)) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iInter.{u1, succ u2} α ι (fun (r : ι) => Set.iInter.{u1, 0} α (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => s r))))))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) a i) -> (LE.le.{u2} ι (Preorder.toHasLe.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => Exists.{0} (GT.gt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))) a)) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iInter.{u1, succ u2} α ι (fun (r : ι) => Set.iInter.{u1, 0} α (GT.gt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toHasLt.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => s r))))))
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1))))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) a i) -> (LE.le.{u2} ι (Preorder.toLE.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => And (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1))))) a)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iInter.{u1, succ u2} α ι (fun (r : ι) => Set.iInter.{u1, 0} α (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) => s r))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gtₓ'. -/
@@ -1060,7 +1060,7 @@ theorem toMeasure_apply (m : OuterMeasure α) (h : ms ≤ m.caratheodory) {s : S
 
 /- warning: measure_theory.le_to_measure_apply -> MeasureTheory.le_toMeasure_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [ms : MeasurableSpace.{u1} α] (m : MeasureTheory.OuterMeasure.{u1} α) (h : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) ms (MeasureTheory.OuterMeasure.caratheodory.{u1} α m)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u1} α) m s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α ms) (fun (_x : MeasureTheory.Measure.{u1} α ms) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α ms) (MeasureTheory.OuterMeasure.toMeasure.{u1} α ms m h) s)
+  forall {α : Type.{u1}} [ms : MeasurableSpace.{u1} α] (m : MeasureTheory.OuterMeasure.{u1} α) (h : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) ms (MeasureTheory.OuterMeasure.caratheodory.{u1} α m)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u1} α) m s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α ms) (fun (_x : MeasureTheory.Measure.{u1} α ms) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α ms) (MeasureTheory.OuterMeasure.toMeasure.{u1} α ms m h) s)
 but is expected to have type
   forall {α : Type.{u1}} [ms : MeasurableSpace.{u1} α] (m : MeasureTheory.OuterMeasure.{u1} α) (h : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) ms (MeasureTheory.OuterMeasure.caratheodory.{u1} α m)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α m s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α ms (MeasureTheory.OuterMeasure.toMeasure.{u1} α ms m h)) s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.le_to_measure_apply MeasureTheory.le_toMeasure_applyₓ'. -/
@@ -1443,7 +1443,7 @@ instance [MeasurableSpace α] : PartialOrder (Measure α)
 
 /- warning: measure_theory.measure.le_iff -> MeasureTheory.Measure.le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₁ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₂ s)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₁ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₂ s)))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₁) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₂) s)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_iff MeasureTheory.Measure.le_iffₓ'. -/
@@ -1451,15 +1451,19 @@ theorem le_iff : μ₁ ≤ μ₂ ↔ ∀ s, MeasurableSet s → μ₁ s ≤ μ
   Iff.rfl
 #align measure_theory.measure.le_iff MeasureTheory.Measure.le_iff
 
-#print MeasureTheory.Measure.toOuterMeasure_le /-
+/- warning: measure_theory.measure.to_outer_measure_le -> MeasureTheory.Measure.toOuterMeasure_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.OuterMeasure.{u1} α) (Preorder.toHasLe.{u1} (MeasureTheory.OuterMeasure.{u1} α) (PartialOrder.toPreorder.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instPartialOrder.{u1} α))) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₁) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₂)) (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.OuterMeasure.{u1} α) (Preorder.toLE.{u1} (MeasureTheory.OuterMeasure.{u1} α) (PartialOrder.toPreorder.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instPartialOrder.{u1} α))) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₁) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₂)) (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.to_outer_measure_le MeasureTheory.Measure.toOuterMeasure_leₓ'. -/
 theorem toOuterMeasure_le : μ₁.toOuterMeasure ≤ μ₂.toOuterMeasure ↔ μ₁ ≤ μ₂ := by
   rw [← μ₂.trimmed, outer_measure.le_trim_iff] <;> rfl
 #align measure_theory.measure.to_outer_measure_le MeasureTheory.Measure.toOuterMeasure_le
--/
 
 /- warning: measure_theory.measure.le_iff' -> MeasureTheory.Measure.le_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₁ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₂ s))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₁ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₂ s))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₁) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₂) s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_iff' MeasureTheory.Measure.le_iff'ₓ'. -/
@@ -1469,7 +1473,7 @@ theorem le_iff' : μ₁ ≤ μ₂ ↔ ∀ s, μ₁ s ≤ μ₂ s :=
 
 /- warning: measure_theory.measure.lt_iff -> MeasureTheory.Measure.lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLT.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (MeasurableSet.{u1} α m0 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s)))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLt.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (MeasurableSet.{u1} α m0 s) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s)))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLT.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (MeasurableSet.{u1} α m0 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s)))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lt_iff MeasureTheory.Measure.lt_iffₓ'. -/
@@ -1480,7 +1484,7 @@ theorem lt_iff : μ < ν ↔ μ ≤ ν ∧ ∃ s, MeasurableSet s ∧ μ s < ν
 
 /- warning: measure_theory.measure.lt_iff' -> MeasureTheory.Measure.lt_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLT.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLt.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLT.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lt_iff' MeasureTheory.Measure.lt_iff'ₓ'. -/
@@ -1488,22 +1492,34 @@ theorem lt_iff' : μ < ν ↔ μ ≤ ν ∧ ∃ s, μ s < ν s :=
   lt_iff_le_not_le.trans <| and_congr Iff.rfl <| by simp only [le_iff', not_forall, not_le]
 #align measure_theory.measure.lt_iff' MeasureTheory.Measure.lt_iff'
 
-#print MeasureTheory.Measure.covariantAddLE /-
+/- warning: measure_theory.measure.covariant_add_le -> MeasureTheory.Measure.covariantAddLE is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], CovariantClass.{u1, u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAdd.{u1} α _inst_3))) (LE.le.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instPartialOrder.{u1} α _inst_3))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], CovariantClass.{u1, u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15375 : MeasureTheory.Measure.{u1} α _inst_3) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15377 : MeasureTheory.Measure.{u1} α _inst_3) => HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAdd.{u1} α _inst_3)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15375 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15377) (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15390 : MeasureTheory.Measure.{u1} α _inst_3) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15392 : MeasureTheory.Measure.{u1} α _inst_3) => LE.le.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instPartialOrder.{u1} α _inst_3))) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15390 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.15392)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.covariant_add_le MeasureTheory.Measure.covariantAddLEₓ'. -/
 instance covariantAddLE [MeasurableSpace α] :
     CovariantClass (Measure α) (Measure α) (· + ·) (· ≤ ·) :=
   ⟨fun ν μ₁ μ₂ hμ s hs => add_le_add_left (hμ s hs) _⟩
 #align measure_theory.measure.covariant_add_le MeasureTheory.Measure.covariantAddLE
--/
 
-#print MeasureTheory.Measure.le_add_left /-
+/- warning: measure_theory.measure.le_add_left -> MeasureTheory.Measure.le_add_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {ν' : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) ν' ν))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {ν' : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) ν' ν))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_add_left MeasureTheory.Measure.le_add_leftₓ'. -/
 protected theorem le_add_left (h : μ ≤ ν) : μ ≤ ν' + ν := fun s hs => le_add_left (h s hs)
 #align measure_theory.measure.le_add_left MeasureTheory.Measure.le_add_left
--/
 
-#print MeasureTheory.Measure.le_add_right /-
+/- warning: measure_theory.measure.le_add_right -> MeasureTheory.Measure.le_add_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {ν' : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) ν ν'))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {ν' : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) ν ν'))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_add_right MeasureTheory.Measure.le_add_rightₓ'. -/
 protected theorem le_add_right (h : μ ≤ ν) : μ ≤ ν + ν' := fun s hs => le_add_right (h s hs)
 #align measure_theory.measure.le_add_right MeasureTheory.Measure.le_add_right
--/
 
 section Inf
 
@@ -1617,17 +1633,25 @@ theorem add_top : μ + ⊤ = ⊤ :=
   top_unique <| Measure.le_add_left le_rfl
 #align measure_theory.measure.add_top MeasureTheory.Measure.add_top
 
-#print MeasureTheory.Measure.zero_le /-
+/- warning: measure_theory.measure.zero_le -> MeasureTheory.Measure.zero_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) μ
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))) μ
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.zero_le MeasureTheory.Measure.zero_leₓ'. -/
 protected theorem zero_le {m0 : MeasurableSpace α} (μ : Measure α) : 0 ≤ μ :=
   bot_le
 #align measure_theory.measure.zero_le MeasureTheory.Measure.zero_le
--/
 
-#print MeasureTheory.Measure.nonpos_iff_eq_zero' /-
+/- warning: measure_theory.measure.nonpos_iff_eq_zero' -> MeasureTheory.Measure.nonpos_iff_eq_zero' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.nonpos_iff_eq_zero' MeasureTheory.Measure.nonpos_iff_eq_zero'ₓ'. -/
 theorem nonpos_iff_eq_zero' : μ ≤ 0 ↔ μ = 0 :=
   μ.zero_le.le_iff_eq
 #align measure_theory.measure.nonpos_iff_eq_zero' MeasureTheory.Measure.nonpos_iff_eq_zero'
--/
 
 /- warning: measure_theory.measure.measure_univ_eq_zero -> MeasureTheory.Measure.measure_univ_eq_zero is a dubious translation:
 lean 3 declaration is
@@ -1653,7 +1677,7 @@ theorem measure_univ_ne_zero : μ univ ≠ 0 ↔ μ ≠ 0 :=
 
 /- warning: measure_theory.measure.measure_univ_pos -> MeasureTheory.Measure.measure_univ_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_univ_pos MeasureTheory.Measure.measure_univ_posₓ'. -/
@@ -1695,7 +1719,7 @@ theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β
 
 /- warning: measure_theory.measure.le_lift_linear_apply -> MeasureTheory.Measure.le_liftLinear_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))} (hf : forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) (s : Set.{u2} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u2, succ u2} (MeasureTheory.OuterMeasure.{u2} β) (fun (_x : MeasureTheory.OuterMeasure.{u2} β) => (Set.{u2} β) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u2} β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.liftLinear.{u1, u2} α β _inst_1 m0 f hf) μ) s)
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))} (hf : forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) (s : Set.{u2} β), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u2, succ u2} (MeasureTheory.OuterMeasure.{u2} β) (fun (_x : MeasureTheory.OuterMeasure.{u2} β) => (Set.{u2} β) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u2} β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.liftLinear.{u1, u2} α β _inst_1 m0 f hf) μ) s)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) (s : Set.{u1} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_lift_linear_apply MeasureTheory.Measure.le_liftLinear_applyₓ'. -/
@@ -1916,7 +1940,7 @@ theorem map_map {g : β → γ} {f : α → β} (hg : Measurable g) (hf : Measur
 
 /- warning: measure_theory.measure.map_mono -> MeasureTheory.Measure.map_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (Measurable.{u1, u2} α β m0 _inst_1 f) -> (LE.le.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (Preorder.toLE.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instPartialOrder.{u2} β _inst_1))) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f ν))
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (Measurable.{u1, u2} α β m0 _inst_1 f) -> (LE.le.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (Preorder.toHasLe.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instPartialOrder.{u2} β _inst_1))) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f ν))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (LE.le.{u2} (MeasureTheory.Measure.{u2} α m0) (Preorder.toLE.{u2} (MeasureTheory.Measure.{u2} α m0) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instPartialOrder.{u2} α m0))) μ ν) -> (Measurable.{u2, u1} α β m0 _inst_1 f) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instPartialOrder.{u1} β _inst_1))) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f ν))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_mono MeasureTheory.Measure.map_monoₓ'. -/
@@ -1927,7 +1951,7 @@ theorem map_mono {f : α → β} (h : μ ≤ ν) (hf : Measurable f) : μ.map f
 
 /- warning: measure_theory.measure.le_map_apply -> MeasureTheory.Measure.le_map_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall (s : Set.{u2} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall (s : Set.{u2} β), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall (s : Set.{u1} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s)) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_map_apply MeasureTheory.Measure.le_map_applyₓ'. -/
@@ -2031,7 +2055,7 @@ theorem comap_apply₀ [MeasurableSpace α] (f : α → β) (μ : Measure β) (h
 
 /- warning: measure_theory.measure.le_comap_apply -> MeasureTheory.Measure.le_comap_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Set.image.{u1, u2} α β f s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Set.image.{u1, u2} α β f s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) s))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_comap_apply MeasureTheory.Measure.le_comap_applyₓ'. -/
@@ -2165,7 +2189,7 @@ theorem NullMeasurableSet.subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
 
 /- warning: measure_theory.measure.measure_subtype_coe_le_comap -> MeasureTheory.Measure.measure_subtype_coe_le_comap is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (fun (_x : MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) => (Set.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) μ) t))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (fun (_x : MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) => (Set.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) μ) t))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} (Set.Elem.{u1} α s)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.image.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (MeasureTheory.OuterMeasure.measureOf.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (MeasureTheory.Measure.toOuterMeasure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) m0) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) μ)) t))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_subtype_coe_le_comap MeasureTheory.Measure.measure_subtype_coe_le_comapₓ'. -/
@@ -2217,7 +2241,7 @@ theorem Subtype.volume_univ (hs : NullMeasurableSet s) : volume (univ : Set s) =
 
 /- warning: measure_theory.measure.volume_subtype_coe_le_volume -> MeasureTheory.Measure.volume_subtype_coe_le_volume is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall (t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (fun (_x : MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3) (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (fun (_x : MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) => (Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (MeasureTheory.MeasureSpace.volume.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) t))
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall (t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (fun (_x : MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3) (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (fun (_x : MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) => (Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (MeasureTheory.MeasureSpace.volume.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) t))
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall (t : Set.{u1} (Set.Elem.{u1} α s)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) (Set.image.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (MeasureTheory.OuterMeasure.measureOf.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} (Set.Elem.{u1} α s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))) (MeasureTheory.MeasureSpace.volume.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)))) t))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.volume_subtype_coe_le_volume MeasureTheory.Measure.volume_subtype_coe_le_volumeₓ'. -/
@@ -2317,7 +2341,12 @@ theorem restrict_apply (ht : MeasurableSet t) : μ.restrict s t = μ (t ∩ s) :
   restrict_apply₀ ht.NullMeasurableSet
 #align measure_theory.measure.restrict_apply MeasureTheory.Measure.restrict_apply
 
-#print MeasureTheory.Measure.restrict_mono' /-
+/- warning: measure_theory.measure.restrict_mono' -> MeasureTheory.Measure.restrict_mono' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {{s : Set.{u1} α}} {{s' : Set.{u1} α}} {{μ : MeasureTheory.Measure.{u1} α m0}} {{ν : MeasureTheory.Measure.{u1} α m0}}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m0 μ) s s') -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 ν s'))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {{s : Set.{u1} α}} {{s' : Set.{u1} α}} {{μ : MeasureTheory.Measure.{u1} α m0}} {{ν : MeasureTheory.Measure.{u1} α m0}}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m0 μ) s s') -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 ν s'))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_mono' MeasureTheory.Measure.restrict_mono'ₓ'. -/
 /-- Restriction of a measure to a subset is monotone both in set and in measure. -/
 theorem restrict_mono' {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν : Measure α⦄ (hs : s ≤ᵐ[μ] s')
     (hμν : μ ≤ ν) : μ.restrict s ≤ ν.restrict s' := fun t ht =>
@@ -2328,22 +2357,29 @@ theorem restrict_mono' {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν :
     _ = ν.restrict s' t := (restrict_apply ht).symm
     
 #align measure_theory.measure.restrict_mono' MeasureTheory.Measure.restrict_mono'
--/
 
-#print MeasureTheory.Measure.restrict_mono /-
+/- warning: measure_theory.measure.restrict_mono -> MeasureTheory.Measure.restrict_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {{s : Set.{u1} α}} {{s' : Set.{u1} α}}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s s') -> (forall {{μ : MeasureTheory.Measure.{u1} α m0}} {{ν : MeasureTheory.Measure.{u1} α m0}}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 ν s')))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {{s : Set.{u1} α}} {{s' : Set.{u1} α}}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s s') -> (forall {{μ : MeasureTheory.Measure.{u1} α m0}} {{ν : MeasureTheory.Measure.{u1} α m0}}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 ν s')))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_mono MeasureTheory.Measure.restrict_monoₓ'. -/
 /-- Restriction of a measure to a subset is monotone both in set and in measure. -/
 @[mono]
 theorem restrict_mono {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ (hs : s ⊆ s') ⦃μ ν : Measure α⦄
     (hμν : μ ≤ ν) : μ.restrict s ≤ ν.restrict s' :=
   restrict_mono' (ae_of_all _ hs) hμν
 #align measure_theory.measure.restrict_mono MeasureTheory.Measure.restrict_mono
--/
 
-#print MeasureTheory.Measure.restrict_mono_ae /-
+/- warning: measure_theory.measure.restrict_mono_ae -> MeasureTheory.Measure.restrict_mono_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m0 μ) s t) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m0 μ) s t) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_mono_ae MeasureTheory.Measure.restrict_mono_aeₓ'. -/
 theorem restrict_mono_ae (h : s ≤ᵐ[μ] t) : μ.restrict s ≤ μ.restrict t :=
   restrict_mono' h (le_refl μ)
 #align measure_theory.measure.restrict_mono_ae MeasureTheory.Measure.restrict_mono_ae
--/
 
 #print MeasureTheory.Measure.restrict_congr_set /-
 theorem restrict_congr_set (h : s =ᵐ[μ] t) : μ.restrict s = μ.restrict t :=
@@ -2378,14 +2414,18 @@ theorem restrict_apply₀' (hs : NullMeasurableSet s μ) : μ.restrict s t = μ
     measure_congr ((ae_eq_refl t).inter hs.to_measurable_ae_eq)]
 #align measure_theory.measure.restrict_apply₀' MeasureTheory.Measure.restrict_apply₀'
 
-#print MeasureTheory.Measure.restrict_le_self /-
+/- warning: measure_theory.measure.restrict_le_self -> MeasureTheory.Measure.restrict_le_self is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) μ
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) μ
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_le_self MeasureTheory.Measure.restrict_le_selfₓ'. -/
 theorem restrict_le_self : μ.restrict s ≤ μ := fun t ht =>
   calc
     μ.restrict s t = μ (t ∩ s) := restrict_apply ht
     _ ≤ μ t := measure_mono <| inter_subset_left t s
     
 #align measure_theory.measure.restrict_le_self MeasureTheory.Measure.restrict_le_self
--/
 
 variable (μ)
 
@@ -2418,7 +2458,7 @@ theorem restrict_apply_univ (s : Set α) : μ.restrict s univ = μ s := by
 
 /- warning: measure_theory.measure.le_restrict_apply -> MeasureTheory.Measure.le_restrict_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t)
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_restrict_apply MeasureTheory.Measure.le_restrict_applyₓ'. -/
@@ -2654,14 +2694,18 @@ theorem restrict_compl_add_restrict (hs : MeasurableSet s) : μ.restrict (sᶜ)
 #align measure_theory.measure.restrict_compl_add_restrict MeasureTheory.Measure.restrict_compl_add_restrict
 -/
 
-#print MeasureTheory.Measure.restrict_union_le /-
+/- warning: measure_theory.measure.restrict_union_le -> MeasureTheory.Measure.restrict_union_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (s' : Set.{u1} α), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s s')) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ s'))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (s' : Set.{u1} α), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s s')) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ s'))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_leₓ'. -/
 theorem restrict_union_le (s s' : Set α) : μ.restrict (s ∪ s') ≤ μ.restrict s + μ.restrict s' :=
   by
   intro t ht
   suffices μ (t ∩ s ∪ t ∩ s') ≤ μ (t ∩ s) + μ (t ∩ s') by simpa [ht, inter_union_distrib_left]
   apply measure_union_le
 #align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_le
--/
 
 /- warning: measure_theory.measure.restrict_Union_apply_ae -> MeasureTheory.Measure.restrict_iUnion_apply_ae is a dubious translation:
 lean 3 declaration is
@@ -2977,7 +3021,7 @@ instance : MeasureSpace PUnit :=
 
 /- warning: measure_theory.measure.le_dirac_apply -> MeasureTheory.Measure.le_dirac_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] {a : α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (OfNat.mk.{u1} (α -> ENNReal) 1 (One.one.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] {a : α}, LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (OfNat.mk.{u1} (α -> ENNReal) 1 (One.one.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] {a : α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Set.indicator.{u1, 0} α ENNReal instENNRealZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (One.toOfNat1.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (a._@.Mathlib.Algebra.IndicatorFunction._hyg.77 : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_dirac_apply MeasureTheory.Measure.le_dirac_applyₓ'. -/
@@ -3068,7 +3112,7 @@ def sum (f : ι → Measure α) : Measure α :=
 
 /- warning: measure_theory.measure.le_sum_apply -> MeasureTheory.Measure.le_sum_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (f : ι -> (MeasureTheory.Measure.{u1} α m0)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (f i) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 f) s)
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (f : ι -> (MeasureTheory.Measure.{u1} α m0)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (f i) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 f) s)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} (f : ι -> (MeasureTheory.Measure.{u2} α m0)) (s : Set.{u2} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (f i)) s)) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 f)) s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_sum_apply MeasureTheory.Measure.le_sum_applyₓ'. -/
@@ -3089,7 +3133,7 @@ theorem sum_apply (f : ι → Measure α) {s : Set α} (hs : MeasurableSet s) :
 
 /- warning: measure_theory.measure.le_sum -> MeasureTheory.Measure.le_sum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (μ : ι -> (MeasureTheory.Measure.{u1} α m0)) (i : ι), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (μ i) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (μ : ι -> (MeasureTheory.Measure.{u1} α m0)) (i : ι), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (μ i) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} (μ : ι -> (MeasureTheory.Measure.{u2} α m0)) (i : ι), LE.le.{u2} (MeasureTheory.Measure.{u2} α m0) (Preorder.toLE.{u2} (MeasureTheory.Measure.{u2} α m0) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instPartialOrder.{u2} α m0))) (μ i) (MeasureTheory.Measure.sum.{u2, u1} α ι m0 μ)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_sum MeasureTheory.Measure.le_sumₓ'. -/
@@ -3305,7 +3349,12 @@ theorem restrict_iUnion [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjo
   restrict_iUnion_ae hd.AEDisjoint fun i => (hm i).NullMeasurableSet
 #align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_iUnion
 
-#print MeasureTheory.Measure.restrict_iUnion_le /-
+/- warning: measure_theory.measure.restrict_Union_le -> MeasureTheory.Measure.restrict_iUnion_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_iUnion_leₓ'. -/
 theorem restrict_iUnion_le [Countable ι] {s : ι → Set α} :
     μ.restrict (⋃ i, s i) ≤ sum fun i => μ.restrict (s i) :=
   by
@@ -3313,7 +3362,6 @@ theorem restrict_iUnion_le [Countable ι] {s : ι → Set α} :
   suffices μ (⋃ i, t ∩ s i) ≤ ∑' i, μ (t ∩ s i) by simpa [ht, inter_Union]
   apply measure_Union_le
 #align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_iUnion_le
--/
 
 section Count
 
@@ -3328,7 +3376,7 @@ def count : Measure α :=
 
 /- warning: measure_theory.measure.le_count_apply -> MeasureTheory.Measure.le_count_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (i : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (i : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (i : Set.Elem.{u1} α s) => OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_applyₓ'. -/
@@ -3445,7 +3493,7 @@ theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.I
 
 /- warning: measure_theory.measure.count_apply_lt_top' -> MeasureTheory.Measure.count_apply_lt_top' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Finite.{u1} α s))
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Finite.{u1} α s))
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Set.Finite.{u1} α s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_lt_top' MeasureTheory.Measure.count_apply_lt_top'ₓ'. -/
@@ -3460,7 +3508,7 @@ theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Fin
 
 /- warning: measure_theory.measure.count_apply_lt_top -> MeasureTheory.Measure.count_apply_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Finite.{u1} α s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Finite.{u1} α s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Set.Finite.{u1} α s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_lt_top MeasureTheory.Measure.count_apply_lt_topₓ'. -/
@@ -3610,12 +3658,22 @@ def AbsolutelyContinuous {m0 : MeasurableSpace α} (μ ν : Measure α) : Prop :
 -- mathport name: measure.absolutely_continuous
 scoped[MeasureTheory] infixl:50 " ≪ " => MeasureTheory.Measure.AbsolutelyContinuous
 
-#print MeasureTheory.Measure.absolutelyContinuous_of_le /-
+/- warning: measure_theory.measure.absolutely_continuous_of_le -> MeasureTheory.Measure.absolutelyContinuous_of_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous_of_le MeasureTheory.Measure.absolutelyContinuous_of_leₓ'. -/
 theorem absolutelyContinuous_of_le (h : μ ≤ ν) : μ ≪ ν := fun s hs =>
   nonpos_iff_eq_zero.1 <| hs ▸ le_iff'.1 h s
 #align measure_theory.measure.absolutely_continuous_of_le MeasureTheory.Measure.absolutelyContinuous_of_le
--/
 
+/- warning: has_le.le.absolutely_continuous -> LE.le.absolutelyContinuous is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+Case conversion may be inaccurate. Consider using '#align has_le.le.absolutely_continuous LE.le.absolutelyContinuousₓ'. -/
 alias absolutely_continuous_of_le ← _root_.has_le.le.absolutely_continuous
 #align has_le.le.absolutely_continuous LE.le.absolutelyContinuous
 
@@ -3689,7 +3747,7 @@ end AbsolutelyContinuous
 
 /- warning: measure_theory.measure.absolutely_continuous_of_le_smul -> MeasureTheory.Measure.absolutelyContinuous_of_le_smul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {μ' : MeasureTheory.Measure.{u1} α m0} {c : ENNReal}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ' (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ' μ)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {μ' : MeasureTheory.Measure.{u1} α m0} {c : ENNReal}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ' (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ' μ)
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {μ' : MeasureTheory.Measure.{u1} α m0} {c : ENNReal}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ' (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ' μ)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous_of_le_smul MeasureTheory.Measure.absolutelyContinuous_of_le_smulₓ'. -/
@@ -3700,7 +3758,7 @@ theorem absolutelyContinuous_of_le_smul {μ' : Measure α} {c : ℝ≥0∞} (hμ
 
 /- warning: measure_theory.measure.ae_le_iff_absolutely_continuous -> MeasureTheory.Measure.ae_le_iff_absolutelyContinuous is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuousₓ'. -/
@@ -3712,13 +3770,13 @@ theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
 
 /- warning: has_le.le.absolutely_continuous_of_ae -> LE.le.absolutelyContinuous_of_ae is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
 Case conversion may be inaccurate. Consider using '#align has_le.le.absolutely_continuous_of_ae LE.le.absolutelyContinuous_of_aeₓ'. -/
 /- warning: measure_theory.measure.absolutely_continuous.ae_le -> MeasureTheory.Measure.AbsolutelyContinuous.ae_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.ae_le MeasureTheory.Measure.AbsolutelyContinuous.ae_leₓ'. -/
@@ -3729,7 +3787,7 @@ alias ae_le_iff_absolutely_continuous ↔
 
 /- warning: measure_theory.measure.ae_mono' -> MeasureTheory.Measure.ae_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_mono' MeasureTheory.Measure.ae_mono'ₓ'. -/
@@ -3849,7 +3907,7 @@ protected theorem aemeasurable (hf : QuasiMeasurePreserving f μa μb) : AEMeasu
 
 /- warning: measure_theory.measure.quasi_measure_preserving.ae_map_le -> MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μa)) (MeasureTheory.Measure.ae.{u2} β _inst_1 μb))
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μa)) (MeasureTheory.Measure.ae.{u2} β _inst_1 μb))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μa)) (MeasureTheory.Measure.ae.{u1} β _inst_1 μb))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae_map_le MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_leₓ'. -/
@@ -4070,7 +4128,7 @@ def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α
 
 /- warning: measure_theory.measure.mem_cofinite -> MeasureTheory.Measure.mem_cofinite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mem_cofinite MeasureTheory.Measure.mem_cofiniteₓ'. -/
@@ -4080,7 +4138,7 @@ theorem mem_cofinite : s ∈ μ.cofinite ↔ μ (sᶜ) < ∞ :=
 
 /- warning: measure_theory.measure.compl_mem_cofinite -> MeasureTheory.Measure.compl_mem_cofinite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.compl_mem_cofinite MeasureTheory.Measure.compl_mem_cofiniteₓ'. -/
@@ -4089,7 +4147,7 @@ theorem compl_mem_cofinite : sᶜ ∈ μ.cofinite ↔ μ s < ∞ := by rw [mem_c
 
 /- warning: measure_theory.measure.eventually_cofinite -> MeasureTheory.Measure.eventually_cofinite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop}, Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (setOf.{u1} α (fun (x : α) => Not (p x)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop}, Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (setOf.{u1} α (fun (x : α) => Not (p x)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop}, Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (setOf.{u1} α (fun (x : α) => Not (p x)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eventually_cofinite MeasureTheory.Measure.eventually_cofiniteₓ'. -/
@@ -4121,11 +4179,15 @@ theorem NullMeasurableSet.mono_ac (h : NullMeasurableSet s μ) (hle : ν ≪ μ)
 #align measure_theory.null_measurable_set.mono_ac MeasureTheory.NullMeasurableSet.mono_ac
 -/
 
-#print MeasureTheory.NullMeasurableSet.mono /-
+/- warning: measure_theory.null_measurable_set.mono -> MeasureTheory.NullMeasurableSet.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.mono MeasureTheory.NullMeasurableSet.monoₓ'. -/
 theorem NullMeasurableSet.mono (h : NullMeasurableSet s μ) (hle : ν ≤ μ) : NullMeasurableSet s ν :=
   h.mono_ac hle.AbsolutelyContinuous
 #align measure_theory.null_measurable_set.mono MeasureTheory.NullMeasurableSet.mono
--/
 
 #print MeasureTheory.AeDisjoint.preimage /-
 theorem AeDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AEDisjoint ν s t)
@@ -4165,7 +4227,7 @@ theorem ae_zero {m0 : MeasurableSpace α} : (0 : Measure α).ae = ⊥ :=
 
 /- warning: measure_theory.ae_mono -> MeasureTheory.ae_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_mono MeasureTheory.ae_monoₓ'. -/
@@ -4538,7 +4600,7 @@ theorem sub_ae_eq_zero {β} [AddGroup β] (f g : α → β) : f - g =ᵐ[μ] 0 
 
 /- warning: measure_theory.le_ae_restrict -> MeasureTheory.le_ae_restrict is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.le_ae_restrict MeasureTheory.le_ae_restrictₓ'. -/
@@ -4574,7 +4636,7 @@ theorem ae_restrict_eq_bot {s} : (μ.restrict s).ae = ⊥ ↔ μ s = 0 :=
 
 /- warning: measure_theory.ae_restrict_ne_bot -> MeasureTheory.ae_restrict_neBot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_ne_bot MeasureTheory.ae_restrict_neBotₓ'. -/
@@ -4639,7 +4701,7 @@ section Intervals
 
 /- warning: measure_theory.bsupr_measure_Iic -> MeasureTheory.biSup_measure_Iic is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3)) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.Iic.{u1} α _inst_3 x)))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_3)) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.Iic.{u1} α _inst_3 x)))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46872 : α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46872 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.Iic.{u1} α _inst_3 x)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iicₓ'. -/
@@ -4807,7 +4869,7 @@ theorem not_finiteMeasure_iff : ¬FiniteMeasure μ ↔ μ Set.univ = ∞ :=
 
 /- warning: measure_theory.restrict.is_finite_measure -> MeasureTheory.Restrict.finiteMeasure is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [hs : Fact (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))], MeasureTheory.FiniteMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [hs : Fact (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))], MeasureTheory.FiniteMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [hs : Fact (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))], MeasureTheory.FiniteMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.finiteMeasureₓ'. -/
@@ -4818,7 +4880,7 @@ instance Restrict.finiteMeasure (μ : Measure α) [hs : Fact (μ s < ∞)] :
 
 /- warning: measure_theory.measure_lt_top -> MeasureTheory.measure_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_lt_top MeasureTheory.measure_lt_topₓ'. -/
@@ -4845,7 +4907,7 @@ theorem measure_ne_top (μ : Measure α) [FiniteMeasure μ] (s : Set α) : μ s
 
 /- warning: measure_theory.measure_compl_le_add_of_le_add -> MeasureTheory.measure_compl_le_add_of_le_add is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) ε)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) ε)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) ε)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) ε)))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) ε)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) ε)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_addₓ'. -/
@@ -4863,7 +4925,7 @@ theorem measure_compl_le_add_of_le_add [FiniteMeasure μ] (hs : MeasurableSet s)
 
 /- warning: measure_theory.measure_compl_le_add_iff -> MeasureTheory.measure_compl_le_add_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t)) ε)) (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) ε)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t)) ε)) (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) ε)))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) t)) ε)) (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) ε)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_compl_le_add_iff MeasureTheory.measure_compl_le_add_iffₓ'. -/
@@ -4946,11 +5008,15 @@ instance finiteMeasureSmulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞]
   infer_instance
 #align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.finiteMeasureSmulOfNNRealTower
 
-#print MeasureTheory.finiteMeasureOfLe /-
+/- warning: measure_theory.is_finite_measure_of_le -> MeasureTheory.finiteMeasureOfLe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {ν : MeasureTheory.Measure.{u1} α m0} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.FiniteMeasure.{u1} α m0 ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {ν : MeasureTheory.Measure.{u1} α m0} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.FiniteMeasure.{u1} α m0 ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.is_finite_measure_of_le MeasureTheory.finiteMeasureOfLeₓ'. -/
 theorem finiteMeasureOfLe (μ : Measure α) [FiniteMeasure μ] (h : ν ≤ μ) : FiniteMeasure ν :=
   { measure_univ_lt_top := lt_of_le_of_lt (h Set.univ MeasurableSet.univ) (measure_lt_top _ _) }
 #align measure_theory.is_finite_measure_of_le MeasureTheory.finiteMeasureOfLe
--/
 
 /- warning: measure_theory.measure.is_finite_measure_map -> MeasureTheory.Measure.finiteMeasureMap is a dubious translation:
 lean 3 declaration is
@@ -4985,7 +5051,7 @@ theorem measureUnivNNReal_eq_zero [FiniteMeasure μ] : measureUnivNNReal μ = 0
 
 /- warning: measure_theory.measure_univ_nnreal_pos -> MeasureTheory.measureUnivNNReal_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (MeasureTheory.measureUnivNNReal.{u1} α m0 μ))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (MeasureTheory.measureUnivNNReal.{u1} α m0 μ))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (MeasureTheory.measureUnivNNReal.{u1} α m0 μ))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNNReal_posₓ'. -/
@@ -4995,13 +5061,17 @@ theorem measureUnivNNReal_pos [FiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureU
   simpa [measure_univ_nnreal_eq_zero, le_zero_iff] using hμ
 #align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNNReal_pos
 
-#print MeasureTheory.Measure.le_of_add_le_add_left /-
+/- warning: measure_theory.measure.le_of_add_le_add_left -> MeasureTheory.Measure.le_of_add_le_add_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν₁ : MeasureTheory.Measure.{u1} α m0} {ν₂ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν₁) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν₂)) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν₁ ν₂)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν₁ : MeasureTheory.Measure.{u1} α m0} {ν₂ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν₁) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν₂)) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν₁ ν₂)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_leftₓ'. -/
 /-- `le_of_add_le_add_left` is normally applicable to `ordered_cancel_add_comm_monoid`,
 but it holds for measures with the additional assumption that μ is finite. -/
 theorem Measure.le_of_add_le_add_left [FiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
   fun S B1 => ENNReal.le_of_add_le_add_left (MeasureTheory.measure_ne_top μ S) (A2 S B1)
 #align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_left
--/
 
 /- warning: measure_theory.summable_measure_to_real -> MeasureTheory.summable_measure_toReal is a dubious translation:
 lean 3 declaration is
@@ -5107,7 +5177,7 @@ theorem prob_add_prob_compl [ProbabilityMeasure μ] (h : MeasurableSet s) : μ s
 
 /- warning: measure_theory.prob_le_one -> MeasureTheory.prob_le_one is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.prob_le_one MeasureTheory.prob_le_oneₓ'. -/
@@ -5142,7 +5212,7 @@ theorem isProbabilityMeasureMap [ProbabilityMeasure μ] {f : α → β} (hf : AE
 
 /- warning: measure_theory.one_le_prob_iff -> MeasureTheory.one_le_prob_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], Iff (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.one_le_prob_iff MeasureTheory.one_le_prob_iffₓ'. -/
@@ -5396,7 +5466,7 @@ theorem finiteAtFilterOfFinite {m0 : MeasurableSpace α} (μ : Measure α) [Fini
 
 /- warning: measure_theory.measure.finite_at_filter.exists_mem_basis -> MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (forall {p : ι -> Prop} {s : ι -> (Set.{u1} α)}, (Filter.HasBasis.{u1, succ u2} α ι f p s) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (forall {p : ι -> Prop} {s : ι -> (Set.{u1} α)}, (Filter.HasBasis.{u1, succ u2} α ι f p s) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {f : Filter.{u2} α}, (MeasureTheory.Measure.FiniteAtFilter.{u2} α m0 μ f) -> (forall {p : ι -> Prop} {s : ι -> (Set.{u2} α)}, (Filter.HasBasis.{u2, succ u1} α ι f p s) -> (Exists.{succ u1} ι (fun (i : ι) => And (p i) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.exists_mem_basis MeasureTheory.Measure.FiniteAtFilter.exists_mem_basisₓ'. -/
@@ -5498,7 +5568,7 @@ theorem measurable_spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
 
 /- warning: measure_theory.measure_spanning_sets_lt_top -> MeasureTheory.measure_spanningSets_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (i : Nat), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (i : Nat), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (i : Nat), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_topₓ'. -/
@@ -5609,7 +5679,7 @@ theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
 
 /- warning: measure_theory.measure.exists_subset_measure_lt_top -> MeasureTheory.Measure.exists_subset_measure_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {r : ENNReal}, (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) r (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (MeasurableSet.{u1} α m0 t) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) r (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {r : ENNReal}, (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) r (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (MeasurableSet.{u1} α m0 t) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) (And (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) r (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {r : ENNReal}, (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) r (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s)) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (MeasurableSet.{u1} α m0 t) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t s) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) r (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_subset_measure_lt_top MeasureTheory.Measure.exists_subset_measure_lt_topₓ'. -/
@@ -5645,7 +5715,7 @@ theorem forall_measure_inter_spanningSets_eq_zero [MeasurableSpace α] {μ : Mea
 
 /- warning: measure_theory.measure.exists_measure_inter_spanning_sets_pos -> MeasureTheory.Measure.exists_measure_inter_spanningSets_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ s))
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))))) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_measure_inter_spanning_sets_pos MeasureTheory.Measure.exists_measure_inter_spanningSets_posₓ'. -/
@@ -5661,7 +5731,7 @@ theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure
 
 /- warning: measure_theory.measure.finite_const_le_meas_of_disjoint_Union -> MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i))))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnionₓ'. -/
@@ -5680,7 +5750,7 @@ theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type _} [MeasurableSpace 
 
 /- warning: measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top -> MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i)))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_topₓ'. -/
@@ -5708,7 +5778,7 @@ theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [Meas
 
 /- warning: measure_theory.measure.countable_meas_pos_of_disjoint_Union -> MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i)))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnionₓ'. -/
@@ -5736,7 +5806,7 @@ theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α]
 
 /- warning: measure_theory.measure.countable_meas_level_set_pos -> MeasureTheory.Measure.countable_meas_level_set_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : MeasurableSingletonClass.{u2} β _inst_5] {g : α -> β}, (Measurable.{u1, u2} α β _inst_3 _inst_5 g) -> (Set.Countable.{u2} β (setOf.{u2} β (fun (t : β) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (setOf.{u1} α (fun (a : α) => Eq.{succ u2} β (g a) t))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : MeasurableSingletonClass.{u2} β _inst_5] {g : α -> β}, (Measurable.{u1, u2} α β _inst_3 _inst_5 g) -> (Set.Countable.{u2} β (setOf.{u2} β (fun (t : β) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (setOf.{u1} α (fun (a : α) => Eq.{succ u2} β (g a) t))))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u2} α _inst_3 μ] [_inst_5 : MeasurableSpace.{u1} β] [_inst_6 : MeasurableSingletonClass.{u1} β _inst_5] {g : α -> β}, (Measurable.{u2, u1} α β _inst_3 _inst_5 g) -> (Set.Countable.{u1} β (setOf.{u1} β (fun (t : β) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_3 μ) (setOf.{u2} α (fun (a : α) => Eq.{succ u1} β (g a) t))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_posₓ'. -/
@@ -5884,7 +5954,7 @@ variable {C D : Set (Set α)}
 
 /- warning: measure_theory.measure.finite_spanning_sets_in.mono' -> MeasureTheory.Measure.FiniteSpanningSetsIn.mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {C : Set.{u1} (Set.{u1} α)} {D : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) (Inter.inter.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasInter.{u1} (Set.{u1} α)) C (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) D) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ D)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {C : Set.{u1} (Set.{u1} α)} {D : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) (Inter.inter.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasInter.{u1} (Set.{u1} α)) C (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) D) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ D)
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {C : Set.{u1} (Set.{u1} α)} {D : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) (Inter.inter.{u1} (Set.{u1} (Set.{u1} α)) (Set.instInterSet.{u1} (Set.{u1} α)) C (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) D) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ D)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_spanning_sets_in.mono' MeasureTheory.Measure.FiniteSpanningSetsIn.mono'ₓ'. -/
@@ -5929,7 +5999,7 @@ end FiniteSpanningSetsIn
 
 /- warning: measure_theory.measure.sigma_finite_of_countable -> MeasureTheory.Measure.sigmaFinite_of_countable is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countableₓ'. -/
@@ -5941,7 +6011,12 @@ theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : 
   exact ⟨⟨⟨fun n => s n, fun n => trivial, hμ, hs⟩⟩⟩
 #align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countable
 
-#print MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE /-
+/- warning: measure_theory.measure.finite_spanning_sets_in.of_le -> MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (forall {C : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν C))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (forall {C : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν C))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_spanning_sets_in.of_le MeasureTheory.Measure.FiniteSpanningSetsIn.ofLEₓ'. -/
 /-- Given measures `μ`, `ν` where `ν ≤ μ`, `finite_spanning_sets_in.of_le` provides the induced
 `finite_spanning_set` with respect to `ν` from a `finite_spanning_set` with respect to `μ`. -/
 def FiniteSpanningSetsIn.ofLE (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteSpanningSetsIn C) :
@@ -5951,13 +6026,16 @@ def FiniteSpanningSetsIn.ofLE (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteS
   Finite n := lt_of_le_of_lt (le_iff'.1 h _) (S.Finite n)
   spanning := S.spanning
 #align measure_theory.measure.finite_spanning_sets_in.of_le MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE
--/
 
-#print MeasureTheory.Measure.sigmaFinite_of_le /-
+/- warning: measure_theory.measure.sigma_finite_of_le -> MeasureTheory.Measure.sigmaFinite_of_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {ν : MeasureTheory.Measure.{u1} α m0} (μ : MeasureTheory.Measure.{u1} α m0) [hs : MeasureTheory.SigmaFinite.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.SigmaFinite.{u1} α m0 ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {ν : MeasureTheory.Measure.{u1} α m0} (μ : MeasureTheory.Measure.{u1} α m0) [hs : MeasureTheory.SigmaFinite.{u1} α m0 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) ν μ) -> (MeasureTheory.SigmaFinite.{u1} α m0 ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sigma_finite_of_le MeasureTheory.Measure.sigmaFinite_of_leₓ'. -/
 theorem sigmaFinite_of_le (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ) : SigmaFinite ν :=
   ⟨hs.out.map <| FiniteSpanningSetsIn.ofLE h⟩
 #align measure_theory.measure.sigma_finite_of_le MeasureTheory.Measure.sigmaFinite_of_le
--/
 
 end Measure
 
@@ -6065,7 +6143,7 @@ theorem MeasurableEquiv.sigmaFinite_map {μ : Measure α} (f : α ≃ᵐ β) (h
 
 /- warning: measure_theory.ae_of_forall_measure_lt_top_ae_restrict' -> MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_of_forall_measure_lt_top_ae_restrict' MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict'ₓ'. -/
@@ -6087,7 +6165,7 @@ theorem ae_of_forall_measure_lt_top_ae_restrict' {μ : Measure α} (ν : Measure
 
 /- warning: measure_theory.ae_of_forall_measure_lt_top_ae_restrict -> MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_of_forall_measure_lt_top_ae_restrict MeasureTheory.ae_of_forall_measure_lt_top_ae_restrictₓ'. -/
@@ -6134,7 +6212,7 @@ theorem Measure.smul_finite (μ : Measure α) [FiniteMeasure μ] {c : ℝ≥0∞
 
 /- warning: measure_theory.measure.exists_is_open_measure_lt_top -> MeasureTheory.Measure.exists_isOpen_measure_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (x : α), Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (x : α), Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (x : α), Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_topₓ'. -/
@@ -6163,7 +6241,7 @@ instance locallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α)
 
 /- warning: measure_theory.measure.is_topological_basis_is_open_lt_top -> MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ], TopologicalSpace.IsTopologicalBasis.{u1} α _inst_3 (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ], TopologicalSpace.IsTopologicalBasis.{u1} α _inst_3 (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ], TopologicalSpace.IsTopologicalBasis.{u1} α _inst_3 (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_topological_basis_is_open_lt_top MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_topₓ'. -/
@@ -6187,7 +6265,7 @@ class FiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop whe
 
 /- warning: is_compact.measure_lt_top -> IsCompact.measure_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {{K : Set.{u1} α}}, (IsCompact.{u1} α _inst_3 K) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ K) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {{K : Set.{u1} α}}, (IsCompact.{u1} α _inst_3 K) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ K) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {{K : Set.{u1} α}}, (IsCompact.{u1} α _inst_3 K) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) K) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
 Case conversion may be inaccurate. Consider using '#align is_compact.measure_lt_top IsCompact.measure_lt_topₓ'. -/
@@ -6199,7 +6277,7 @@ theorem IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α} [Finite
 
 /- warning: metric.bounded.measure_lt_top -> Metric.Bounded.measure_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {{s : Set.{u1} α}}, (Metric.Bounded.{u1} α _inst_3 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {{s : Set.{u1} α}}, (Metric.Bounded.{u1} α _inst_3 s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {{s : Set.{u1} α}}, (Metric.Bounded.{u1} α _inst_3 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
 Case conversion may be inaccurate. Consider using '#align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_topₓ'. -/
@@ -6215,7 +6293,7 @@ theorem Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {
 
 /- warning: measure_theory.measure_closed_ball_lt_top -> MeasureTheory.measure_closedBall_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.closedBall.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.closedBall.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Metric.closedBall.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_topₓ'. -/
@@ -6226,7 +6304,7 @@ theorem measure_closedBall_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ :
 
 /- warning: measure_theory.measure_ball_lt_top -> MeasureTheory.measure_ball_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.ball.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.ball.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Metric.ball.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_topₓ'. -/
@@ -6283,7 +6361,7 @@ theorem locallyFiniteMeasure_of_finiteMeasureOnCompacts [TopologicalSpace α] [L
 
 /- warning: measure_theory.exists_pos_measure_of_cover -> MeasureTheory.exists_pos_measure_of_cover is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (U i))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (U i))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (U i))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_measure_of_cover MeasureTheory.exists_pos_measure_of_coverₓ'. -/
@@ -6296,7 +6374,7 @@ theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (
 
 /- warning: measure_theory.exists_pos_preimage_ball -> MeasureTheory.exists_pos_preimage_ball is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u2} δ] (f : α -> δ) (x : δ), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α δ f (Metric.ball.{u2} δ _inst_3 x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n))))))
+  forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u2} δ] (f : α -> δ) (x : δ), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α δ f (Metric.ball.{u2} δ _inst_3 x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n))))))
 but is expected to have type
   forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u2} δ] (f : α -> δ) (x : δ), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.preimage.{u1, u2} α δ f (Metric.ball.{u2} δ _inst_3 x (Nat.cast.{0} Real Real.natCast n))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_preimage_ball MeasureTheory.exists_pos_preimage_ballₓ'. -/
@@ -6307,7 +6385,7 @@ theorem exists_pos_preimage_ball [PseudoMetricSpace δ] (f : α → δ) (x : δ)
 
 /- warning: measure_theory.exists_pos_ball -> MeasureTheory.exists_pos_ball is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u1} α] (x : α), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.ball.{u1} α _inst_3 x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n)))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u1} α] (x : α), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.ball.{u1} α _inst_3 x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n)))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u1} α] (x : α), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Metric.ball.{u1} α _inst_3 x (Nat.cast.{0} Real Real.natCast n)))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_ball MeasureTheory.exists_pos_ballₓ'. -/
@@ -6331,7 +6409,7 @@ theorem null_of_locally_null [TopologicalSpace α] [SecondCountableTopology α]
 
 /- warning: measure_theory.exists_mem_forall_mem_nhds_within_pos_measure -> MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measure is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} α (fun (x : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t (nhdsWithin.{u1} α _inst_3 x s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} α (fun (x : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t (nhdsWithin.{u1} α _inst_3 x s)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} α (fun (x : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) t (nhdsWithin.{u1} α _inst_3 x s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.exists_mem_forall_mem_nhds_within_pos_measure MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measureₓ'. -/
@@ -6342,7 +6420,7 @@ theorem exists_mem_forall_mem_nhdsWithin_pos_measure [TopologicalSpace α]
 
 /- warning: measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage -> MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimage is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : TopologicalSpace.{u2} β] [_inst_4 : T1Space.{u2} β _inst_3] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_3] [_inst_6 : Nonempty.{succ u2} β] {f : α -> β}, (forall (b : β), Filter.Frequently.{u1} α (fun (x : α) => Ne.{succ u2} β (f x) b) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (Exists.{succ u2} β (fun (a : β) => Exists.{succ u2} β (fun (b : β) => And (Ne.{succ u2} β a b) (And (forall (s : Set.{u2} β), (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (nhds.{u2} β _inst_3 a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)))) (forall (t : Set.{u2} β), (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (nhds.{u2} β _inst_3 b)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f t))))))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : TopologicalSpace.{u2} β] [_inst_4 : T1Space.{u2} β _inst_3] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_3] [_inst_6 : Nonempty.{succ u2} β] {f : α -> β}, (forall (b : β), Filter.Frequently.{u1} α (fun (x : α) => Ne.{succ u2} β (f x) b) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (Exists.{succ u2} β (fun (a : β) => Exists.{succ u2} β (fun (b : β) => And (Ne.{succ u2} β a b) (And (forall (s : Set.{u2} β), (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (nhds.{u2} β _inst_3 a)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)))) (forall (t : Set.{u2} β), (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (nhds.{u2} β _inst_3 b)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f t))))))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : TopologicalSpace.{u2} β] [_inst_4 : T1Space.{u2} β _inst_3] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_3] [_inst_6 : Nonempty.{succ u2} β] {f : α -> β}, (forall (b : β), Filter.Frequently.{u1} α (fun (x : α) => Ne.{succ u2} β (f x) b) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (Exists.{succ u2} β (fun (a : β) => Exists.{succ u2} β (fun (b : β) => And (Ne.{succ u2} β a b) (And (forall (s : Set.{u2} β), (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) s (nhds.{u2} β _inst_3 a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.preimage.{u1, u2} α β f s)))) (forall (t : Set.{u2} β), (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) t (nhds.{u2} β _inst_3 b)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.preimage.{u1, u2} α β f t))))))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimageₓ'. -/
@@ -6448,7 +6526,7 @@ variable {f g : Filter α}
 
 /- warning: measure_theory.measure.finite_at_filter.filter_mono -> MeasureTheory.Measure.FiniteAtFilter.filter_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) f g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.filter_mono MeasureTheory.Measure.FiniteAtFilter.filter_monoₓ'. -/
@@ -6502,7 +6580,7 @@ alias inf_ae_iff ↔ of_inf_ae _
 
 /- warning: measure_theory.measure.finite_at_filter.filter_mono_ae -> MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ)) g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ)) g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ)) g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filter_mono_aeₓ'. -/
@@ -6510,15 +6588,19 @@ theorem filter_mono_ae (h : f ⊓ μ.ae ≤ g) (hg : μ.FiniteAtFilter g) : μ.F
   inf_ae_iff.1 (hg.filter_mono h)
 #align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae
 
-#print MeasureTheory.Measure.FiniteAtFilter.measure_mono /-
+/- warning: measure_theory.measure.finite_at_filter.measure_mono -> MeasureTheory.Measure.FiniteAtFilter.measure_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.measure_mono MeasureTheory.Measure.FiniteAtFilter.measure_monoₓ'. -/
 protected theorem measure_mono (h : μ ≤ ν) : ν.FiniteAtFilter f → μ.FiniteAtFilter f :=
   fun ⟨s, hs, hν⟩ => ⟨s, hs, (Measure.le_iff'.1 h s).trans_lt hν⟩
 #align measure_theory.measure.finite_at_filter.measure_mono MeasureTheory.Measure.FiniteAtFilter.measure_mono
--/
 
 /- warning: measure_theory.measure.finite_at_filter.mono -> MeasureTheory.Measure.FiniteAtFilter.mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f g) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f g) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) f g) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.mono MeasureTheory.Measure.FiniteAtFilter.monoₓ'. -/
@@ -6529,7 +6611,7 @@ protected theorem mono (hf : f ≤ g) (hμ : μ ≤ ν) : ν.FiniteAtFilter g 
 
 /- warning: measure_theory.measure.finite_at_filter.eventually -> MeasureTheory.Measure.FiniteAtFilter.eventually is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (Filter.Eventually.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Filter.smallSets.{u1} α f))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (Filter.Eventually.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Filter.smallSets.{u1} α f))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (Filter.Eventually.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Filter.smallSets.{u1} α f))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.eventually MeasureTheory.Measure.FiniteAtFilter.eventuallyₓ'. -/
@@ -6559,7 +6641,7 @@ theorem finiteAt_nhdsWithin [TopologicalSpace α] {m0 : MeasurableSpace α} (μ
 
 /- warning: measure_theory.measure.finite_at_principal -> MeasureTheory.Measure.finiteAt_principal is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Filter.principal.{u1} α s)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Filter.principal.{u1} α s)) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
 but is expected to have type
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Filter.principal.{u1} α s)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principalₓ'. -/
@@ -6568,13 +6650,17 @@ theorem finiteAt_principal : μ.FiniteAtFilter (𝓟 s) ↔ μ s < ∞ :=
   ⟨fun ⟨t, ht, hμ⟩ => (measure_mono ht).trans_lt hμ, fun h => ⟨s, mem_principal_self s, h⟩⟩
 #align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principal
 
-#print MeasureTheory.Measure.locallyFiniteMeasure_of_le /-
+/- warning: measure_theory.measure.is_locally_finite_measure_of_le -> MeasureTheory.Measure.locallyFiniteMeasure_of_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : TopologicalSpace.{u1} α] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ν : MeasureTheory.Measure.{u1} α m} [H : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_3 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instPartialOrder.{u1} α m))) ν μ) -> (MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_3 ν)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : TopologicalSpace.{u1} α] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ν : MeasureTheory.Measure.{u1} α m} [H : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_3 μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} α m) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instPartialOrder.{u1} α m))) ν μ) -> (MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_3 ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.locallyFiniteMeasure_of_leₓ'. -/
 theorem locallyFiniteMeasure_of_le [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
     [H : LocallyFiniteMeasure μ] (h : ν ≤ μ) : LocallyFiniteMeasure ν :=
   let F := H.finite_at_nhds
   ⟨fun x => (F x).measure_mono h⟩
 #align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.locallyFiniteMeasure_of_le
--/
 
 end Measure
 
@@ -6903,7 +6989,7 @@ theorem trim_measurableSet_eq (hm : m ≤ m0) (hs : @MeasurableSet α m s) : μ.
 
 /- warning: measure_theory.le_trim -> MeasureTheory.le_trim is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s)
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s)
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)) s)
 Case conversion may be inaccurate. Consider using '#align measure_theory.le_trim MeasureTheory.le_trimₓ'. -/
@@ -7033,7 +7119,7 @@ variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set 
 
 /- warning: is_compact.exists_open_superset_measure_lt_top' -> IsCompact.exists_open_superset_measure_lt_top' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhds.{u1} α _inst_1 x))) -> (Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ U) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhds.{u1} α _inst_1 x))) -> (Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ U) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhds.{u1} α _inst_1 x))) -> (Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) U) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))))
 Case conversion may be inaccurate. Consider using '#align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'ₓ'. -/
@@ -7059,7 +7145,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
 
 /- warning: is_compact.exists_open_superset_measure_lt_top -> IsCompact.exists_open_superset_measure_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) [_inst_3 : MeasureTheory.LocallyFiniteMeasure.{u1} α _inst_2 _inst_1 μ], Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ U) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) [_inst_3 : MeasureTheory.LocallyFiniteMeasure.{u1} α _inst_2 _inst_1 μ], Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ U) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) [_inst_3 : MeasureTheory.LocallyFiniteMeasure.{u1} α _inst_2 _inst_1 μ], Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) U) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))))
 Case conversion may be inaccurate. Consider using '#align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_topₓ'. -/
@@ -7073,7 +7159,7 @@ theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
 
 /- warning: is_compact.measure_lt_top_of_nhds_within -> IsCompact.measure_lt_top_of_nhdsWithin is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhdsWithin.{u1} α _inst_1 x s))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhdsWithin.{u1} α _inst_1 x s))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhdsWithin.{u1} α _inst_1 x s))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
 Case conversion may be inaccurate. Consider using '#align is_compact.measure_lt_top_of_nhds_within IsCompact.measure_lt_top_of_nhdsWithinₓ'. -/
@@ -7205,7 +7291,7 @@ variable [Preorder α] [TopologicalSpace α] [CompactIccSpace α] {m : Measurabl
 
 /- warning: measure_Icc_lt_top -> measure_Icc_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Icc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Icc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Icc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align measure_Icc_lt_top measure_Icc_lt_topₓ'. -/
@@ -7215,7 +7301,7 @@ theorem measure_Icc_lt_top : μ (Icc a b) < ∞ :=
 
 /- warning: measure_Ico_lt_top -> measure_Ico_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ico.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ico.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Ico.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align measure_Ico_lt_top measure_Ico_lt_topₓ'. -/
@@ -7225,7 +7311,7 @@ theorem measure_Ico_lt_top : μ (Ico a b) < ∞ :=
 
 /- warning: measure_Ioc_lt_top -> measure_Ioc_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ioc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ioc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Ioc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align measure_Ioc_lt_top measure_Ioc_lt_topₓ'. -/
@@ -7235,7 +7321,7 @@ theorem measure_Ioc_lt_top : μ (Ioc a b) < ∞ :=
 
 /- warning: measure_Ioo_lt_top -> measure_Ioo_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ioo.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ioo.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Ioo.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
 Case conversion may be inaccurate. Consider using '#align measure_Ioo_lt_top measure_Ioo_lt_topₓ'. -/
@@ -7321,7 +7407,7 @@ theorem mem_map_indicator_ae_iff_of_zero_nmem [Zero β] {t : Set β} (ht : (0 :
 
 /- warning: map_restrict_ae_le_map_indicator_ae -> map_restrict_ae_le_map_indicator_ae is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s))) (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s))) (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β))) (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s))) (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))
 Case conversion may be inaccurate. Consider using '#align map_restrict_ae_le_map_indicator_ae map_restrict_ae_le_map_indicator_aeₓ'. -/
Diff
@@ -4527,7 +4527,7 @@ theorem ae_eq_comp {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ) (
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : AddGroup.{u2} β] (f : α -> β) (g : α -> β), Iff (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (α -> β) (α -> β) (α -> β) (instHSub.{max u1 u2} (α -> β) (Pi.instSub.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) f g) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))))))))) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g)
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : AddGroup.{u2} β] (f : α -> β) (g : α -> β), Iff (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (α -> β) (α -> β) (α -> β) (instHSub.{max u1 u2} (α -> β) (Pi.instSub.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SubNegMonoid.toSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) f g) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (Zero.toOfNat0.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => NegZeroClass.toZero.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_3)))))))) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : AddGroup.{u2} β] (f : α -> β) (g : α -> β), Iff (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (α -> β) (α -> β) (α -> β) (instHSub.{max u1 u2} (α -> β) (Pi.instSub.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SubNegMonoid.toSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) f g) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (Zero.toOfNat0.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => NegZeroClass.toZero.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_3)))))))) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g)
 Case conversion may be inaccurate. Consider using '#align measure_theory.sub_ae_eq_zero MeasureTheory.sub_ae_eq_zeroₓ'. -/
 theorem sub_ae_eq_zero {β} [AddGroup β] (f g : α → β) : f - g =ᵐ[μ] 0 ↔ f =ᵐ[μ] g :=
   by
@@ -7352,7 +7352,7 @@ theorem indicator_ae_eq_restrict (hs : MeasurableSet s) : indicator s f =ᵐ[μ.
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (Set.indicator.{u1, u2} α β _inst_2 s f) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2))))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (HasCompl.compl.{u2} (Set.{u2} α) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} α) (Set.instBooleanAlgebraSet.{u2} α)) s))) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => _inst_2)))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (HasCompl.compl.{u2} (Set.{u2} α) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} α) (Set.instBooleanAlgebraSet.{u2} α)) s))) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => _inst_2)))))
 Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_restrict_compl indicator_ae_eq_restrict_complₓ'. -/
 theorem indicator_ae_eq_restrict_compl (hs : MeasurableSet s) :
     indicator s f =ᵐ[μ.restrict (sᶜ)] 0 :=
@@ -7363,7 +7363,7 @@ theorem indicator_ae_eq_restrict_compl (hs : MeasurableSet s) :
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) f (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2)))))) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) f)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (HasCompl.compl.{u2} (Set.{u2} α) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} α) (Set.instBooleanAlgebraSet.{u2} α)) s))) f (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => _inst_2))))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) f)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (HasCompl.compl.{u2} (Set.{u2} α) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} α) (Set.instBooleanAlgebraSet.{u2} α)) s))) f (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => _inst_2))))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) f)
 Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_of_restrict_compl_ae_eq_zero indicator_ae_eq_of_restrict_compl_ae_eq_zeroₓ'. -/
 theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict (sᶜ)] 0) : s.indicator f =ᵐ[μ] f :=
@@ -7379,7 +7379,7 @@ theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s)) f (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2)))))) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2))))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ s)) f (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => _inst_2))))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => _inst_2)))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ s)) f (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => _inst_2))))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => _inst_2)))))
 Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_zero_of_restrict_ae_eq_zero indicator_ae_eq_zero_of_restrict_ae_eq_zeroₓ'. -/
 theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict s] 0) : s.indicator f =ᵐ[μ] 0 :=
@@ -7405,7 +7405,7 @@ theorem indicator_ae_eq_of_ae_eq_set (hst : s =ᵐ[μ] t) : s.indicator f =ᵐ[
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2))))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_1 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => _inst_2)))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_1 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => β) (fun (i : α) => _inst_2)))))
 Case conversion may be inaccurate. Consider using '#align indicator_meas_zero indicator_meas_zeroₓ'. -/
 theorem indicator_meas_zero (hs : μ s = 0) : indicator s f =ᵐ[μ] 0 :=
   indicator_empty' f ▸ indicator_ae_eq_of_ae_eq_set (ae_eq_empty.2 hs)
Diff
@@ -361,7 +361,7 @@ theorem measure_add_diff (hs : MeasurableSet s) (t : Set α) : μ s + μ (t \ s)
 lean 3 declaration is
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t)))
 but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t)))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff' MeasureTheory.measure_diff'ₓ'. -/
 theorem measure_diff' (s : Set α) (hm : MeasurableSet t) (h_fin : μ t ≠ ∞) :
     μ (s \ t) = μ (s ∪ t) - μ t :=
@@ -372,7 +372,7 @@ theorem measure_diff' (s : Set α) (hm : MeasurableSet t) (h_fin : μ t ≠ ∞)
 lean 3 declaration is
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₂ s₁) -> (MeasurableSet.{u1} α m s₂) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)))
 but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₂ s₁) -> (MeasurableSet.{u1} α m s₂) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₂ s₁) -> (MeasurableSet.{u1} α m s₂) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff MeasureTheory.measure_diffₓ'. -/
 theorem measure_diff (h : s₂ ⊆ s₁) (h₂ : MeasurableSet s₂) (h_fin : μ s₂ ≠ ∞) :
     μ (s₁ \ s₂) = μ s₁ - μ s₂ := by rw [measure_diff' _ h₂ h_fin, union_eq_self_of_subset_right h]
@@ -382,7 +382,7 @@ theorem measure_diff (h : s₂ ⊆ s₁) (h₂ : MeasurableSet s₂) (h_fin : μ
 lean 3 declaration is
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂))
 but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂))
 Case conversion may be inaccurate. Consider using '#align measure_theory.le_measure_diff MeasureTheory.le_measure_diffₓ'. -/
 theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
   tsub_le_iff_left.2 <|
@@ -473,7 +473,7 @@ theorem measure_eq_measure_larger_of_between_null_diff {s₁ s₂ s₃ : Set α}
 lean 3 declaration is
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)))
 but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_compl MeasureTheory.measure_complₓ'. -/
 theorem measure_compl (h₁ : MeasurableSet s) (h_fin : μ s ≠ ∞) : μ (sᶜ) = μ univ - μ s :=
   by
@@ -5155,7 +5155,7 @@ theorem one_le_prob_iff [ProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.prob_compl_eq_one_sub MeasureTheory.prob_compl_eq_one_subₓ'. -/
 /-- Note that this is not quite as useful as it looks because the measure takes values in `ℝ≥0∞`.
 Thus the subtraction appearing is the truncated subtraction of `ℝ≥0∞`, rather than the
Diff
@@ -207,88 +207,88 @@ theorem measure_add_measure_compl (h : MeasurableSet s) : μ s + μ (sᶜ) = μ
   measure_add_measure_compl₀ h.NullMeasurableSet
 #align measure_theory.measure_add_measure_compl MeasureTheory.measure_add_measure_compl
 
-/- warning: measure_theory.measure_bUnion₀ -> MeasureTheory.measure_bunionᵢ₀ is a dubious translation:
+/- warning: measure_theory.measure_bUnion₀ -> MeasureTheory.measure_biUnion₀ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.Pairwise.{u2} β s (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (p : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) p)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.Pairwise.{u2} β s (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (p : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) p)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.Pairwise.{u2} β s (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β s) (fun (p : Set.Elem.{u2} β s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) p)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion₀ MeasureTheory.measure_bunionᵢ₀ₓ'. -/
-theorem measure_bunionᵢ₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.Pairwise.{u2} β s (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β s) (fun (p : Set.Elem.{u2} β s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) p)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion₀ MeasureTheory.measure_biUnion₀ₓ'. -/
+theorem measure_biUnion₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
     (hd : s.Pairwise (AEDisjoint μ on f)) (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
   by
   haveI := hs.to_encodable
   rw [bUnion_eq_Union]
   exact measure_Union₀ (hd.on_injective Subtype.coe_injective fun x => x.2) fun x => h x x.2
-#align measure_theory.measure_bUnion₀ MeasureTheory.measure_bunionᵢ₀
+#align measure_theory.measure_bUnion₀ MeasureTheory.measure_biUnion₀
 
-/- warning: measure_theory.measure_bUnion -> MeasureTheory.measure_bunionᵢ is a dubious translation:
+/- warning: measure_theory.measure_bUnion -> MeasureTheory.measure_biUnion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s f) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (p : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) p)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s f) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (p : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) p)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s f) -> (forall (b : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β s) (fun (p : Set.Elem.{u2} β s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) p)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion MeasureTheory.measure_bunionᵢₓ'. -/
-theorem measure_bunionᵢ {s : Set β} {f : β → Set α} (hs : s.Countable) (hd : s.PairwiseDisjoint f)
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s f) -> (forall (b : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β s) (fun (p : Set.Elem.{u2} β s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) p)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion MeasureTheory.measure_biUnionₓ'. -/
+theorem measure_biUnion {s : Set β} {f : β → Set α} (hs : s.Countable) (hd : s.PairwiseDisjoint f)
     (h : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
-  measure_bunionᵢ₀ hs hd.AEDisjoint fun b hb => (h b hb).NullMeasurableSet
-#align measure_theory.measure_bUnion MeasureTheory.measure_bunionᵢ
+  measure_biUnion₀ hs hd.AEDisjoint fun b hb => (h b hb).NullMeasurableSet
+#align measure_theory.measure_bUnion MeasureTheory.measure_biUnion
 
-/- warning: measure_theory.measure_sUnion₀ -> MeasureTheory.measure_unionₛ₀ is a dubious translation:
+/- warning: measure_theory.measure_sUnion₀ -> MeasureTheory.measure_sUnion₀ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (MeasureTheory.AEDisjoint.{u1} α m μ)) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (MeasureTheory.NullMeasurableSet.{u1} α m s μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionₛ.{u1} α S)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (fun (s : coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeSubtype.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x S))))) s))))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (MeasureTheory.AEDisjoint.{u1} α m μ)) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (MeasureTheory.NullMeasurableSet.{u1} α m s μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.sUnion.{u1} α S)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (fun (s : coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeSubtype.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x S))))) s))))
 but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (MeasureTheory.AEDisjoint.{u1} α m μ)) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (MeasureTheory.NullMeasurableSet.{u1} α m s μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionₛ.{u1} α S)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} (Set.{u1} α) S) (fun (s : Set.Elem.{u1} (Set.{u1} α) S) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Subtype.val.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) x S) s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_sUnion₀ MeasureTheory.measure_unionₛ₀ₓ'. -/
-theorem measure_unionₛ₀ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise (AEDisjoint μ))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (MeasureTheory.AEDisjoint.{u1} α m μ)) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (MeasureTheory.NullMeasurableSet.{u1} α m s μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.sUnion.{u1} α S)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} (Set.{u1} α) S) (fun (s : Set.Elem.{u1} (Set.{u1} α) S) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Subtype.val.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) x S) s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_sUnion₀ MeasureTheory.measure_sUnion₀ₓ'. -/
+theorem measure_sUnion₀ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise (AEDisjoint μ))
     (h : ∀ s ∈ S, NullMeasurableSet s μ) : μ (⋃₀ S) = ∑' s : S, μ s := by
   rw [sUnion_eq_bUnion, measure_bUnion₀ hs hd h]
-#align measure_theory.measure_sUnion₀ MeasureTheory.measure_unionₛ₀
+#align measure_theory.measure_sUnion₀ MeasureTheory.measure_sUnion₀
 
-/- warning: measure_theory.measure_sUnion -> MeasureTheory.measure_unionₛ is a dubious translation:
+/- warning: measure_theory.measure_sUnion -> MeasureTheory.measure_sUnion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (MeasurableSet.{u1} α m s)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionₛ.{u1} α S)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (fun (s : coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeSubtype.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x S))))) s))))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (MeasurableSet.{u1} α m s)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.sUnion.{u1} α S)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (fun (s : coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeSubtype.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x S))))) s))))
 but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (MeasurableSet.{u1} α m s)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionₛ.{u1} α S)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} (Set.{u1} α) S) (fun (s : Set.Elem.{u1} (Set.{u1} α) S) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Subtype.val.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) x S) s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_sUnion MeasureTheory.measure_unionₛₓ'. -/
-theorem measure_unionₛ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise Disjoint)
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (MeasurableSet.{u1} α m s)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.sUnion.{u1} α S)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} (Set.{u1} α) S) (fun (s : Set.Elem.{u1} (Set.{u1} α) S) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Subtype.val.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) x S) s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_sUnion MeasureTheory.measure_sUnionₓ'. -/
+theorem measure_sUnion {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise Disjoint)
     (h : ∀ s ∈ S, MeasurableSet s) : μ (⋃₀ S) = ∑' s : S, μ s := by
   rw [sUnion_eq_bUnion, measure_bUnion hs hd h]
-#align measure_theory.measure_sUnion MeasureTheory.measure_unionₛ
+#align measure_theory.measure_sUnion MeasureTheory.measure_sUnion
 
-/- warning: measure_theory.measure_bUnion_finset₀ -> MeasureTheory.measure_bunionᵢ_finset₀ is a dubious translation:
+/- warning: measure_theory.measure_bUnion_finset₀ -> MeasureTheory.measure_biUnion_finset₀ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.Pairwise.{u2} ι ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (b : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (p : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f p))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.Pairwise.{u2} ι ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α ι (fun (b : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (p : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f p))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.Pairwise.{u2} ι (Finset.toSet.{u2} ι s) (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (b : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (p : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f p))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_bunionᵢ_finset₀ₓ'. -/
-theorem measure_bunionᵢ_finset₀ {s : Finset ι} {f : ι → Set α}
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.Pairwise.{u2} ι (Finset.toSet.{u2} ι s) (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α ι (fun (b : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (p : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f p))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_biUnion_finset₀ₓ'. -/
+theorem measure_biUnion_finset₀ {s : Finset ι} {f : ι → Set α}
     (hd : Set.Pairwise (↑s) (AEDisjoint μ on f)) (hm : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
   by
   rw [← Finset.sum_attach, Finset.attach_eq_univ, ← tsum_fintype]
   exact measure_bUnion₀ s.countable_to_set hd hm
-#align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_bunionᵢ_finset₀
+#align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_biUnion_finset₀
 
-/- warning: measure_theory.measure_bUnion_finset -> MeasureTheory.measure_bunionᵢ_finset is a dubious translation:
+/- warning: measure_theory.measure_bUnion_finset -> MeasureTheory.measure_biUnion_finset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f) -> (forall (b : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (b : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (p : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f p))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f) -> (forall (b : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α ι (fun (b : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (p : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f p))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Finset.toSet.{u2} ι s) f) -> (forall (b : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (b : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (p : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f p))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_finset MeasureTheory.measure_bunionᵢ_finsetₓ'. -/
-theorem measure_bunionᵢ_finset {s : Finset ι} {f : ι → Set α} (hd : PairwiseDisjoint (↑s) f)
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Finset.toSet.{u2} ι s) f) -> (forall (b : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α ι (fun (b : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (p : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f p))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_finset MeasureTheory.measure_biUnion_finsetₓ'. -/
+theorem measure_biUnion_finset {s : Finset ι} {f : ι → Set α} (hd : PairwiseDisjoint (↑s) f)
     (hm : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
-  measure_bunionᵢ_finset₀ hd.AEDisjoint fun b hb => (hm b hb).NullMeasurableSet
-#align measure_theory.measure_bUnion_finset MeasureTheory.measure_bunionᵢ_finset
+  measure_biUnion_finset₀ hd.AEDisjoint fun b hb => (hm b hb).NullMeasurableSet
+#align measure_theory.measure_bUnion_finset MeasureTheory.measure_biUnion_finset
 
-/- warning: measure_theory.tsum_meas_le_meas_Union_of_disjoint -> MeasureTheory.tsum_meas_le_meas_unionᵢ_of_disjoint is a dubious translation:
+/- warning: measure_theory.tsum_meas_le_meas_Union_of_disjoint -> MeasureTheory.tsum_meas_le_meas_iUnion_of_disjoint is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (As i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (As i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (As i))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_unionᵢ_of_disjointₓ'. -/
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (As i))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_iUnion_of_disjointₓ'. -/
 /-- The measure of a disjoint union (even uncountable) of measurable sets is at least the sum of
 the measures of the sets. -/
-theorem tsum_meas_le_meas_unionᵢ_of_disjoint {ι : Type _} [MeasurableSpace α] (μ : Measure α)
+theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type _} [MeasurableSpace α] (μ : Measure α)
     {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) : (∑' i, μ (As i)) ≤ μ (⋃ i, As i) :=
   by
@@ -298,7 +298,7 @@ theorem tsum_meas_le_meas_unionᵢ_of_disjoint {ι : Type _} [MeasurableSpace α
   intro s
   rw [← measure_bUnion_finset (fun i hi j hj hij => As_disj hij) fun i _ => As_mble i]
   exact measure_mono (Union₂_subset_Union (fun i : ι => i ∈ s) fun i : ι => As i)
-#align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_unionᵢ_of_disjoint
+#align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_iUnion_of_disjoint
 
 /- warning: measure_theory.tsum_measure_preimage_singleton -> MeasureTheory.tsum_measure_preimage_singleton is a dubious translation:
 lean 3 declaration is
@@ -310,7 +310,7 @@ Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_me
 of the fibers `f ⁻¹' {y}`. -/
 theorem tsum_measure_preimage_singleton {s : Set β} (hs : s.Countable) {f : α → β}
     (hf : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y})) : (∑' b : s, μ (f ⁻¹' {↑b})) = μ (f ⁻¹' s) := by
-  rw [← Set.bunionᵢ_preimage_singleton, measure_bUnion hs (pairwise_disjoint_fiber _ _) hf]
+  rw [← Set.biUnion_preimage_singleton, measure_bUnion hs (pairwise_disjoint_fiber _ _) hf]
 #align measure_theory.tsum_measure_preimage_singleton MeasureTheory.tsum_measure_preimage_singleton
 
 /- warning: measure_theory.sum_measure_preimage_singleton -> MeasureTheory.sum_measure_preimage_singleton is a dubious translation:
@@ -324,7 +324,7 @@ of the fibers `f ⁻¹' {y}`. -/
 theorem sum_measure_preimage_singleton (s : Finset β) {f : α → β}
     (hf : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y})) : (∑ b in s, μ (f ⁻¹' {b})) = μ (f ⁻¹' ↑s) := by
   simp only [← measure_bUnion_finset (pairwise_disjoint_fiber _ _) hf,
-    Finset.set_bunionᵢ_preimage_singleton]
+    Finset.set_biUnion_preimage_singleton]
 #align measure_theory.sum_measure_preimage_singleton MeasureTheory.sum_measure_preimage_singleton
 
 /- warning: measure_theory.measure_diff_null' -> MeasureTheory.measure_diff_null' is a dubious translation:
@@ -536,13 +536,13 @@ theorem ae_eq_of_subset_of_measure_ge (h₁ : s ⊆ t) (h₂ : μ t ≤ μ s) (h
   ae_eq_of_ae_subset_of_measure_ge (HasSubset.Subset.eventuallyLE h₁) h₂ hsm ht
 #align measure_theory.ae_eq_of_subset_of_measure_ge MeasureTheory.ae_eq_of_subset_of_measure_ge
 
-/- warning: measure_theory.measure_Union_congr_of_subset -> MeasureTheory.measure_unionᵢ_congr_of_subset is a dubious translation:
+/- warning: measure_theory.measure_Union_congr_of_subset -> MeasureTheory.measure_iUnion_congr_of_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t b)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => s b))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => t b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t b)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => s b))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => t b))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (t b)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => s b))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => t b))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_unionᵢ_congr_of_subsetₓ'. -/
-theorem measure_unionᵢ_congr_of_subset [Countable β] {s : β → Set α} {t : β → Set α}
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (t b)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α β (fun (b : β) => s b))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α β (fun (b : β) => t b))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_iUnion_congr_of_subsetₓ'. -/
+theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : β → Set α}
     (hsub : ∀ b, s b ⊆ t b) (h_le : ∀ b, μ (t b) ≤ μ (s b)) : μ (⋃ b, s b) = μ (⋃ b, t b) :=
   by
   rcases em (∃ b, μ (t b) = ∞) with (⟨b, hb⟩ | htop)
@@ -571,11 +571,11 @@ theorem measure_unionᵢ_congr_of_subset [Countable β] {s : β → Set α} {t :
       exact htop b
   calc
     μ (⋃ b, t b) ≤ μ (⋃ b, M (t b)) := measure_mono (Union_mono fun b => subset_to_measurable _ _)
-    _ = μ (⋃ b, M (t b) ∩ M (⋃ b, s b)) := (measure_congr (EventuallyEq.countable_unionᵢ H).symm)
+    _ = μ (⋃ b, M (t b) ∩ M (⋃ b, s b)) := (measure_congr (EventuallyEq.countable_iUnion H).symm)
     _ ≤ μ (M (⋃ b, s b)) := (measure_mono (Union_subset fun b => inter_subset_right _ _))
     _ = μ (⋃ b, s b) := measure_to_measurable _
     
-#align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_unionᵢ_congr_of_subset
+#align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_iUnion_congr_of_subset
 
 /- warning: measure_theory.measure_union_congr_of_subset -> MeasureTheory.measure_union_congr_of_subset is a dubious translation:
 lean 3 declaration is
@@ -590,23 +590,23 @@ theorem measure_union_congr_of_subset {t₁ t₂ : Set α} (hs : s₁ ⊆ s₂)
   exact measure_Union_congr_of_subset (Bool.forall_bool.2 ⟨ht, hs⟩) (Bool.forall_bool.2 ⟨htμ, hsμ⟩)
 #align measure_theory.measure_union_congr_of_subset MeasureTheory.measure_union_congr_of_subset
 
-#print MeasureTheory.measure_unionᵢ_toMeasurable /-
+#print MeasureTheory.measure_iUnion_toMeasurable /-
 @[simp]
-theorem measure_unionᵢ_toMeasurable [Countable β] (s : β → Set α) :
+theorem measure_iUnion_toMeasurable [Countable β] (s : β → Set α) :
     μ (⋃ b, toMeasurable μ (s b)) = μ (⋃ b, s b) :=
   Eq.symm <|
-    measure_unionᵢ_congr_of_subset (fun b => subset_toMeasurable _ _) fun b =>
+    measure_iUnion_congr_of_subset (fun b => subset_toMeasurable _ _) fun b =>
       (measure_toMeasurable _).le
-#align measure_theory.measure_Union_to_measurable MeasureTheory.measure_unionᵢ_toMeasurable
+#align measure_theory.measure_Union_to_measurable MeasureTheory.measure_iUnion_toMeasurable
 -/
 
-#print MeasureTheory.measure_bunionᵢ_toMeasurable /-
-theorem measure_bunionᵢ_toMeasurable {I : Set β} (hc : I.Countable) (s : β → Set α) :
+#print MeasureTheory.measure_biUnion_toMeasurable /-
+theorem measure_biUnion_toMeasurable {I : Set β} (hc : I.Countable) (s : β → Set α) :
     μ (⋃ b ∈ I, toMeasurable μ (s b)) = μ (⋃ b ∈ I, s b) :=
   by
   haveI := hc.to_encodable
   simp only [bUnion_eq_Union, measure_Union_to_measurable]
-#align measure_theory.measure_bUnion_to_measurable MeasureTheory.measure_bunionᵢ_toMeasurable
+#align measure_theory.measure_bUnion_to_measurable MeasureTheory.measure_biUnion_toMeasurable
 -/
 
 /- warning: measure_theory.measure_to_measurable_union -> MeasureTheory.measure_toMeasurable_union is a dubious translation:
@@ -658,8 +658,8 @@ Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_me
 theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i))
     (H : Pairwise (Disjoint on s)) : (∑' i, μ (s i)) ≤ μ (univ : Set α) :=
   by
-  rw [ENNReal.tsum_eq_supᵢ_sum]
-  exact supᵢ_le fun s => sum_measure_le_measure_univ (fun i hi => hs i) fun i hi j hj hij => H hij
+  rw [ENNReal.tsum_eq_iSup_sum]
+  exact iSup_le fun s => sum_measure_le_measure_univ (fun i hi => hs i) fun i hi j hj hij => H hij
 #align measure_theory.tsum_measure_le_measure_univ MeasureTheory.tsum_measure_le_measure_univ
 
 /- warning: measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure -> MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure is a dubious translation:
@@ -736,15 +736,15 @@ theorem nonempty_inter_of_measure_lt_add' {m : MeasurableSpace α} (μ : Measure
   exact nonempty_inter_of_measure_lt_add μ hs h't h's h
 #align measure_theory.nonempty_inter_of_measure_lt_add' MeasureTheory.nonempty_inter_of_measure_lt_add'
 
-/- warning: measure_theory.measure_Union_eq_supr -> MeasureTheory.measure_unionᵢ_eq_supᵢ is a dubious translation:
+/- warning: measure_theory.measure_Union_eq_supr -> MeasureTheory.measure_iUnion_eq_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6293 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6295 : Set.{u1} α) => HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6293 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6295) s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union_eq_supr MeasureTheory.measure_unionᵢ_eq_supᵢₓ'. -/
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6293 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6295 : Set.{u1} α) => HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6293 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6295) s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union_eq_supr MeasureTheory.measure_iUnion_eq_iSupₓ'. -/
 /-- Continuity from below: the measure of the union of a directed sequence of (not necessarily
 -measurable) sets is the supremum of the measures. -/
-theorem measure_unionᵢ_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s) :
+theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s) :
     μ (⋃ i, s i) = ⨆ i, μ (s i) := by
   cases nonempty_encodable ι
   -- WLOG, `ι = ℕ`
@@ -753,12 +753,12 @@ theorem measure_unionᵢ_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Dire
   suffices μ (⋃ n, t n) = ⨆ n, μ (t n)
     by
     simp only [← ht, encodable.encode_injective.apply_extend μ, ← supr_eq_Union,
-      supᵢ_extend_bot Encodable.encode_injective, (· ∘ ·), Pi.bot_apply, bot_eq_empty,
+      iSup_extend_bot Encodable.encode_injective, (· ∘ ·), Pi.bot_apply, bot_eq_empty,
       measure_empty] at this
-    exact this.trans (supᵢ_extend_bot Encodable.encode_injective _)
+    exact this.trans (iSup_extend_bot Encodable.encode_injective _)
   clear! ι
   -- The `≥` inequality is trivial
-  refine' le_antisymm _ (supᵢ_le fun i => measure_mono <| subset_Union _ _)
+  refine' le_antisymm _ (iSup_le fun i => measure_mono <| subset_Union _ _)
   -- Choose `T n ⊇ t n` of the same measure, put `Td n = disjointed T`
   set T : ℕ → Set α := fun n => to_measurable μ (t n)
   set Td : ℕ → Set α := disjointed T
@@ -766,10 +766,10 @@ theorem measure_unionᵢ_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Dire
     MeasurableSet.disjointed fun n => measurable_set_to_measurable _ _
   calc
     μ (⋃ n, t n) ≤ μ (⋃ n, T n) := measure_mono (Union_mono fun i => subset_to_measurable _ _)
-    _ = μ (⋃ n, Td n) := by rw [unionᵢ_disjointed]
+    _ = μ (⋃ n, Td n) := by rw [iUnion_disjointed]
     _ ≤ ∑' n, μ (Td n) := (measure_Union_le _)
-    _ = ⨆ I : Finset ℕ, ∑ n in I, μ (Td n) := ENNReal.tsum_eq_supᵢ_sum
-    _ ≤ ⨆ n, μ (t n) := supᵢ_le fun I => _
+    _ = ⨆ I : Finset ℕ, ∑ n in I, μ (Td n) := ENNReal.tsum_eq_iSup_sum
+    _ ≤ ⨆ n, μ (t n) := iSup_le fun I => _
     
   rcases hd.finset_le I with ⟨N, hN⟩
   calc
@@ -778,43 +778,43 @@ theorem measure_unionᵢ_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Dire
     _ ≤ μ (⋃ n ∈ I, T n) := (measure_mono (Union₂_mono fun n hn => disjointed_subset _ _))
     _ = μ (⋃ n ∈ I, t n) := (measure_bUnion_to_measurable I.countable_to_set _)
     _ ≤ μ (t N) := (measure_mono (Union₂_subset hN))
-    _ ≤ ⨆ n, μ (t n) := le_supᵢ (μ ∘ t) N
+    _ ≤ ⨆ n, μ (t n) := le_iSup (μ ∘ t) N
     
-#align measure_theory.measure_Union_eq_supr MeasureTheory.measure_unionᵢ_eq_supᵢ
+#align measure_theory.measure_Union_eq_supr MeasureTheory.measure_iUnion_eq_iSup
 
-/- warning: measure_theory.measure_bUnion_eq_supr -> MeasureTheory.measure_bunionᵢ_eq_supᵢ is a dubious translation:
+/- warning: measure_theory.measure_bUnion_eq_supr -> MeasureTheory.measure_biUnion_eq_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : ι -> (Set.{u1} α)} {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (DirectedOn.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i)))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : ι -> (Set.{u1} α)} {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (DirectedOn.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i)))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {s : ι -> (Set.{u2} α)} {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (DirectedOn.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7636 : Set.{u2} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7638 : Set.{u2} α) => HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7636 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7638) s) t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i)))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (s i)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_bunionᵢ_eq_supᵢₓ'. -/
-theorem measure_bunionᵢ_eq_supᵢ {s : ι → Set α} {t : Set ι} (ht : t.Countable)
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {s : ι -> (Set.{u2} α)} {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (DirectedOn.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7636 : Set.{u2} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7638 : Set.{u2} α) => HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7636 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7638) s) t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i)))) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (s i)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_biUnion_eq_iSupₓ'. -/
+theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countable)
     (hd : DirectedOn ((· ⊆ ·) on s) t) : μ (⋃ i ∈ t, s i) = ⨆ i ∈ t, μ (s i) :=
   by
   haveI := ht.to_encodable
-  rw [bUnion_eq_Union, measure_Union_eq_supr hd.directed_coe, ← supᵢ_subtype'']
-#align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_bunionᵢ_eq_supᵢ
+  rw [bUnion_eq_Union, measure_Union_eq_supr hd.directed_coe, ← iSup_subtype'']
+#align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_biUnion_eq_iSup
 
-/- warning: measure_theory.measure_Inter_eq_infi -> MeasureTheory.measure_interᵢ_eq_infᵢ is a dubious translation:
+/- warning: measure_theory.measure_Inter_eq_infi -> MeasureTheory.measure_iInter_eq_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Directed.{u1, succ u2} (Set.{u1} α) ι (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.interᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (infᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Directed.{u1, succ u2} (Set.{u1} α) ι (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iInter.{u1, succ u2} α ι (fun (i : ι) => s i))) (iInf.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7814 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7816 : Set.{u1} α) => Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7814 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7816) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.interᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (infᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_interᵢ_eq_infᵢₓ'. -/
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7814 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7816 : Set.{u1} α) => Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7814 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7816) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iInter.{u1, succ u2} α ι (fun (i : ι) => s i))) (iInf.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_iInter_eq_iInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the infimum of the measures. -/
-theorem measure_interᵢ_eq_infᵢ [Countable ι] {s : ι → Set α} (h : ∀ i, MeasurableSet (s i))
+theorem measure_iInter_eq_iInf [Countable ι] {s : ι → Set α} (h : ∀ i, MeasurableSet (s i))
     (hd : Directed (· ⊇ ·) s) (hfin : ∃ i, μ (s i) ≠ ∞) : μ (⋂ i, s i) = ⨅ i, μ (s i) :=
   by
   rcases hfin with ⟨k, hk⟩
   have : ∀ (t) (_ : t ⊆ s k), μ t ≠ ∞ := fun t ht => ne_top_of_le_ne_top hk (measure_mono ht)
-  rw [← ENNReal.sub_sub_cancel hk (infᵢ_le _ k), ENNReal.sub_infᵢ, ←
+  rw [← ENNReal.sub_sub_cancel hk (iInf_le _ k), ENNReal.sub_iInf, ←
     ENNReal.sub_sub_cancel hk (measure_mono (Inter_subset _ k)), ←
-    measure_diff (Inter_subset _ k) (MeasurableSet.interᵢ h) (this _ (Inter_subset _ k)),
+    measure_diff (Inter_subset _ k) (MeasurableSet.iInter h) (this _ (Inter_subset _ k)),
     diff_Inter, measure_Union_eq_supr]
   · congr 1
-    refine' le_antisymm (supᵢ_mono' fun i => _) (supᵢ_mono fun i => _)
+    refine' le_antisymm (iSup_mono' fun i => _) (iSup_mono fun i => _)
     · rcases hd i k with ⟨j, hji, hjk⟩
       use j
       rw [← measure_diff hjk (h _) (this _ hjk)]
@@ -822,48 +822,48 @@ theorem measure_interᵢ_eq_infᵢ [Countable ι] {s : ι → Set α} (h : ∀ i
     · rw [tsub_le_iff_right, ← measure_union disjoint_sdiff_left (h i), Set.union_comm]
       exact measure_mono (diff_subset_iff.1 <| subset.refl _)
   · exact hd.mono_comp _ fun _ _ => diff_subset_diff_right
-#align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_interᵢ_eq_infᵢ
+#align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_iInter_eq_iInf
 
-/- warning: measure_theory.tendsto_measure_Union -> MeasureTheory.tendsto_measure_unionᵢ is a dubious translation:
+/- warning: measure_theory.tendsto_measure_Union -> MeasureTheory.tendsto_measure_iUnion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : SemilatticeSup.{u2} ι] [_inst_2 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Monotone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) s) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1))) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (n : ι) => s n)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : SemilatticeSup.{u2} ι] [_inst_2 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Monotone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) s) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1))) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iUnion.{u1, succ u2} α ι (fun (n : ι) => s n)))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : SemilatticeSup.{u2} ι] [_inst_2 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Monotone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (n : ι) => s n)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_unionᵢₓ'. -/
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : SemilatticeSup.{u2} ι] [_inst_2 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Monotone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iUnion.{u1, succ u2} α ι (fun (n : ι) => s n)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_iUnionₓ'. -/
 /-- Continuity from below: the measure of the union of an increasing sequence of measurable sets
 is the limit of the measures. -/
-theorem tendsto_measure_unionᵢ [SemilatticeSup ι] [Countable ι] {s : ι → Set α} (hm : Monotone s) :
+theorem tendsto_measure_iUnion [SemilatticeSup ι] [Countable ι] {s : ι → Set α} (hm : Monotone s) :
     Tendsto (μ ∘ s) atTop (𝓝 (μ (⋃ n, s n))) :=
   by
   rw [measure_Union_eq_supr (directed_of_sup hm)]
-  exact tendsto_atTop_supᵢ fun n m hnm => measure_mono <| hm hnm
-#align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_unionᵢ
+  exact tendsto_atTop_iSup fun n m hnm => measure_mono <| hm hnm
+#align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_iUnion
 
-/- warning: measure_theory.tendsto_measure_Inter -> MeasureTheory.tendsto_measure_interᵢ is a dubious translation:
+/- warning: measure_theory.tendsto_measure_Inter -> MeasureTheory.tendsto_measure_iInter is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : SemilatticeSup.{u2} ι] {s : ι -> (Set.{u1} α)}, (forall (n : ι), MeasurableSet.{u1} α m (s n)) -> (Antitone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2))) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.interᵢ.{u1, succ u2} α ι (fun (n : ι) => s n)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : SemilatticeSup.{u2} ι] {s : ι -> (Set.{u1} α)}, (forall (n : ι), MeasurableSet.{u1} α m (s n)) -> (Antitone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2))) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iInter.{u1, succ u2} α ι (fun (n : ι) => s n)))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : SemilatticeSup.{u2} ι] {s : ι -> (Set.{u1} α)}, (forall (n : ι), MeasurableSet.{u1} α m (s n)) -> (Antitone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.interᵢ.{u1, succ u2} α ι (fun (n : ι) => s n)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_interᵢₓ'. -/
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : SemilatticeSup.{u2} ι] {s : ι -> (Set.{u1} α)}, (forall (n : ι), MeasurableSet.{u1} α m (s n)) -> (Antitone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iInter.{u1, succ u2} α ι (fun (n : ι) => s n)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_iInterₓ'. -/
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the limit of the measures. -/
-theorem tendsto_measure_interᵢ [Countable ι] [SemilatticeSup ι] {s : ι → Set α}
+theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Set α}
     (hs : ∀ n, MeasurableSet (s n)) (hm : Antitone s) (hf : ∃ i, μ (s i) ≠ ∞) :
     Tendsto (μ ∘ s) atTop (𝓝 (μ (⋂ n, s n))) :=
   by
   rw [measure_Inter_eq_infi hs (directed_of_sup hm) hf]
-  exact tendsto_atTop_infᵢ fun n m hnm => measure_mono <| hm hnm
-#align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_interᵢ
+  exact tendsto_atTop_iInf fun n m hnm => measure_mono <| hm hnm
+#align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_iInter
 
-/- warning: measure_theory.tendsto_measure_bInter_gt -> MeasureTheory.tendsto_measure_binterᵢ_gt is a dubious translation:
+/- warning: measure_theory.tendsto_measure_bInter_gt -> MeasureTheory.tendsto_measure_biInter_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) a i) -> (LE.le.{u2} ι (Preorder.toLE.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => Exists.{0} (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))) a)) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.interᵢ.{u1, succ u2} α ι (fun (r : ι) => Set.interᵢ.{u1, 0} α (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => s r))))))
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) a i) -> (LE.le.{u2} ι (Preorder.toLE.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => Exists.{0} (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))) a)) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.iInter.{u1, succ u2} α ι (fun (r : ι) => Set.iInter.{u1, 0} α (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => s r))))))
 but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1))))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) a i) -> (LE.le.{u2} ι (Preorder.toLE.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => And (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1))))) a)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.interᵢ.{u1, succ u2} α ι (fun (r : ι) => Set.interᵢ.{u1, 0} α (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) => s r))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_binterᵢ_gtₓ'. -/
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1))))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) a i) -> (LE.le.{u2} ι (Preorder.toLE.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => And (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1))))) a)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.iInter.{u1, succ u2} α ι (fun (r : ι) => Set.iInter.{u1, 0} α (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) => s r))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gtₓ'. -/
 /-- The measure of the intersection of a decreasing sequence of measurable
 sets indexed by a linear order with first countable topology is the limit of the measures. -/
-theorem tendsto_measure_binterᵢ_gt {ι : Type _} [LinearOrder ι] [TopologicalSpace ι]
+theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSpace ι]
     [OrderTopology ι] [DenselyOrdered ι] [TopologicalSpace.FirstCountableTopology ι] {s : ι → Set α}
     {a : ι} (hs : ∀ r > a, MeasurableSet (s r)) (hm : ∀ i j, a < i → i ≤ j → s i ⊆ s j)
     (hf : ∃ r > a, μ (s r) ≠ ∞) : Tendsto (μ ∘ s) (𝓝[Ioi a] a) (𝓝 (μ (⋂ r > a, s r))) :=
@@ -902,7 +902,7 @@ theorem tendsto_measure_binterᵢ_gt {ι : Type _} [LinearOrder ι] [Topological
   obtain ⟨n, hn⟩ : ∃ n, μ (s (u n)) < L := ((tendsto_order.1 A).2 _ hL).exists
   have : Ioc a (u n) ∈ 𝓝[>] a := Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, u_pos n⟩
   filter_upwards [this]with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
-#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_binterᵢ_gt
+#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gt
 
 /- warning: measure_theory.measure_limsup_eq_zero -> MeasureTheory.measure_limsup_eq_zero is a dubious translation:
 lean 3 declaration is
@@ -929,17 +929,17 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
           is_bounded_le_of_top)
         this
   -- Next we unfold `limsup` for sets and replace equality with an inequality
-  simp only [limsup_eq_infi_supr_of_nat', Set.infᵢ_eq_interᵢ, Set.supᵢ_eq_unionᵢ, ←
+  simp only [limsup_eq_infi_supr_of_nat', Set.iInf_eq_iInter, Set.iSup_eq_iUnion, ←
     nonpos_iff_eq_zero]
   -- Finally, we estimate `μ (⋃ i, t (i + n))` by `∑ i', μ (t (i + n))`
   refine'
     le_of_tendsto_of_tendsto'
       (tendsto_measure_Inter
-        (fun i => MeasurableSet.unionᵢ fun b => measurable_set_to_measurable _ _) _
+        (fun i => MeasurableSet.iUnion fun b => measurable_set_to_measurable _ _) _
         ⟨0, ne_top_of_le_ne_top ht (measure_Union_le t)⟩)
       (ENNReal.tendsto_sum_nat_add (μ ∘ t) ht) fun n => measure_Union_le _
   intro n m hnm x
-  simp only [Set.mem_unionᵢ]
+  simp only [Set.mem_iUnion]
   exact fun ⟨i, hi⟩ => ⟨i + (m - n), by simpa only [add_assoc, tsub_add_cancel_of_le hnm] using hi⟩
 #align measure_theory.measure_limsup_eq_zero MeasureTheory.measure_limsup_eq_zero
 
@@ -1032,7 +1032,7 @@ include ms
   Carathéodory measurable. -/
 def OuterMeasure.toMeasure (m : OuterMeasure α) (h : ms ≤ m.caratheodory) : Measure α :=
   Measure.ofMeasurable (fun s _ => m s) m.Empty fun f hf hd =>
-    m.unionᵢ_eq_of_caratheodory (fun i => h _ (hf i)) hd
+    m.iUnion_eq_of_caratheodory (fun i => h _ (hf i)) hd
 #align measure_theory.outer_measure.to_measure MeasureTheory.OuterMeasure.toMeasure
 -/
 
@@ -1152,7 +1152,7 @@ theorem measure_toMeasurable_inter {s t : Set α} (hs : MeasurableSet s) (ht : 
 
 instance [MeasurableSpace α] : Zero (Measure α) :=
   ⟨{  toOuterMeasure := 0
-      m_unionᵢ := fun f hf hd => tsum_zero.symm
+      m_iUnion := fun f hf hd => tsum_zero.symm
       trimmed := OuterMeasure.trim_zero }⟩
 
 #print MeasureTheory.Measure.zero_toOuterMeasure /-
@@ -1190,7 +1190,7 @@ instance [MeasurableSpace α] : Inhabited (Measure α) :=
 instance [MeasurableSpace α] : Add (Measure α) :=
   ⟨fun μ₁ μ₂ =>
     { toOuterMeasure := μ₁.toOuterMeasure + μ₂.toOuterMeasure
-      m_unionᵢ := fun s hs hd =>
+      m_iUnion := fun s hs hd =>
         show μ₁ (⋃ i, s i) + μ₂ (⋃ i, s i) = ∑' i, μ₁ (s i) + μ₂ (s i) by
           rw [ENNReal.tsum_add, measure_Union hd hs, measure_Union hd hs]
       trimmed := by rw [outer_measure.trim_add, μ₁.trimmed, μ₂.trimmed] }⟩
@@ -1234,7 +1234,7 @@ variable [SMul R' ℝ≥0∞] [IsScalarTower R' ℝ≥0∞ ℝ≥0∞]
 instance [MeasurableSpace α] : SMul R (Measure α) :=
   ⟨fun c μ =>
     { toOuterMeasure := c • μ.toOuterMeasure
-      m_unionᵢ := fun s hs hd =>
+      m_iUnion := fun s hs hd =>
         by
         rw [← smul_one_smul ℝ≥0∞ c (_ : outer_measure α)]
         dsimp
@@ -1509,61 +1509,61 @@ section Inf
 
 variable {m : Set (Measure α)}
 
-/- warning: measure_theory.measure.Inf_caratheodory -> MeasureTheory.Measure.infₛ_caratheodory is a dubious translation:
+/- warning: measure_theory.measure.Inf_caratheodory -> MeasureTheory.Measure.sInf_caratheodory is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)} (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α (MeasureTheory.OuterMeasure.caratheodory.{u1} α (InfSet.infₛ.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m))) s)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)} (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α (MeasureTheory.OuterMeasure.caratheodory.{u1} α (InfSet.sInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)} (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α (MeasureTheory.OuterMeasure.caratheodory.{u1} α (InfSet.infₛ.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toInfSet.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m))) s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.Inf_caratheodory MeasureTheory.Measure.infₛ_caratheodoryₓ'. -/
-theorem infₛ_caratheodory (s : Set α) (hs : MeasurableSet s) :
-    measurable_set[(infₛ (toOuterMeasure '' m)).caratheodory] s :=
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)} (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α (MeasureTheory.OuterMeasure.caratheodory.{u1} α (InfSet.sInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toInfSet.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m))) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.Inf_caratheodory MeasureTheory.Measure.sInf_caratheodoryₓ'. -/
+theorem sInf_caratheodory (s : Set α) (hs : MeasurableSet s) :
+    measurable_set[(sInf (toOuterMeasure '' m)).caratheodory] s :=
   by
   rw [outer_measure.Inf_eq_bounded_by_Inf_gen]
   refine' outer_measure.bounded_by_caratheodory fun t => _
-  simp only [outer_measure.Inf_gen, le_infᵢ_iff, ball_image_iff, coe_to_outer_measure,
+  simp only [outer_measure.Inf_gen, le_iInf_iff, ball_image_iff, coe_to_outer_measure,
     measure_eq_infi t]
   intro μ hμ u htu hu
   have hm : ∀ {s t}, s ⊆ t → outer_measure.Inf_gen (to_outer_measure '' m) s ≤ μ t :=
     by
     intro s t hst
     rw [outer_measure.Inf_gen_def]
-    refine' infᵢ_le_of_le μ.to_outer_measure (infᵢ_le_of_le (mem_image_of_mem _ hμ) _)
+    refine' iInf_le_of_le μ.to_outer_measure (iInf_le_of_le (mem_image_of_mem _ hμ) _)
     rw [to_outer_measure_apply]
     refine' measure_mono hst
   rw [← measure_inter_add_diff u hs]
   refine' add_le_add (hm <| inter_subset_inter_left _ htu) (hm <| diff_subset_diff_left htu)
-#align measure_theory.measure.Inf_caratheodory MeasureTheory.Measure.infₛ_caratheodory
+#align measure_theory.measure.Inf_caratheodory MeasureTheory.Measure.sInf_caratheodory
 
 instance [MeasurableSpace α] : InfSet (Measure α) :=
-  ⟨fun m => (infₛ (toOuterMeasure '' m)).toMeasure <| infₛ_caratheodory⟩
+  ⟨fun m => (sInf (toOuterMeasure '' m)).toMeasure <| sInf_caratheodory⟩
 
-/- warning: measure_theory.measure.Inf_apply -> MeasureTheory.Measure.infₛ_apply is a dubious translation:
+/- warning: measure_theory.measure.Inf_apply -> MeasureTheory.Measure.sInf_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (InfSet.infₛ.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.hasInf.{u1} α m0) m) s) (coeFn.{succ u1, succ u1} (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u1} α) (InfSet.infₛ.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m)) s))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (InfSet.sInf.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.hasInf.{u1} α m0) m) s) (coeFn.{succ u1, succ u1} (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u1} α) (InfSet.sInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m)) s))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (InfSet.infₛ.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instInfSetMeasure.{u1} α m0) m)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (InfSet.infₛ.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toInfSet.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m)) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.Inf_apply MeasureTheory.Measure.infₛ_applyₓ'. -/
-theorem infₛ_apply (hs : MeasurableSet s) : infₛ m s = infₛ (toOuterMeasure '' m) s :=
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (InfSet.sInf.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instInfSetMeasure.{u1} α m0) m)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (InfSet.sInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toInfSet.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m)) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.Inf_apply MeasureTheory.Measure.sInf_applyₓ'. -/
+theorem sInf_apply (hs : MeasurableSet s) : sInf m s = sInf (toOuterMeasure '' m) s :=
   toMeasure_apply _ _ hs
-#align measure_theory.measure.Inf_apply MeasureTheory.Measure.infₛ_apply
+#align measure_theory.measure.Inf_apply MeasureTheory.Measure.sInf_apply
 
-private theorem measure_Inf_le (h : μ ∈ m) : infₛ m ≤ μ :=
-  have : infₛ (toOuterMeasure '' m) ≤ μ.toOuterMeasure := infₛ_le (mem_image_of_mem _ h)
-  fun s hs => by rw [infₛ_apply hs, ← to_outer_measure_apply] <;> exact this s
+private theorem measure_Inf_le (h : μ ∈ m) : sInf m ≤ μ :=
+  have : sInf (toOuterMeasure '' m) ≤ μ.toOuterMeasure := sInf_le (mem_image_of_mem _ h)
+  fun s hs => by rw [sInf_apply hs, ← to_outer_measure_apply] <;> exact this s
 #align measure_theory.measure.measure_Inf_le measure_theory.measure.measure_Inf_le
 
-private theorem measure_le_Inf (h : ∀ μ' ∈ m, μ ≤ μ') : μ ≤ infₛ m :=
-  have : μ.toOuterMeasure ≤ infₛ (toOuterMeasure '' m) :=
-    le_infₛ <| ball_image_of_ball fun μ hμ => toOuterMeasure_le.2 <| h _ hμ
-  fun s hs => by rw [infₛ_apply hs, ← to_outer_measure_apply] <;> exact this s
+private theorem measure_le_Inf (h : ∀ μ' ∈ m, μ ≤ μ') : μ ≤ sInf m :=
+  have : μ.toOuterMeasure ≤ sInf (toOuterMeasure '' m) :=
+    le_sInf <| ball_image_of_ball fun μ hμ => toOuterMeasure_le.2 <| h _ hμ
+  fun s hs => by rw [sInf_apply hs, ← to_outer_measure_apply] <;> exact this s
 #align measure_theory.measure.measure_le_Inf measure_theory.measure.measure_le_Inf
 
 instance [MeasurableSpace α] : CompleteSemilatticeInf (Measure α) :=
   { (by infer_instance : PartialOrder (Measure α)),
     (by infer_instance :
       InfSet (Measure α)) with
-    inf_le := fun s a => measure_infₛ_le
-    le_inf := fun s a => measure_le_infₛ }
+    inf_le := fun s a => measure_sInf_le
+    le_inf := fun s a => measure_le_sInf }
 
 instance [MeasurableSpace α] : CompleteLattice (Measure α) :=
   {/- Adding an explicit `top` makes `leanchecker` fail, see lean#364, disable for now
@@ -2663,13 +2663,13 @@ theorem restrict_union_le (s s' : Set α) : μ.restrict (s ∪ s') ≤ μ.restri
 #align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_le
 -/
 
-/- warning: measure_theory.measure.restrict_Union_apply_ae -> MeasureTheory.Measure.restrict_unionᵢ_apply_ae is a dubious translation:
+/- warning: measure_theory.measure.restrict_Union_apply_ae -> MeasureTheory.Measure.restrict_iUnion_apply_ae is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) s)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (s i) μ) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) s)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (s i) μ) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) s)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (s i) μ) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_unionᵢ_apply_aeₓ'. -/
-theorem restrict_unionᵢ_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) s)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (s i) μ) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_iUnion_apply_aeₓ'. -/
+theorem restrict_iUnion_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
   by
@@ -2677,33 +2677,33 @@ theorem restrict_unionᵢ_apply_ae [Countable ι] {s : ι → Set α} (hd : Pair
   exact
     measure_Union₀ (hd.mono fun i j h => h.mono (inter_subset_right _ _) (inter_subset_right _ _))
       fun i => ht.null_measurable_set.inter (hm i)
-#align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_unionᵢ_apply_ae
+#align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_iUnion_apply_ae
 
-/- warning: measure_theory.measure.restrict_Union_apply -> MeasureTheory.Measure.restrict_unionᵢ_apply is a dubious translation:
+/- warning: measure_theory.measure.restrict_Union_apply -> MeasureTheory.Measure.restrict_iUnion_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_unionᵢ_applyₓ'. -/
-theorem restrict_unionᵢ_apply [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_iUnion_applyₓ'. -/
+theorem restrict_iUnion_apply [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
-  restrict_unionᵢ_apply_ae hd.AEDisjoint (fun i => (hm i).NullMeasurableSet) ht
-#align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_unionᵢ_apply
+  restrict_iUnion_apply_ae hd.AEDisjoint (fun i => (hm i).NullMeasurableSet) ht
+#align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_iUnion_apply
 
-/- warning: measure_theory.measure.restrict_Union_apply_eq_supr -> MeasureTheory.Measure.restrict_unionᵢ_apply_eq_supᵢ is a dubious translation:
+/- warning: measure_theory.measure.restrict_Union_apply_eq_supr -> MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26330 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26332 : Set.{u1} α) => HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26330 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26332) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_unionᵢ_apply_eq_supᵢₓ'. -/
-theorem restrict_unionᵢ_apply_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s)
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26330 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26332 : Set.{u1} α) => HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26330 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26332) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_iUnion_apply_eq_iSupₓ'. -/
+theorem restrict_iUnion_apply_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s)
     {t : Set α} (ht : MeasurableSet t) : μ.restrict (⋃ i, s i) t = ⨆ i, μ.restrict (s i) t :=
   by
   simp only [restrict_apply ht, inter_Union]
   rw [measure_Union_eq_supr]
   exacts[hd.mono_comp _ fun s₁ s₂ => inter_subset_inter_right _]
-#align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_unionᵢ_apply_eq_supᵢ
+#align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup
 
 /- warning: measure_theory.measure.restrict_map -> MeasureTheory.Measure.restrict_map is a dubious translation:
 lean 3 declaration is
@@ -2788,19 +2788,19 @@ theorem restrict_union_congr :
 #align measure_theory.measure.restrict_union_congr MeasureTheory.Measure.restrict_union_congr
 -/
 
-#print MeasureTheory.Measure.restrict_finset_bunionᵢ_congr /-
-theorem restrict_finset_bunionᵢ_congr {s : Finset ι} {t : ι → Set α} :
+#print MeasureTheory.Measure.restrict_finset_biUnion_congr /-
+theorem restrict_finset_biUnion_congr {s : Finset ι} {t : ι → Set α} :
     μ.restrict (⋃ i ∈ s, t i) = ν.restrict (⋃ i ∈ s, t i) ↔
       ∀ i ∈ s, μ.restrict (t i) = ν.restrict (t i) :=
   by
   induction' s using Finset.induction_on with i s hi hs; · simp
   simp only [forall_eq_or_imp, Union_Union_eq_or_left, Finset.mem_insert]
   rw [restrict_union_congr, ← hs]
-#align measure_theory.measure.restrict_finset_bUnion_congr MeasureTheory.Measure.restrict_finset_bunionᵢ_congr
+#align measure_theory.measure.restrict_finset_bUnion_congr MeasureTheory.Measure.restrict_finset_biUnion_congr
 -/
 
-#print MeasureTheory.Measure.restrict_unionᵢ_congr /-
-theorem restrict_unionᵢ_congr [Countable ι] {s : ι → Set α} :
+#print MeasureTheory.Measure.restrict_iUnion_congr /-
+theorem restrict_iUnion_congr [Countable ι] {s : ι → Set α} :
     μ.restrict (⋃ i, s i) = ν.restrict (⋃ i, s i) ↔ ∀ i, μ.restrict (s i) = ν.restrict (s i) :=
   by
   refine' ⟨fun h i => restrict_congr_mono (subset_Union _ _) h, fun h => _⟩
@@ -2809,38 +2809,38 @@ theorem restrict_unionᵢ_congr [Countable ι] {s : ι → Set α} :
     directed_of_sup fun t₁ t₂ ht => bUnion_subset_bUnion_left ht
   rw [Union_eq_Union_finset]
   simp only [restrict_Union_apply_eq_supr D ht, restrict_finset_bUnion_congr.2 fun i hi => h i]
-#align measure_theory.measure.restrict_Union_congr MeasureTheory.Measure.restrict_unionᵢ_congr
+#align measure_theory.measure.restrict_Union_congr MeasureTheory.Measure.restrict_iUnion_congr
 -/
 
-#print MeasureTheory.Measure.restrict_bunionᵢ_congr /-
-theorem restrict_bunionᵢ_congr {s : Set ι} {t : ι → Set α} (hc : s.Countable) :
+#print MeasureTheory.Measure.restrict_biUnion_congr /-
+theorem restrict_biUnion_congr {s : Set ι} {t : ι → Set α} (hc : s.Countable) :
     μ.restrict (⋃ i ∈ s, t i) = ν.restrict (⋃ i ∈ s, t i) ↔
       ∀ i ∈ s, μ.restrict (t i) = ν.restrict (t i) :=
   by
   haveI := hc.to_encodable
   simp only [bUnion_eq_Union, SetCoe.forall', restrict_Union_congr]
-#align measure_theory.measure.restrict_bUnion_congr MeasureTheory.Measure.restrict_bunionᵢ_congr
+#align measure_theory.measure.restrict_bUnion_congr MeasureTheory.Measure.restrict_biUnion_congr
 -/
 
-#print MeasureTheory.Measure.restrict_unionₛ_congr /-
-theorem restrict_unionₛ_congr {S : Set (Set α)} (hc : S.Countable) :
+#print MeasureTheory.Measure.restrict_sUnion_congr /-
+theorem restrict_sUnion_congr {S : Set (Set α)} (hc : S.Countable) :
     μ.restrict (⋃₀ S) = ν.restrict (⋃₀ S) ↔ ∀ s ∈ S, μ.restrict s = ν.restrict s := by
   rw [sUnion_eq_bUnion, restrict_bUnion_congr hc]
-#align measure_theory.measure.restrict_sUnion_congr MeasureTheory.Measure.restrict_unionₛ_congr
+#align measure_theory.measure.restrict_sUnion_congr MeasureTheory.Measure.restrict_sUnion_congr
 -/
 
-#print MeasureTheory.Measure.restrict_infₛ_eq_infₛ_restrict /-
+#print MeasureTheory.Measure.restrict_sInf_eq_sInf_restrict /-
 /-- This lemma shows that `Inf` and `restrict` commute for measures. -/
-theorem restrict_infₛ_eq_infₛ_restrict {m0 : MeasurableSpace α} {m : Set (Measure α)}
+theorem restrict_sInf_eq_sInf_restrict {m0 : MeasurableSpace α} {m : Set (Measure α)}
     (hm : m.Nonempty) (ht : MeasurableSet t) :
-    (infₛ m).restrict t = infₛ ((fun μ : Measure α => μ.restrict t) '' m) :=
+    (sInf m).restrict t = sInf ((fun μ : Measure α => μ.restrict t) '' m) :=
   by
   ext1 s hs
-  simp_rw [infₛ_apply hs, restrict_apply hs, infₛ_apply (MeasurableSet.inter hs ht),
+  simp_rw [sInf_apply hs, restrict_apply hs, sInf_apply (MeasurableSet.inter hs ht),
     Set.image_image, restrict_to_outer_measure_eq_to_outer_measure_restrict ht, ←
     Set.image_image _ to_outer_measure, ← outer_measure.restrict_Inf_eq_Inf_restrict _ (hm.image _),
     outer_measure.restrict_apply]
-#align measure_theory.measure.restrict_Inf_eq_Inf_restrict MeasureTheory.Measure.restrict_infₛ_eq_infₛ_restrict
+#align measure_theory.measure.restrict_Inf_eq_Inf_restrict MeasureTheory.Measure.restrict_sInf_eq_sInf_restrict
 -/
 
 /- warning: measure_theory.measure.exists_mem_of_measure_ne_zero_of_ae -> MeasureTheory.Measure.exists_mem_of_measure_ne_zero_of_ae is a dubious translation:
@@ -2859,47 +2859,47 @@ theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
 /-! ### Extensionality results -/
 
 
-#print MeasureTheory.Measure.ext_iff_of_unionᵢ_eq_univ /-
+#print MeasureTheory.Measure.ext_iff_of_iUnion_eq_univ /-
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
   (formulated using `Union`). -/
-theorem ext_iff_of_unionᵢ_eq_univ [Countable ι] {s : ι → Set α} (hs : (⋃ i, s i) = univ) :
+theorem ext_iff_of_iUnion_eq_univ [Countable ι] {s : ι → Set α} (hs : (⋃ i, s i) = univ) :
     μ = ν ↔ ∀ i, μ.restrict (s i) = ν.restrict (s i) := by
   rw [← restrict_Union_congr, hs, restrict_univ, restrict_univ]
-#align measure_theory.measure.ext_iff_of_Union_eq_univ MeasureTheory.Measure.ext_iff_of_unionᵢ_eq_univ
+#align measure_theory.measure.ext_iff_of_Union_eq_univ MeasureTheory.Measure.ext_iff_of_iUnion_eq_univ
 -/
 
 alias ext_iff_of_Union_eq_univ ↔ _ ext_of_Union_eq_univ
-#align measure_theory.measure.ext_of_Union_eq_univ MeasureTheory.Measure.ext_of_unionᵢ_eq_univ
+#align measure_theory.measure.ext_of_Union_eq_univ MeasureTheory.Measure.ext_of_iUnion_eq_univ
 
-#print MeasureTheory.Measure.ext_iff_of_bunionᵢ_eq_univ /-
+#print MeasureTheory.Measure.ext_iff_of_biUnion_eq_univ /-
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
   (formulated using `bUnion`). -/
-theorem ext_iff_of_bunionᵢ_eq_univ {S : Set ι} {s : ι → Set α} (hc : S.Countable)
+theorem ext_iff_of_biUnion_eq_univ {S : Set ι} {s : ι → Set α} (hc : S.Countable)
     (hs : (⋃ i ∈ S, s i) = univ) : μ = ν ↔ ∀ i ∈ S, μ.restrict (s i) = ν.restrict (s i) := by
   rw [← restrict_bUnion_congr hc, hs, restrict_univ, restrict_univ]
-#align measure_theory.measure.ext_iff_of_bUnion_eq_univ MeasureTheory.Measure.ext_iff_of_bunionᵢ_eq_univ
+#align measure_theory.measure.ext_iff_of_bUnion_eq_univ MeasureTheory.Measure.ext_iff_of_biUnion_eq_univ
 -/
 
 alias ext_iff_of_bUnion_eq_univ ↔ _ ext_of_bUnion_eq_univ
-#align measure_theory.measure.ext_of_bUnion_eq_univ MeasureTheory.Measure.ext_of_bunionᵢ_eq_univ
+#align measure_theory.measure.ext_of_bUnion_eq_univ MeasureTheory.Measure.ext_of_biUnion_eq_univ
 
-#print MeasureTheory.Measure.ext_iff_of_unionₛ_eq_univ /-
+#print MeasureTheory.Measure.ext_iff_of_sUnion_eq_univ /-
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
   (formulated using `sUnion`). -/
-theorem ext_iff_of_unionₛ_eq_univ {S : Set (Set α)} (hc : S.Countable) (hs : ⋃₀ S = univ) :
+theorem ext_iff_of_sUnion_eq_univ {S : Set (Set α)} (hc : S.Countable) (hs : ⋃₀ S = univ) :
     μ = ν ↔ ∀ s ∈ S, μ.restrict s = ν.restrict s :=
-  ext_iff_of_bunionᵢ_eq_univ hc <| by rwa [← sUnion_eq_bUnion]
-#align measure_theory.measure.ext_iff_of_sUnion_eq_univ MeasureTheory.Measure.ext_iff_of_unionₛ_eq_univ
+  ext_iff_of_biUnion_eq_univ hc <| by rwa [← sUnion_eq_bUnion]
+#align measure_theory.measure.ext_iff_of_sUnion_eq_univ MeasureTheory.Measure.ext_iff_of_sUnion_eq_univ
 -/
 
 alias ext_iff_of_sUnion_eq_univ ↔ _ ext_of_sUnion_eq_univ
-#align measure_theory.measure.ext_of_sUnion_eq_univ MeasureTheory.Measure.ext_of_unionₛ_eq_univ
+#align measure_theory.measure.ext_of_sUnion_eq_univ MeasureTheory.Measure.ext_of_sUnion_eq_univ
 
 /- warning: measure_theory.measure.ext_of_generate_from_of_cover -> MeasureTheory.Measure.ext_of_generateFrom_of_cover is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (IsPiSystem.{u1} α S) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α T) (Set.univ.{u1} α)) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))))) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν t))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (IsPiSystem.{u1} α S) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α T) (Set.univ.{u1} α)) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))))) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν t))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (IsPiSystem.{u1} α S) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α T) (Set.univ.{u1} α)) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))))) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) t))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (IsPiSystem.{u1} α S) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α T) (Set.univ.{u1} α)) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))))) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) t))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_coverₓ'. -/
 theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = generateFrom S)
     (hc : T.Countable) (h_inter : IsPiSystem S) (hU : ⋃₀ T = univ) (htop : ∀ t ∈ T, μ t ≠ ∞)
@@ -2917,15 +2917,15 @@ theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = gen
       ENNReal.add_right_inj] at this
     exact ne_top_of_le_ne_top (htop t ht) (measure_mono <| Set.inter_subset_left _ _)
   · intro f hfd hfm h_eq
-    simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.unionᵢ hfm)] at h_eq⊢
+    simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.iUnion hfm)] at h_eq⊢
     simp only [measure_Union hfd hfm, h_eq]
 #align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_cover
 
 /- warning: measure_theory.measure.ext_of_generate_from_of_cover_subset -> MeasureTheory.Measure.ext_of_generateFrom_of_cover_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (IsPiSystem.{u1} α S) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) T S) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α T) (Set.univ.{u1} α)) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s T) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (IsPiSystem.{u1} α S) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) T S) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α T) (Set.univ.{u1} α)) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s T) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (IsPiSystem.{u1} α S) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) T S) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α T) (Set.univ.{u1} α)) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s T) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (IsPiSystem.{u1} α S) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) T S) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α T) (Set.univ.{u1} α)) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s T) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ext_of_generate_from_of_cover_subset MeasureTheory.Measure.ext_of_generateFrom_of_cover_subsetₓ'. -/
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
   and they are both finite on a increasing spanning sequence of sets in the π-system.
@@ -2940,17 +2940,17 @@ theorem ext_of_generateFrom_of_cover_subset {S T : Set (Set α)} (h_gen : ‹_
   · exact h_eq _ (h_inter _ hs _ (h_sub ht) H)
 #align measure_theory.measure.ext_of_generate_from_of_cover_subset MeasureTheory.Measure.ext_of_generateFrom_of_cover_subset
 
-/- warning: measure_theory.measure.ext_of_generate_from_of_Union -> MeasureTheory.Measure.ext_of_generateFrom_of_unionᵢ is a dubious translation:
+/- warning: measure_theory.measure.ext_of_generate_from_of_Union -> MeasureTheory.Measure.ext_of_generateFrom_of_iUnion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} (C : Set.{u1} (Set.{u1} α)) (B : Nat -> (Set.{u1} α)), (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α C)) -> (IsPiSystem.{u1} α C) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionᵢ.{u1, 1} α Nat (fun (i : Nat) => B i)) (Set.univ.{u1} α)) -> (forall (i : Nat), Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (B i) C) -> (forall (i : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (B i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s C) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} (C : Set.{u1} (Set.{u1} α)) (B : Nat -> (Set.{u1} α)), (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α C)) -> (IsPiSystem.{u1} α C) -> (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, 1} α Nat (fun (i : Nat) => B i)) (Set.univ.{u1} α)) -> (forall (i : Nat), Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (B i) C) -> (forall (i : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (B i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s C) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} (C : Set.{u1} (Set.{u1} α)) (B : Nat -> (Set.{u1} α)), (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α C)) -> (IsPiSystem.{u1} α C) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionᵢ.{u1, 1} α Nat (fun (i : Nat) => B i)) (Set.univ.{u1} α)) -> (forall (i : Nat), Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (B i) C) -> (forall (i : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (B i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s C) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_unionᵢₓ'. -/
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} (C : Set.{u1} (Set.{u1} α)) (B : Nat -> (Set.{u1} α)), (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α C)) -> (IsPiSystem.{u1} α C) -> (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, 1} α Nat (fun (i : Nat) => B i)) (Set.univ.{u1} α)) -> (forall (i : Nat), Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (B i) C) -> (forall (i : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (B i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s C) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_iUnionₓ'. -/
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
   and they are both finite on a increasing spanning sequence of sets in the π-system.
   This lemma is formulated using `Union`.
   `finite_spanning_sets_in.ext` is a reformulation of this lemma. -/
-theorem ext_of_generateFrom_of_unionᵢ (C : Set (Set α)) (B : ℕ → Set α) (hA : ‹_› = generateFrom C)
+theorem ext_of_generateFrom_of_iUnion (C : Set (Set α)) (B : ℕ → Set α) (hA : ‹_› = generateFrom C)
     (hC : IsPiSystem C) (h1B : (⋃ i, B i) = univ) (h2B : ∀ i, B i ∈ C) (hμB : ∀ i, μ (B i) ≠ ∞)
     (h_eq : ∀ s ∈ C, μ s = ν s) : μ = ν :=
   by
@@ -2959,7 +2959,7 @@ theorem ext_of_generateFrom_of_unionᵢ (C : Set (Set α)) (B : ℕ → Set α)
     apply h2B
   · rintro _ ⟨i, rfl⟩
     apply hμB
-#align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_unionᵢ
+#align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_iUnion
 
 section Dirac
 
@@ -3061,7 +3061,7 @@ include m0
 /-- Sum of an indexed family of measures. -/
 def sum (f : ι → Measure α) : Measure α :=
   (OuterMeasure.sum fun i => (f i).toOuterMeasure).toMeasure <|
-    le_trans (le_infᵢ fun i => le_to_outer_measure_caratheodory _)
+    le_trans (le_iInf fun i => le_to_outer_measure_caratheodory _)
       (OuterMeasure.le_sum_caratheodory _)
 #align measure_theory.measure.sum MeasureTheory.Measure.sum
 -/
@@ -3177,13 +3177,13 @@ theorem sum_coe_finset (s : Finset ι) (μ : ι → Measure α) :
 
 /- warning: measure_theory.measure.ae_sum_eq -> MeasureTheory.Measure.ae_sum_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] (μ : ι -> (MeasureTheory.Measure.{u1} α m0)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (μ i)))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] (μ : ι -> (MeasureTheory.Measure.{u1} α m0)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (μ i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] (μ : ι -> (MeasureTheory.Measure.{u1} α m0)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toSupSet.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (μ i)))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] (μ : ι -> (MeasureTheory.Measure.{u1} α m0)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toSupSet.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (μ i)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_sum_eq MeasureTheory.Measure.ae_sum_eqₓ'. -/
 @[simp]
 theorem ae_sum_eq [Countable ι] (μ : ι → Measure α) : (sum μ).ae = ⨆ i, (μ i).ae :=
-  Filter.ext fun s => ae_sum_iff.trans mem_supᵢ.symm
+  Filter.ext fun s => ae_sum_iff.trans mem_iSup.symm
 #align measure_theory.measure.ae_sum_eq MeasureTheory.Measure.ae_sum_eq
 
 #print MeasureTheory.Measure.sum_bool /-
@@ -3287,32 +3287,32 @@ omit m0
 
 end Sum
 
-#print MeasureTheory.Measure.restrict_unionᵢ_ae /-
-theorem restrict_unionᵢ_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
+#print MeasureTheory.Measure.restrict_iUnion_ae /-
+theorem restrict_iUnion_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
   ext fun t ht => by simp only [sum_apply _ ht, restrict_Union_apply_ae hd hm ht]
-#align measure_theory.measure.restrict_Union_ae MeasureTheory.Measure.restrict_unionᵢ_ae
+#align measure_theory.measure.restrict_Union_ae MeasureTheory.Measure.restrict_iUnion_ae
 -/
 
-/- warning: measure_theory.measure.restrict_Union -> MeasureTheory.Measure.restrict_unionᵢ is a dubious translation:
+/- warning: measure_theory.measure.restrict_Union -> MeasureTheory.Measure.restrict_iUnion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_unionᵢₓ'. -/
-theorem restrict_unionᵢ [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_iUnionₓ'. -/
+theorem restrict_iUnion [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
-  restrict_unionᵢ_ae hd.AEDisjoint fun i => (hm i).NullMeasurableSet
-#align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_unionᵢ
+  restrict_iUnion_ae hd.AEDisjoint fun i => (hm i).NullMeasurableSet
+#align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_iUnion
 
-#print MeasureTheory.Measure.restrict_unionᵢ_le /-
-theorem restrict_unionᵢ_le [Countable ι] {s : ι → Set α} :
+#print MeasureTheory.Measure.restrict_iUnion_le /-
+theorem restrict_iUnion_le [Countable ι] {s : ι → Set α} :
     μ.restrict (⋃ i, s i) ≤ sum fun i => μ.restrict (s i) :=
   by
   intro t ht
   suffices μ (⋃ i, t ∩ s i) ≤ ∑' i, μ (t ∩ s i) by simpa [ht, inter_Union]
   apply measure_Union_le
-#align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_unionᵢ_le
+#align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_iUnion_le
 -/
 
 section Count
@@ -4235,55 +4235,55 @@ theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : Measura
   · simp [map_of_not_ae_measurable h]
 #align measure_theory.ae_map_mem_range MeasureTheory.ae_map_mem_range
 
-/- warning: measure_theory.ae_restrict_Union_eq -> MeasureTheory.ae_restrict_unionᵢ_eq is a dubious translation:
+/- warning: measure_theory.ae_restrict_Union_eq -> MeasureTheory.ae_restrict_iUnion_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] (s : ι -> (Set.{u1} α)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i)))) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] (s : ι -> (Set.{u1} α)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] (s : ι -> (Set.{u1} α)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i)))) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toSupSet.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_unionᵢ_eqₓ'. -/
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] (s : ι -> (Set.{u1} α)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => s i)))) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toSupSet.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_iUnion_eqₓ'. -/
 @[simp]
-theorem ae_restrict_unionᵢ_eq [Countable ι] (s : ι → Set α) :
+theorem ae_restrict_iUnion_eq [Countable ι] (s : ι → Set α) :
     (μ.restrict (⋃ i, s i)).ae = ⨆ i, (μ.restrict (s i)).ae :=
-  le_antisymm ((ae_sum_eq fun i => μ.restrict (s i)) ▸ ae_mono restrict_unionᵢ_le) <|
-    supᵢ_le fun i => ae_mono <| restrict_mono (subset_unionᵢ s i) le_rfl
-#align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_unionᵢ_eq
+  le_antisymm ((ae_sum_eq fun i => μ.restrict (s i)) ▸ ae_mono restrict_iUnion_le) <|
+    iSup_le fun i => ae_mono <| restrict_mono (subset_iUnion s i) le_rfl
+#align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_iUnion_eq
 
 #print MeasureTheory.ae_restrict_union_eq /-
 @[simp]
 theorem ae_restrict_union_eq (s t : Set α) :
     (μ.restrict (s ∪ t)).ae = (μ.restrict s).ae ⊔ (μ.restrict t).ae := by
-  simp [union_eq_Union, supᵢ_bool_eq]
+  simp [union_eq_Union, iSup_bool_eq]
 #align measure_theory.ae_restrict_union_eq MeasureTheory.ae_restrict_union_eq
 -/
 
-/- warning: measure_theory.ae_restrict_bUnion_eq -> MeasureTheory.ae_restrict_bunionᵢ_eq is a dubious translation:
+/- warning: measure_theory.ae_restrict_bUnion_eq -> MeasureTheory.ae_restrict_biUnion_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i))))) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => supᵢ.{u1, 0} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i))))) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => iSup.{u1, 0} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (Eq.{succ u2} (Filter.{u2} α) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i))))) (supᵢ.{u2, succ u1} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι (fun (i : ι) => supᵢ.{u2, 0} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_bunionᵢ_eqₓ'. -/
-theorem ae_restrict_bunionᵢ_eq (s : ι → Set α) {t : Set ι} (ht : t.Countable) :
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (Eq.{succ u2} (Filter.{u2} α) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i))))) (iSup.{u2, succ u1} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι (fun (i : ι) => iSup.{u2, 0} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_biUnion_eqₓ'. -/
+theorem ae_restrict_biUnion_eq (s : ι → Set α) {t : Set ι} (ht : t.Countable) :
     (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae :=
   by
   haveI := ht.to_subtype
-  rw [bUnion_eq_Union, ae_restrict_Union_eq, ← supᵢ_subtype'']
-#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_bunionᵢ_eq
+  rw [bUnion_eq_Union, ae_restrict_Union_eq, ← iSup_subtype'']
+#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_biUnion_eq
 
-/- warning: measure_theory.ae_restrict_bUnion_finset_eq -> MeasureTheory.ae_restrict_bunionᵢ_finset_eq is a dubious translation:
+/- warning: measure_theory.ae_restrict_bUnion_finset_eq -> MeasureTheory.ae_restrict_biUnion_finset_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u2} ι), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => s i))))) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => supᵢ.{u1, 0} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u2} ι), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => s i))))) (iSup.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => iSup.{u1, 0} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) (t : Finset.{u1} ι), Eq.{succ u2} (Filter.{u2} α) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => s i))))) (supᵢ.{u2, succ u1} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι (fun (i : ι) => supᵢ.{u2, 0} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_bunionᵢ_finset_eqₓ'. -/
-theorem ae_restrict_bunionᵢ_finset_eq (s : ι → Set α) (t : Finset ι) :
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) (t : Finset.{u1} ι), Eq.{succ u2} (Filter.{u2} α) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => s i))))) (iSup.{u2, succ u1} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι (fun (i : ι) => iSup.{u2, 0} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_biUnion_finset_eqₓ'. -/
+theorem ae_restrict_biUnion_finset_eq (s : ι → Set α) (t : Finset ι) :
     (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae :=
-  ae_restrict_bunionᵢ_eq s t.countable_toSet
-#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_bunionᵢ_finset_eq
+  ae_restrict_biUnion_eq s t.countable_toSet
+#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_biUnion_finset_eq
 
-#print MeasureTheory.ae_restrict_unionᵢ_iff /-
-theorem ae_restrict_unionᵢ_iff [Countable ι] (s : ι → Set α) (p : α → Prop) :
+#print MeasureTheory.ae_restrict_iUnion_iff /-
+theorem ae_restrict_iUnion_iff [Countable ι] (s : ι → Set α) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i, s i), p x) ↔ ∀ i, ∀ᵐ x ∂μ.restrict (s i), p x := by simp
-#align measure_theory.ae_restrict_Union_iff MeasureTheory.ae_restrict_unionᵢ_iff
+#align measure_theory.ae_restrict_Union_iff MeasureTheory.ae_restrict_iUnion_iff
 -/
 
 #print MeasureTheory.ae_restrict_union_iff /-
@@ -4292,61 +4292,61 @@ theorem ae_restrict_union_iff (s t : Set α) (p : α → Prop) :
 #align measure_theory.ae_restrict_union_iff MeasureTheory.ae_restrict_union_iff
 -/
 
-/- warning: measure_theory.ae_restrict_bUnion_iff -> MeasureTheory.ae_restrict_bunionᵢ_iff is a dubious translation:
+/- warning: measure_theory.ae_restrict_bUnion_iff -> MeasureTheory.ae_restrict_biUnion_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (forall (p : α -> Prop), Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i)))))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) -> (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (forall (p : α -> Prop), Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i)))))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) -> (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (forall (p : α -> Prop), Iff (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i)))))) (forall (i : ι), (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) -> (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_bunionᵢ_iffₓ'. -/
-theorem ae_restrict_bunionᵢ_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (p : α → Prop) :
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (forall (p : α -> Prop), Iff (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i)))))) (forall (i : ι), (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) -> (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_biUnion_iffₓ'. -/
+theorem ae_restrict_biUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
   simp_rw [Filter.Eventually, ae_restrict_bUnion_eq s ht, mem_supr]
-#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_bunionᵢ_iff
+#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_biUnion_iff
 
-/- warning: measure_theory.ae_restrict_bUnion_finset_iff -> MeasureTheory.ae_restrict_bunionᵢ_finset_iff is a dubious translation:
+/- warning: measure_theory.ae_restrict_bUnion_finset_iff -> MeasureTheory.ae_restrict_biUnion_finset_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u2} ι) (p : α -> Prop), Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => s i)))))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) -> (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u2} ι) (p : α -> Prop), Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => s i)))))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) -> (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) (t : Finset.{u1} ι) (p : α -> Prop), Iff (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => s i)))))) (forall (i : ι), (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) -> (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_bunionᵢ_finset_iffₓ'. -/
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) (t : Finset.{u1} ι) (p : α -> Prop), Iff (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => s i)))))) (forall (i : ι), (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) -> (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_biUnion_finset_iffₓ'. -/
 @[simp]
-theorem ae_restrict_bunionᵢ_finset_iff (s : ι → Set α) (t : Finset ι) (p : α → Prop) :
+theorem ae_restrict_biUnion_finset_iff (s : ι → Set α) (t : Finset ι) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
   simp_rw [Filter.Eventually, ae_restrict_bUnion_finset_eq s, mem_supr]
-#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_bunionᵢ_finset_iff
+#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_biUnion_finset_iff
 
-/- warning: measure_theory.ae_eq_restrict_Union_iff -> MeasureTheory.ae_eq_restrict_unionᵢ_iff is a dubious translation:
+/- warning: measure_theory.ae_eq_restrict_Union_iff -> MeasureTheory.ae_eq_restrict_iUnion_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u3} ι] (s : ι -> (Set.{u1} α)) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u3} α ι (fun (i : ι) => s i)))) f g) (forall (i : ι), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g)
+  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u3} ι] (s : ι -> (Set.{u1} α)) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u3} α ι (fun (i : ι) => s i)))) f g) (forall (i : ι), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g)
 but is expected to have type
-  forall {α : Type.{u2}} {δ : Type.{u1}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_3 : Countable.{succ u3} ι] (s : ι -> (Set.{u2} α)) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.unionᵢ.{u2, succ u3} α ι (fun (i : ι) => s i)))) f g) (forall (i : ι), Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_unionᵢ_iffₓ'. -/
-theorem ae_eq_restrict_unionᵢ_iff [Countable ι] (s : ι → Set α) (f g : α → δ) :
+  forall {α : Type.{u2}} {δ : Type.{u1}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_3 : Countable.{succ u3} ι] (s : ι -> (Set.{u2} α)) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.iUnion.{u2, succ u3} α ι (fun (i : ι) => s i)))) f g) (forall (i : ι), Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_iUnion_iffₓ'. -/
+theorem ae_eq_restrict_iUnion_iff [Countable ι] (s : ι → Set α) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i, s i)] g ↔ ∀ i, f =ᵐ[μ.restrict (s i)] g := by
   simp_rw [eventually_eq, ae_restrict_Union_eq, eventually_supr]
-#align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_unionᵢ_iff
+#align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_iUnion_iff
 
-/- warning: measure_theory.ae_eq_restrict_bUnion_iff -> MeasureTheory.ae_eq_restrict_bunionᵢ_iff is a dubious translation:
+/- warning: measure_theory.ae_eq_restrict_bUnion_iff -> MeasureTheory.ae_eq_restrict_biUnion_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u3} ι}, (Set.Countable.{u3} ι t) -> (forall (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u3} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) (fun (H : Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g)))
+  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u3} ι}, (Set.Countable.{u3} ι t) -> (forall (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u3} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) (fun (H : Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g)))
 but is expected to have type
-  forall {α : Type.{u3}} {δ : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m0} (s : ι -> (Set.{u3} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (forall (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (Set.unionᵢ.{u3, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u3, 0} α (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (s i))) f g)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_bunionᵢ_iffₓ'. -/
-theorem ae_eq_restrict_bunionᵢ_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (f g : α → δ) :
+  forall {α : Type.{u3}} {δ : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m0} (s : ι -> (Set.{u3} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (forall (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (Set.iUnion.{u3, succ u2} α ι (fun (i : ι) => Set.iUnion.{u3, 0} α (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (s i))) f g)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_biUnion_iffₓ'. -/
+theorem ae_eq_restrict_biUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g := by
   simp_rw [ae_restrict_bUnion_eq s ht, eventually_eq, eventually_supr]
-#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_bunionᵢ_iff
+#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_biUnion_iff
 
-/- warning: measure_theory.ae_eq_restrict_bUnion_finset_iff -> MeasureTheory.ae_eq_restrict_bunionᵢ_finset_iff is a dubious translation:
+/- warning: measure_theory.ae_eq_restrict_bUnion_finset_iff -> MeasureTheory.ae_eq_restrict_biUnion_finset_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u3} ι) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u3} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) (fun (H : Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g))
+  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u3} ι) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.iUnion.{u1, succ u3} α ι (fun (i : ι) => Set.iUnion.{u1, 0} α (Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) (fun (H : Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g))
 but is expected to have type
-  forall {α : Type.{u3}} {δ : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m0} (s : ι -> (Set.{u3} α)) (t : Finset.{u2} ι) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (Set.unionᵢ.{u3, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u3, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (s i))) f g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_bunionᵢ_finset_iffₓ'. -/
-theorem ae_eq_restrict_bunionᵢ_finset_iff (s : ι → Set α) (t : Finset ι) (f g : α → δ) :
+  forall {α : Type.{u3}} {δ : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m0} (s : ι -> (Set.{u3} α)) (t : Finset.{u2} ι) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (Set.iUnion.{u3, succ u2} α ι (fun (i : ι) => Set.iUnion.{u3, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (s i))) f g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_biUnion_finset_iffₓ'. -/
+theorem ae_eq_restrict_biUnion_finset_iff (s : ι → Set α) (t : Finset ι) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g :=
-  ae_eq_restrict_bunionᵢ_iff s t.countable_toSet f g
-#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_bunionᵢ_finset_iff
+  ae_eq_restrict_biUnion_iff s t.countable_toSet f g
+#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_biUnion_finset_iff
 
 /- warning: measure_theory.ae_restrict_uIoc_eq -> MeasureTheory.ae_restrict_uIoc_eq is a dubious translation:
 lean 3 declaration is
@@ -4637,20 +4637,20 @@ theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
 
 section Intervals
 
-/- warning: measure_theory.bsupr_measure_Iic -> MeasureTheory.bsupᵢ_measure_Iic is a dubious translation:
+/- warning: measure_theory.bsupr_measure_Iic -> MeasureTheory.biSup_measure_Iic is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3)) s) -> (Eq.{1} ENNReal (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) α (fun (x : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.Iic.{u1} α _inst_3 x)))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3)) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.Iic.{u1} α _inst_3 x)))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46872 : α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46872 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874) s) -> (Eq.{1} ENNReal (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) α (fun (x : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.Iic.{u1} α _inst_3 x)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.bsupr_measure_Iic MeasureTheory.bsupᵢ_measure_Iicₓ'. -/
-theorem bsupᵢ_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46872 : α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46872 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874) s) -> (Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) α (fun (x : α) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.Iic.{u1} α _inst_3 x)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iicₓ'. -/
+theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
     (hst : ∀ x : α, ∃ y ∈ s, x ≤ y) (hdir : DirectedOn (· ≤ ·) s) : (⨆ x ∈ s, μ (Iic x)) = μ univ :=
   by
   rw [← measure_bUnion_eq_supr hsc]
   · congr
     exact Union₂_eq_univ_iff.2 hst
   · exact directedOn_iff_directed.2 (hdir.directed_coe.mono_comp _ fun x y => Iic_subset_Iic.2)
-#align measure_theory.bsupr_measure_Iic MeasureTheory.bsupᵢ_measure_Iic
+#align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iic
 
 variable [PartialOrder α] {a b : α}
 
@@ -5014,7 +5014,7 @@ theorem summable_measure_toReal [hμ : FiniteMeasure μ] {f : ℕ → Set α}
     Summable fun x => (μ (f x)).toReal :=
   by
   apply ENNReal.summable_toReal
-  rw [← MeasureTheory.measure_unionᵢ hf₂ hf₁]
+  rw [← MeasureTheory.measure_iUnion hf₂ hf₁]
   exact ne_of_lt (measure_lt_top _ _)
 #align measure_theory.summable_measure_to_real MeasureTheory.summable_measure_toReal
 
@@ -5466,7 +5466,7 @@ def Measure.toFiniteSpanningSetsIn (μ : Measure α) [h : SigmaFinite μ] :
   Finite n := by
     rw [measure_to_measurable]
     exact h.out.some.finite n
-  spanning := eq_univ_of_subset (unionᵢ_mono fun n => subset_toMeasurable _ _) h.out.some.spanning
+  spanning := eq_univ_of_subset (iUnion_mono fun n => subset_toMeasurable _ _) h.out.some.spanning
 #align measure_theory.measure.to_finite_spanning_sets_in MeasureTheory.Measure.toFiniteSpanningSetsIn
 -/
 
@@ -5492,7 +5492,7 @@ theorem monotone_spanningSets (μ : Measure α) [SigmaFinite μ] : Monotone (spa
 #print MeasureTheory.measurable_spanningSets /-
 theorem measurable_spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
     MeasurableSet (spanningSets μ i) :=
-  MeasurableSet.unionᵢ fun j => MeasurableSet.unionᵢ fun hij => μ.toFiniteSpanningSetsIn.set_mem j
+  MeasurableSet.iUnion fun j => MeasurableSet.iUnion fun hij => μ.toFiniteSpanningSetsIn.set_mem j
 #align measure_theory.measurable_spanning_sets MeasureTheory.measurable_spanningSets
 -/
 
@@ -5504,26 +5504,26 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_topₓ'. -/
 theorem measure_spanningSets_lt_top (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
     μ (spanningSets μ i) < ∞ :=
-  measure_bunionᵢ_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.Finite j).Ne
+  measure_biUnion_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.Finite j).Ne
 #align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_top
 
-#print MeasureTheory.unionᵢ_spanningSets /-
-theorem unionᵢ_spanningSets (μ : Measure α) [SigmaFinite μ] : (⋃ i : ℕ, spanningSets μ i) = univ :=
+#print MeasureTheory.iUnion_spanningSets /-
+theorem iUnion_spanningSets (μ : Measure α) [SigmaFinite μ] : (⋃ i : ℕ, spanningSets μ i) = univ :=
   by simp_rw [spanning_sets, Union_accumulate, μ.to_finite_spanning_sets_in.spanning]
-#align measure_theory.Union_spanning_sets MeasureTheory.unionᵢ_spanningSets
+#align measure_theory.Union_spanning_sets MeasureTheory.iUnion_spanningSets
 -/
 
 #print MeasureTheory.isCountablySpanning_spanningSets /-
 theorem isCountablySpanning_spanningSets (μ : Measure α) [SigmaFinite μ] :
     IsCountablySpanning (range (spanningSets μ)) :=
-  ⟨spanningSets μ, mem_range_self, unionᵢ_spanningSets μ⟩
+  ⟨spanningSets μ, mem_range_self, iUnion_spanningSets μ⟩
 #align measure_theory.is_countably_spanning_spanning_sets MeasureTheory.isCountablySpanning_spanningSets
 -/
 
 #print MeasureTheory.spanningSetsIndex /-
 /-- `spanning_sets_index μ x` is the least `n : ℕ` such that `x ∈ spanning_sets μ n`. -/
 def spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) : ℕ :=
-  Nat.find <| unionᵢ_eq_univ_iff.1 (unionᵢ_spanningSets μ) x
+  Nat.find <| iUnion_eq_univ_iff.1 (iUnion_spanningSets μ) x
 #align measure_theory.spanning_sets_index MeasureTheory.spanningSetsIndex
 -/
 
@@ -5592,20 +5592,20 @@ omit m0
 
 namespace Measure
 
-/- warning: measure_theory.measure.supr_restrict_spanning_sets -> MeasureTheory.Measure.supᵢ_restrict_spanningSets is a dubious translation:
+/- warning: measure_theory.measure.supr_restrict_spanning_sets -> MeasureTheory.Measure.iSup_restrict_spanningSets is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i))) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.supᵢ_restrict_spanningSetsₓ'. -/
-theorem supᵢ_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i))) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.iSup_restrict_spanningSetsₓ'. -/
+theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
     (⨆ i, μ.restrict (spanningSets μ i) s) = μ s :=
   calc
     (⨆ i, μ.restrict (spanningSets μ i) s) = μ.restrict (⋃ i, spanningSets μ i) s :=
-      (restrict_unionᵢ_apply_eq_supᵢ (directed_of_sup (monotone_spanningSets μ)) hs).symm
+      (restrict_iUnion_apply_eq_iSup (directed_of_sup (monotone_spanningSets μ)) hs).symm
     _ = μ s := by rw [Union_spanning_sets, restrict_univ]
     
-#align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.supᵢ_restrict_spanningSets
+#align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.iSup_restrict_spanningSets
 
 /- warning: measure_theory.measure.exists_subset_measure_lt_top -> MeasureTheory.Measure.exists_subset_measure_lt_top is a dubious translation:
 lean 3 declaration is
@@ -5619,7 +5619,7 @@ theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : Mea
     (h's : r < μ s) : ∃ t, MeasurableSet t ∧ t ⊆ s ∧ r < μ t ∧ μ t < ∞ :=
   by
   rw [← supr_restrict_spanning_sets hs,
-    @lt_supᵢ_iff _ _ _ r fun i : ℕ => μ.restrict (spanning_sets μ i) s] at h's
+    @lt_iSup_iff _ _ _ r fun i : ℕ => μ.restrict (spanning_sets μ i) s] at h's
   rcases h's with ⟨n, hn⟩
   simp only [restrict_apply hs] at hn
   refine'
@@ -5659,15 +5659,15 @@ theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure
   exact forall_measure_inter_spanning_sets_eq_zero s
 #align measure_theory.measure.exists_measure_inter_spanning_sets_pos MeasureTheory.Measure.exists_measure_inter_spanningSets_pos
 
-/- warning: measure_theory.measure.finite_const_le_meas_of_disjoint_Union -> MeasureTheory.Measure.finite_const_le_meas_of_disjoint_unionᵢ is a dubious translation:
+/- warning: measure_theory.measure.finite_const_le_meas_of_disjoint_Union -> MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i))))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i))))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_unionᵢₓ'. -/
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnionₓ'. -/
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 finitely many members of the union whose measure exceeds any given positive number. -/
-theorem finite_const_le_meas_of_disjoint_unionᵢ {ι : Type _} [MeasurableSpace α] (μ : Measure α)
+theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] (μ : Measure α)
     {ε : ℝ≥0∞} (ε_pos : 0 < ε) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
     Set.Finite { i : ι | ε ≤ μ (As i) } := by
@@ -5676,17 +5676,17 @@ theorem finite_const_le_meas_of_disjoint_unionᵢ {ι : Type _} [MeasurableSpace
     lt_of_le_of_lt (tsum_meas_le_meas_Union_of_disjoint μ As_mble As_disj)
       (lt_top_iff_ne_top.mpr Union_As_finite)
   exact Con (ENNReal.finite_const_le_of_tsum_ne_top aux.ne ε_pos.ne.symm)
-#align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_unionᵢ
+#align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion
 
-/- warning: measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top -> MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top is a dubious translation:
+/- warning: measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top -> MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_topₓ'. -/
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_topₓ'. -/
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 countably many members of the union whose measure is positive. -/
-theorem countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top {ι : Type _} [MeasurableSpace α]
+theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [MeasurableSpace α]
     (μ : Measure α) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
     Set.Countable { i : ι | 0 < μ (As i) } :=
@@ -5700,21 +5700,21 @@ theorem countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top {ι : Type _} [Me
     have fairmeas_eq : ∀ n, fairmeas n = (fun i => μ (As i)) ⁻¹' Ici (as n) := fun n => by
       simpa only [fairmeas_def]
     simpa only [fairmeas_eq, posmeas_def, ← preimage_Union,
-      unionᵢ_Ici_eq_Ioi_of_lt_of_tendsto (0 : ℝ≥0∞) (fun n => (as_mem n).1) as_lim]
+      iUnion_Ici_eq_Ioi_of_lt_of_tendsto (0 : ℝ≥0∞) (fun n => (as_mem n).1) as_lim]
   rw [countable_union]
   refine' countable_Union fun n => finite.countable _
   refine' finite_const_le_meas_of_disjoint_Union μ (as_mem n).1 As_mble As_disj Union_As_finite
-#align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top
+#align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top
 
-/- warning: measure_theory.measure.countable_meas_pos_of_disjoint_Union -> MeasureTheory.Measure.countable_meas_pos_of_disjoint_unionᵢ is a dubious translation:
+/- warning: measure_theory.measure.countable_meas_pos_of_disjoint_Union -> MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_unionᵢₓ'. -/
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnionₓ'. -/
 /-- In a σ-finite space, among disjoint measurable sets, only countably many can have positive
 measure. -/
-theorem countable_meas_pos_of_disjoint_unionᵢ {ι : Type _} [MeasurableSpace α] {μ : Measure α}
+theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) : Set.Countable { i : ι | 0 < μ (As i) } :=
   by
@@ -5732,7 +5732,7 @@ theorem countable_meas_pos_of_disjoint_unionᵢ {ι : Type _} [MeasurableSpace 
       As_disj i_ne_j (hbi.trans (inter_subset_left _ _)) (hbj.trans (inter_subset_left _ _))
   · refine' (lt_of_le_of_lt (measure_mono _) (measure_spanning_sets_lt_top μ n)).Ne
     exact Union_subset fun i => inter_subset_right _ _
-#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_unionᵢ
+#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion
 
 /- warning: measure_theory.measure.countable_meas_level_set_pos -> MeasureTheory.Measure.countable_meas_level_set_pos is a dubious translation:
 lean 3 declaration is
@@ -5751,9 +5751,9 @@ theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ :
 
 /- warning: measure_theory.measure.measure_to_measurable_inter_of_cover -> MeasureTheory.Measure.measure_toMeasurable_inter_of_cover is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall {t : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t (v n))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall {t : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t (v n))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s))))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall {t : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t (v n))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s))))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall {t : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t (v n))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_inter_of_cover MeasureTheory.Measure.measure_toMeasurable_inter_of_coverₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
 /-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
@@ -5780,7 +5780,7 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
       calc
         t ⊆ ⋃ n, t ∩ disjointed w n :=
           by
-          rw [← inter_Union, unionᵢ_disjointed, inter_Union]
+          rw [← inter_Union, iUnion_disjointed, inter_Union]
           intro x hx
           rcases mem_Union.1 (hv hx) with ⟨n, hn⟩
           refine' mem_Union.2 ⟨n, _⟩
@@ -5789,7 +5789,7 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
         _ ⊆ ⋃ n, to_measurable μ (t ∩ disjointed w n) :=
           Union_mono fun n => subset_to_measurable _ _
         
-    refine' ⟨t', tt', MeasurableSet.unionᵢ fun n => measurable_set_to_measurable μ _, fun u hu => _⟩
+    refine' ⟨t', tt', MeasurableSet.iUnion fun n => measurable_set_to_measurable μ _, fun u hu => _⟩
     apply le_antisymm _ (measure_mono (inter_subset_inter tt' subset.rfl))
     calc
       μ (t' ∩ u) ≤ ∑' n, μ (to_measurable μ (t ∩ disjointed w n) ∩ u) :=
@@ -5835,9 +5835,9 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
 
 /- warning: measure_theory.measure.restrict_to_measurable_of_cover -> MeasureTheory.Measure.restrict_toMeasurable_of_cover is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (v n))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (v n))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (v n))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (v n))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_to_measurable_of_cover MeasureTheory.Measure.restrict_toMeasurable_of_coverₓ'. -/
 theorem restrict_toMeasurable_of_cover {s : Set α} {v : ℕ → Set α} (hv : s ⊆ ⋃ n, v n)
     (h'v : ∀ n, μ (s ∩ v n) ≠ ∞) : μ.restrict (toMeasurable μ s) = μ.restrict s :=
@@ -5915,7 +5915,7 @@ protected theorem sigmaFinite (h : μ.FiniteSpanningSetsIn C) : SigmaFinite μ :
 `finite_spanning_sets_in`. -/
 protected theorem ext {ν : Measure α} {C : Set (Set α)} (hA : ‹_› = generateFrom C)
     (hC : IsPiSystem C) (h : μ.FiniteSpanningSetsIn C) (h_eq : ∀ s ∈ C, μ s = ν s) : μ = ν :=
-  ext_of_generateFrom_of_unionᵢ C _ hA hC h.spanning h.set_mem (fun i => (h.Finite i).Ne) h_eq
+  ext_of_generateFrom_of_iUnion C _ hA hC h.spanning h.set_mem (fun i => (h.Finite i).Ne) h_eq
 #align measure_theory.measure.finite_spanning_sets_in.ext MeasureTheory.Measure.FiniteSpanningSetsIn.ext
 -/
 
@@ -5929,9 +5929,9 @@ end FiniteSpanningSetsIn
 
 /- warning: measure_theory.measure.sigma_finite_of_countable -> MeasureTheory.Measure.sigmaFinite_of_countable is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
 but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.sUnion.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countableₓ'. -/
 theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : ∀ s ∈ S, μ s < ∞)
     (hU : ⋃₀ S = univ) : SigmaFinite μ :=
@@ -5965,7 +5965,7 @@ end Measure
 /-- Every finite measure is σ-finite. -/
 instance (priority := 100) FiniteMeasure.toSigmaFinite {m0 : MeasurableSpace α} (μ : Measure α)
     [FiniteMeasure μ] : SigmaFinite μ :=
-  ⟨⟨⟨fun _ => univ, fun _ => trivial, fun _ => measure_lt_top μ _, unionᵢ_const _⟩⟩⟩
+  ⟨⟨⟨fun _ => univ, fun _ => trivial, fun _ => measure_lt_top μ _, iUnion_const _⟩⟩⟩
 #align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.FiniteMeasure.toSigmaFinite
 -/
 
@@ -6017,7 +6017,7 @@ instance sum.sigmaFinite {ι} [Finite ι] (μ : ι → Measure α) [∀ i, Sigma
     SigmaFinite (Sum μ) := by
   cases nonempty_fintype ι
   have : ∀ n, MeasurableSet (⋂ i : ι, spanning_sets (μ i) n) := fun n =>
-    MeasurableSet.interᵢ fun i => measurable_spanning_sets (μ i) n
+    MeasurableSet.iInter fun i => measurable_spanning_sets (μ i) n
   refine' ⟨⟨⟨fun n => ⋂ i, spanning_sets (μ i) n, fun _ => trivial, fun n => _, _⟩⟩⟩
   · rw [sum_apply _ (this n), tsum_fintype, ENNReal.sum_lt_top_iff]
     rintro i -
@@ -6283,9 +6283,9 @@ theorem locallyFiniteMeasure_of_finiteMeasureOnCompacts [TopologicalSpace α] [L
 
 /- warning: measure_theory.exists_pos_measure_of_cover -> MeasureTheory.exists_pos_measure_of_cover is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (U i))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (U i))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (U i))))
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (U i))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_measure_of_cover MeasureTheory.exists_pos_measure_of_coverₓ'. -/
 theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (⋃ i, U i) = univ)
     (hμ : μ ≠ 0) : ∃ i, 0 < μ (U i) := by
@@ -6302,7 +6302,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_preimage_ball MeasureTheory.exists_pos_preimage_ballₓ'. -/
 theorem exists_pos_preimage_ball [PseudoMetricSpace δ] (f : α → δ) (x : δ) (hμ : μ ≠ 0) :
     ∃ n : ℕ, 0 < μ (f ⁻¹' Metric.ball x n) :=
-  exists_pos_measure_of_cover (by rw [← preimage_Union, Metric.unionᵢ_ball_nat, preimage_univ]) hμ
+  exists_pos_measure_of_cover (by rw [← preimage_Union, Metric.iUnion_ball_nat, preimage_univ]) hμ
 #align measure_theory.exists_pos_preimage_ball MeasureTheory.exists_pos_preimage_ball
 
 /- warning: measure_theory.exists_pos_ball -> MeasureTheory.exists_pos_ball is a dubious translation:
@@ -6381,7 +6381,7 @@ theorem ext_on_measurableSpace_of_generate_finite {α} (m₀ : MeasurableSpace 
       @measure_compl α m₀ ν t h1t_ (@measure_ne_top α m₀ ν _ t), h_univ, h2t]
   · intro f h1f h2f h3f
     have h2f_ : ∀ i : ℕ, @MeasurableSet α m₀ (f i) := fun i => h _ (h2f i)
-    have h_Union : @MeasurableSet α m₀ (⋃ i : ℕ, f i) := @MeasurableSet.unionᵢ α ℕ m₀ _ f h2f_
+    have h_Union : @MeasurableSet α m₀ (⋃ i : ℕ, f i) := @MeasurableSet.iUnion α ℕ m₀ _ f h2f_
     simp [measure_Union, h_Union, h1f, h3f, h2f_]
 #align measure_theory.ext_on_measurable_space_of_generate_finite MeasureTheory.ext_on_measurableSpace_of_generate_finite
 -/
@@ -6410,7 +6410,7 @@ protected def FiniteSpanningSetsIn.disjointed {μ : Measure α}
     μ.FiniteSpanningSetsIn { s | MeasurableSet s } :=
   ⟨disjointed S.Set, MeasurableSet.disjointed S.set_mem, fun n =>
     lt_of_le_of_lt (measure_mono (disjointed_subset S.Set n)) (S.Finite _),
-    S.spanning ▸ unionᵢ_disjointed⟩
+    S.spanning ▸ iUnion_disjointed⟩
 #align measure_theory.measure.finite_spanning_sets_in.disjointed MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed
 -/
 
@@ -7125,7 +7125,7 @@ def MeasureTheory.Measure.finiteSpanningSetsInCompact [TopologicalSpace α] [Sig
   Set := compactCovering α
   set_mem := isCompact_compactCovering α
   Finite n := (isCompact_compactCovering α n).measure_lt_top
-  spanning := unionᵢ_compactCovering α
+  spanning := iUnion_compactCovering α
 #align measure_theory.measure.finite_spanning_sets_in_compact MeasureTheory.Measure.finiteSpanningSetsInCompact
 -/
 
@@ -7143,9 +7143,9 @@ def MeasureTheory.Measure.finiteSpanningSetsInOpen [TopologicalSpace α] [SigmaC
     ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose_spec.snd.2
   spanning :=
     eq_univ_of_subset
-      (unionᵢ_mono fun n =>
+      (iUnion_mono fun n =>
         ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose_spec.fst)
-      (unionᵢ_compactCovering α)
+      (iUnion_compactCovering α)
 #align measure_theory.measure.finite_spanning_sets_in_open MeasureTheory.Measure.finiteSpanningSetsInOpen
 -/
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
 
 ! This file was ported from Lean 3 source module measure_theory.measure.measure_space
-! leanprover-community/mathlib commit a2706b55e8d7f7e9b1f93143f0b88f2e34a11eea
+! leanprover-community/mathlib commit 343e80208d29d2d15f8050b929aa50fe4ce71b55
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1580,6 +1580,21 @@ instance [MeasurableSpace α] : CompleteLattice (Measure α) :=
 
 end Inf
 
+@[simp]
+theorem MeasureTheory.OuterMeasure.toMeasure_top [MeasurableSpace α] :
+    (⊤ : OuterMeasure α).toMeasure (by rw [outer_measure.top_caratheodory] <;> exact le_top) =
+      (⊤ : Measure α) :=
+  top_unique fun s hs => by
+    cases' s.eq_empty_or_nonempty with h h <;>
+      simp [h, to_measure_apply ⊤ _ hs, outer_measure.top_apply]
+#align measure_theory.outer_measure.to_measure_top MeasureTheory.OuterMeasure.toMeasure_top
+
+@[simp]
+theorem toOuterMeasure_top [MeasurableSpace α] :
+    (⊤ : Measure α).toOuterMeasure = (⊤ : OuterMeasure α) := by
+  rw [← outer_measure.to_measure_top, to_measure_to_outer_measure, outer_measure.trim_top]
+#align measure_theory.measure.to_outer_measure_top MeasureTheory.Measure.toOuterMeasure_top
+
 /- warning: measure_theory.measure.top_add -> MeasureTheory.Measure.top_add is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0))) μ) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
 
 ! This file was ported from Lean 3 source module measure_theory.measure.measure_space
-! leanprover-community/mathlib commit 88fcb83fe7996142dfcfe7368d31304a9adc874a
+! leanprover-community/mathlib commit a2706b55e8d7f7e9b1f93143f0b88f2e34a11eea
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Topology.Algebra.Order.LiminfLimsup
 /-!
 # Measure spaces
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 The definition of a measure and a measure space are in `measure_theory.measure_space_def`, with
 only a few basic properties. This file provides many more properties of these objects.
 This separation allows the measurability tactic to import only the file `measure_space_def`, and to
Diff
@@ -113,34 +113,68 @@ section
 
 variable {m : MeasurableSpace α} {μ μ₁ μ₂ : Measure α} {s s₁ s₂ t : Set α}
 
+#print MeasureTheory.ae_isMeasurablyGenerated /-
 instance ae_isMeasurablyGenerated : IsMeasurablyGenerated μ.ae :=
   ⟨fun s hs =>
     let ⟨t, hst, htm, htμ⟩ := exists_measurable_superset_of_null hs
     ⟨tᶜ, compl_mem_ae_iff.2 htμ, htm.compl, compl_subset_comm.1 hst⟩⟩
 #align measure_theory.ae_is_measurably_generated MeasureTheory.ae_isMeasurablyGenerated
+-/
 
+#print MeasureTheory.ae_uIoc_iff /-
 /-- See also `measure_theory.ae_restrict_uIoc_iff`. -/
 theorem ae_uIoc_iff [LinearOrder α] {a b : α} {P : α → Prop} :
     (∀ᵐ x ∂μ, x ∈ Ι a b → P x) ↔ (∀ᵐ x ∂μ, x ∈ Ioc a b → P x) ∧ ∀ᵐ x ∂μ, x ∈ Ioc b a → P x := by
   simp only [uIoc_eq_union, mem_union, or_imp, eventually_and]
 #align measure_theory.ae_uIoc_iff MeasureTheory.ae_uIoc_iff
+-/
 
+/- warning: measure_theory.measure_union -> MeasureTheory.measure_union is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s₁ s₂) -> (MeasurableSet.{u1} α m s₂) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₁ s₂)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s₁ s₂) -> (MeasurableSet.{u1} α m s₂) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s₁ s₂)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union MeasureTheory.measure_unionₓ'. -/
 theorem measure_union (hd : Disjoint s₁ s₂) (h : MeasurableSet s₂) : μ (s₁ ∪ s₂) = μ s₁ + μ s₂ :=
   measure_union₀ h.NullMeasurableSet hd.AEDisjoint
 #align measure_theory.measure_union MeasureTheory.measure_union
 
+/- warning: measure_theory.measure_union' -> MeasureTheory.measure_union' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s₁ s₂) -> (MeasurableSet.{u1} α m s₁) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₁ s₂)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s₁ s₂) -> (MeasurableSet.{u1} α m s₁) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s₁ s₂)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union' MeasureTheory.measure_union'ₓ'. -/
 theorem measure_union' (hd : Disjoint s₁ s₂) (h : MeasurableSet s₁) : μ (s₁ ∪ s₂) = μ s₁ + μ s₂ :=
   measure_union₀' h.NullMeasurableSet hd.AEDisjoint
 #align measure_theory.measure_union' MeasureTheory.measure_union'
 
+/- warning: measure_theory.measure_inter_add_diff -> MeasureTheory.measure_inter_add_diff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_inter_add_diff MeasureTheory.measure_inter_add_diffₓ'. -/
 theorem measure_inter_add_diff (s : Set α) (ht : MeasurableSet t) : μ (s ∩ t) + μ (s \ t) = μ s :=
   measure_inter_add_diff₀ _ ht.NullMeasurableSet
 #align measure_theory.measure_inter_add_diff MeasureTheory.measure_inter_add_diff
 
+/- warning: measure_theory.measure_diff_add_inter -> MeasureTheory.measure_diff_add_inter is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_add_inter MeasureTheory.measure_diff_add_interₓ'. -/
 theorem measure_diff_add_inter (s : Set α) (ht : MeasurableSet t) : μ (s \ t) + μ (s ∩ t) = μ s :=
   (add_comm _ _).trans (measure_inter_add_diff s ht)
 #align measure_theory.measure_diff_add_inter MeasureTheory.measure_diff_add_inter
 
+/- warning: measure_theory.measure_union_add_inter -> MeasureTheory.measure_union_add_inter is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_add_inter MeasureTheory.measure_union_add_interₓ'. -/
 theorem measure_union_add_inter (s : Set α) (ht : MeasurableSet t) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t :=
   by
@@ -149,52 +183,106 @@ theorem measure_union_add_inter (s : Set α) (ht : MeasurableSet t) :
   ac_rfl
 #align measure_theory.measure_union_add_inter MeasureTheory.measure_union_add_inter
 
+/- warning: measure_theory.measure_union_add_inter' -> MeasureTheory.measure_union_add_inter' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_add_inter' MeasureTheory.measure_union_add_inter'ₓ'. -/
 theorem measure_union_add_inter' (hs : MeasurableSet s) (t : Set α) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by
   rw [union_comm, inter_comm, measure_union_add_inter t hs, add_comm]
 #align measure_theory.measure_union_add_inter' MeasureTheory.measure_union_add_inter'
 
+/- warning: measure_theory.measure_add_measure_compl -> MeasureTheory.measure_add_measure_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_add_measure_compl MeasureTheory.measure_add_measure_complₓ'. -/
 theorem measure_add_measure_compl (h : MeasurableSet s) : μ s + μ (sᶜ) = μ univ :=
   measure_add_measure_compl₀ h.NullMeasurableSet
 #align measure_theory.measure_add_measure_compl MeasureTheory.measure_add_measure_compl
 
-theorem measure_bUnion₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
+/- warning: measure_theory.measure_bUnion₀ -> MeasureTheory.measure_bunionᵢ₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.Pairwise.{u2} β s (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (p : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) p)))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.Pairwise.{u2} β s (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β s) (fun (p : Set.Elem.{u2} β s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) p)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion₀ MeasureTheory.measure_bunionᵢ₀ₓ'. -/
+theorem measure_bunionᵢ₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
     (hd : s.Pairwise (AEDisjoint μ on f)) (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
   by
   haveI := hs.to_encodable
   rw [bUnion_eq_Union]
   exact measure_Union₀ (hd.on_injective Subtype.coe_injective fun x => x.2) fun x => h x x.2
-#align measure_theory.measure_bUnion₀ MeasureTheory.measure_bUnion₀
-
-theorem measure_bUnion {s : Set β} {f : β → Set α} (hs : s.Countable) (hd : s.PairwiseDisjoint f)
+#align measure_theory.measure_bUnion₀ MeasureTheory.measure_bunionᵢ₀
+
+/- warning: measure_theory.measure_bUnion -> MeasureTheory.measure_bunionᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s f) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (p : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) p)))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β} {f : β -> (Set.{u1} α)}, (Set.Countable.{u2} β s) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s f) -> (forall (b : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b s) => f b)))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β s) (fun (p : Set.Elem.{u2} β s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) p)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion MeasureTheory.measure_bunionᵢₓ'. -/
+theorem measure_bunionᵢ {s : Set β} {f : β → Set α} (hs : s.Countable) (hd : s.PairwiseDisjoint f)
     (h : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
-  measure_bUnion₀ hs hd.AEDisjoint fun b hb => (h b hb).NullMeasurableSet
-#align measure_theory.measure_bUnion MeasureTheory.measure_bUnion
-
-theorem measure_sUnion₀ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise (AEDisjoint μ))
+  measure_bunionᵢ₀ hs hd.AEDisjoint fun b hb => (h b hb).NullMeasurableSet
+#align measure_theory.measure_bUnion MeasureTheory.measure_bunionᵢ
+
+/- warning: measure_theory.measure_sUnion₀ -> MeasureTheory.measure_unionₛ₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (MeasureTheory.AEDisjoint.{u1} α m μ)) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (MeasureTheory.NullMeasurableSet.{u1} α m s μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionₛ.{u1} α S)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (fun (s : coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeSubtype.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x S))))) s))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (MeasureTheory.AEDisjoint.{u1} α m μ)) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (MeasureTheory.NullMeasurableSet.{u1} α m s μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionₛ.{u1} α S)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} (Set.{u1} α) S) (fun (s : Set.Elem.{u1} (Set.{u1} α) S) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Subtype.val.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) x S) s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_sUnion₀ MeasureTheory.measure_unionₛ₀ₓ'. -/
+theorem measure_unionₛ₀ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise (AEDisjoint μ))
     (h : ∀ s ∈ S, NullMeasurableSet s μ) : μ (⋃₀ S) = ∑' s : S, μ s := by
   rw [sUnion_eq_bUnion, measure_bUnion₀ hs hd h]
-#align measure_theory.measure_sUnion₀ MeasureTheory.measure_sUnion₀
-
+#align measure_theory.measure_sUnion₀ MeasureTheory.measure_unionₛ₀
+
+/- warning: measure_theory.measure_sUnion -> MeasureTheory.measure_unionₛ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (MeasurableSet.{u1} α m s)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionₛ.{u1} α S)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (fun (s : coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) S) (Set.{u1} α) (coeSubtype.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) x S))))) s))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (Set.Pairwise.{u1} (Set.{u1} α) S (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (MeasurableSet.{u1} α m s)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionₛ.{u1} α S)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} (Set.{u1} α) S) (fun (s : Set.Elem.{u1} (Set.{u1} α) S) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Subtype.val.{succ u1} (Set.{u1} α) (fun (x : Set.{u1} α) => Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) x S) s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_sUnion MeasureTheory.measure_unionₛₓ'. -/
 theorem measure_unionₛ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise Disjoint)
     (h : ∀ s ∈ S, MeasurableSet s) : μ (⋃₀ S) = ∑' s : S, μ s := by
   rw [sUnion_eq_bUnion, measure_bUnion hs hd h]
 #align measure_theory.measure_sUnion MeasureTheory.measure_unionₛ
 
-theorem measure_bUnion_finset₀ {s : Finset ι} {f : ι → Set α}
+/- warning: measure_theory.measure_bUnion_finset₀ -> MeasureTheory.measure_bunionᵢ_finset₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.Pairwise.{u2} ι ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (b : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (p : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f p))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.Pairwise.{u2} ι (Finset.toSet.{u2} ι s) (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) f)) -> (forall (b : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (b : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (p : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f p))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_bunionᵢ_finset₀ₓ'. -/
+theorem measure_bunionᵢ_finset₀ {s : Finset ι} {f : ι → Set α}
     (hd : Set.Pairwise (↑s) (AEDisjoint μ on f)) (hm : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
   by
   rw [← Finset.sum_attach, Finset.attach_eq_univ, ← tsum_fintype]
   exact measure_bUnion₀ s.countable_to_set hd hm
-#align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_bUnion_finset₀
-
-theorem measure_bUnion_finset {s : Finset ι} {f : ι → Set α} (hd : PairwiseDisjoint (↑s) f)
+#align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_bunionᵢ_finset₀
+
+/- warning: measure_theory.measure_bUnion_finset -> MeasureTheory.measure_bunionᵢ_finset is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) f) -> (forall (b : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (b : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (p : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (f p))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {f : ι -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Finset.toSet.{u2} ι s) f) -> (forall (b : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) -> (MeasurableSet.{u1} α m (f b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (b : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) b s) => f b)))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (p : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (f p))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_finset MeasureTheory.measure_bunionᵢ_finsetₓ'. -/
+theorem measure_bunionᵢ_finset {s : Finset ι} {f : ι → Set α} (hd : PairwiseDisjoint (↑s) f)
     (hm : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
-  measure_bUnion_finset₀ hd.AEDisjoint fun b hb => (hm b hb).NullMeasurableSet
-#align measure_theory.measure_bUnion_finset MeasureTheory.measure_bUnion_finset
-
+  measure_bunionᵢ_finset₀ hd.AEDisjoint fun b hb => (hm b hb).NullMeasurableSet
+#align measure_theory.measure_bUnion_finset MeasureTheory.measure_bunionᵢ_finset
+
+/- warning: measure_theory.tsum_meas_le_meas_Union_of_disjoint -> MeasureTheory.tsum_meas_le_meas_unionᵢ_of_disjoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (As i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_1 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (As i))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_unionᵢ_of_disjointₓ'. -/
 /-- The measure of a disjoint union (even uncountable) of measurable sets is at least the sum of
 the measures of the sets. -/
 theorem tsum_meas_le_meas_unionᵢ_of_disjoint {ι : Type _} [MeasurableSpace α] (μ : Measure α)
@@ -209,6 +297,12 @@ theorem tsum_meas_le_meas_unionᵢ_of_disjoint {ι : Type _} [MeasurableSpace α
   exact measure_mono (Union₂_subset_Union (fun i : ι => i ∈ s) fun i : ι => As i)
 #align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_unionᵢ_of_disjoint
 
+/- warning: measure_theory.tsum_measure_preimage_singleton -> MeasureTheory.tsum_measure_preimage_singleton is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β}, (Set.Countable.{u2} β s) -> (forall {f : α -> β}, (forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y s) -> (MeasurableSet.{u1} α m (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) y)))) -> (Eq.{1} ENNReal (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (b : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) b))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.preimage.{u1, u2} α β f s))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u2} β}, (Set.Countable.{u2} β s) -> (forall {f : α -> β}, (forall (y : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) y s) -> (MeasurableSet.{u1} α m (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.instSingletonSet.{u2} β) y)))) -> (Eq.{1} ENNReal (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β s) (fun (b : Set.Elem.{u2} β s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.instSingletonSet.{u2} β) (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) b))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.preimage.{u1, u2} α β f s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_measure_preimage_singleton MeasureTheory.tsum_measure_preimage_singletonₓ'. -/
 /-- If `s` is a countable set, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem tsum_measure_preimage_singleton {s : Set β} (hs : s.Countable) {f : α → β}
@@ -216,6 +310,12 @@ theorem tsum_measure_preimage_singleton {s : Set β} (hs : s.Countable) {f : α
   rw [← Set.bunionᵢ_preimage_singleton, measure_bUnion hs (pairwise_disjoint_fiber _ _) hf]
 #align measure_theory.tsum_measure_preimage_singleton MeasureTheory.tsum_measure_preimage_singleton
 
+/- warning: measure_theory.sum_measure_preimage_singleton -> MeasureTheory.sum_measure_preimage_singleton is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : α -> β}, (forall (y : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) y s) -> (MeasurableSet.{u1} α m (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) y)))) -> (Eq.{1} ENNReal (Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.preimage.{u1, u2} α β f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} β) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (Finset.Set.hasCoeT.{u2} β))) s))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : α -> β}, (forall (y : β), (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) y s) -> (MeasurableSet.{u1} α m (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.instSingletonSet.{u2} β) y)))) -> (Eq.{1} ENNReal (Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.preimage.{u1, u2} α β f (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.instSingletonSet.{u2} β) b)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.preimage.{u1, u2} α β f (Finset.toSet.{u2} β s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.sum_measure_preimage_singleton MeasureTheory.sum_measure_preimage_singletonₓ'. -/
 /-- If `s` is a `finset`, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem sum_measure_preimage_singleton (s : Finset β) {f : α → β}
@@ -224,27 +324,63 @@ theorem sum_measure_preimage_singleton (s : Finset β) {f : α → β}
     Finset.set_bunionᵢ_preimage_singleton]
 #align measure_theory.sum_measure_preimage_singleton MeasureTheory.sum_measure_preimage_singleton
 
+/- warning: measure_theory.measure_diff_null' -> MeasureTheory.measure_diff_null' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s₁ s₂)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s₁ s₂)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_null' MeasureTheory.measure_diff_null'ₓ'. -/
 theorem measure_diff_null' (h : μ (s₁ ∩ s₂) = 0) : μ (s₁ \ s₂) = μ s₁ :=
   measure_congr <| diff_ae_eq_self.2 h
 #align measure_theory.measure_diff_null' MeasureTheory.measure_diff_null'
 
+/- warning: measure_theory.measure_diff_null -> MeasureTheory.measure_diff_null is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_null MeasureTheory.measure_diff_nullₓ'. -/
 theorem measure_diff_null (h : μ s₂ = 0) : μ (s₁ \ s₂) = μ s₁ :=
   measure_diff_null' <| measure_mono_null (inter_subset_right _ _) h
 #align measure_theory.measure_diff_null MeasureTheory.measure_diff_null
 
+/- warning: measure_theory.measure_add_diff -> MeasureTheory.measure_add_diff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) t s))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_add_diff MeasureTheory.measure_add_diffₓ'. -/
 theorem measure_add_diff (hs : MeasurableSet s) (t : Set α) : μ s + μ (t \ s) = μ (s ∪ t) := by
   rw [← measure_union' disjoint_sdiff_right hs, union_diff_self]
 #align measure_theory.measure_add_diff MeasureTheory.measure_add_diff
 
+/- warning: measure_theory.measure_diff' -> MeasureTheory.measure_diff' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u1} α} (s : Set.{u1} α), (MeasurableSet.{u1} α m t) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff' MeasureTheory.measure_diff'ₓ'. -/
 theorem measure_diff' (s : Set α) (hm : MeasurableSet t) (h_fin : μ t ≠ ∞) :
     μ (s \ t) = μ (s ∪ t) - μ t :=
   Eq.symm <| ENNReal.sub_eq_of_add_eq h_fin <| by rw [add_comm, measure_add_diff hm, union_comm]
 #align measure_theory.measure_diff' MeasureTheory.measure_diff'
 
+/- warning: measure_theory.measure_diff -> MeasureTheory.measure_diff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₂ s₁) -> (MeasurableSet.{u1} α m s₂) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₂ s₁) -> (MeasurableSet.{u1} α m s₂) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff MeasureTheory.measure_diffₓ'. -/
 theorem measure_diff (h : s₂ ⊆ s₁) (h₂ : MeasurableSet s₂) (h_fin : μ s₂ ≠ ∞) :
     μ (s₁ \ s₂) = μ s₁ - μ s₂ := by rw [measure_diff' _ h₂ h_fin, union_eq_self_of_subset_right h]
 #align measure_theory.measure_diff MeasureTheory.measure_diff
 
+/- warning: measure_theory.le_measure_diff -> MeasureTheory.le_measure_diff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₁ s₂))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₁ s₂))
+Case conversion may be inaccurate. Consider using '#align measure_theory.le_measure_diff MeasureTheory.le_measure_diffₓ'. -/
 theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
   tsub_le_iff_left.2 <|
     calc
@@ -254,6 +390,12 @@ theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
       
 #align measure_theory.le_measure_diff MeasureTheory.le_measure_diff
 
+/- warning: measure_theory.measure_diff_lt_of_lt_add -> MeasureTheory.measure_diff_lt_of_lt_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) ε)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) ε))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) ε)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) t s)) ε))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_lt_of_lt_add MeasureTheory.measure_diff_lt_of_lt_addₓ'. -/
 theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞}
     (h : μ t < μ s + ε) : μ (t \ s) < ε :=
   by
@@ -261,15 +403,33 @@ theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' :
   exact ENNReal.sub_lt_of_lt_add (measure_mono hst) h
 #align measure_theory.measure_diff_lt_of_lt_add MeasureTheory.measure_diff_lt_of_lt_add
 
+/- warning: measure_theory.measure_diff_le_iff_le_add -> MeasureTheory.measure_diff_le_iff_le_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) ε) (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) ε)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) t s)) ε) (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) ε)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_diff_le_iff_le_add MeasureTheory.measure_diff_le_iff_le_addₓ'. -/
 theorem measure_diff_le_iff_le_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞} :
     μ (t \ s) ≤ ε ↔ μ t ≤ μ s + ε := by rwa [measure_diff hst hs hs', tsub_le_iff_left]
 #align measure_theory.measure_diff_le_iff_le_add MeasureTheory.measure_diff_le_iff_le_add
 
+/- warning: measure_theory.measure_eq_measure_of_null_diff -> MeasureTheory.measure_eq_measure_of_null_diff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_eq_measure_of_null_diff MeasureTheory.measure_eq_measure_of_null_diffₓ'. -/
 theorem measure_eq_measure_of_null_diff {s t : Set α} (hst : s ⊆ t) (h_nulldiff : μ (t \ s) = 0) :
     μ s = μ t :=
   measure_congr (hst.EventuallyLE.antisymm <| ae_le_set.mpr h_nulldiff)
 #align measure_theory.measure_eq_measure_of_null_diff MeasureTheory.measure_eq_measure_of_null_diff
 
+/- warning: measure_theory.measure_eq_measure_of_between_null_diff -> MeasureTheory.measure_eq_measure_of_between_null_diff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (And (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂)) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₃)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (And (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₃)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_eq_measure_of_between_null_diff MeasureTheory.measure_eq_measure_of_between_null_diffₓ'. -/
 theorem measure_eq_measure_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 : s₁ ⊆ s₂) (h23 : s₂ ⊆ s₃)
     (h_nulldiff : μ (s₃ \ s₁) = 0) : μ s₁ = μ s₂ ∧ μ s₂ = μ s₃ :=
   by
@@ -284,22 +444,46 @@ theorem measure_eq_measure_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 :
   exact ⟨le12.antisymm (le23.trans key), le23.antisymm (key.trans le12)⟩
 #align measure_theory.measure_eq_measure_of_between_null_diff MeasureTheory.measure_eq_measure_of_between_null_diff
 
+/- warning: measure_theory.measure_eq_measure_smaller_of_between_null_diff -> MeasureTheory.measure_eq_measure_smaller_of_between_null_diff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_eq_measure_smaller_of_between_null_diff MeasureTheory.measure_eq_measure_smaller_of_between_null_diffₓ'. -/
 theorem measure_eq_measure_smaller_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 : s₁ ⊆ s₂)
     (h23 : s₂ ⊆ s₃) (h_nulldiff : μ (s₃ \ s₁) = 0) : μ s₁ = μ s₂ :=
   (measure_eq_measure_of_between_null_diff h12 h23 h_nulldiff).1
 #align measure_theory.measure_eq_measure_smaller_of_between_null_diff MeasureTheory.measure_eq_measure_smaller_of_between_null_diff
 
+/- warning: measure_theory.measure_eq_measure_larger_of_between_null_diff -> MeasureTheory.measure_eq_measure_larger_of_between_null_diff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₃))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {s₃ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₁ s₂) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₂ s₃) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s₃ s₁)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₃))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_eq_measure_larger_of_between_null_diff MeasureTheory.measure_eq_measure_larger_of_between_null_diffₓ'. -/
 theorem measure_eq_measure_larger_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 : s₁ ⊆ s₂)
     (h23 : s₂ ⊆ s₃) (h_nulldiff : μ (s₃ \ s₁) = 0) : μ s₂ = μ s₃ :=
   (measure_eq_measure_of_between_null_diff h12 h23 h_nulldiff).2
 #align measure_theory.measure_eq_measure_larger_of_between_null_diff MeasureTheory.measure_eq_measure_larger_of_between_null_diff
 
+/- warning: measure_theory.measure_compl -> MeasureTheory.measure_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_compl MeasureTheory.measure_complₓ'. -/
 theorem measure_compl (h₁ : MeasurableSet s) (h_fin : μ s ≠ ∞) : μ (sᶜ) = μ univ - μ s :=
   by
   rw [compl_eq_univ_diff]
   exact measure_diff (subset_univ s) h₁ h_fin
 #align measure_theory.measure_compl MeasureTheory.measure_compl
 
+/- warning: measure_theory.union_ae_eq_left_iff_ae_subset -> MeasureTheory.union_ae_eq_left_iff_ae_subset is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Iff (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t) s) (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) t s)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Iff (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t) s) (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) t s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.union_ae_eq_left_iff_ae_subset MeasureTheory.union_ae_eq_left_iff_ae_subsetₓ'. -/
 @[simp]
 theorem union_ae_eq_left_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] s ↔ t ≤ᵐ[μ] s :=
   by
@@ -311,11 +495,23 @@ theorem union_ae_eq_left_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] s ↔ t ≤
           HasSubset.Subset.eventuallyLE <| subset_union_left s t⟩⟩
 #align measure_theory.union_ae_eq_left_iff_ae_subset MeasureTheory.union_ae_eq_left_iff_ae_subset
 
+/- warning: measure_theory.union_ae_eq_right_iff_ae_subset -> MeasureTheory.union_ae_eq_right_iff_ae_subset is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Iff (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t) t) (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Iff (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t) t) (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t)
+Case conversion may be inaccurate. Consider using '#align measure_theory.union_ae_eq_right_iff_ae_subset MeasureTheory.union_ae_eq_right_iff_ae_subsetₓ'. -/
 @[simp]
 theorem union_ae_eq_right_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] t ↔ s ≤ᵐ[μ] t := by
   rw [union_comm, union_ae_eq_left_iff_ae_subset]
 #align measure_theory.union_ae_eq_right_iff_ae_subset MeasureTheory.union_ae_eq_right_iff_ae_subset
 
+/- warning: measure_theory.ae_eq_of_ae_subset_of_measure_ge -> MeasureTheory.ae_eq_of_ae_subset_of_measure_ge is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_of_ae_subset_of_measure_ge MeasureTheory.ae_eq_of_ae_subset_of_measure_geₓ'. -/
 theorem ae_eq_of_ae_subset_of_measure_ge (h₁ : s ≤ᵐ[μ] t) (h₂ : μ t ≤ μ s) (hsm : MeasurableSet s)
     (ht : μ t ≠ ∞) : s =ᵐ[μ] t :=
   by
@@ -325,12 +521,24 @@ theorem ae_eq_of_ae_subset_of_measure_ge (h₁ : s ≤ᵐ[μ] t) (h₂ : μ t 
   rw [measure_diff' t hsm ht, measure_congr (union_ae_eq_left_iff_ae_subset.mpr h₁), h₂, tsub_self]
 #align measure_theory.ae_eq_of_ae_subset_of_measure_ge MeasureTheory.ae_eq_of_ae_subset_of_measure_ge
 
+/- warning: measure_theory.ae_eq_of_subset_of_measure_ge -> MeasureTheory.ae_eq_of_subset_of_measure_ge is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)) -> (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) s t)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_of_subset_of_measure_ge MeasureTheory.ae_eq_of_subset_of_measure_geₓ'. -/
 /-- If `s ⊆ t`, `μ t ≤ μ s`, `μ t ≠ ∞`, and `s` is measurable, then `s =ᵐ[μ] t`. -/
 theorem ae_eq_of_subset_of_measure_ge (h₁ : s ⊆ t) (h₂ : μ t ≤ μ s) (hsm : MeasurableSet s)
     (ht : μ t ≠ ∞) : s =ᵐ[μ] t :=
   ae_eq_of_ae_subset_of_measure_ge (HasSubset.Subset.eventuallyLE h₁) h₂ hsm ht
 #align measure_theory.ae_eq_of_subset_of_measure_ge MeasureTheory.ae_eq_of_subset_of_measure_ge
 
+/- warning: measure_theory.measure_Union_congr_of_subset -> MeasureTheory.measure_unionᵢ_congr_of_subset is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t b)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s b))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => s b))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => t b))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)} {t : β -> (Set.{u1} α)}, (forall (b : β), HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (s b) (t b)) -> (forall (b : β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (t b)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s b))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => s b))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α β (fun (b : β) => t b))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_unionᵢ_congr_of_subsetₓ'. -/
 theorem measure_unionᵢ_congr_of_subset [Countable β] {s : β → Set α} {t : β → Set α}
     (hsub : ∀ b, s b ⊆ t b) (h_le : ∀ b, μ (t b) ≤ μ (s b)) : μ (⋃ b, s b) = μ (⋃ b, t b) :=
   by
@@ -366,6 +574,12 @@ theorem measure_unionᵢ_congr_of_subset [Countable β] {s : β → Set α} {t :
     
 #align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_unionᵢ_congr_of_subset
 
+/- warning: measure_theory.measure_union_congr_of_subset -> MeasureTheory.measure_union_congr_of_subset is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {t₁ : Set.{u1} α} {t₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s₁ s₂) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s₁)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t₁ t₂) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t₂) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t₁)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₁ t₁)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s₂ t₂)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s₁ : Set.{u1} α} {s₂ : Set.{u1} α} {t₁ : Set.{u1} α} {t₂ : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s₁ s₂) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₂) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s₁)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t₁ t₂) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t₂) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t₁)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s₁ t₁)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s₂ t₂)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_congr_of_subset MeasureTheory.measure_union_congr_of_subsetₓ'. -/
 theorem measure_union_congr_of_subset {t₁ t₂ : Set α} (hs : s₁ ⊆ s₂) (hsμ : μ s₂ ≤ μ s₁)
     (ht : t₁ ⊆ t₂) (htμ : μ t₂ ≤ μ t₁) : μ (s₁ ∪ t₁) = μ (s₂ ∪ t₂) :=
   by
@@ -373,6 +587,7 @@ theorem measure_union_congr_of_subset {t₁ t₂ : Set α} (hs : s₁ ⊆ s₂)
   exact measure_Union_congr_of_subset (Bool.forall_bool.2 ⟨ht, hs⟩) (Bool.forall_bool.2 ⟨htμ, hsμ⟩)
 #align measure_theory.measure_union_congr_of_subset MeasureTheory.measure_union_congr_of_subset
 
+#print MeasureTheory.measure_unionᵢ_toMeasurable /-
 @[simp]
 theorem measure_unionᵢ_toMeasurable [Countable β] (s : β → Set α) :
     μ (⋃ b, toMeasurable μ (s b)) = μ (⋃ b, s b) :=
@@ -380,14 +595,23 @@ theorem measure_unionᵢ_toMeasurable [Countable β] (s : β → Set α) :
     measure_unionᵢ_congr_of_subset (fun b => subset_toMeasurable _ _) fun b =>
       (measure_toMeasurable _).le
 #align measure_theory.measure_Union_to_measurable MeasureTheory.measure_unionᵢ_toMeasurable
+-/
 
-theorem measure_bUnion_toMeasurable {I : Set β} (hc : I.Countable) (s : β → Set α) :
+#print MeasureTheory.measure_bunionᵢ_toMeasurable /-
+theorem measure_bunionᵢ_toMeasurable {I : Set β} (hc : I.Countable) (s : β → Set α) :
     μ (⋃ b ∈ I, toMeasurable μ (s b)) = μ (⋃ b ∈ I, s b) :=
   by
   haveI := hc.to_encodable
   simp only [bUnion_eq_Union, measure_Union_to_measurable]
-#align measure_theory.measure_bUnion_to_measurable MeasureTheory.measure_bUnion_toMeasurable
+#align measure_theory.measure_bUnion_to_measurable MeasureTheory.measure_bunionᵢ_toMeasurable
+-/
 
+/- warning: measure_theory.measure_to_measurable_union -> MeasureTheory.measure_toMeasurable_union is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) (MeasureTheory.toMeasurable.{u1} α m μ s) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m μ s) t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_to_measurable_union MeasureTheory.measure_toMeasurable_unionₓ'. -/
 @[simp]
 theorem measure_toMeasurable_union : μ (toMeasurable μ s ∪ t) = μ (s ∪ t) :=
   Eq.symm <|
@@ -395,6 +619,12 @@ theorem measure_toMeasurable_union : μ (toMeasurable μ s ∪ t) = μ (s ∪ t)
       le_rfl
 #align measure_theory.measure_to_measurable_union MeasureTheory.measure_toMeasurable_union
 
+/- warning: measure_theory.measure_union_to_measurable -> MeasureTheory.measure_union_toMeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s (MeasureTheory.toMeasurable.{u1} α m μ t))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s (MeasureTheory.toMeasurable.{u1} α m μ t))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_to_measurable MeasureTheory.measure_union_toMeasurableₓ'. -/
 @[simp]
 theorem measure_union_toMeasurable : μ (s ∪ toMeasurable μ t) = μ (s ∪ t) :=
   Eq.symm <|
@@ -402,6 +632,12 @@ theorem measure_union_toMeasurable : μ (s ∪ toMeasurable μ t) = μ (s ∪ t)
       (measure_toMeasurable _).le
 #align measure_theory.measure_union_to_measurable MeasureTheory.measure_union_toMeasurable
 
+/- warning: measure_theory.sum_measure_le_measure_univ -> MeasureTheory.sum_measure_le_measure_univ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} ι) (Set.{u2} ι) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} ι) (Set.{u2} ι) (Finset.Set.hasCoeT.{u2} ι))) s) t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) ι (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Finset.toSet.{u2} ι s) t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (t i))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.sum_measure_le_measure_univ MeasureTheory.sum_measure_le_measure_univₓ'. -/
 theorem sum_measure_le_measure_univ {s : Finset ι} {t : ι → Set α}
     (h : ∀ i ∈ s, MeasurableSet (t i)) (H : Set.PairwiseDisjoint (↑s) t) :
     (∑ i in s, μ (t i)) ≤ μ (univ : Set α) :=
@@ -410,6 +646,12 @@ theorem sum_measure_le_measure_univ {s : Finset ι} {t : ι → Set α}
   exact measure_mono (subset_univ _)
 #align measure_theory.sum_measure_le_measure_univ MeasureTheory.sum_measure_le_measure_univ
 
+/- warning: measure_theory.tsum_measure_le_measure_univ -> MeasureTheory.tsum_measure_le_measure_univ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {s : ι -> (Set.{u2} α)}, (forall (i : ι), MeasurableSet.{u2} α m (s i)) -> (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) s)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (s i))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.univ.{u2} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tsum_measure_le_measure_univ MeasureTheory.tsum_measure_le_measure_univₓ'. -/
 theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i))
     (H : Pairwise (Disjoint on s)) : (∑' i, μ (s i)) ≤ μ (univ : Set α) :=
   by
@@ -417,6 +659,12 @@ theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, Measurable
   exact supᵢ_le fun s => sum_measure_le_measure_univ (fun i hi => hs i) fun i hi j hj hij => H hij
 #align measure_theory.tsum_measure_le_measure_univ MeasureTheory.tsum_measure_le_measure_univ
 
+/- warning: measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure -> MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)))) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Ne.{succ u2} ι i j) (fun (h : Ne.{succ u2} ι i j) => Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (s i) (s j))))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) {s : ι -> (Set.{u2} α)}, (forall (i : ι), MeasurableSet.{u2} α m (s i)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.univ.{u2} α)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (s i)))) -> (Exists.{succ u1} ι (fun (i : ι) => Exists.{succ u1} ι (fun (j : ι) => Exists.{0} (Ne.{succ u1} ι i j) (fun (h : Ne.{succ u1} ι i j) => Set.Nonempty.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) (s i) (s j))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measureₓ'. -/
 /-- Pigeonhole principle for measure spaces: if `∑' i, μ (s i) > μ univ`, then
 one of the intersections `s i ∩ s j` is not empty. -/
 theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpace α}
@@ -430,6 +678,12 @@ theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpa
   exact fun x hx => H i j hij ⟨x, hx⟩
 #align measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure
 
+/- warning: measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure -> MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Finset.{u2} ι} {t : ι -> (Set.{u1} α)}, (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) -> (MeasurableSet.{u1} α m (t i))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (t i)))) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{0} (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i s) => Exists.{succ u2} ι (fun (j : ι) => Exists.{0} (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) j s) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) j s) => Exists.{0} (Ne.{succ u2} ι i j) (fun (h : Ne.{succ u2} ι i j) => Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (t i) (t j))))))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) {s : Finset.{u1} ι} {t : ι -> (Set.{u2} α)}, (forall (i : ι), (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i s) -> (MeasurableSet.{u2} α m (t i))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.univ.{u2} α)) (Finset.sum.{0, u1} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (t i)))) -> (Exists.{succ u1} ι (fun (i : ι) => And (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i s) (Exists.{succ u1} ι (fun (j : ι) => And (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) j s) (Exists.{0} (Ne.{succ u1} ι i j) (fun (_h : Ne.{succ u1} ι i j) => Set.Nonempty.{u2} α (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) (t i) (t j))))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measureₓ'. -/
 /-- Pigeonhole principle for measure spaces: if `s` is a `finset` and
 `∑ i in s, μ (t i) > μ univ`, then one of the intersections `t i ∩ t j` is not empty. -/
 theorem exists_nonempty_inter_of_measure_univ_lt_sum_measure {m : MeasurableSpace α} (μ : Measure α)
@@ -444,6 +698,12 @@ theorem exists_nonempty_inter_of_measure_univ_lt_sum_measure {m : MeasurableSpac
   exact fun x hx => H i hi j hj hij ⟨x, hx⟩
 #align measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measure
 
+/- warning: measure_theory.nonempty_inter_of_measure_lt_add -> MeasureTheory.nonempty_inter_of_measure_lt_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.nonempty_inter_of_measure_lt_add MeasureTheory.nonempty_inter_of_measure_lt_addₓ'. -/
 /-- If two sets `s` and `t` are included in a set `u`, and `μ s + μ t > μ u`,
 then `s` intersects `t`. Version assuming that `t` is measurable. -/
 theorem nonempty_inter_of_measure_lt_add {m : MeasurableSpace α} (μ : Measure α) {s t u : Set α}
@@ -457,6 +717,12 @@ theorem nonempty_inter_of_measure_lt_add {m : MeasurableSpace α} (μ : Measure
     
 #align measure_theory.nonempty_inter_of_measure_lt_add MeasureTheory.nonempty_inter_of_measure_lt_add
 
+/- warning: measure_theory.nonempty_inter_of_measure_lt_add' -> MeasureTheory.nonempty_inter_of_measure_lt_add' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s u) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t u) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) u) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) t))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.nonempty_inter_of_measure_lt_add' MeasureTheory.nonempty_inter_of_measure_lt_add'ₓ'. -/
 /-- If two sets `s` and `t` are included in a set `u`, and `μ s + μ t > μ u`,
 then `s` intersects `t`. Version assuming that `s` is measurable. -/
 theorem nonempty_inter_of_measure_lt_add' {m : MeasurableSpace α} (μ : Measure α) {s t u : Set α}
@@ -467,6 +733,12 @@ theorem nonempty_inter_of_measure_lt_add' {m : MeasurableSpace α} (μ : Measure
   exact nonempty_inter_of_measure_lt_add μ hs h't h's h
 #align measure_theory.nonempty_inter_of_measure_lt_add' MeasureTheory.nonempty_inter_of_measure_lt_add'
 
+/- warning: measure_theory.measure_Union_eq_supr -> MeasureTheory.measure_unionᵢ_eq_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6293 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6295 : Set.{u1} α) => HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6293 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.6295) s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union_eq_supr MeasureTheory.measure_unionᵢ_eq_supᵢₓ'. -/
 /-- Continuity from below: the measure of the union of a directed sequence of (not necessarily
 -measurable) sets is the supremum of the measures. -/
 theorem measure_unionᵢ_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s) :
@@ -507,13 +779,25 @@ theorem measure_unionᵢ_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Dire
     
 #align measure_theory.measure_Union_eq_supr MeasureTheory.measure_unionᵢ_eq_supᵢ
 
-theorem measure_bUnion_eq_supᵢ {s : ι → Set α} {t : Set ι} (ht : t.Countable)
+/- warning: measure_theory.measure_bUnion_eq_supr -> MeasureTheory.measure_bunionᵢ_eq_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : ι -> (Set.{u1} α)} {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (DirectedOn.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i)))) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {s : ι -> (Set.{u2} α)} {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (DirectedOn.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7636 : Set.{u2} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7638 : Set.{u2} α) => HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7636 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7638) s) t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i)))) (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (s i)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_bunionᵢ_eq_supᵢₓ'. -/
+theorem measure_bunionᵢ_eq_supᵢ {s : ι → Set α} {t : Set ι} (ht : t.Countable)
     (hd : DirectedOn ((· ⊆ ·) on s) t) : μ (⋃ i ∈ t, s i) = ⨆ i ∈ t, μ (s i) :=
   by
   haveI := ht.to_encodable
   rw [bUnion_eq_Union, measure_Union_eq_supr hd.directed_coe, ← supᵢ_subtype'']
-#align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_bUnion_eq_supᵢ
-
+#align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_bunionᵢ_eq_supᵢ
+
+/- warning: measure_theory.measure_Inter_eq_infi -> MeasureTheory.measure_interᵢ_eq_infᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Directed.{u1, succ u2} (Set.{u1} α) ι (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.interᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (infᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α m (s i)) -> (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7814 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7816 : Set.{u1} α) => Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7814 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.7816) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.interᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (infᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_interᵢ_eq_infᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the infimum of the measures. -/
@@ -537,6 +821,12 @@ theorem measure_interᵢ_eq_infᵢ [Countable ι] {s : ι → Set α} (h : ∀ i
   · exact hd.mono_comp _ fun _ _ => diff_subset_diff_right
 #align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_interᵢ_eq_infᵢ
 
+/- warning: measure_theory.tendsto_measure_Union -> MeasureTheory.tendsto_measure_unionᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : SemilatticeSup.{u2} ι] [_inst_2 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Monotone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) s) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1))) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (n : ι) => s n)))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : SemilatticeSup.{u2} ι] [_inst_2 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Monotone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_1))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (n : ι) => s n)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_unionᵢₓ'. -/
 /-- Continuity from below: the measure of the union of an increasing sequence of measurable sets
 is the limit of the measures. -/
 theorem tendsto_measure_unionᵢ [SemilatticeSup ι] [Countable ι] {s : ι → Set α} (hm : Monotone s) :
@@ -546,6 +836,12 @@ theorem tendsto_measure_unionᵢ [SemilatticeSup ι] [Countable ι] {s : ι →
   exact tendsto_atTop_supᵢ fun n m hnm => measure_mono <| hm hnm
 #align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_unionᵢ
 
+/- warning: measure_theory.tendsto_measure_Inter -> MeasureTheory.tendsto_measure_interᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : SemilatticeSup.{u2} ι] {s : ι -> (Set.{u1} α)}, (forall (n : ι), MeasurableSet.{u1} α m (s n)) -> (Antitone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2))) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.interᵢ.{u1, succ u2} α ι (fun (n : ι) => s n)))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : SemilatticeSup.{u2} ι] {s : ι -> (Set.{u1} α)}, (forall (n : ι), MeasurableSet.{u1} α m (s n)) -> (Antitone.{u2, u1} ι (Set.{u1} α) (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s) -> (Exists.{succ u2} ι (fun (i : ι) => Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeSup.toPartialOrder.{u2} ι _inst_2))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.interᵢ.{u1, succ u2} α ι (fun (n : ι) => s n)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_interᵢₓ'. -/
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the limit of the measures. -/
 theorem tendsto_measure_interᵢ [Countable ι] [SemilatticeSup ι] {s : ι → Set α}
@@ -556,9 +852,15 @@ theorem tendsto_measure_interᵢ [Countable ι] [SemilatticeSup ι] {s : ι →
   exact tendsto_atTop_infᵢ fun n m hnm => measure_mono <| hm hnm
 #align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_interᵢ
 
+/- warning: measure_theory.tendsto_measure_bInter_gt -> MeasureTheory.tendsto_measure_binterᵢ_gt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) a i) -> (LE.le.{u2} ι (Preorder.toLE.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => Exists.{0} (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1)))) a)) (nhds.{0} ENNReal ENNReal.topologicalSpace (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.interᵢ.{u1, succ u2} α ι (fun (r : ι) => Set.interᵢ.{u1, 0} α (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_1))))) r a) => s r))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : LinearOrder.{u2} ι] [_inst_2 : TopologicalSpace.{u2} ι] [_inst_3 : OrderTopology.{u2} ι _inst_2 (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))] [_inst_4 : DenselyOrdered.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1))))))] [_inst_5 : TopologicalSpace.FirstCountableTopology.{u2} ι _inst_2] {s : ι -> (Set.{u1} α)} {a : ι}, (forall (r : ι), (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) -> (MeasurableSet.{u1} α m (s r))) -> (forall (i : ι) (j : ι), (LT.lt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) a i) -> (LE.le.{u2} ι (Preorder.toLE.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (s i) (s j))) -> (Exists.{succ u2} ι (fun (r : ι) => And (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) (nhdsWithin.{u2} ι _inst_2 a (Set.Ioi.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1))))) a)) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.interᵢ.{u1, succ u2} α ι (fun (r : ι) => Set.interᵢ.{u1, 0} α (GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) (fun (H : GT.gt.{u2} ι (Preorder.toLT.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_1)))))) r a) => s r))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_binterᵢ_gtₓ'. -/
 /-- The measure of the intersection of a decreasing sequence of measurable
 sets indexed by a linear order with first countable topology is the limit of the measures. -/
-theorem tendsto_measure_bInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSpace ι]
+theorem tendsto_measure_binterᵢ_gt {ι : Type _} [LinearOrder ι] [TopologicalSpace ι]
     [OrderTopology ι] [DenselyOrdered ι] [TopologicalSpace.FirstCountableTopology ι] {s : ι → Set α}
     {a : ι} (hs : ∀ r > a, MeasurableSet (s r)) (hm : ∀ i j, a < i → i ≤ j → s i ⊆ s j)
     (hf : ∃ r > a, μ (s r) ≠ ∞) : Tendsto (μ ∘ s) (𝓝[Ioi a] a) (𝓝 (μ (⋂ r > a, s r))) :=
@@ -597,8 +899,14 @@ theorem tendsto_measure_bInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSpa
   obtain ⟨n, hn⟩ : ∃ n, μ (s (u n)) < L := ((tendsto_order.1 A).2 _ hL).exists
   have : Ioc a (u n) ∈ 𝓝[>] a := Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, u_pos n⟩
   filter_upwards [this]with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
-#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_bInter_gt
-
+#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_binterᵢ_gt
+
+/- warning: measure_theory.measure_limsup_eq_zero -> MeasureTheory.measure_limsup_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_limsup_eq_zero MeasureTheory.measure_limsup_eq_zeroₓ'. -/
 /-- One direction of the **Borel-Cantelli lemma**: if (sᵢ) is a sequence of sets such
 that `∑ μ sᵢ` is finite, then the limit superior of the `sᵢ` is a null set. -/
 theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠ ∞) :
@@ -632,6 +940,12 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
   exact fun ⟨i, hi⟩ => ⟨i + (m - n), by simpa only [add_assoc, tsub_add_cancel_of_le hnm] using hi⟩
 #align measure_theory.measure_limsup_eq_zero MeasureTheory.measure_limsup_eq_zero
 
+/- warning: measure_theory.measure_liminf_eq_zero -> MeasureTheory.measure_liminf_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (s i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (s i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_liminf_eq_zero MeasureTheory.measure_liminf_eq_zeroₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠ ⊤) : μ (liminf s atTop) = 0 :=
@@ -648,6 +962,12 @@ theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠
   exact (μ.mono this).trans (by simp [measure_limsup_eq_zero h])
 #align measure_theory.measure_liminf_eq_zero MeasureTheory.measure_liminf_eq_zero
 
+/- warning: measure_theory.limsup_ae_eq_of_forall_ae_eq -> MeasureTheory.limsup_ae_eq_of_forall_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Nat -> (Set.{u1} α)) {t : Set.{u1} α}, (forall (n : Nat), Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (s n) t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) t)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Nat -> (Set.{u1} α)) {t : Set.{u1} α}, (forall (n : Nat), Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (s n) t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) t)
+Case conversion may be inaccurate. Consider using '#align measure_theory.limsup_ae_eq_of_forall_ae_eq MeasureTheory.limsup_ae_eq_of_forall_ae_eqₓ'. -/
 theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     (h : ∀ n, s n =ᵐ[μ] t) :-- Need `@` below because of diamond; see gh issue #16932
         @limsup
@@ -664,6 +984,12 @@ theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     simp [h]
 #align measure_theory.limsup_ae_eq_of_forall_ae_eq MeasureTheory.limsup_ae_eq_of_forall_ae_eq
 
+/- warning: measure_theory.liminf_ae_eq_of_forall_ae_eq -> MeasureTheory.liminf_ae_eq_of_forall_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Nat -> (Set.{u1} α)) {t : Set.{u1} α}, (forall (n : Nat), Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (s n) t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) t)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Nat -> (Set.{u1} α)) {t : Set.{u1} α}, (forall (n : Nat), Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (s n) t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m μ) (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) s (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) t)
+Case conversion may be inaccurate. Consider using '#align measure_theory.liminf_ae_eq_of_forall_ae_eq MeasureTheory.liminf_ae_eq_of_forall_ae_eqₓ'. -/
 theorem liminf_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     (h : ∀ n, s n =ᵐ[μ] t) :-- Need `@` below because of diamond; see gh issue #16932
         @liminf
@@ -680,6 +1006,12 @@ theorem liminf_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     simp [h]
 #align measure_theory.liminf_ae_eq_of_forall_ae_eq MeasureTheory.liminf_ae_eq_of_forall_ae_eq
 
+/- warning: measure_theory.measure_if -> MeasureTheory.measure_if is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {x : β} {t : Set.{u2} β} {s : Set.{u1} α}, Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (ite.{succ u1} (Set.{u1} α) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (Classical.propDecidable (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t)) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))) (Set.indicator.{u2, 0} β ENNReal ENNReal.hasZero t (fun (_x : β) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) x)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {x : β} {t : Set.{u2} β} {s : Set.{u1} α}, Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (ite.{succ u1} (Set.{u1} α) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (Classical.propDecidable (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t)) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)))) (Set.indicator.{u2, 0} β ENNReal instENNRealZero t (fun (_x : β) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) x)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_if MeasureTheory.measure_ifₓ'. -/
 theorem measure_if {x : β} {t : Set β} {s : Set α} :
     μ (if x ∈ t then s else ∅) = indicator t (fun _ => μ s) x := by split_ifs <;> simp [h]
 #align measure_theory.measure_if MeasureTheory.measure_if
@@ -692,34 +1024,49 @@ variable [ms : MeasurableSpace α] {s t : Set α}
 
 include ms
 
+#print MeasureTheory.OuterMeasure.toMeasure /-
 /-- Obtain a measure by giving an outer measure where all sets in the σ-algebra are
   Carathéodory measurable. -/
 def OuterMeasure.toMeasure (m : OuterMeasure α) (h : ms ≤ m.caratheodory) : Measure α :=
   Measure.ofMeasurable (fun s _ => m s) m.Empty fun f hf hd =>
     m.unionᵢ_eq_of_caratheodory (fun i => h _ (hf i)) hd
 #align measure_theory.outer_measure.to_measure MeasureTheory.OuterMeasure.toMeasure
+-/
 
+#print MeasureTheory.le_toOuterMeasure_caratheodory /-
 theorem le_toOuterMeasure_caratheodory (μ : Measure α) : ms ≤ μ.toOuterMeasure.caratheodory :=
   fun s hs t => (measure_inter_add_diff _ hs).symm
 #align measure_theory.le_to_outer_measure_caratheodory MeasureTheory.le_toOuterMeasure_caratheodory
+-/
 
+#print MeasureTheory.toMeasure_toOuterMeasure /-
 @[simp]
 theorem toMeasure_toOuterMeasure (m : OuterMeasure α) (h : ms ≤ m.caratheodory) :
     (m.toMeasure h).toOuterMeasure = m.trim :=
   rfl
 #align measure_theory.to_measure_to_outer_measure MeasureTheory.toMeasure_toOuterMeasure
+-/
 
+#print MeasureTheory.toMeasure_apply /-
 @[simp]
 theorem toMeasure_apply (m : OuterMeasure α) (h : ms ≤ m.caratheodory) {s : Set α}
     (hs : MeasurableSet s) : m.toMeasure h s = m s :=
   m.trim_eq hs
 #align measure_theory.to_measure_apply MeasureTheory.toMeasure_apply
+-/
 
+/- warning: measure_theory.le_to_measure_apply -> MeasureTheory.le_toMeasure_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [ms : MeasurableSpace.{u1} α] (m : MeasureTheory.OuterMeasure.{u1} α) (h : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) ms (MeasureTheory.OuterMeasure.caratheodory.{u1} α m)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u1} α) m s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α ms) (fun (_x : MeasureTheory.Measure.{u1} α ms) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α ms) (MeasureTheory.OuterMeasure.toMeasure.{u1} α ms m h) s)
+but is expected to have type
+  forall {α : Type.{u1}} [ms : MeasurableSpace.{u1} α] (m : MeasureTheory.OuterMeasure.{u1} α) (h : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) ms (MeasureTheory.OuterMeasure.caratheodory.{u1} α m)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α m s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α ms (MeasureTheory.OuterMeasure.toMeasure.{u1} α ms m h)) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.le_to_measure_apply MeasureTheory.le_toMeasure_applyₓ'. -/
 theorem le_toMeasure_apply (m : OuterMeasure α) (h : ms ≤ m.caratheodory) (s : Set α) :
     m s ≤ m.toMeasure h s :=
   m.le_trim s
 #align measure_theory.le_to_measure_apply MeasureTheory.le_toMeasure_apply
 
+#print MeasureTheory.toMeasure_apply₀ /-
 theorem toMeasure_apply₀ (m : OuterMeasure α) (h : ms ≤ m.caratheodory) {s : Set α}
     (hs : NullMeasurableSet s (m.toMeasure h)) : m.toMeasure h s = m s :=
   by
@@ -731,17 +1078,22 @@ theorem toMeasure_apply₀ (m : OuterMeasure α) (h : ms ≤ m.caratheodory) {s
     _ ≤ m s := m.mono hts
     
 #align measure_theory.to_measure_apply₀ MeasureTheory.toMeasure_apply₀
+-/
 
+#print MeasureTheory.toOuterMeasure_toMeasure /-
 @[simp]
 theorem toOuterMeasure_toMeasure {μ : Measure α} :
     μ.toOuterMeasure.toMeasure (le_toOuterMeasure_caratheodory _) = μ :=
   Measure.ext fun s => μ.toOuterMeasure.trim_eq
 #align measure_theory.to_outer_measure_to_measure MeasureTheory.toOuterMeasure_toMeasure
+-/
 
+#print MeasureTheory.boundedBy_measure /-
 @[simp]
 theorem boundedBy_measure (μ : Measure α) : OuterMeasure.boundedBy μ = μ.toOuterMeasure :=
   μ.toOuterMeasure.boundedBy_eq_self
 #align measure_theory.bounded_by_measure MeasureTheory.boundedBy_measure
+-/
 
 end OuterMeasure
 
@@ -751,6 +1103,12 @@ variable {μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α} {s s' t : Set α
 
 namespace Measure
 
+/- warning: measure_theory.measure.measure_inter_eq_of_measure_eq -> MeasureTheory.Measure.measure_inter_eq_of_measure_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ u)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t u) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) u s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} {u : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) u)) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t u) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) u s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_inter_eq_of_measure_eq MeasureTheory.Measure.measure_inter_eq_of_measure_eqₓ'. -/
 /-- If `u` is a superset of `t` with the same (finite) measure (both sets possibly non-measurable),
 then for any measurable set `s` one also has `μ (t ∩ s) = μ (u ∩ s)`. -/
 theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (h : μ t = μ u)
@@ -770,6 +1128,12 @@ theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (
   exact ENNReal.le_of_add_le_add_right B A
 #align measure_theory.measure.measure_inter_eq_of_measure_eq MeasureTheory.Measure.measure_inter_eq_of_measure_eq
 
+/- warning: measure_theory.measure.measure_to_measurable_inter -> MeasureTheory.Measure.measure_toMeasurable_inter is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_inter MeasureTheory.Measure.measure_toMeasurable_interₓ'. -/
 /-- The measurable superset `to_measurable μ t` of `t` (which has the same measure as `t`)
 satisfies, for any measurable set `s`, the equality `μ (to_measurable μ t ∩ s) = μ (u ∩ s)`.
 Here, we require that the measure of `t` is finite. The conclusion holds without this assumption
@@ -788,11 +1152,19 @@ instance [MeasurableSpace α] : Zero (Measure α) :=
       m_unionᵢ := fun f hf hd => tsum_zero.symm
       trimmed := OuterMeasure.trim_zero }⟩
 
+#print MeasureTheory.Measure.zero_toOuterMeasure /-
 @[simp]
 theorem zero_toOuterMeasure {m : MeasurableSpace α} : (0 : Measure α).toOuterMeasure = 0 :=
   rfl
 #align measure_theory.measure.zero_to_outer_measure MeasureTheory.Measure.zero_toOuterMeasure
+-/
 
+/- warning: measure_theory.measure.coe_zero -> MeasureTheory.Measure.coe_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α}, Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) (OfNat.ofNat.{u1} ((Set.{u1} α) -> ENNReal) 0 (OfNat.mk.{u1} ((Set.{u1} α) -> ENNReal) 0 (Zero.zero.{u1} ((Set.{u1} α) -> ENNReal) (Pi.instZero.{u1, 0} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => ENNReal) (fun (i : Set.{u1} α) => ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α}, Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) (OfNat.ofNat.{u1} ((Set.{u1} α) -> ENNReal) 0 (Zero.toOfNat0.{u1} ((Set.{u1} α) -> ENNReal) (Pi.instZero.{u1, 0} (Set.{u1} α) (fun (a._@.Mathlib.MeasureTheory.Measure.OuterMeasure._hyg.11 : Set.{u1} α) => ENNReal) (fun (i : Set.{u1} α) => instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.coe_zero MeasureTheory.Measure.coe_zeroₓ'. -/
 @[simp, norm_cast]
 theorem coe_zero {m : MeasurableSpace α} : ⇑(0 : Measure α) = 0 :=
   rfl
@@ -803,9 +1175,11 @@ instance [IsEmpty α] {m : MeasurableSpace α} : Subsingleton (Measure α) :=
     ext1 s hs
     simp only [eq_empty_of_is_empty s, measure_empty]⟩
 
+#print MeasureTheory.Measure.eq_zero_of_isEmpty /-
 theorem eq_zero_of_isEmpty [IsEmpty α] {m : MeasurableSpace α} (μ : Measure α) : μ = 0 :=
   Subsingleton.elim μ 0
 #align measure_theory.measure.eq_zero_of_is_empty MeasureTheory.Measure.eq_zero_of_isEmpty
+-/
 
 instance [MeasurableSpace α] : Inhabited (Measure α) :=
   ⟨0⟩
@@ -818,17 +1192,31 @@ instance [MeasurableSpace α] : Add (Measure α) :=
           rw [ENNReal.tsum_add, measure_Union hd hs, measure_Union hd hs]
       trimmed := by rw [outer_measure.trim_add, μ₁.trimmed, μ₂.trimmed] }⟩
 
+#print MeasureTheory.Measure.add_toOuterMeasure /-
 @[simp]
 theorem add_toOuterMeasure {m : MeasurableSpace α} (μ₁ μ₂ : Measure α) :
     (μ₁ + μ₂).toOuterMeasure = μ₁.toOuterMeasure + μ₂.toOuterMeasure :=
   rfl
 #align measure_theory.measure.add_to_outer_measure MeasureTheory.Measure.add_toOuterMeasure
+-/
 
+/- warning: measure_theory.measure.coe_add -> MeasureTheory.Measure.coe_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ₁ : MeasureTheory.Measure.{u1} α m) (μ₂ : MeasureTheory.Measure.{u1} α m), Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ₁ μ₂)) (HAdd.hAdd.{u1, u1, u1} ((Set.{u1} α) -> ENNReal) ((Set.{u1} α) -> ENNReal) ((Set.{u1} α) -> ENNReal) (instHAdd.{u1} ((Set.{u1} α) -> ENNReal) (Pi.instAdd.{u1, 0} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => ENNReal) (fun (i : Set.{u1} α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ₁) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ₂))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ₁ : MeasureTheory.Measure.{u1} α m) (μ₂ : MeasureTheory.Measure.{u1} α m), Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ₁ μ₂))) (HAdd.hAdd.{u1, u1, u1} ((Set.{u1} α) -> ENNReal) ((Set.{u1} α) -> ENNReal) ((Set.{u1} α) -> ENNReal) (instHAdd.{u1} ((Set.{u1} α) -> ENNReal) (Pi.instAdd.{u1, 0} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => ENNReal) (fun (i : Set.{u1} α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ₁)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ₂)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.coe_add MeasureTheory.Measure.coe_addₓ'. -/
 @[simp, norm_cast]
 theorem coe_add {m : MeasurableSpace α} (μ₁ μ₂ : Measure α) : ⇑(μ₁ + μ₂) = μ₁ + μ₂ :=
   rfl
 #align measure_theory.measure.coe_add MeasureTheory.Measure.coe_add
 
+/- warning: measure_theory.measure.add_apply -> MeasureTheory.Measure.add_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ₁ : MeasureTheory.Measure.{u1} α m) (μ₂ : MeasureTheory.Measure.{u1} α m) (s : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ₁ μ₂) s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ₁ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ₂ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ₁ : MeasureTheory.Measure.{u1} α m) (μ₂ : MeasureTheory.Measure.{u1} α m) (s : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ₁ μ₂)) s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ₁) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ₂) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.add_apply MeasureTheory.Measure.add_applyₓ'. -/
 theorem add_apply {m : MeasurableSpace α} (μ₁ μ₂ : Measure α) (s : Set α) :
     (μ₁ + μ₂) s = μ₁ s + μ₂ s :=
   rfl
@@ -850,17 +1238,35 @@ instance [MeasurableSpace α] : SMul R (Measure α) :=
         simp_rw [measure_Union hd hs, ENNReal.tsum_mul_left]
       trimmed := by rw [outer_measure.trim_smul, μ.trimmed] }⟩
 
+/- warning: measure_theory.measure.smul_to_outer_measure -> MeasureTheory.Measure.smul_toOuterMeasure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : SMul.{u2, 0} R ENNReal] [_inst_4 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_3 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_3] {m : MeasurableSpace.{u1} α} (c : R) (μ : MeasureTheory.Measure.{u1} α m), Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, u2} α R _inst_3 _inst_4 m) c μ)) (SMul.smul.{u2, u1} R (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.hasSmul.{u1, u2} α R _inst_3 _inst_4) c (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ))
+but is expected to have type
+  forall {α : Type.{u2}} {R : Type.{u1}} [_inst_3 : SMul.{u1, 0} R ENNReal] [_inst_4 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_3 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3] {m : MeasurableSpace.{u2} α} (c : R) (μ : MeasureTheory.Measure.{u2} α m), Eq.{succ u2} (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.Measure.toOuterMeasure.{u2} α m (HSMul.hSMul.{u1, u2, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.{u2} α m) (instHSMul.{u1, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instSMul.{u2, u1} α R _inst_3 _inst_4 m)) c μ)) (HSMul.hSMul.{u1, u2, u2} R (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u2} α) (instHSMul.{u1, u2} R (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.instSMul.{u2, u1} α R _inst_3 _inst_4)) c (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.smul_to_outer_measure MeasureTheory.Measure.smul_toOuterMeasureₓ'. -/
 @[simp]
 theorem smul_toOuterMeasure {m : MeasurableSpace α} (c : R) (μ : Measure α) :
     (c • μ).toOuterMeasure = c • μ.toOuterMeasure :=
   rfl
 #align measure_theory.measure.smul_to_outer_measure MeasureTheory.Measure.smul_toOuterMeasure
 
+/- warning: measure_theory.measure.coe_smul -> MeasureTheory.Measure.coe_smul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : SMul.{u2, 0} R ENNReal] [_inst_4 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_3 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_3] {m : MeasurableSpace.{u1} α} (c : R) (μ : MeasureTheory.Measure.{u1} α m), Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, u2} α R _inst_3 _inst_4 m) c μ)) (SMul.smul.{u2, u1} R ((Set.{u1} α) -> ENNReal) (Function.hasSMul.{u1, u2, 0} (Set.{u1} α) R ENNReal _inst_3) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ))
+but is expected to have type
+  forall {α : Type.{u2}} {R : Type.{u1}} [_inst_3 : SMul.{u1, 0} R ENNReal] [_inst_4 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_3 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3] {m : MeasurableSpace.{u2} α} (c : R) (μ : MeasureTheory.Measure.{u2} α m), Eq.{succ u2} ((Set.{u2} α) -> ENNReal) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (HSMul.hSMul.{u1, u2, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.{u2} α m) (instHSMul.{u1, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instSMul.{u2, u1} α R _inst_3 _inst_4 m)) c μ))) (HSMul.hSMul.{u1, u2, u2} R ((Set.{u2} α) -> ENNReal) ((Set.{u2} α) -> ENNReal) (instHSMul.{u1, u2} R ((Set.{u2} α) -> ENNReal) (Pi.instSMul.{u2, 0, u1} (Set.{u2} α) R (fun (a._@.Mathlib.MeasureTheory.Measure.OuterMeasure._hyg.11 : Set.{u2} α) => ENNReal) (fun (i : Set.{u2} α) => _inst_3))) c (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.coe_smul MeasureTheory.Measure.coe_smulₓ'. -/
 @[simp, norm_cast]
 theorem coe_smul {m : MeasurableSpace α} (c : R) (μ : Measure α) : ⇑(c • μ) = c • μ :=
   rfl
 #align measure_theory.measure.coe_smul MeasureTheory.Measure.coe_smul
 
+/- warning: measure_theory.measure.smul_apply -> MeasureTheory.Measure.smul_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {R : Type.{u2}} [_inst_3 : SMul.{u2, 0} R ENNReal] [_inst_4 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_3 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_3] {m : MeasurableSpace.{u1} α} (c : R) (μ : MeasureTheory.Measure.{u1} α m) (s : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, u2} α R _inst_3 _inst_4 m) c μ) s) (SMul.smul.{u2, 0} R ENNReal _inst_3 c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s))
+but is expected to have type
+  forall {α : Type.{u2}} {R : Type.{u1}} [_inst_3 : SMul.{u1, 0} R ENNReal] [_inst_4 : IsScalarTower.{u1, 0, 0} R ENNReal ENNReal _inst_3 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3] {m : MeasurableSpace.{u2} α} (c : R) (μ : MeasureTheory.Measure.{u2} α m) (s : Set.{u2} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (HSMul.hSMul.{u1, u2, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.{u2} α m) (instHSMul.{u1, u2} R (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instSMul.{u2, u1} α R _inst_3 _inst_4 m)) c μ)) s) (HSMul.hSMul.{u1, 0, 0} R ENNReal ENNReal (instHSMul.{u1, 0} R ENNReal _inst_3) c (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.smul_apply MeasureTheory.Measure.smul_applyₓ'. -/
 @[simp]
 theorem smul_apply {m : MeasurableSpace α} (c : R) (μ : Measure α) (s : Set α) :
     (c • μ) s = c • μ s :=
@@ -884,22 +1290,38 @@ instance [Monoid R] [MulAction R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0
     MulAction R (Measure α) :=
   Injective.mulAction _ toOuterMeasure_injective smul_toOuterMeasure
 
-instance addCommMonoid [MeasurableSpace α] : AddCommMonoid (Measure α) :=
+#print MeasureTheory.Measure.instAddCommMonoid /-
+instance instAddCommMonoid [MeasurableSpace α] : AddCommMonoid (Measure α) :=
   toOuterMeasure_injective.AddCommMonoid toOuterMeasure zero_toOuterMeasure add_toOuterMeasure
     fun _ _ => smul_toOuterMeasure _ _
-#align measure_theory.measure.add_comm_monoid MeasureTheory.Measure.addCommMonoid
+#align measure_theory.measure.add_comm_monoid MeasureTheory.Measure.instAddCommMonoid
+-/
 
+#print MeasureTheory.Measure.coeAddHom /-
 /-- Coercion to function as an additive monoid homomorphism. -/
 def coeAddHom {m : MeasurableSpace α} : Measure α →+ Set α → ℝ≥0∞ :=
   ⟨coeFn, coe_zero, coe_add⟩
 #align measure_theory.measure.coe_add_hom MeasureTheory.Measure.coeAddHom
+-/
 
+/- warning: measure_theory.measure.coe_finset_sum -> MeasureTheory.Measure.coe_finset_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (I : Finset.{u2} ι) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), Eq.{succ u1} ((Set.{u1} α) -> ENNReal) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (Finset.sum.{u1, u2} (MeasureTheory.Measure.{u1} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u1} α m) I (fun (i : ι) => μ i))) (Finset.sum.{u1, u2} ((Set.{u1} α) -> ENNReal) ι (Pi.addCommMonoid.{u1, 0} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => ENNReal) (fun (i : Set.{u1} α) => OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) I (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (μ i)))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} (I : Finset.{u1} ι) (μ : ι -> (MeasureTheory.Measure.{u2} α m)), Eq.{succ u2} ((Set.{u2} α) -> ENNReal) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (Finset.sum.{u2, u1} (MeasureTheory.Measure.{u2} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u2} α m) I (fun (i : ι) => μ i)))) (Finset.sum.{u2, u1} ((Set.{u2} α) -> ENNReal) ι (Pi.addCommMonoid.{u2, 0} (Set.{u2} α) (fun (ᾰ : Set.{u2} α) => ENNReal) (fun (i : Set.{u2} α) => LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal))) I (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (μ i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.coe_finset_sum MeasureTheory.Measure.coe_finset_sumₓ'. -/
 @[simp]
 theorem coe_finset_sum {m : MeasurableSpace α} (I : Finset ι) (μ : ι → Measure α) :
     ⇑(∑ i in I, μ i) = ∑ i in I, μ i :=
   (@coeAddHom α m).map_sum _ _
 #align measure_theory.measure.coe_finset_sum MeasureTheory.Measure.coe_finset_sum
 
+/- warning: measure_theory.measure.finset_sum_apply -> MeasureTheory.Measure.finset_sum_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (I : Finset.{u2} ι) (μ : ι -> (MeasureTheory.Measure.{u1} α m)) (s : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (Finset.sum.{u1, u2} (MeasureTheory.Measure.{u1} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u1} α m) I (fun (i : ι) => μ i)) s) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) I (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (μ i) s))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m : MeasurableSpace.{u2} α} (I : Finset.{u1} ι) (μ : ι -> (MeasureTheory.Measure.{u2} α m)) (s : Set.{u2} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (Finset.sum.{u2, u1} (MeasureTheory.Measure.{u2} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u2} α m) I (fun (i : ι) => μ i))) s) (Finset.sum.{0, u1} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) I (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m (μ i)) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finset_sum_apply MeasureTheory.Measure.finset_sum_applyₓ'. -/
 theorem finset_sum_apply {m : MeasurableSpace α} (I : Finset ι) (μ : ι → Measure α) (s : Set α) :
     (∑ i in I, μ i) s = ∑ i in I, μ i s := by rw [coe_finset_sum, Finset.sum_apply]
 #align measure_theory.measure.finset_sum_apply MeasureTheory.Measure.finset_sum_apply
@@ -914,16 +1336,34 @@ instance [Semiring R] [Module R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0
   Injective.module R ⟨toOuterMeasure, zero_toOuterMeasure, add_toOuterMeasure⟩
     toOuterMeasure_injective smul_toOuterMeasure
 
+/- warning: measure_theory.measure.coe_nnreal_smul_apply -> MeasureTheory.Measure.coe_nnreal_smul_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (c : NNReal) (μ : MeasureTheory.Measure.{u1} α m) (s : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (SMul.smul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (MulAction.toHasSmul.{0, 0} NNReal ENNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (ENNReal.mulAction.{0} ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.isScalarTower.{0, 0} ENNReal ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) m) c μ) s) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) c) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (c : NNReal) (μ : MeasureTheory.Measure.{u1} α m) (s : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (HSMul.hSMul.{0, u1, u1} NNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHSMul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (ENNReal.instIsScalarTowerNNRealToSMulToMonoidToMonoidWithZeroInstNNRealSemiringInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiringToSMulInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0, 0} ENNReal ENNReal (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) m)) c μ)) s) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (ENNReal.some c) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.coe_nnreal_smul_apply MeasureTheory.Measure.coe_nnreal_smul_applyₓ'. -/
 @[simp]
-theorem coe_nNReal_smul_apply {m : MeasurableSpace α} (c : ℝ≥0) (μ : Measure α) (s : Set α) :
+theorem coe_nnreal_smul_apply {m : MeasurableSpace α} (c : ℝ≥0) (μ : Measure α) (s : Set α) :
     (c • μ) s = c * μ s :=
   rfl
-#align measure_theory.measure.coe_nnreal_smul_apply MeasureTheory.Measure.coe_nNReal_smul_apply
-
+#align measure_theory.measure.coe_nnreal_smul_apply MeasureTheory.Measure.coe_nnreal_smul_apply
+
+/- warning: measure_theory.measure.ae_smul_measure_iff -> MeasureTheory.Measure.ae_smul_measure_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop} {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ))) (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 μ)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop} {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ))) (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_smul_measure_iff MeasureTheory.Measure.ae_smul_measure_iffₓ'. -/
 theorem ae_smul_measure_iff {p : α → Prop} {c : ℝ≥0∞} (hc : c ≠ 0) :
     (∀ᵐ x ∂c • μ, p x) ↔ ∀ᵐ x ∂μ, p x := by simp [ae_iff, hc]
 #align measure_theory.measure.ae_smul_measure_iff MeasureTheory.Measure.ae_smul_measure_iff
 
+/- warning: measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq -> MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eqₓ'. -/
 theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν) t ≠ ∞) (h' : s ⊆ t)
     (h'' : (μ + ν) s = (μ + ν) t) : μ s = μ t :=
   by
@@ -938,6 +1378,12 @@ theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν
   exact h.2
 #align measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eq
 
+/- warning: measure_theory.measure.measure_eq_right_of_subset_of_measure_add_eq -> MeasureTheory.Measure.measure_eq_right_of_subset_of_measure_add_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν t))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_eq_right_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_right_of_subset_of_measure_add_eqₓ'. -/
 theorem measure_eq_right_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν) t ≠ ∞) (h' : s ⊆ t)
     (h'' : (μ + ν) s = (μ + ν) t) : ν s = ν t :=
   by
@@ -945,6 +1391,12 @@ theorem measure_eq_right_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + 
   exact measure_eq_left_of_subset_of_measure_add_eq h h' h''
 #align measure_theory.measure.measure_eq_right_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_right_of_subset_of_measure_add_eq
 
+/- warning: measure_theory.measure.measure_to_measurable_add_inter_left -> MeasureTheory.Measure.measure_toMeasurable_add_inter_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_add_inter_left MeasureTheory.Measure.measure_toMeasurable_add_inter_leftₓ'. -/
 theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s)
     (ht : (μ + ν) t ≠ ∞) : μ (toMeasurable (μ + ν) t ∩ s) = μ (t ∩ s) :=
   by
@@ -957,6 +1409,12 @@ theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s
     exact ht.1
 #align measure_theory.measure.measure_to_measurable_add_inter_left MeasureTheory.Measure.measure_toMeasurable_add_inter_left
 
+/- warning: measure_theory.measure.measure_to_measurable_add_inter_right -> MeasureTheory.Measure.measure_toMeasurable_add_inter_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν) t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_add_inter_right MeasureTheory.Measure.measure_toMeasurable_add_inter_rightₓ'. -/
 theorem measure_toMeasurable_add_inter_right {s t : Set α} (hs : MeasurableSet s)
     (ht : (μ + ν) t ≠ ∞) : ν (toMeasurable (μ + ν) t ∩ s) = ν (t ∩ s) :=
   by
@@ -980,42 +1438,80 @@ instance [MeasurableSpace α] : PartialOrder (Measure α)
   le_trans m₁ m₂ m₃ h₁ h₂ s hs := le_trans (h₁ s hs) (h₂ s hs)
   le_antisymm m₁ m₂ h₁ h₂ := ext fun s hs => le_antisymm (h₁ s hs) (h₂ s hs)
 
+/- warning: measure_theory.measure.le_iff -> MeasureTheory.Measure.le_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₁ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₂ s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₁) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₂) s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_iff MeasureTheory.Measure.le_iffₓ'. -/
 theorem le_iff : μ₁ ≤ μ₂ ↔ ∀ s, MeasurableSet s → μ₁ s ≤ μ₂ s :=
   Iff.rfl
 #align measure_theory.measure.le_iff MeasureTheory.Measure.le_iff
 
+#print MeasureTheory.Measure.toOuterMeasure_le /-
 theorem toOuterMeasure_le : μ₁.toOuterMeasure ≤ μ₂.toOuterMeasure ↔ μ₁ ≤ μ₂ := by
   rw [← μ₂.trimmed, outer_measure.le_trim_iff] <;> rfl
 #align measure_theory.measure.to_outer_measure_le MeasureTheory.Measure.toOuterMeasure_le
+-/
 
+/- warning: measure_theory.measure.le_iff' -> MeasureTheory.Measure.le_iff' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₁ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ₂ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ₁ : MeasureTheory.Measure.{u1} α m0} {μ₂ : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ₁ μ₂) (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₁) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ₂) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_iff' MeasureTheory.Measure.le_iff'ₓ'. -/
 theorem le_iff' : μ₁ ≤ μ₂ ↔ ∀ s, μ₁ s ≤ μ₂ s :=
   toOuterMeasure_le.symm
 #align measure_theory.measure.le_iff' MeasureTheory.Measure.le_iff'
 
+/- warning: measure_theory.measure.lt_iff -> MeasureTheory.Measure.lt_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLT.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (MeasurableSet.{u1} α m0 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLT.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (MeasurableSet.{u1} α m0 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lt_iff MeasureTheory.Measure.lt_iffₓ'. -/
 theorem lt_iff : μ < ν ↔ μ ≤ ν ∧ ∃ s, MeasurableSet s ∧ μ s < ν s :=
   lt_iff_le_not_le.trans <|
     and_congr Iff.rfl <| by simp only [le_iff, not_forall, not_le, exists_prop]
 #align measure_theory.measure.lt_iff MeasureTheory.Measure.lt_iff
 
+/- warning: measure_theory.measure.lt_iff' -> MeasureTheory.Measure.lt_iff' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLT.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLT.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (And (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) (Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lt_iff' MeasureTheory.Measure.lt_iff'ₓ'. -/
 theorem lt_iff' : μ < ν ↔ μ ≤ ν ∧ ∃ s, μ s < ν s :=
   lt_iff_le_not_le.trans <| and_congr Iff.rfl <| by simp only [le_iff', not_forall, not_le]
 #align measure_theory.measure.lt_iff' MeasureTheory.Measure.lt_iff'
 
-instance covariant_add_le [MeasurableSpace α] :
+#print MeasureTheory.Measure.covariantAddLE /-
+instance covariantAddLE [MeasurableSpace α] :
     CovariantClass (Measure α) (Measure α) (· + ·) (· ≤ ·) :=
   ⟨fun ν μ₁ μ₂ hμ s hs => add_le_add_left (hμ s hs) _⟩
-#align measure_theory.measure.covariant_add_le MeasureTheory.Measure.covariant_add_le
+#align measure_theory.measure.covariant_add_le MeasureTheory.Measure.covariantAddLE
+-/
 
+#print MeasureTheory.Measure.le_add_left /-
 protected theorem le_add_left (h : μ ≤ ν) : μ ≤ ν' + ν := fun s hs => le_add_left (h s hs)
 #align measure_theory.measure.le_add_left MeasureTheory.Measure.le_add_left
+-/
 
+#print MeasureTheory.Measure.le_add_right /-
 protected theorem le_add_right (h : μ ≤ ν) : μ ≤ ν + ν' := fun s hs => le_add_right (h s hs)
 #align measure_theory.measure.le_add_right MeasureTheory.Measure.le_add_right
+-/
 
 section Inf
 
 variable {m : Set (Measure α)}
 
+/- warning: measure_theory.measure.Inf_caratheodory -> MeasureTheory.Measure.infₛ_caratheodory is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)} (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α (MeasureTheory.OuterMeasure.caratheodory.{u1} α (InfSet.infₛ.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m))) s)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)} (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α (MeasureTheory.OuterMeasure.caratheodory.{u1} α (InfSet.infₛ.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toInfSet.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m))) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.Inf_caratheodory MeasureTheory.Measure.infₛ_caratheodoryₓ'. -/
 theorem infₛ_caratheodory (s : Set α) (hs : MeasurableSet s) :
     measurable_set[(infₛ (toOuterMeasure '' m)).caratheodory] s :=
   by
@@ -1038,6 +1534,12 @@ theorem infₛ_caratheodory (s : Set α) (hs : MeasurableSet s) :
 instance [MeasurableSpace α] : InfSet (Measure α) :=
   ⟨fun m => (infₛ (toOuterMeasure '' m)).toMeasure <| infₛ_caratheodory⟩
 
+/- warning: measure_theory.measure.Inf_apply -> MeasureTheory.Measure.infₛ_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (InfSet.infₛ.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.hasInf.{u1} α m0) m) s) (coeFn.{succ u1, succ u1} (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (Set.{u1} α) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u1} α) (InfSet.infₛ.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m)) s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} {m : Set.{u1} (MeasureTheory.Measure.{u1} α m0)}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (InfSet.infₛ.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instInfSetMeasure.{u1} α m0) m)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (InfSet.infₛ.{u1} (MeasureTheory.OuterMeasure.{u1} α) (ConditionallyCompleteLattice.toInfSet.{u1} (MeasureTheory.OuterMeasure.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.instCompleteLattice.{u1} α))) (Set.image.{u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0) m)) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.Inf_apply MeasureTheory.Measure.infₛ_applyₓ'. -/
 theorem infₛ_apply (hs : MeasurableSet s) : infₛ m s = infₛ (toOuterMeasure '' m) s :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.Inf_apply MeasureTheory.Measure.infₛ_apply
@@ -1075,34 +1577,68 @@ instance [MeasurableSpace α] : CompleteLattice (Measure α) :=
 
 end Inf
 
+/- warning: measure_theory.measure.top_add -> MeasureTheory.Measure.top_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0))) μ) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0))) μ) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.top_add MeasureTheory.Measure.top_addₓ'. -/
 @[simp]
 theorem top_add : ⊤ + μ = ⊤ :=
   top_unique <| Measure.le_add_right le_rfl
 #align measure_theory.measure.top_add MeasureTheory.Measure.top_add
 
+/- warning: measure_theory.measure.add_top -> MeasureTheory.Measure.add_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toHasTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))) (Top.top.{u1} (MeasureTheory.Measure.{u1} α m0) (CompleteLattice.toTop.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instCompleteLattice.{u1} α m0)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.add_top MeasureTheory.Measure.add_topₓ'. -/
 @[simp]
 theorem add_top : μ + ⊤ = ⊤ :=
   top_unique <| Measure.le_add_left le_rfl
 #align measure_theory.measure.add_top MeasureTheory.Measure.add_top
 
+#print MeasureTheory.Measure.zero_le /-
 protected theorem zero_le {m0 : MeasurableSpace α} (μ : Measure α) : 0 ≤ μ :=
   bot_le
 #align measure_theory.measure.zero_le MeasureTheory.Measure.zero_le
+-/
 
+#print MeasureTheory.Measure.nonpos_iff_eq_zero' /-
 theorem nonpos_iff_eq_zero' : μ ≤ 0 ↔ μ = 0 :=
   μ.zero_le.le_iff_eq
 #align measure_theory.measure.nonpos_iff_eq_zero' MeasureTheory.Measure.nonpos_iff_eq_zero'
+-/
 
+/- warning: measure_theory.measure.measure_univ_eq_zero -> MeasureTheory.Measure.measure_univ_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_univ_eq_zero MeasureTheory.Measure.measure_univ_eq_zeroₓ'. -/
 @[simp]
 theorem measure_univ_eq_zero : μ univ = 0 ↔ μ = 0 :=
   ⟨fun h => bot_unique fun s hs => trans_rel_left (· ≤ ·) (measure_mono (subset_univ s)) h, fun h =>
     h.symm ▸ rfl⟩
 #align measure_theory.measure.measure_univ_eq_zero MeasureTheory.Measure.measure_univ_eq_zero
 
+/- warning: measure_theory.measure.measure_univ_ne_zero -> MeasureTheory.Measure.measure_univ_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_univ_ne_zero MeasureTheory.Measure.measure_univ_ne_zeroₓ'. -/
 theorem measure_univ_ne_zero : μ univ ≠ 0 ↔ μ ≠ 0 :=
   measure_univ_eq_zero.Not
 #align measure_theory.measure.measure_univ_ne_zero MeasureTheory.Measure.measure_univ_ne_zero
 
+/- warning: measure_theory.measure.measure_univ_pos -> MeasureTheory.Measure.measure_univ_pos is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α))) (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_univ_pos MeasureTheory.Measure.measure_univ_posₓ'. -/
 @[simp]
 theorem measure_univ_pos : 0 < μ univ ↔ μ ≠ 0 :=
   pos_iff_ne_zero.trans measure_univ_ne_zero
@@ -1111,6 +1647,12 @@ theorem measure_univ_pos : 0 < μ univ ↔ μ ≠ 0 :=
 /-! ### Pushforward and pullback -/
 
 
+/- warning: measure_theory.measure.lift_linear -> MeasureTheory.Measure.liftLinear is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)), (forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))), (forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.instLEMeasurableSpace.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u2} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lift_linear MeasureTheory.Measure.liftLinearₓ'. -/
 /-- Lift a linear map between `outer_measure` spaces such that for each measure `μ` every measurable
 set is caratheodory-measurable w.r.t. `f μ` to a linear map between `measure` spaces. -/
 def liftLinear {m0 : MeasurableSpace α} (f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β)
@@ -1121,17 +1663,35 @@ def liftLinear {m0 : MeasurableSpace α} (f : OuterMeasure α →ₗ[ℝ≥0∞]
   map_smul' c μ := ext fun s hs => by simp [hs]
 #align measure_theory.measure.lift_linear MeasureTheory.Measure.liftLinear
 
+/- warning: measure_theory.measure.lift_linear_apply -> MeasureTheory.Measure.liftLinear_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))} (hf : forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.liftLinear.{u1, u2} α β _inst_1 m0 f hf) μ) s) (coeFn.{succ u2, succ u2} (MeasureTheory.OuterMeasure.{u2} β) (fun (_x : MeasureTheory.OuterMeasure.{u2} β) => (Set.{u2} β) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u2} β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)) s))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.lift_linear_apply MeasureTheory.Measure.liftLinear_applyₓ'. -/
 @[simp]
 theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) {s : Set β}
     (hs : MeasurableSet s) : liftLinear f hf μ s = f μ.toOuterMeasure s :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.lift_linear_apply MeasureTheory.Measure.liftLinear_apply
 
+/- warning: measure_theory.measure.le_lift_linear_apply -> MeasureTheory.Measure.le_liftLinear_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))} (hf : forall (μ : MeasureTheory.Measure.{u1} α m0), LE.le.{u2} (MeasurableSpace.{u2} β) (MeasurableSpace.hasLe.{u2} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))) (s : Set.{u2} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u2, succ u2} (MeasureTheory.OuterMeasure.{u2} β) (fun (_x : MeasureTheory.OuterMeasure.{u2} β) => (Set.{u2} β) -> ENNReal) (MeasureTheory.OuterMeasure.instCoeFun.{u2} β) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) f (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_3 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.liftLinear._proof_4 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.liftLinear.{u1, u2} α β _inst_1 m0 f hf) μ) s)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))} (hf : forall (μ : MeasureTheory.Measure.{u2} α m0), LE.le.{u1} (MeasurableSpace.{u1} β) (MeasurableSpace.instLEMeasurableSpace.{u1} β) _inst_1 (MeasureTheory.OuterMeasure.caratheodory.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)))) (s : Set.{u1} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) f (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (a : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.liftLinear.{u2, u1} α β _inst_1 m0 f hf) μ)) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_lift_linear_apply MeasureTheory.Measure.le_liftLinear_applyₓ'. -/
 theorem le_liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) (s : Set β) :
     f μ.toOuterMeasure s ≤ liftLinear f hf μ s :=
   le_toMeasure_apply _ _ s
 #align measure_theory.measure.le_lift_linear_apply MeasureTheory.Measure.le_liftLinear_apply
 
+/- warning: measure_theory.measure.mapₗ -> MeasureTheory.Measure.mapₗ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α], (α -> β) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α], (α -> β) -> (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ MeasureTheory.Measure.mapₗₓ'. -/
 /-- The pushforward of a measure as a linear map. It is defined to be `0` if `f` is not
 a measurable function. -/
 def mapₗ [MeasurableSpace α] (f : α → β) : Measure α →ₗ[ℝ≥0∞] Measure β :=
@@ -1141,6 +1701,12 @@ def mapₗ [MeasurableSpace α] (f : α → β) : Measure α →ₗ[ℝ≥0∞]
   else 0
 #align measure_theory.measure.mapₗ MeasureTheory.Measure.mapₗ
 
+/- warning: measure_theory.measure.mapₗ_congr -> MeasureTheory.Measure.mapₗ_congr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} {g : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (Measurable.{u1, u2} α β m0 _inst_1 g) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 f) μ) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 g) μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} {g : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (Measurable.{u2, u1} α β m0 _inst_1 g) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m0 μ) f g) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 g) μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_congr MeasureTheory.Measure.mapₗ_congrₓ'. -/
 theorem mapₗ_congr {f g : α → β} (hf : Measurable f) (hg : Measurable g) (h : f =ᵐ[μ] g) :
     mapₗ f μ = mapₗ g μ := by
   ext1 s hs
@@ -1148,18 +1714,32 @@ theorem mapₗ_congr {f g : α → β} (hf : Measurable f) (hg : Measurable g) (
     coe_to_outer_measure] using measure_congr (h.preimage s)
 #align measure_theory.measure.mapₗ_congr MeasureTheory.Measure.mapₗ_congr
 
+#print MeasureTheory.Measure.map /-
 /-- The pushforward of a measure. It is defined to be `0` if `f` is not an almost everywhere
 measurable function. -/
 irreducible_def map [MeasurableSpace α] (f : α → β) (μ : Measure α) : Measure β :=
   if hf : AEMeasurable f μ then mapₗ (hf.mk f) μ else 0
 #align measure_theory.measure.map MeasureTheory.Measure.map
+-/
 
 include m0
 
-theorem mapₗ_mk_apply_of_aEMeasurable {f : α → β} (hf : AEMeasurable f μ) :
+/- warning: measure_theory.measure.mapₗ_mk_apply_of_ae_measurable -> MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} (hf : AEMeasurable.{u1, u2} α β _inst_1 m0 f μ), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 (AEMeasurable.mk.{u1, u2} α β m0 _inst_1 μ f hf)) μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} (hf : AEMeasurable.{u2, u1} α β _inst_1 m0 f μ), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 (AEMeasurable.mk.{u2, u1} α β m0 _inst_1 μ f hf)) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurableₓ'. -/
+theorem mapₗ_mk_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) :
     mapₗ (hf.mk f) μ = map f μ := by simp [map, hf]
-#align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aEMeasurable
-
+#align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aemeasurable
+
+/- warning: measure_theory.measure.mapₗ_apply_of_measurable -> MeasureTheory.Measure.mapₗ_apply_of_measurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u2} β _inst_1)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u2} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.mapₗ._proof_2 _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.mapₗ.{u1, u2} α β _inst_1 m0 f) μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) μ) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} α m0) => MeasureTheory.Measure.{u1} β _inst_1) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u1} β _inst_1) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} β _inst_1) (MeasureTheory.Measure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.mapₗ.{u2, u1} α β _inst_1 m0 f) μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mapₗ_apply_of_measurable MeasureTheory.Measure.mapₗ_apply_of_measurableₓ'. -/
 theorem mapₗ_apply_of_measurable {f : α → β} (hf : Measurable f) (μ : Measure α) :
     mapₗ f μ = map f μ :=
   by
@@ -1167,20 +1747,40 @@ theorem mapₗ_apply_of_measurable {f : α → β} (hf : Measurable f) (μ : Mea
   exact mapₗ_congr hf hf.ae_measurable.measurable_mk hf.ae_measurable.ae_eq_mk
 #align measure_theory.measure.mapₗ_apply_of_measurable MeasureTheory.Measure.mapₗ_apply_of_measurable
 
+/- warning: measure_theory.measure.map_add -> MeasureTheory.Measure.map_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] (μ : MeasureTheory.Measure.{u1} α m0) (ν : MeasureTheory.Measure.{u1} α m0) {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) μ ν)) (HAdd.hAdd.{u2, u2, u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.{u2} β _inst_1) (instHAdd.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instAdd.{u2} β _inst_1)) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f ν)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] (μ : MeasureTheory.Measure.{u2} α m0) (ν : MeasureTheory.Measure.{u2} α m0) {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f (HAdd.hAdd.{u2, u2, u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u2} α m0) (instHAdd.{u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instAdd.{u2} α m0)) μ ν)) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.{u1} β _inst_1) (instHAdd.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instAdd.{u1} β _inst_1)) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f ν)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_add MeasureTheory.Measure.map_addₓ'. -/
 @[simp]
 theorem map_add (μ ν : Measure α) {f : α → β} (hf : Measurable f) :
     (μ + ν).map f = μ.map f + ν.map f := by simp [← mapₗ_apply_of_measurable hf]
 #align measure_theory.measure.map_add MeasureTheory.Measure.map_add
 
+#print MeasureTheory.Measure.map_zero /-
 @[simp]
 theorem map_zero (f : α → β) : (0 : Measure α).map f = 0 := by
   by_cases hf : AEMeasurable f (0 : Measure α) <;> simp [map, hf]
 #align measure_theory.measure.map_zero MeasureTheory.Measure.map_zero
+-/
 
-theorem map_of_not_aEMeasurable {f : α → β} {μ : Measure α} (hf : ¬AEMeasurable f μ) :
+/- warning: measure_theory.measure.map_of_not_ae_measurable -> MeasureTheory.Measure.map_of_not_aemeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α m0}, (Not (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ)) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} β _inst_1) 0 (OfNat.mk.{u2} (MeasureTheory.Measure.{u2} β _inst_1) 0 (Zero.zero.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instZero.{u2} β _inst_1)))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {f : α -> β} {μ : MeasureTheory.Measure.{u2} α m0}, (Not (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ)) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} β _inst_1) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instZero.{u1} β _inst_1))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_of_not_ae_measurable MeasureTheory.Measure.map_of_not_aemeasurableₓ'. -/
+theorem map_of_not_aemeasurable {f : α → β} {μ : Measure α} (hf : ¬AEMeasurable f μ) :
     μ.map f = 0 := by simp [map, hf]
-#align measure_theory.measure.map_of_not_ae_measurable MeasureTheory.Measure.map_of_not_aEMeasurable
-
+#align measure_theory.measure.map_of_not_ae_measurable MeasureTheory.Measure.map_of_not_aemeasurable
+
+/- warning: measure_theory.measure.map_congr -> MeasureTheory.Measure.map_congr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 g μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m0 μ) f g) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 g μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_congr MeasureTheory.Measure.map_congrₓ'. -/
 theorem map_congr {f g : α → β} (h : f =ᵐ[μ] g) : Measure.map f μ = Measure.map g μ :=
   by
   by_cases hf : AEMeasurable f μ
@@ -1192,6 +1792,12 @@ theorem map_congr {f g : α → β} (h : f =ᵐ[μ] g) : Measure.map f μ = Meas
     simp [map_of_not_ae_measurable, hf, hg]
 #align measure_theory.measure.map_congr MeasureTheory.Measure.map_congr
 
+/- warning: measure_theory.measure.map_smul -> MeasureTheory.Measure.map_smul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] (c : ENNReal) (μ : MeasureTheory.Measure.{u1} α m0) (f : α -> β), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ)) (SMul.smul.{0, u2} ENNReal (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instSMul.{u2, 0} β ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) _inst_1) c (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] (c : ENNReal) (μ : MeasureTheory.Measure.{u2} α m0) (f : α -> β), Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f (HSMul.hSMul.{0, u2, u2} ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u2} α m0) (instHSMul.{0, u2} ENNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instSMul.{u2, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ)) (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.{u1} β _inst_1) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instSMul.{u1, 0} β ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1)) c (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_smul MeasureTheory.Measure.map_smulₓ'. -/
 @[simp]
 protected theorem map_smul (c : ℝ≥0∞) (μ : Measure α) (f : α → β) : (c • μ).map f = c • μ.map f :=
   by
@@ -1210,28 +1816,52 @@ protected theorem map_smul (c : ℝ≥0∞) (μ : Measure α) (f : α → β) :
     simp [map_of_not_ae_measurable hf, map_of_not_ae_measurable hfc]
 #align measure_theory.measure.map_smul MeasureTheory.Measure.map_smul
 
+/- warning: measure_theory.measure.map_smul_nnreal -> MeasureTheory.Measure.map_smul_nnreal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] (c : NNReal) (μ : MeasureTheory.Measure.{u1} α m0) (f : α -> β), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f (SMul.smul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (MulAction.toHasSmul.{0, 0} NNReal ENNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (ENNReal.mulAction.{0} ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.isScalarTower.{0, 0} ENNReal ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) m0) c μ)) (SMul.smul.{0, u2} NNReal (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instSMul.{u2, 0} β NNReal (MulAction.toHasSmul.{0, 0} NNReal ENNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (ENNReal.mulAction.{0} ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.isScalarTower.{0, 0} ENNReal ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) _inst_1) c (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] (c : NNReal) (μ : MeasureTheory.Measure.{u2} α m0) (f : α -> β), Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f (HSMul.hSMul.{0, u2, u2} NNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.{u2} α m0) (instHSMul.{0, u2} NNReal (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instSMul.{u2, 0} α NNReal (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (ENNReal.instIsScalarTowerNNRealToSMulToMonoidToMonoidWithZeroInstNNRealSemiringInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiringToSMulInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0, 0} ENNReal ENNReal (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) m0)) c μ)) (HSMul.hSMul.{0, u1, u1} NNReal (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.{u1} β _inst_1) (instHSMul.{0, u1} NNReal (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instSMul.{u1, 0} β NNReal (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (ENNReal.instIsScalarTowerNNRealToSMulToMonoidToMonoidWithZeroInstNNRealSemiringInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiringToSMulInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0, 0} ENNReal ENNReal (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) _inst_1)) c (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_smul_nnreal MeasureTheory.Measure.map_smul_nnrealₓ'. -/
 @[simp]
-protected theorem map_smul_nNReal (c : ℝ≥0) (μ : Measure α) (f : α → β) :
+protected theorem map_smul_nnreal (c : ℝ≥0) (μ : Measure α) (f : α → β) :
     (c • μ).map f = c • μ.map f :=
   μ.map_smul (c : ℝ≥0∞) f
-#align measure_theory.measure.map_smul_nnreal MeasureTheory.Measure.map_smul_nNReal
-
+#align measure_theory.measure.map_smul_nnreal MeasureTheory.Measure.map_smul_nnreal
+
+/- warning: measure_theory.measure.map_apply_of_ae_measurable -> MeasureTheory.Measure.map_apply_of_aemeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_apply_of_ae_measurable MeasureTheory.Measure.map_apply_of_aemeasurableₓ'. -/
 /-- We can evaluate the pushforward on measurable sets. For non-measurable sets, see
   `measure_theory.measure.le_map_apply` and `measurable_equiv.map_apply`. -/
 @[simp]
-theorem map_apply_of_aEMeasurable {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
+theorem map_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : MeasurableSet s) : μ.map f s = μ (f ⁻¹' s) := by
   simpa only [mapₗ, hf.measurable_mk, hs, dif_pos, lift_linear_apply, outer_measure.map_apply,
     coe_to_outer_measure, ← mapₗ_mk_apply_of_ae_measurable hf] using
     measure_congr (hf.ae_eq_mk.symm.preimage s)
-#align measure_theory.measure.map_apply_of_ae_measurable MeasureTheory.Measure.map_apply_of_aEMeasurable
-
+#align measure_theory.measure.map_apply_of_ae_measurable MeasureTheory.Measure.map_apply_of_aemeasurable
+
+/- warning: measure_theory.measure.map_apply -> MeasureTheory.Measure.map_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (forall {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_apply MeasureTheory.Measure.map_applyₓ'. -/
 @[simp]
 theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
     μ.map f s = μ (f ⁻¹' s) :=
-  map_apply_of_aEMeasurable hf.AEMeasurable hs
+  map_apply_of_aemeasurable hf.AEMeasurable hs
 #align measure_theory.measure.map_apply MeasureTheory.Measure.map_apply
 
+/- warning: measure_theory.measure.map_to_outer_measure -> MeasureTheory.Measure.map_toOuterMeasure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (Eq.{succ u2} (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.Measure.toOuterMeasure.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)) (MeasureTheory.OuterMeasure.trim.{u2} β _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2)) (fun (_x : LinearMap.{0, 0, u1, u2} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u2} β)) (LinearMap.hasCoeToFun.{0, 0, u1, u2} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u2} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} β) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_1) (MeasureTheory.OuterMeasure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.map._proof_2) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.OuterMeasure.map.{u1, u2} α β f) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) (MeasureTheory.OuterMeasure.trim.{u1} β _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u2} α) (fun (_x : MeasureTheory.OuterMeasure.{u2} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u2} α) => MeasureTheory.OuterMeasure.{u1} β) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u2} α) (MeasureTheory.OuterMeasure.{u1} β) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u2} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} β) (MeasureTheory.OuterMeasure.instModule.{u2, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.map.{u2, u1} α β f) (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_to_outer_measure MeasureTheory.Measure.map_toOuterMeasureₓ'. -/
 theorem map_toOuterMeasure {f : α → β} (hf : AEMeasurable f μ) :
     (μ.map f).toOuterMeasure = (OuterMeasure.map f μ.toOuterMeasure).trim :=
   by
@@ -1241,26 +1871,48 @@ theorem map_toOuterMeasure {f : α → β} (hf : AEMeasurable f μ) :
     coe_to_outer_measure]
 #align measure_theory.measure.map_to_outer_measure MeasureTheory.Measure.map_toOuterMeasure
 
+#print MeasureTheory.Measure.map_id /-
 @[simp]
 theorem map_id : map id μ = μ :=
   ext fun s => map_apply measurable_id
 #align measure_theory.measure.map_id MeasureTheory.Measure.map_id
+-/
 
+#print MeasureTheory.Measure.map_id' /-
 @[simp]
 theorem map_id' : map (fun x => x) μ = μ :=
   map_id
 #align measure_theory.measure.map_id' MeasureTheory.Measure.map_id'
+-/
 
+/- warning: measure_theory.measure.map_map -> MeasureTheory.Measure.map_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] [_inst_2 : MeasurableSpace.{u3} γ] {μ : MeasureTheory.Measure.{u1} α m0} {g : β -> γ} {f : α -> β}, (Measurable.{u2, u3} β γ _inst_1 _inst_2 g) -> (Measurable.{u1, u2} α β m0 _inst_1 f) -> (Eq.{succ u3} (MeasureTheory.Measure.{u3} γ _inst_2) (MeasureTheory.Measure.map.{u2, u3} β γ _inst_2 _inst_1 g (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)) (MeasureTheory.Measure.map.{u1, u3} α γ _inst_2 m0 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) μ))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u3} β] [_inst_2 : MeasurableSpace.{u2} γ] {μ : MeasureTheory.Measure.{u1} α m0} {g : β -> γ} {f : α -> β}, (Measurable.{u3, u2} β γ _inst_1 _inst_2 g) -> (Measurable.{u1, u3} α β m0 _inst_1 f) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} γ _inst_2) (MeasureTheory.Measure.map.{u3, u2} β γ _inst_2 _inst_1 g (MeasureTheory.Measure.map.{u1, u3} α β _inst_1 m0 f μ)) (MeasureTheory.Measure.map.{u1, u2} α γ _inst_2 m0 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_map MeasureTheory.Measure.map_mapₓ'. -/
 theorem map_map {g : β → γ} {f : α → β} (hg : Measurable g) (hf : Measurable f) :
     (μ.map f).map g = μ.map (g ∘ f) :=
   ext fun s hs => by simp [hf, hg, hs, hg hs, hg.comp hf, ← preimage_comp]
 #align measure_theory.measure.map_map MeasureTheory.Measure.map_map
 
+/- warning: measure_theory.measure.map_mono -> MeasureTheory.Measure.map_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (Measurable.{u1, u2} α β m0 _inst_1 f) -> (LE.le.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (Preorder.toLE.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.instPartialOrder.{u2} β _inst_1))) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f ν))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (LE.le.{u2} (MeasureTheory.Measure.{u2} α m0) (Preorder.toLE.{u2} (MeasureTheory.Measure.{u2} α m0) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instPartialOrder.{u2} α m0))) μ ν) -> (Measurable.{u2, u1} α β m0 _inst_1 f) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.instPartialOrder.{u1} β _inst_1))) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f ν))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_mono MeasureTheory.Measure.map_monoₓ'. -/
 @[mono]
 theorem map_mono {f : α → β} (h : μ ≤ ν) (hf : Measurable f) : μ.map f ≤ ν.map f := fun s hs => by
   simp [hf.ae_measurable, hs, h _ (hf hs)]
 #align measure_theory.measure.map_mono MeasureTheory.Measure.map_mono
 
+/- warning: measure_theory.measure.le_map_apply -> MeasureTheory.Measure.le_map_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall (s : Set.{u2} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall (s : Set.{u1} β), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s)) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_map_apply MeasureTheory.Measure.le_map_applyₓ'. -/
 /-- Even if `s` is not measurable, we can bound `map f μ s` from below.
   See also `measurable_equiv.map_apply`. -/
 theorem le_map_apply {f : α → β} (hf : AEMeasurable f μ) (s : Set β) : μ (f ⁻¹' s) ≤ μ.map f s :=
@@ -1268,23 +1920,41 @@ theorem le_map_apply {f : α → β} (hf : AEMeasurable f μ) (s : Set β) : μ
     μ (f ⁻¹' s) ≤ μ (f ⁻¹' toMeasurable (μ.map f) s) :=
       measure_mono <| preimage_mono <| subset_toMeasurable _ _
     _ = μ.map f (toMeasurable (μ.map f) s) :=
-      (map_apply_of_aEMeasurable hf <| measurableSet_toMeasurable _ _).symm
+      (map_apply_of_aemeasurable hf <| measurableSet_toMeasurable _ _).symm
     _ = μ.map f s := measure_toMeasurable _
     
 #align measure_theory.measure.le_map_apply MeasureTheory.Measure.le_map_apply
 
+/- warning: measure_theory.measure.preimage_null_of_map_null -> MeasureTheory.Measure.preimage_null_of_map_null is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {s : Set.{u2} β}, (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {s : Set.{u1} β}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.preimage_null_of_map_null MeasureTheory.Measure.preimage_null_of_map_nullₓ'. -/
 /-- Even if `s` is not measurable, `map f μ s = 0` implies that `μ (f ⁻¹' s) = 0`. -/
 theorem preimage_null_of_map_null {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : μ.map f s = 0) : μ (f ⁻¹' s) = 0 :=
   nonpos_iff_eq_zero.mp <| (le_map_apply hf s).trans_eq hs
 #align measure_theory.measure.preimage_null_of_map_null MeasureTheory.Measure.preimage_null_of_map_null
 
+/- warning: measure_theory.measure.tendsto_ae_map -> MeasureTheory.Measure.tendsto_ae_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (Filter.Tendsto.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (Filter.Tendsto.{u2, u1} α β f (MeasureTheory.Measure.ae.{u2} α m0 μ) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.tendsto_ae_map MeasureTheory.Measure.tendsto_ae_mapₓ'. -/
 theorem tendsto_ae_map {f : α → β} (hf : AEMeasurable f μ) : Tendsto f μ.ae (μ.map f).ae :=
   fun s hs => preimage_null_of_map_null hf hs
 #align measure_theory.measure.tendsto_ae_map MeasureTheory.Measure.tendsto_ae_map
 
 omit m0
 
+/- warning: measure_theory.measure.comapₗ -> MeasureTheory.Measure.comapₗ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α], (α -> β) -> (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α], (α -> β) -> (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β _inst_1) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_1) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ MeasureTheory.Measure.comapₗₓ'. -/
 /-- Pullback of a `measure` as a linear map. If `f` sends each measurable set to a measurable
 set, then for each measurable set `s` we have `comapₗ f μ s = μ (f '' s)`.
 
@@ -1300,6 +1970,12 @@ def comapₗ [MeasurableSpace α] (f : α → β) : Measure β →ₗ[ℝ≥0∞
   else 0
 #align measure_theory.measure.comapₗ MeasureTheory.Measure.comapₗ
 
+/- warning: measure_theory.measure.comapₗ_apply -> MeasureTheory.Measure.comapₗ_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) (fun (_x : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) => (MeasureTheory.Measure.{u2} β mβ) -> (MeasureTheory.Measure.{u1} α _inst_3)) (LinearMap.hasCoeToFun.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Set.image.{u1, u2} α β f s))))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ_apply MeasureTheory.Measure.comapₗ_applyₓ'. -/
 theorem comapₗ_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
     (hs : MeasurableSet s) : comapₗ f μ s = μ (f '' s) :=
@@ -1308,6 +1984,7 @@ theorem comapₗ_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f :
   exact ⟨hfi, hf⟩
 #align measure_theory.measure.comapₗ_apply MeasureTheory.Measure.comapₗ_apply
 
+#print MeasureTheory.Measure.comap /-
 /-- Pullback of a `measure`. If `f` sends each measurable set to a null-measurable set,
 then for each measurable set `s` we have `comap f μ s = μ (f '' s)`. -/
 def comap [MeasurableSpace α] (f : α → β) (μ : Measure β) : Measure α :=
@@ -1318,7 +1995,14 @@ def comap [MeasurableSpace α] (f : α → β) (μ : Measure β) : Measure α :=
       exact (measure_inter_add_diff₀ _ (hf.2 s hs)).symm
   else 0
 #align measure_theory.measure.comap MeasureTheory.Measure.comap
+-/
 
+/- warning: measure_theory.measure.comap_apply₀ -> MeasureTheory.Measure.comap_apply₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] (f : α -> β) (μ : MeasureTheory.Measure.{u2} β _inst_1), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β _inst_1 (Set.image.{u1, u2} α β f s) μ)) -> (MeasureTheory.NullMeasurableSet.{u1} α _inst_3 s (MeasureTheory.Measure.comap.{u1, u2} α β _inst_1 _inst_3 f μ)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β _inst_1 _inst_3 f μ) s) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) μ (Set.image.{u1, u2} α β f s)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] {s : Set.{u2} α} [_inst_3 : MeasurableSpace.{u2} α] (f : α -> β) (μ : MeasureTheory.Measure.{u1} β _inst_1), (Function.Injective.{succ u2, succ u1} α β f) -> (forall (s : Set.{u2} α), (MeasurableSet.{u2} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u1} β _inst_1 (Set.image.{u2, u1} α β f s) μ)) -> (MeasureTheory.NullMeasurableSet.{u2} α _inst_3 s (MeasureTheory.Measure.comap.{u2, u1} α β _inst_1 _inst_3 f μ)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_3 (MeasureTheory.Measure.comap.{u2, u1} α β _inst_1 _inst_3 f μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 μ) (Set.image.{u2, u1} α β f s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comap_apply₀ MeasureTheory.Measure.comap_apply₀ₓ'. -/
 theorem comap_apply₀ [MeasurableSpace α] (f : α → β) (μ : Measure β) (hfi : Injective f)
     (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ)
     (hs : NullMeasurableSet s (comap f μ)) : comap f μ s = μ (f '' s) :=
@@ -1327,6 +2011,12 @@ theorem comap_apply₀ [MeasurableSpace α] (f : α → β) (μ : Measure β) (h
   rw [to_measure_apply₀ _ _ hs, outer_measure.comap_apply, coe_to_outer_measure]
 #align measure_theory.measure.comap_apply₀ MeasureTheory.Measure.comap_apply₀
 
+/- warning: measure_theory.measure.le_comap_apply -> MeasureTheory.Measure.le_comap_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Set.image.{u1, u2} α β f s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) s))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_comap_apply MeasureTheory.Measure.le_comap_applyₓ'. -/
 theorem le_comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β) (μ : Measure β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ) (s : Set α) :
     μ (f '' s) ≤ comap f μ s :=
@@ -1335,18 +2025,32 @@ theorem le_comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f :
   exact le_to_measure_apply _ _ _
 #align measure_theory.measure.le_comap_apply MeasureTheory.Measure.le_comap_apply
 
+#print MeasureTheory.Measure.comap_apply /-
 theorem comap_apply {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β) (hfi : Injective f)
     (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β) (hs : MeasurableSet s) :
     comap f μ s = μ (f '' s) :=
   comap_apply₀ f μ hfi (fun s hs => (hf s hs).NullMeasurableSet) hs.NullMeasurableSet
 #align measure_theory.measure.comap_apply MeasureTheory.Measure.comap_apply
+-/
 
+/- warning: measure_theory.measure.comapₗ_eq_comap -> MeasureTheory.Measure.comapₗ_eq_comap is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) (fun (_x : LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3)) => (MeasureTheory.Measure.{u2} β mβ) -> (MeasureTheory.Measure.{u1} α _inst_3)) (LinearMap.hasCoeToFun.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_1 mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.comapₗ._proof_2 _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) s)))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s))) -> (forall (μ : MeasureTheory.Measure.{u2} β mβ), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (LinearMap.{0, 0, u2, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.Measure.{u2} β mβ) (fun (a : MeasureTheory.Measure.{u2} β mβ) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u2} β mβ) => MeasureTheory.Measure.{u1} α _inst_3) a) (LinearMap.instFunLikeLinearMap.{0, 0, u2, u1} ENNReal ENNReal (MeasureTheory.Measure.{u2} β mβ) (MeasureTheory.Measure.{u1} α _inst_3) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u2} β mβ) (MeasureTheory.Measure.instAddCommMonoid.{u1} α _inst_3) (MeasureTheory.Measure.instModule.{u2, 0} β ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) mβ) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.comapₗ.{u1, u2} α β mβ _inst_3 f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comapₗ_eq_comap MeasureTheory.Measure.comapₗ_eq_comapₓ'. -/
 theorem comapₗ_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (hfi : Injective f) (hf : ∀ s, MeasurableSet s → MeasurableSet (f '' s)) (μ : Measure β)
     (hs : MeasurableSet s) : comapₗ f μ s = comap f μ s :=
   (comapₗ_apply f hfi hf μ hs).trans (comap_apply f hfi hf μ hs).symm
 #align measure_theory.measure.comapₗ_eq_comap MeasureTheory.Measure.comapₗ_eq_comap
 
+/- warning: measure_theory.measure.measure_image_eq_zero_of_comap_eq_zero -> MeasureTheory.Measure.measure_image_eq_zero_of_comap_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall {s : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Set.image.{u1, u2} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 s) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f s) μ)) -> (forall {s : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Set.image.{u1, u2} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_image_eq_zero_of_comap_eq_zero MeasureTheory.Measure.measure_image_eq_zero_of_comap_eq_zeroₓ'. -/
 theorem measure_image_eq_zero_of_comap_eq_zero {β} [MeasurableSpace α] {mβ : MeasurableSpace β}
     (f : α → β) (μ : Measure β) (hfi : Injective f)
     (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ) {s : Set α} (hs : comap f μ s = 0) :
@@ -1354,6 +2058,7 @@ theorem measure_image_eq_zero_of_comap_eq_zero {β} [MeasurableSpace α] {mβ :
   le_antisymm ((le_comap_apply f μ hfi hf s).trans hs.le) (zero_le _)
 #align measure_theory.measure.measure_image_eq_zero_of_comap_eq_zero MeasureTheory.Measure.measure_image_eq_zero_of_comap_eq_zero
 
+#print MeasureTheory.Measure.ae_eq_image_of_ae_eq_comap /-
 theorem ae_eq_image_of_ae_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (μ : Measure β) (hfi : Injective f) (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ)
     {s t : Set α} (hst : s =ᵐ[comap f μ] t) : f '' s =ᵐ[μ] f '' t :=
@@ -1374,7 +2079,9 @@ theorem ae_eq_image_of_ae_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSp
   rw [h_eq_α] at hst
   exact measure_image_eq_zero_of_comap_eq_zero f μ hfi hf hst
 #align measure_theory.measure.ae_eq_image_of_ae_eq_comap MeasureTheory.Measure.ae_eq_image_of_ae_eq_comap
+-/
 
+#print MeasureTheory.Measure.NullMeasurableSet.image /-
 theorem NullMeasurableSet.image {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (μ : Measure β) (hfi : Injective f) (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ)
     {s : Set α} (hs : NullMeasurableSet s (μ.comap f)) : NullMeasurableSet (f '' s) μ :=
@@ -1387,7 +2094,14 @@ theorem NullMeasurableSet.image {β} [MeasurableSpace α] {mβ : MeasurableSpace
     @null_measurable_set.to_measurable_ae_eq _ _ (μ.comap f : Measure α) s hs
   exact ae_eq_image_of_ae_eq_comap f μ hfi hf h.symm
 #align measure_theory.measure.null_measurable_set.image MeasureTheory.Measure.NullMeasurableSet.image
+-/
 
+/- warning: measure_theory.measure.comap_preimage -> MeasureTheory.Measure.comap_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ) {s : Set.{u2} β}, (Function.Injective.{succ u1, succ u2} α β f) -> (Measurable.{u1, u2} α β _inst_3 mβ f) -> (forall (t : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 t) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f t) μ)) -> (MeasurableSet.{u2} β mβ s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ) (Set.preimage.{u1, u2} α β f s)) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β mβ) (fun (_x : MeasureTheory.Measure.{u2} β mβ) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β mβ) μ (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) s (Set.range.{u2, succ u1} β α f))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {mβ : MeasurableSpace.{u2} β} (f : α -> β) (μ : MeasureTheory.Measure.{u2} β mβ) {s : Set.{u2} β}, (Function.Injective.{succ u1, succ u2} α β f) -> (Measurable.{u1, u2} α β _inst_3 mβ f) -> (forall (t : Set.{u1} α), (MeasurableSet.{u1} α _inst_3 t) -> (MeasureTheory.NullMeasurableSet.{u2} β mβ (Set.image.{u1, u2} α β f t) μ)) -> (MeasurableSet.{u2} β mβ s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.comap.{u1, u2} α β mβ _inst_3 f μ)) (Set.preimage.{u1, u2} α β f s)) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β mβ μ) (Inter.inter.{u2} (Set.{u2} β) (Set.instInterSet.{u2} β) s (Set.range.{u2, succ u1} β α f))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.comap_preimage MeasureTheory.Measure.comap_preimageₓ'. -/
 theorem comap_preimage {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β) (μ : Measure β)
     {s : Set β} (hf : Injective f) (hf' : Measurable f)
     (h : ∀ t, MeasurableSet t → NullMeasurableSet (f '' t) μ) (hs : MeasurableSet s) :
@@ -1402,10 +2116,11 @@ section Subtype
 
 section ComapAnyMeasure
 
+#print MeasureTheory.Measure.MeasurableSet.nullMeasurableSet_subtype_coe /-
 theorem MeasurableSet.nullMeasurableSet_subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
     (ht : MeasurableSet t) : NullMeasurableSet ((coe : s → α) '' t) μ :=
   by
-  rw [Subtype.measurableSpace, comap_eq_generate_from] at ht
+  rw [Subtype.instMeasurableSpace, comap_eq_generate_from] at ht
   refine'
     generate_from_induction (fun t : Set s => null_measurable_set (coe '' t) μ)
       { t : Set s | ∃ s' : Set α, MeasurableSet s' ∧ coe ⁻¹' s' = t } _ _ _ _ ht
@@ -1420,19 +2135,34 @@ theorem MeasurableSet.nullMeasurableSet_subtype_coe {t : Set s} (hs : NullMeasur
     rw [image_Union]
     exact null_measurable_set.Union
 #align measure_theory.measure.measurable_set.null_measurable_set_subtype_coe MeasureTheory.Measure.MeasurableSet.nullMeasurableSet_subtype_coe
+-/
 
+#print MeasureTheory.Measure.NullMeasurableSet.subtype_coe /-
 theorem NullMeasurableSet.subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
     (ht : NullMeasurableSet t (μ.comap Subtype.val)) : NullMeasurableSet ((coe : s → α) '' t) μ :=
   NullMeasurableSet.image coe μ Subtype.coe_injective
     (fun t => MeasurableSet.nullMeasurableSet_subtype_coe hs) ht
 #align measure_theory.measure.null_measurable_set.subtype_coe MeasureTheory.Measure.NullMeasurableSet.subtype_coe
+-/
 
+/- warning: measure_theory.measure.measure_subtype_coe_le_comap -> MeasureTheory.Measure.measure_subtype_coe_le_comap is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (fun (_x : MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) => (Set.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) μ) t))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} (Set.Elem.{u1} α s)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.image.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (MeasureTheory.OuterMeasure.measureOf.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (MeasureTheory.Measure.toOuterMeasure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) m0) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) μ)) t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_subtype_coe_le_comap MeasureTheory.Measure.measure_subtype_coe_le_comapₓ'. -/
 theorem measure_subtype_coe_le_comap (hs : NullMeasurableSet s μ) (t : Set s) :
     μ ((coe : s → α) '' t) ≤ μ.comap Subtype.val t :=
   le_comap_apply _ _ Subtype.coe_injective (fun t => MeasurableSet.nullMeasurableSet_subtype_coe hs)
     _
 #align measure_theory.measure.measure_subtype_coe_le_comap MeasureTheory.Measure.measure_subtype_coe_le_comap
 
+/- warning: measure_theory.measure.measure_subtype_coe_eq_zero_of_comap_eq_zero -> MeasureTheory.Measure.measure_subtype_coe_eq_zero_of_comap_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall {t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (fun (_x : MeasureTheory.Measure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) => (Set.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0)) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) μ) t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall {t : Set.{u1} (Set.Elem.{u1} α s)}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (MeasureTheory.Measure.toOuterMeasure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) m0) (MeasureTheory.Measure.comap.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α m0 (Subtype.instMeasurableSpace.{u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) m0) (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) μ)) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.image.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_subtype_coe_eq_zero_of_comap_eq_zero MeasureTheory.Measure.measure_subtype_coe_eq_zero_of_comap_eq_zeroₓ'. -/
 theorem measure_subtype_coe_eq_zero_of_comap_eq_zero (hs : NullMeasurableSet s μ) {t : Set s}
     (ht : μ.comap Subtype.val t = 0) : μ ((coe : s → α) '' t) = 0 :=
   eq_bot_iff.mpr <| (measure_subtype_coe_le_comap hs t).trans ht.le
@@ -1444,14 +2174,19 @@ section MeasureSpace
 
 variable [MeasureSpace α] {p : α → Prop}
 
+#print MeasureTheory.Measure.Subtype.measureSpace /-
 instance Subtype.measureSpace : MeasureSpace (Subtype p) :=
-  { Subtype.measurableSpace with volume := Measure.comap Subtype.val volume }
+  { Subtype.instMeasurableSpace with volume := Measure.comap Subtype.val volume }
 #align measure_theory.measure.subtype.measure_space MeasureTheory.Measure.Subtype.measureSpace
+-/
 
+#print MeasureTheory.Measure.Subtype.volume_def /-
 theorem Subtype.volume_def : (volume : Measure s) = volume.comap Subtype.val :=
   rfl
 #align measure_theory.measure.subtype.volume_def MeasureTheory.Measure.Subtype.volume_def
+-/
 
+#print MeasureTheory.Measure.Subtype.volume_univ /-
 theorem Subtype.volume_univ (hs : NullMeasurableSet s) : volume (univ : Set s) = volume s :=
   by
   rw [subtype.volume_def, comap_apply₀ _ _ _ _ measurable_set.univ.null_measurable_set]
@@ -1460,12 +2195,25 @@ theorem Subtype.volume_univ (hs : NullMeasurableSet s) : volume (univ : Set s) =
   · exact Subtype.coe_injective
   · exact fun t => measurable_set.null_measurable_set_subtype_coe hs
 #align measure_theory.measure.subtype.volume_univ MeasureTheory.Measure.Subtype.volume_univ
+-/
 
+/- warning: measure_theory.measure.volume_subtype_coe_le_volume -> MeasureTheory.Measure.volume_subtype_coe_le_volume is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall (t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (fun (_x : MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3) (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (fun (_x : MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) => (Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (MeasureTheory.MeasureSpace.volume.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) t))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall (t : Set.{u1} (Set.Elem.{u1} α s)), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) (Set.image.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (MeasureTheory.OuterMeasure.measureOf.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} (Set.Elem.{u1} α s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))) (MeasureTheory.MeasureSpace.volume.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)))) t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.volume_subtype_coe_le_volume MeasureTheory.Measure.volume_subtype_coe_le_volumeₓ'. -/
 theorem volume_subtype_coe_le_volume (hs : NullMeasurableSet s) (t : Set s) :
     volume ((coe : s → α) '' t) ≤ volume t :=
   measure_subtype_coe_le_comap hs t
 #align measure_theory.measure.volume_subtype_coe_le_volume MeasureTheory.Measure.volume_subtype_coe_le_volume
 
+/- warning: measure_theory.measure.volume_subtype_coe_eq_zero_of_volume_eq_zero -> MeasureTheory.Measure.volume_subtype_coe_eq_zero_of_volume_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall {t : Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (fun (_x : MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) => (Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))) (MeasureTheory.MeasureSpace.volume.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))) t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (fun (_x : MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3)) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3) (Set.image.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasureTheory.MeasureSpace.{u1} α], (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) -> (forall {t : Set.{u1} (Set.Elem.{u1} α s)}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} (Set.Elem.{u1} α s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))) (MeasureTheory.MeasureSpace.volume.{u1} (Set.Elem.{u1} α s) (MeasureTheory.Measure.Subtype.measureSpace.{u1} α _inst_3 (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)))) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_3) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_3)) (Set.image.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.volume_subtype_coe_eq_zero_of_volume_eq_zero MeasureTheory.Measure.volume_subtype_coe_eq_zero_of_volume_eq_zeroₓ'. -/
 theorem volume_subtype_coe_eq_zero_of_volume_eq_zero (hs : NullMeasurableSet s) {t : Set s}
     (ht : volume t = 0) : volume ((coe : s → α) '' t) = 0 :=
   measure_subtype_coe_eq_zero_of_comap_eq_zero hs ht
@@ -1478,6 +2226,12 @@ end Subtype
 /-! ### Restricting a measure -/
 
 
+/- warning: measure_theory.measure.restrictₗ -> MeasureTheory.Measure.restrictₗ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, (Set.{u1} α) -> (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, (Set.{u1} α) -> (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrictₗ MeasureTheory.Measure.restrictₗₓ'. -/
 /-- Restrict a measure `μ` to a set `s` as an `ℝ≥0∞`-linear map. -/
 def restrictₗ {m0 : MeasurableSpace α} (s : Set α) : Measure α →ₗ[ℝ≥0∞] Measure α :=
   liftLinear (OuterMeasure.restrict s) fun μ s' hs' t =>
@@ -1487,17 +2241,31 @@ def restrictₗ {m0 : MeasurableSpace α} (s : Set α) : Measure α →ₗ[ℝ
     exact le_to_outer_measure_caratheodory _ _ hs' _
 #align measure_theory.measure.restrictₗ MeasureTheory.Measure.restrictₗ
 
+#print MeasureTheory.Measure.restrict /-
 /-- Restrict a measure `μ` to a set `s`. -/
 def restrict {m0 : MeasurableSpace α} (μ : Measure α) (s : Set α) : Measure α :=
   restrictₗ s μ
 #align measure_theory.measure.restrict MeasureTheory.Measure.restrict
+-/
 
+/- warning: measure_theory.measure.restrictₗ_apply -> MeasureTheory.Measure.restrictₗ_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (s : Set.{u1} α) (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0)) (fun (_x : LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0)) => (MeasureTheory.Measure.{u1} α m0) -> (MeasureTheory.Measure.{u1} α m0)) (LinearMap.hasCoeToFun.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.Measure.restrictₗ._proof_1 m0) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.Measure.restrictₗ.{u1} α m0 s) μ) (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (s : Set.{u1} α) (μ : MeasureTheory.Measure.{u1} α m0), Eq.{succ u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) μ) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.Measure.{u1} α m0) => MeasureTheory.Measure.{u1} α m0) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instAddCommMonoid.{u1} α m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (MeasureTheory.Measure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.Measure.restrictₗ.{u1} α m0 s) μ) (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrictₗ_apply MeasureTheory.Measure.restrictₗ_applyₓ'. -/
 @[simp]
 theorem restrictₗ_apply {m0 : MeasurableSpace α} (s : Set α) (μ : Measure α) :
     restrictₗ s μ = μ.restrict s :=
   rfl
 #align measure_theory.measure.restrictₗ_apply MeasureTheory.Measure.restrictₗ_apply
 
+/- warning: measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict -> MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrict is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1)) (fun (_x : LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1)) => (MeasureTheory.OuterMeasure.{u1} α) -> (MeasureTheory.OuterMeasure.{u1} α)) (LinearMap.hasCoeToFun.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) MeasureTheory.OuterMeasure.restrict._proof_1) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (MeasureTheory.OuterMeasure.restrict.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} ENNReal ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) (MeasureTheory.OuterMeasure.{u1} α) (fun (_x : MeasureTheory.OuterMeasure.{u1} α) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : MeasureTheory.OuterMeasure.{u1} α) => MeasureTheory.OuterMeasure.{u1} α) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} ENNReal ENNReal (MeasureTheory.OuterMeasure.{u1} α) (MeasureTheory.OuterMeasure.{u1} α) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.addCommMonoid.{u1} α) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.instModule.{u1, 0} α ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (RingHom.id.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MeasureTheory.OuterMeasure.restrict.{u1} α s) (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrictₓ'. -/
 /-- This lemma shows that `restrict` and `to_outer_measure` commute. Note that the LHS has a
 restrict on measures and the RHS has a restrict on outer measures. -/
 theorem restrict_toOuterMeasure_eq_toOuterMeasure_restrict (h : MeasurableSet s) :
@@ -1506,11 +2274,23 @@ theorem restrict_toOuterMeasure_eq_toOuterMeasure_restrict (h : MeasurableSet s)
     outer_measure.restrict_trim h, μ.trimmed]
 #align measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrict
 
+/- warning: measure_theory.measure.restrict_apply₀ -> MeasureTheory.Measure.restrict_apply₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 t (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 t (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply₀ MeasureTheory.Measure.restrict_apply₀ₓ'. -/
 theorem restrict_apply₀ (ht : NullMeasurableSet t (μ.restrict s)) : μ.restrict s t = μ (t ∩ s) :=
   (toMeasure_apply₀ _ _ ht).trans <| by
     simp only [coe_to_outer_measure, outer_measure.restrict_apply]
 #align measure_theory.measure.restrict_apply₀ MeasureTheory.Measure.restrict_apply₀
 
+/- warning: measure_theory.measure.restrict_apply -> MeasureTheory.Measure.restrict_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply MeasureTheory.Measure.restrict_applyₓ'. -/
 /-- If `t` is a measurable set, then the measure of `t` with respect to the restriction of
   the measure to `s` equals the outer measure of `t ∩ s`. An alternate version requiring that `s`
   be measurable instead of `t` exists as `measure.restrict_apply'`. -/
@@ -1519,6 +2299,7 @@ theorem restrict_apply (ht : MeasurableSet t) : μ.restrict s t = μ (t ∩ s) :
   restrict_apply₀ ht.NullMeasurableSet
 #align measure_theory.measure.restrict_apply MeasureTheory.Measure.restrict_apply
 
+#print MeasureTheory.Measure.restrict_mono' /-
 /-- Restriction of a measure to a subset is monotone both in set and in measure. -/
 theorem restrict_mono' {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν : Measure α⦄ (hs : s ≤ᵐ[μ] s')
     (hμν : μ ≤ ν) : μ.restrict s ≤ ν.restrict s' := fun t ht =>
@@ -1529,22 +2310,35 @@ theorem restrict_mono' {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν :
     _ = ν.restrict s' t := (restrict_apply ht).symm
     
 #align measure_theory.measure.restrict_mono' MeasureTheory.Measure.restrict_mono'
+-/
 
+#print MeasureTheory.Measure.restrict_mono /-
 /-- Restriction of a measure to a subset is monotone both in set and in measure. -/
 @[mono]
 theorem restrict_mono {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ (hs : s ⊆ s') ⦃μ ν : Measure α⦄
     (hμν : μ ≤ ν) : μ.restrict s ≤ ν.restrict s' :=
   restrict_mono' (ae_of_all _ hs) hμν
 #align measure_theory.measure.restrict_mono MeasureTheory.Measure.restrict_mono
+-/
 
+#print MeasureTheory.Measure.restrict_mono_ae /-
 theorem restrict_mono_ae (h : s ≤ᵐ[μ] t) : μ.restrict s ≤ μ.restrict t :=
   restrict_mono' h (le_refl μ)
 #align measure_theory.measure.restrict_mono_ae MeasureTheory.Measure.restrict_mono_ae
+-/
 
+#print MeasureTheory.Measure.restrict_congr_set /-
 theorem restrict_congr_set (h : s =ᵐ[μ] t) : μ.restrict s = μ.restrict t :=
   le_antisymm (restrict_mono_ae h.le) (restrict_mono_ae h.symm.le)
 #align measure_theory.measure.restrict_congr_set MeasureTheory.Measure.restrict_congr_set
+-/
 
+/- warning: measure_theory.measure.restrict_apply' -> MeasureTheory.Measure.restrict_apply' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply' MeasureTheory.Measure.restrict_apply'ₓ'. -/
 /-- If `s` is a measurable set, then the outer measure of `t` with respect to the restriction of
 the measure to `s` equals the outer measure of `t ∩ s`. This is an alternate version of
 `measure.restrict_apply`, requiring that `s` is measurable instead of `t`. -/
@@ -1554,21 +2348,30 @@ theorem restrict_apply' (hs : MeasurableSet s) : μ.restrict s t = μ (t ∩ s)
     outer_measure.restrict_apply s t _, coe_to_outer_measure]
 #align measure_theory.measure.restrict_apply' MeasureTheory.Measure.restrict_apply'
 
+/- warning: measure_theory.measure.restrict_apply₀' -> MeasureTheory.Measure.restrict_apply₀' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply₀' MeasureTheory.Measure.restrict_apply₀'ₓ'. -/
 theorem restrict_apply₀' (hs : NullMeasurableSet s μ) : μ.restrict s t = μ (t ∩ s) := by
   rw [← restrict_congr_set hs.to_measurable_ae_eq,
     restrict_apply' (measurable_set_to_measurable _ _),
     measure_congr ((ae_eq_refl t).inter hs.to_measurable_ae_eq)]
 #align measure_theory.measure.restrict_apply₀' MeasureTheory.Measure.restrict_apply₀'
 
+#print MeasureTheory.Measure.restrict_le_self /-
 theorem restrict_le_self : μ.restrict s ≤ μ := fun t ht =>
   calc
     μ.restrict s t = μ (t ∩ s) := restrict_apply ht
     _ ≤ μ t := measure_mono <| inter_subset_left t s
     
 #align measure_theory.measure.restrict_le_self MeasureTheory.Measure.restrict_le_self
+-/
 
 variable (μ)
 
+#print MeasureTheory.Measure.restrict_eq_self /-
 theorem restrict_eq_self (h : s ⊆ t) : μ.restrict t s = μ s :=
   (le_iff'.1 restrict_le_self s).antisymm <|
     calc
@@ -1578,18 +2381,29 @@ theorem restrict_eq_self (h : s ⊆ t) : μ.restrict t s = μ s :=
         rw [← restrict_apply (measurable_set_to_measurable _ _), measure_to_measurable]
       
 #align measure_theory.measure.restrict_eq_self MeasureTheory.Measure.restrict_eq_self
+-/
 
+#print MeasureTheory.Measure.restrict_apply_self /-
 @[simp]
 theorem restrict_apply_self (s : Set α) : (μ.restrict s) s = μ s :=
   restrict_eq_self μ Subset.rfl
 #align measure_theory.measure.restrict_apply_self MeasureTheory.Measure.restrict_apply_self
+-/
 
 variable {μ}
 
+#print MeasureTheory.Measure.restrict_apply_univ /-
 theorem restrict_apply_univ (s : Set α) : μ.restrict s univ = μ s := by
   rw [restrict_apply MeasurableSet.univ, Set.univ_inter]
 #align measure_theory.measure.restrict_apply_univ MeasureTheory.Measure.restrict_apply_univ
+-/
 
+/- warning: measure_theory.measure.le_restrict_apply -> MeasureTheory.Measure.le_restrict_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : Set.{u1} α) (t : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_restrict_apply MeasureTheory.Measure.le_restrict_applyₓ'. -/
 theorem le_restrict_apply (s t : Set α) : μ (t ∩ s) ≤ μ.restrict s t :=
   calc
     μ (t ∩ s) = μ.restrict s (t ∩ s) := (restrict_eq_self μ (inter_subset_right _ _)).symm
@@ -1597,93 +2411,148 @@ theorem le_restrict_apply (s t : Set α) : μ (t ∩ s) ≤ μ.restrict s t :=
     
 #align measure_theory.measure.le_restrict_apply MeasureTheory.Measure.le_restrict_apply
 
+#print MeasureTheory.Measure.restrict_apply_superset /-
 theorem restrict_apply_superset (h : s ⊆ t) : μ.restrict s t = μ s :=
   ((measure_mono (subset_univ _)).trans_eq <| restrict_apply_univ _).antisymm
     ((restrict_apply_self μ s).symm.trans_le <| measure_mono h)
 #align measure_theory.measure.restrict_apply_superset MeasureTheory.Measure.restrict_apply_superset
+-/
 
+#print MeasureTheory.Measure.restrict_add /-
 @[simp]
 theorem restrict_add {m0 : MeasurableSpace α} (μ ν : Measure α) (s : Set α) :
     (μ + ν).restrict s = μ.restrict s + ν.restrict s :=
   (restrictₗ s).map_add μ ν
 #align measure_theory.measure.restrict_add MeasureTheory.Measure.restrict_add
+-/
 
+#print MeasureTheory.Measure.restrict_zero /-
 @[simp]
 theorem restrict_zero {m0 : MeasurableSpace α} (s : Set α) : (0 : Measure α).restrict s = 0 :=
   (restrictₗ s).map_zero
 #align measure_theory.measure.restrict_zero MeasureTheory.Measure.restrict_zero
+-/
 
+#print MeasureTheory.Measure.restrict_smul /-
 @[simp]
 theorem restrict_smul {m0 : MeasurableSpace α} (c : ℝ≥0∞) (μ : Measure α) (s : Set α) :
     (c • μ).restrict s = c • μ.restrict s :=
   (restrictₗ s).map_smul c μ
 #align measure_theory.measure.restrict_smul MeasureTheory.Measure.restrict_smul
+-/
 
+#print MeasureTheory.Measure.restrict_restrict₀ /-
 theorem restrict_restrict₀ (hs : NullMeasurableSet s (μ.restrict t)) :
     (μ.restrict t).restrict s = μ.restrict (s ∩ t) :=
   ext fun u hu => by
     simp only [Set.inter_assoc, restrict_apply hu,
       restrict_apply₀ (hu.null_measurable_set.inter hs)]
 #align measure_theory.measure.restrict_restrict₀ MeasureTheory.Measure.restrict_restrict₀
+-/
 
+#print MeasureTheory.Measure.restrict_restrict /-
 @[simp]
 theorem restrict_restrict (hs : MeasurableSet s) : (μ.restrict t).restrict s = μ.restrict (s ∩ t) :=
   restrict_restrict₀ hs.NullMeasurableSet
 #align measure_theory.measure.restrict_restrict MeasureTheory.Measure.restrict_restrict
+-/
 
+#print MeasureTheory.Measure.restrict_restrict_of_subset /-
 theorem restrict_restrict_of_subset (h : s ⊆ t) : (μ.restrict t).restrict s = μ.restrict s :=
   by
   ext1 u hu
   rw [restrict_apply hu, restrict_apply hu, restrict_eq_self]
   exact (inter_subset_right _ _).trans h
 #align measure_theory.measure.restrict_restrict_of_subset MeasureTheory.Measure.restrict_restrict_of_subset
+-/
 
+#print MeasureTheory.Measure.restrict_restrict₀' /-
 theorem restrict_restrict₀' (ht : NullMeasurableSet t μ) :
     (μ.restrict t).restrict s = μ.restrict (s ∩ t) :=
   ext fun u hu => by simp only [restrict_apply hu, restrict_apply₀' ht, inter_assoc]
 #align measure_theory.measure.restrict_restrict₀' MeasureTheory.Measure.restrict_restrict₀'
+-/
 
+#print MeasureTheory.Measure.restrict_restrict' /-
 theorem restrict_restrict' (ht : MeasurableSet t) :
     (μ.restrict t).restrict s = μ.restrict (s ∩ t) :=
   restrict_restrict₀' ht.NullMeasurableSet
 #align measure_theory.measure.restrict_restrict' MeasureTheory.Measure.restrict_restrict'
+-/
 
+#print MeasureTheory.Measure.restrict_comm /-
 theorem restrict_comm (hs : MeasurableSet s) :
     (μ.restrict t).restrict s = (μ.restrict s).restrict t := by
   rw [restrict_restrict hs, restrict_restrict' hs, inter_comm]
 #align measure_theory.measure.restrict_comm MeasureTheory.Measure.restrict_comm
+-/
 
+/- warning: measure_theory.measure.restrict_apply_eq_zero -> MeasureTheory.Measure.restrict_apply_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply_eq_zero MeasureTheory.Measure.restrict_apply_eq_zeroₓ'. -/
 theorem restrict_apply_eq_zero (ht : MeasurableSet t) : μ.restrict s t = 0 ↔ μ (t ∩ s) = 0 := by
   rw [restrict_apply ht]
 #align measure_theory.measure.restrict_apply_eq_zero MeasureTheory.Measure.restrict_apply_eq_zero
 
+/- warning: measure_theory.measure.measure_inter_eq_zero_of_restrict -> MeasureTheory.Measure.measure_inter_eq_zero_of_restrict is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_inter_eq_zero_of_restrict MeasureTheory.Measure.measure_inter_eq_zero_of_restrictₓ'. -/
 theorem measure_inter_eq_zero_of_restrict (h : μ.restrict s t = 0) : μ (t ∩ s) = 0 :=
   nonpos_iff_eq_zero.1 (h ▸ le_restrict_apply _ _)
 #align measure_theory.measure.measure_inter_eq_zero_of_restrict MeasureTheory.Measure.measure_inter_eq_zero_of_restrict
 
+/- warning: measure_theory.measure.restrict_apply_eq_zero' -> MeasureTheory.Measure.restrict_apply_eq_zero' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_apply_eq_zero' MeasureTheory.Measure.restrict_apply_eq_zero'ₓ'. -/
 theorem restrict_apply_eq_zero' (hs : MeasurableSet s) : μ.restrict s t = 0 ↔ μ (t ∩ s) = 0 := by
   rw [restrict_apply' hs]
 #align measure_theory.measure.restrict_apply_eq_zero' MeasureTheory.Measure.restrict_apply_eq_zero'
 
+/- warning: measure_theory.measure.restrict_eq_zero -> MeasureTheory.Measure.restrict_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_eq_zero MeasureTheory.Measure.restrict_eq_zeroₓ'. -/
 @[simp]
 theorem restrict_eq_zero : μ.restrict s = 0 ↔ μ s = 0 := by
   rw [← measure_univ_eq_zero, restrict_apply_univ]
 #align measure_theory.measure.restrict_eq_zero MeasureTheory.Measure.restrict_eq_zero
 
+/- warning: measure_theory.measure.restrict_zero_set -> MeasureTheory.Measure.restrict_zero_set is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_zero_set MeasureTheory.Measure.restrict_zero_setₓ'. -/
 theorem restrict_zero_set {s : Set α} (h : μ s = 0) : μ.restrict s = 0 :=
   restrict_eq_zero.2 h
 #align measure_theory.measure.restrict_zero_set MeasureTheory.Measure.restrict_zero_set
 
+#print MeasureTheory.Measure.restrict_empty /-
 @[simp]
 theorem restrict_empty : μ.restrict ∅ = 0 :=
   restrict_zero_set measure_empty
 #align measure_theory.measure.restrict_empty MeasureTheory.Measure.restrict_empty
+-/
 
+#print MeasureTheory.Measure.restrict_univ /-
 @[simp]
 theorem restrict_univ : μ.restrict univ = μ :=
   ext fun s hs => by simp [hs]
 #align measure_theory.measure.restrict_univ MeasureTheory.Measure.restrict_univ
+-/
 
+#print MeasureTheory.Measure.restrict_inter_add_diff₀ /-
 theorem restrict_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
     μ.restrict (s ∩ t) + μ.restrict (s \ t) = μ.restrict s :=
   by
@@ -1691,62 +2560,97 @@ theorem restrict_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
   simp only [add_apply, restrict_apply hu, ← inter_assoc, diff_eq]
   exact measure_inter_add_diff₀ (u ∩ s) ht
 #align measure_theory.measure.restrict_inter_add_diff₀ MeasureTheory.Measure.restrict_inter_add_diff₀
+-/
 
+#print MeasureTheory.Measure.restrict_inter_add_diff /-
 theorem restrict_inter_add_diff (s : Set α) (ht : MeasurableSet t) :
     μ.restrict (s ∩ t) + μ.restrict (s \ t) = μ.restrict s :=
   restrict_inter_add_diff₀ s ht.NullMeasurableSet
 #align measure_theory.measure.restrict_inter_add_diff MeasureTheory.Measure.restrict_inter_add_diff
+-/
 
+#print MeasureTheory.Measure.restrict_union_add_inter₀ /-
 theorem restrict_union_add_inter₀ (s : Set α) (ht : NullMeasurableSet t μ) :
     μ.restrict (s ∪ t) + μ.restrict (s ∩ t) = μ.restrict s + μ.restrict t := by
   rw [← restrict_inter_add_diff₀ (s ∪ t) ht, union_inter_cancel_right, union_diff_right, ←
     restrict_inter_add_diff₀ s ht, add_comm, ← add_assoc, add_right_comm]
 #align measure_theory.measure.restrict_union_add_inter₀ MeasureTheory.Measure.restrict_union_add_inter₀
+-/
 
+#print MeasureTheory.Measure.restrict_union_add_inter /-
 theorem restrict_union_add_inter (s : Set α) (ht : MeasurableSet t) :
     μ.restrict (s ∪ t) + μ.restrict (s ∩ t) = μ.restrict s + μ.restrict t :=
   restrict_union_add_inter₀ s ht.NullMeasurableSet
 #align measure_theory.measure.restrict_union_add_inter MeasureTheory.Measure.restrict_union_add_inter
+-/
 
+#print MeasureTheory.Measure.restrict_union_add_inter' /-
 theorem restrict_union_add_inter' (hs : MeasurableSet s) (t : Set α) :
     μ.restrict (s ∪ t) + μ.restrict (s ∩ t) = μ.restrict s + μ.restrict t := by
   simpa only [union_comm, inter_comm, add_comm] using restrict_union_add_inter t hs
 #align measure_theory.measure.restrict_union_add_inter' MeasureTheory.Measure.restrict_union_add_inter'
+-/
 
+#print MeasureTheory.Measure.restrict_union₀ /-
 theorem restrict_union₀ (h : AEDisjoint μ s t) (ht : NullMeasurableSet t μ) :
     μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t := by
   simp [← restrict_union_add_inter₀ s ht, restrict_zero_set h]
 #align measure_theory.measure.restrict_union₀ MeasureTheory.Measure.restrict_union₀
+-/
 
+/- warning: measure_theory.measure.restrict_union -> MeasureTheory.Measure.restrict_union is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s t) -> (MeasurableSet.{u1} α m0 t) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s t) -> (MeasurableSet.{u1} α m0 t) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_union MeasureTheory.Measure.restrict_unionₓ'. -/
 theorem restrict_union (h : Disjoint s t) (ht : MeasurableSet t) :
     μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t :=
   restrict_union₀ h.AEDisjoint ht.NullMeasurableSet
 #align measure_theory.measure.restrict_union MeasureTheory.Measure.restrict_union
 
+/- warning: measure_theory.measure.restrict_union' -> MeasureTheory.Measure.restrict_union' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) s t) -> (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) s t) -> (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instAdd.{u1} α m0)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (MeasureTheory.Measure.restrict.{u1} α m0 μ t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_union' MeasureTheory.Measure.restrict_union'ₓ'. -/
 theorem restrict_union' (h : Disjoint s t) (hs : MeasurableSet s) :
     μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t := by
   rw [union_comm, restrict_union h.symm hs, add_comm]
 #align measure_theory.measure.restrict_union' MeasureTheory.Measure.restrict_union'
 
+#print MeasureTheory.Measure.restrict_add_restrict_compl /-
 @[simp]
 theorem restrict_add_restrict_compl (hs : MeasurableSet s) : μ.restrict s + μ.restrict (sᶜ) = μ :=
   by
   rw [← restrict_union (@disjoint_compl_right (Set α) _ _) hs.compl, union_compl_self,
     restrict_univ]
 #align measure_theory.measure.restrict_add_restrict_compl MeasureTheory.Measure.restrict_add_restrict_compl
+-/
 
+#print MeasureTheory.Measure.restrict_compl_add_restrict /-
 @[simp]
 theorem restrict_compl_add_restrict (hs : MeasurableSet s) : μ.restrict (sᶜ) + μ.restrict s = μ :=
   by rw [add_comm, restrict_add_restrict_compl hs]
 #align measure_theory.measure.restrict_compl_add_restrict MeasureTheory.Measure.restrict_compl_add_restrict
+-/
 
+#print MeasureTheory.Measure.restrict_union_le /-
 theorem restrict_union_le (s s' : Set α) : μ.restrict (s ∪ s') ≤ μ.restrict s + μ.restrict s' :=
   by
   intro t ht
   suffices μ (t ∩ s ∪ t ∩ s') ≤ μ (t ∩ s) + μ (t ∩ s') by simpa [ht, inter_union_distrib_left]
   apply measure_union_le
 #align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_le
+-/
 
+/- warning: measure_theory.measure.restrict_Union_apply_ae -> MeasureTheory.Measure.restrict_unionᵢ_apply_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) s)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (s i) μ) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) s)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (s i) μ) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_unionᵢ_apply_aeₓ'. -/
 theorem restrict_unionᵢ_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
@@ -1757,12 +2661,24 @@ theorem restrict_unionᵢ_apply_ae [Countable ι] {s : ι → Set α} (hd : Pair
       fun i => ht.null_measurable_set.inter (hm i)
 #align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_unionᵢ_apply_ae
 
+/- warning: measure_theory.measure.restrict_Union_apply -> MeasureTheory.Measure.restrict_unionᵢ_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_unionᵢ_applyₓ'. -/
 theorem restrict_unionᵢ_apply [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
   restrict_unionᵢ_apply_ae hd.AEDisjoint (fun i => (hm i).NullMeasurableSet) ht
 #align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_unionᵢ_apply
 
+/- warning: measure_theory.measure.restrict_Union_apply_eq_supr -> MeasureTheory.Measure.restrict_unionᵢ_apply_eq_supᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α)) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) t) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)) t))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Directed.{u1, succ u2} (Set.{u1} α) ι (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26330 : Set.{u1} α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26332 : Set.{u1} α) => HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26330 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.26332) s) -> (forall {t : Set.{u1} α}, (MeasurableSet.{u1} α m0 t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i)))) t) (supᵢ.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) t))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_unionᵢ_apply_eq_supᵢₓ'. -/
 theorem restrict_unionᵢ_apply_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s)
     {t : Set α} (ht : MeasurableSet t) : μ.restrict (⋃ i, s i) t = ⨆ i, μ.restrict (s i) t :=
   by
@@ -1771,6 +2687,12 @@ theorem restrict_unionᵢ_apply_eq_supᵢ [Countable ι] {s : ι → Set α} (hd
   exacts[hd.mono_comp _ fun s₁ s₂ => inter_subset_inter_right _]
 #align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_unionᵢ_apply_eq_supᵢ
 
+/- warning: measure_theory.measure.restrict_map -> MeasureTheory.Measure.restrict_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (forall {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.restrict.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) s) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.preimage.{u1, u2} α β f s)))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.restrict.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) s) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.preimage.{u2, u1} α β f s)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_map MeasureTheory.Measure.restrict_mapₓ'. -/
 /-- The restriction of the pushforward measure is the pushforward of the restriction. For a version
 assuming only `ae_measurable`, see `restrict_map_of_ae_measurable`. -/
 theorem restrict_map {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
@@ -1778,12 +2700,19 @@ theorem restrict_map {f : α → β} (hf : Measurable f) {s : Set β} (hs : Meas
   ext fun t ht => by simp [*, hf ht]
 #align measure_theory.measure.restrict_map MeasureTheory.Measure.restrict_map
 
+/- warning: measure_theory.measure.restrict_to_measurable -> MeasureTheory.Measure.restrict_toMeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_to_measurable MeasureTheory.Measure.restrict_toMeasurableₓ'. -/
 theorem restrict_toMeasurable (h : μ s ≠ ∞) : μ.restrict (toMeasurable μ s) = μ.restrict s :=
   ext fun t ht => by
     rw [restrict_apply ht, restrict_apply ht, inter_comm, measure_to_measurable_inter ht h,
       inter_comm]
 #align measure_theory.measure.restrict_to_measurable MeasureTheory.Measure.restrict_toMeasurable
 
+#print MeasureTheory.Measure.restrict_eq_self_of_ae_mem /-
 theorem restrict_eq_self_of_ae_mem {m0 : MeasurableSpace α} ⦃s : Set α⦄ ⦃μ : Measure α⦄
     (hs : ∀ᵐ x ∂μ, x ∈ s) : μ.restrict s = μ :=
   calc
@@ -1791,8 +2720,10 @@ theorem restrict_eq_self_of_ae_mem {m0 : MeasurableSpace α} ⦃s : Set α⦄ 
     _ = μ := restrict_univ
     
 #align measure_theory.measure.restrict_eq_self_of_ae_mem MeasureTheory.Measure.restrict_eq_self_of_ae_mem
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+#print MeasureTheory.Measure.restrict_congr_meas /-
 theorem restrict_congr_meas (hs : MeasurableSet s) :
     μ.restrict s = ν.restrict s ↔ ∀ (t) (_ : t ⊆ s), MeasurableSet t → μ t = ν t :=
   ⟨fun H t hts ht => by
@@ -1800,12 +2731,16 @@ theorem restrict_congr_meas (hs : MeasurableSet s) :
     ext fun t ht => by
       rw [restrict_apply ht, restrict_apply ht, H _ (inter_subset_right _ _) (ht.inter hs)]⟩
 #align measure_theory.measure.restrict_congr_meas MeasureTheory.Measure.restrict_congr_meas
+-/
 
+#print MeasureTheory.Measure.restrict_congr_mono /-
 theorem restrict_congr_mono (hs : s ⊆ t) (h : μ.restrict t = ν.restrict t) :
     μ.restrict s = ν.restrict s := by
   rw [← restrict_restrict_of_subset hs, h, restrict_restrict_of_subset hs]
 #align measure_theory.measure.restrict_congr_mono MeasureTheory.Measure.restrict_congr_mono
+-/
 
+#print MeasureTheory.Measure.restrict_union_congr /-
 /-- If two measures agree on all measurable subsets of `s` and `t`, then they agree on all
 measurable subsets of `s ∪ t`. -/
 theorem restrict_union_congr :
@@ -1833,16 +2768,20 @@ theorem restrict_union_congr :
     _ = ν (u ∩ s ∪ u ∩ t) := Eq.symm <| measure_union_congr_of_subset hsub hν.le subset.rfl le_rfl
     
 #align measure_theory.measure.restrict_union_congr MeasureTheory.Measure.restrict_union_congr
+-/
 
-theorem restrict_finset_bUnion_congr {s : Finset ι} {t : ι → Set α} :
+#print MeasureTheory.Measure.restrict_finset_bunionᵢ_congr /-
+theorem restrict_finset_bunionᵢ_congr {s : Finset ι} {t : ι → Set α} :
     μ.restrict (⋃ i ∈ s, t i) = ν.restrict (⋃ i ∈ s, t i) ↔
       ∀ i ∈ s, μ.restrict (t i) = ν.restrict (t i) :=
   by
   induction' s using Finset.induction_on with i s hi hs; · simp
   simp only [forall_eq_or_imp, Union_Union_eq_or_left, Finset.mem_insert]
   rw [restrict_union_congr, ← hs]
-#align measure_theory.measure.restrict_finset_bUnion_congr MeasureTheory.Measure.restrict_finset_bUnion_congr
+#align measure_theory.measure.restrict_finset_bUnion_congr MeasureTheory.Measure.restrict_finset_bunionᵢ_congr
+-/
 
+#print MeasureTheory.Measure.restrict_unionᵢ_congr /-
 theorem restrict_unionᵢ_congr [Countable ι] {s : ι → Set α} :
     μ.restrict (⋃ i, s i) = ν.restrict (⋃ i, s i) ↔ ∀ i, μ.restrict (s i) = ν.restrict (s i) :=
   by
@@ -1853,20 +2792,26 @@ theorem restrict_unionᵢ_congr [Countable ι] {s : ι → Set α} :
   rw [Union_eq_Union_finset]
   simp only [restrict_Union_apply_eq_supr D ht, restrict_finset_bUnion_congr.2 fun i hi => h i]
 #align measure_theory.measure.restrict_Union_congr MeasureTheory.Measure.restrict_unionᵢ_congr
+-/
 
-theorem restrict_bUnion_congr {s : Set ι} {t : ι → Set α} (hc : s.Countable) :
+#print MeasureTheory.Measure.restrict_bunionᵢ_congr /-
+theorem restrict_bunionᵢ_congr {s : Set ι} {t : ι → Set α} (hc : s.Countable) :
     μ.restrict (⋃ i ∈ s, t i) = ν.restrict (⋃ i ∈ s, t i) ↔
       ∀ i ∈ s, μ.restrict (t i) = ν.restrict (t i) :=
   by
   haveI := hc.to_encodable
   simp only [bUnion_eq_Union, SetCoe.forall', restrict_Union_congr]
-#align measure_theory.measure.restrict_bUnion_congr MeasureTheory.Measure.restrict_bUnion_congr
+#align measure_theory.measure.restrict_bUnion_congr MeasureTheory.Measure.restrict_bunionᵢ_congr
+-/
 
+#print MeasureTheory.Measure.restrict_unionₛ_congr /-
 theorem restrict_unionₛ_congr {S : Set (Set α)} (hc : S.Countable) :
     μ.restrict (⋃₀ S) = ν.restrict (⋃₀ S) ↔ ∀ s ∈ S, μ.restrict s = ν.restrict s := by
   rw [sUnion_eq_bUnion, restrict_bUnion_congr hc]
 #align measure_theory.measure.restrict_sUnion_congr MeasureTheory.Measure.restrict_unionₛ_congr
+-/
 
+#print MeasureTheory.Measure.restrict_infₛ_eq_infₛ_restrict /-
 /-- This lemma shows that `Inf` and `restrict` commute for measures. -/
 theorem restrict_infₛ_eq_infₛ_restrict {m0 : MeasurableSpace α} {m : Set (Measure α)}
     (hm : m.Nonempty) (ht : MeasurableSet t) :
@@ -1878,7 +2823,14 @@ theorem restrict_infₛ_eq_infₛ_restrict {m0 : MeasurableSpace α} {m : Set (M
     Set.image_image _ to_outer_measure, ← outer_measure.restrict_Inf_eq_Inf_restrict _ (hm.image _),
     outer_measure.restrict_apply]
 #align measure_theory.measure.restrict_Inf_eq_Inf_restrict MeasureTheory.Measure.restrict_infₛ_eq_infₛ_restrict
+-/
 
+/- warning: measure_theory.measure.exists_mem_of_measure_ne_zero_of_ae -> MeasureTheory.Measure.exists_mem_of_measure_ne_zero_of_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) -> (Exists.{succ u1} α (fun (x : α) => And (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (p x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (forall {p : α -> Prop}, (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) -> (Exists.{succ u1} α (fun (x : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (p x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_mem_of_measure_ne_zero_of_ae MeasureTheory.Measure.exists_mem_of_measure_ne_zero_of_aeₓ'. -/
 theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
     (hp : ∀ᵐ x ∂μ.restrict s, p x) : ∃ x, x ∈ s ∧ p x :=
   by
@@ -1889,36 +2841,48 @@ theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
 /-! ### Extensionality results -/
 
 
+#print MeasureTheory.Measure.ext_iff_of_unionᵢ_eq_univ /-
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
   (formulated using `Union`). -/
 theorem ext_iff_of_unionᵢ_eq_univ [Countable ι] {s : ι → Set α} (hs : (⋃ i, s i) = univ) :
     μ = ν ↔ ∀ i, μ.restrict (s i) = ν.restrict (s i) := by
   rw [← restrict_Union_congr, hs, restrict_univ, restrict_univ]
 #align measure_theory.measure.ext_iff_of_Union_eq_univ MeasureTheory.Measure.ext_iff_of_unionᵢ_eq_univ
+-/
 
 alias ext_iff_of_Union_eq_univ ↔ _ ext_of_Union_eq_univ
 #align measure_theory.measure.ext_of_Union_eq_univ MeasureTheory.Measure.ext_of_unionᵢ_eq_univ
 
+#print MeasureTheory.Measure.ext_iff_of_bunionᵢ_eq_univ /-
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
   (formulated using `bUnion`). -/
-theorem ext_iff_of_bUnion_eq_univ {S : Set ι} {s : ι → Set α} (hc : S.Countable)
+theorem ext_iff_of_bunionᵢ_eq_univ {S : Set ι} {s : ι → Set α} (hc : S.Countable)
     (hs : (⋃ i ∈ S, s i) = univ) : μ = ν ↔ ∀ i ∈ S, μ.restrict (s i) = ν.restrict (s i) := by
   rw [← restrict_bUnion_congr hc, hs, restrict_univ, restrict_univ]
-#align measure_theory.measure.ext_iff_of_bUnion_eq_univ MeasureTheory.Measure.ext_iff_of_bUnion_eq_univ
+#align measure_theory.measure.ext_iff_of_bUnion_eq_univ MeasureTheory.Measure.ext_iff_of_bunionᵢ_eq_univ
+-/
 
 alias ext_iff_of_bUnion_eq_univ ↔ _ ext_of_bUnion_eq_univ
-#align measure_theory.measure.ext_of_bUnion_eq_univ MeasureTheory.Measure.ext_of_bUnion_eq_univ
+#align measure_theory.measure.ext_of_bUnion_eq_univ MeasureTheory.Measure.ext_of_bunionᵢ_eq_univ
 
+#print MeasureTheory.Measure.ext_iff_of_unionₛ_eq_univ /-
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
   (formulated using `sUnion`). -/
 theorem ext_iff_of_unionₛ_eq_univ {S : Set (Set α)} (hc : S.Countable) (hs : ⋃₀ S = univ) :
     μ = ν ↔ ∀ s ∈ S, μ.restrict s = ν.restrict s :=
-  ext_iff_of_bUnion_eq_univ hc <| by rwa [← sUnion_eq_bUnion]
+  ext_iff_of_bunionᵢ_eq_univ hc <| by rwa [← sUnion_eq_bUnion]
 #align measure_theory.measure.ext_iff_of_sUnion_eq_univ MeasureTheory.Measure.ext_iff_of_unionₛ_eq_univ
+-/
 
 alias ext_iff_of_sUnion_eq_univ ↔ _ ext_of_sUnion_eq_univ
 #align measure_theory.measure.ext_of_sUnion_eq_univ MeasureTheory.Measure.ext_of_unionₛ_eq_univ
 
+/- warning: measure_theory.measure.ext_of_generate_from_of_cover -> MeasureTheory.Measure.ext_of_generateFrom_of_cover is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (IsPiSystem.{u1} α S) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α T) (Set.univ.{u1} α)) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))))) -> (forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t T) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν t))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (IsPiSystem.{u1} α S) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α T) (Set.univ.{u1} α)) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))))) -> (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t T) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) t))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_coverₓ'. -/
 theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = generateFrom S)
     (hc : T.Countable) (h_inter : IsPiSystem S) (hU : ⋃₀ T = univ) (htop : ∀ t ∈ T, μ t ≠ ∞)
     (ST_eq : ∀ t ∈ T, ∀ s ∈ S, μ (s ∩ t) = ν (s ∩ t)) (T_eq : ∀ t ∈ T, μ t = ν t) : μ = ν :=
@@ -1939,6 +2903,12 @@ theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = gen
     simp only [measure_Union hfd hfm, h_eq]
 #align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_cover
 
+/- warning: measure_theory.measure.ext_of_generate_from_of_cover_subset -> MeasureTheory.Measure.ext_of_generateFrom_of_cover_subset is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (IsPiSystem.{u1} α S) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) T S) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α T) (Set.univ.{u1} α)) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s T) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)} {T : Set.{u1} (Set.{u1} α)}, (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α S)) -> (IsPiSystem.{u1} α S) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) T S) -> (Set.Countable.{u1} (Set.{u1} α) T) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α T) (Set.univ.{u1} α)) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s T) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ext_of_generate_from_of_cover_subset MeasureTheory.Measure.ext_of_generateFrom_of_cover_subsetₓ'. -/
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
   and they are both finite on a increasing spanning sequence of sets in the π-system.
   This lemma is formulated using `sUnion`. -/
@@ -1952,6 +2922,12 @@ theorem ext_of_generateFrom_of_cover_subset {S T : Set (Set α)} (h_gen : ‹_
   · exact h_eq _ (h_inter _ hs _ (h_sub ht) H)
 #align measure_theory.measure.ext_of_generate_from_of_cover_subset MeasureTheory.Measure.ext_of_generateFrom_of_cover_subset
 
+/- warning: measure_theory.measure.ext_of_generate_from_of_Union -> MeasureTheory.Measure.ext_of_generateFrom_of_unionᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} (C : Set.{u1} (Set.{u1} α)) (B : Nat -> (Set.{u1} α)), (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α C)) -> (IsPiSystem.{u1} α C) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionᵢ.{u1, 1} α Nat (fun (i : Nat) => B i)) (Set.univ.{u1} α)) -> (forall (i : Nat), Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (B i) C) -> (forall (i : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (B i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s C) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} (C : Set.{u1} (Set.{u1} α)) (B : Nat -> (Set.{u1} α)), (Eq.{succ u1} (MeasurableSpace.{u1} α) m0 (MeasurableSpace.generateFrom.{u1} α C)) -> (IsPiSystem.{u1} α C) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionᵢ.{u1, 1} α Nat (fun (i : Nat) => B i)) (Set.univ.{u1} α)) -> (forall (i : Nat), Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (B i) C) -> (forall (i : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (B i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s C) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_unionᵢₓ'. -/
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
   and they are both finite on a increasing spanning sequence of sets in the π-system.
   This lemma is formulated using `Union`.
@@ -1971,23 +2947,38 @@ section Dirac
 
 variable [MeasurableSpace α]
 
+#print MeasureTheory.Measure.dirac /-
 /-- The dirac measure. -/
 def dirac (a : α) : Measure α :=
   (OuterMeasure.dirac a).toMeasure (by simp)
 #align measure_theory.measure.dirac MeasureTheory.Measure.dirac
+-/
 
 instance : MeasureSpace PUnit :=
   ⟨dirac PUnit.unit⟩
 
+/- warning: measure_theory.measure.le_dirac_apply -> MeasureTheory.Measure.le_dirac_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] {a : α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (OfNat.mk.{u1} (α -> ENNReal) 1 (One.one.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a) s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] {a : α}, LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Set.indicator.{u1, 0} α ENNReal instENNRealZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (One.toOfNat1.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (a._@.Mathlib.Algebra.IndicatorFunction._hyg.77 : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_dirac_apply MeasureTheory.Measure.le_dirac_applyₓ'. -/
 theorem le_dirac_apply {a} : s.indicator 1 a ≤ dirac a s :=
   OuterMeasure.dirac_apply a s ▸ le_toMeasure_apply _ _ _
 #align measure_theory.measure.le_dirac_apply MeasureTheory.Measure.le_dirac_apply
 
+/- warning: measure_theory.measure.dirac_apply' -> MeasureTheory.Measure.dirac_apply' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] (a : α), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a) s) (Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (OfNat.mk.{u1} (α -> ENNReal) 1 (One.one.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) a))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] (a : α), (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) s) (Set.indicator.{u1, 0} α ENNReal instENNRealZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (One.toOfNat1.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (a._@.Mathlib.Algebra.IndicatorFunction._hyg.77 : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.dirac_apply' MeasureTheory.Measure.dirac_apply'ₓ'. -/
 @[simp]
 theorem dirac_apply' (a : α) (hs : MeasurableSet s) : dirac a s = s.indicator 1 a :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.dirac_apply' MeasureTheory.Measure.dirac_apply'
 
+#print MeasureTheory.Measure.dirac_apply_of_mem /-
 @[simp]
 theorem dirac_apply_of_mem {a : α} (h : a ∈ s) : dirac a s = 1 :=
   by
@@ -1996,7 +2987,14 @@ theorem dirac_apply_of_mem {a : α} (h : a ∈ s) : dirac a s = 1 :=
   rw [← dirac_apply' a MeasurableSet.univ]
   exact measure_mono (subset_univ s)
 #align measure_theory.measure.dirac_apply_of_mem MeasureTheory.Measure.dirac_apply_of_mem
+-/
 
+/- warning: measure_theory.measure.dirac_apply -> MeasureTheory.Measure.dirac_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3] (a : α) (s : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a) s) (Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (OfNat.mk.{u1} (α -> ENNReal) 1 (One.one.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3] (a : α) (s : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) s) (Set.indicator.{u1, 0} α ENNReal instENNRealZero s (OfNat.ofNat.{u1} (α -> ENNReal) 1 (One.toOfNat1.{u1} (α -> ENNReal) (Pi.instOne.{u1, 0} α (fun (a._@.Mathlib.Algebra.IndicatorFunction._hyg.77 : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) a)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.dirac_apply MeasureTheory.Measure.dirac_applyₓ'. -/
 @[simp]
 theorem dirac_apply [MeasurableSingletonClass α] (a : α) (s : Set α) :
     dirac a s = s.indicator 1 a := by
@@ -2008,10 +3006,22 @@ theorem dirac_apply [MeasurableSingletonClass α] (a : α) (s : Set α) :
     
 #align measure_theory.measure.dirac_apply MeasureTheory.Measure.dirac_apply
 
+/- warning: measure_theory.measure.map_dirac -> MeasureTheory.Measure.map_dirac is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α] {f : α -> β}, (Measurable.{u1, u2} α β _inst_3 _inst_1 f) -> (forall (a : α), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 _inst_3 f (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) (MeasureTheory.Measure.dirac.{u2} β _inst_1 (f a)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] [_inst_3 : MeasurableSpace.{u2} α] {f : α -> β}, (Measurable.{u2, u1} α β _inst_3 _inst_1 f) -> (forall (a : α), Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_1) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 _inst_3 f (MeasureTheory.Measure.dirac.{u2} α _inst_3 a)) (MeasureTheory.Measure.dirac.{u1} β _inst_1 (f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.map_dirac MeasureTheory.Measure.map_diracₓ'. -/
 theorem map_dirac {f : α → β} (hf : Measurable f) (a : α) : (dirac a).map f = dirac (f a) :=
   ext fun s hs => by simp [hs, map_apply hf hs, hf hs, indicator_apply]
 #align measure_theory.measure.map_dirac MeasureTheory.Measure.map_dirac
 
+/- warning: measure_theory.measure.restrict_singleton -> MeasureTheory.Measure.restrict_singleton is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) (a : α), Eq.{succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.restrict.{u1} α _inst_3 μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) _inst_3) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) (a : α), Eq.{succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.restrict.{u1} α _inst_3 μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.{u1} α _inst_3) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α _inst_3) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_3)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (MeasureTheory.Measure.dirac.{u1} α _inst_3 a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_singleton MeasureTheory.Measure.restrict_singletonₓ'. -/
 @[simp]
 theorem restrict_singleton (μ : Measure α) (a : α) : μ.restrict {a} = μ {a} • dirac a :=
   by
@@ -2029,26 +3039,52 @@ section Sum
 
 include m0
 
+#print MeasureTheory.Measure.sum /-
 /-- Sum of an indexed family of measures. -/
 def sum (f : ι → Measure α) : Measure α :=
   (OuterMeasure.sum fun i => (f i).toOuterMeasure).toMeasure <|
     le_trans (le_infᵢ fun i => le_to_outer_measure_caratheodory _)
       (OuterMeasure.le_sum_caratheodory _)
 #align measure_theory.measure.sum MeasureTheory.Measure.sum
+-/
 
+/- warning: measure_theory.measure.le_sum_apply -> MeasureTheory.Measure.le_sum_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (f : ι -> (MeasureTheory.Measure.{u1} α m0)) (s : Set.{u1} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (f i) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 f) s)
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} (f : ι -> (MeasureTheory.Measure.{u2} α m0)) (s : Set.{u2} α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (f i)) s)) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 f)) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_sum_apply MeasureTheory.Measure.le_sum_applyₓ'. -/
 theorem le_sum_apply (f : ι → Measure α) (s : Set α) : (∑' i, f i s) ≤ sum f s :=
   le_toMeasure_apply _ _ _
 #align measure_theory.measure.le_sum_apply MeasureTheory.Measure.le_sum_apply
 
+/- warning: measure_theory.measure.sum_apply -> MeasureTheory.Measure.sum_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (f : ι -> (MeasureTheory.Measure.{u1} α m0)) {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 f) s) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (f i) s)))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} (f : ι -> (MeasureTheory.Measure.{u2} α m0)) {s : Set.{u2} α}, (MeasurableSet.{u2} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 f)) s) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (f i)) s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sum_apply MeasureTheory.Measure.sum_applyₓ'. -/
 @[simp]
 theorem sum_apply (f : ι → Measure α) {s : Set α} (hs : MeasurableSet s) : sum f s = ∑' i, f i s :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.sum_apply MeasureTheory.Measure.sum_apply
 
+/- warning: measure_theory.measure.le_sum -> MeasureTheory.Measure.le_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (μ : ι -> (MeasureTheory.Measure.{u1} α m0)) (i : ι), LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) (μ i) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} (μ : ι -> (MeasureTheory.Measure.{u2} α m0)) (i : ι), LE.le.{u2} (MeasureTheory.Measure.{u2} α m0) (Preorder.toLE.{u2} (MeasureTheory.Measure.{u2} α m0) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.instPartialOrder.{u2} α m0))) (μ i) (MeasureTheory.Measure.sum.{u2, u1} α ι m0 μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_sum MeasureTheory.Measure.le_sumₓ'. -/
 theorem le_sum (μ : ι → Measure α) (i : ι) : μ i ≤ sum μ := fun s hs => by
   simp only [sum_apply μ hs, ENNReal.le_tsum i]
 #align measure_theory.measure.le_sum MeasureTheory.Measure.le_sum
 
+/- warning: measure_theory.measure.sum_apply_eq_zero -> MeasureTheory.Measure.sum_apply_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] {μ : ι -> (MeasureTheory.Measure.{u1} α m0)} {s : Set.{u1} α}, Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (forall (i : ι), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (μ i) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] {μ : ι -> (MeasureTheory.Measure.{u1} α m0)} {s : Set.{u1} α}, Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (forall (i : ι), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (μ i)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sum_apply_eq_zero MeasureTheory.Measure.sum_apply_eq_zeroₓ'. -/
 @[simp]
 theorem sum_apply_eq_zero [Countable ι] {μ : ι → Measure α} {s : Set α} :
     sum μ s = 0 ↔ ∀ i, μ i s = 0 :=
@@ -2063,10 +3099,22 @@ theorem sum_apply_eq_zero [Countable ι] {μ : ι → Measure α} {s : Set α} :
     
 #align measure_theory.measure.sum_apply_eq_zero MeasureTheory.Measure.sum_apply_eq_zero
 
+/- warning: measure_theory.measure.sum_apply_eq_zero' -> MeasureTheory.Measure.sum_apply_eq_zero' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : ι -> (MeasureTheory.Measure.{u1} α m0)} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (forall (i : ι), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (μ i) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : ι -> (MeasureTheory.Measure.{u2} α m0)} {s : Set.{u2} α}, (MeasurableSet.{u2} α m0 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 μ)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (forall (i : ι), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 (μ i)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sum_apply_eq_zero' MeasureTheory.Measure.sum_apply_eq_zero'ₓ'. -/
 theorem sum_apply_eq_zero' {μ : ι → Measure α} {s : Set α} (hs : MeasurableSet s) :
     sum μ s = 0 ↔ ∀ i, μ i s = 0 := by simp [hs]
 #align measure_theory.measure.sum_apply_eq_zero' MeasureTheory.Measure.sum_apply_eq_zero'
 
+/- warning: measure_theory.measure.sum_comm -> MeasureTheory.Measure.sum_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {ι' : Type.{u3}} (μ : ι -> ι' -> (MeasureTheory.Measure.{u1} α m0)), Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (n : ι) => MeasureTheory.Measure.sum.{u1, u3} α ι' m0 (μ n))) (MeasureTheory.Measure.sum.{u1, u3} α ι' m0 (fun (m : ι') => MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (n : ι) => μ n m)))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {ι' : Type.{u3}} (μ : ι -> ι' -> (MeasureTheory.Measure.{u2} α m0)), Eq.{succ u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.sum.{u2, u1} α ι m0 (fun (n : ι) => MeasureTheory.Measure.sum.{u2, u3} α ι' m0 (μ n))) (MeasureTheory.Measure.sum.{u2, u3} α ι' m0 (fun (m : ι') => MeasureTheory.Measure.sum.{u2, u1} α ι m0 (fun (n : ι) => μ n m)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sum_comm MeasureTheory.Measure.sum_commₓ'. -/
 theorem sum_comm {ι' : Type _} (μ : ι → ι' → Measure α) :
     (sum fun n => sum (μ n)) = sum fun m => sum fun n => μ n m :=
   by
@@ -2075,54 +3123,85 @@ theorem sum_comm {ι' : Type _} (μ : ι → ι' → Measure α) :
   rw [ENNReal.tsum_comm]
 #align measure_theory.measure.sum_comm MeasureTheory.Measure.sum_comm
 
+#print MeasureTheory.Measure.ae_sum_iff /-
 theorem ae_sum_iff [Countable ι] {μ : ι → Measure α} {p : α → Prop} :
     (∀ᵐ x ∂sum μ, p x) ↔ ∀ i, ∀ᵐ x ∂μ i, p x :=
   sum_apply_eq_zero
 #align measure_theory.measure.ae_sum_iff MeasureTheory.Measure.ae_sum_iff
+-/
 
+/- warning: measure_theory.measure.ae_sum_iff' -> MeasureTheory.Measure.ae_sum_iff' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : ι -> (MeasureTheory.Measure.{u1} α m0)} {p : α -> Prop}, (MeasurableSet.{u1} α m0 (setOf.{u1} α (fun (x : α) => p x))) -> (Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ))) (forall (i : ι), Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (μ i))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : ι -> (MeasureTheory.Measure.{u2} α m0)} {p : α -> Prop}, (MeasurableSet.{u2} α m0 (setOf.{u2} α (fun (x : α) => p x))) -> (Iff (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 μ))) (forall (i : ι), Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (μ i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_sum_iff' MeasureTheory.Measure.ae_sum_iff'ₓ'. -/
 theorem ae_sum_iff' {μ : ι → Measure α} {p : α → Prop} (h : MeasurableSet { x | p x }) :
     (∀ᵐ x ∂sum μ, p x) ↔ ∀ i, ∀ᵐ x ∂μ i, p x :=
   sum_apply_eq_zero' h.compl
 #align measure_theory.measure.ae_sum_iff' MeasureTheory.Measure.ae_sum_iff'
 
+#print MeasureTheory.Measure.sum_fintype /-
 @[simp]
 theorem sum_fintype [Fintype ι] (μ : ι → Measure α) : sum μ = ∑ i, μ i :=
   by
   ext1 s hs
   simp only [sum_apply, finset_sum_apply, hs, tsum_fintype]
 #align measure_theory.measure.sum_fintype MeasureTheory.Measure.sum_fintype
+-/
 
+#print MeasureTheory.Measure.sum_coe_finset /-
 @[simp]
 theorem sum_coe_finset (s : Finset ι) (μ : ι → Measure α) :
     (sum fun i : s => μ i) = ∑ i in s, μ i := by rw [sum_fintype, Finset.sum_coe_sort s μ]
 #align measure_theory.measure.sum_coe_finset MeasureTheory.Measure.sum_coe_finset
+-/
 
+/- warning: measure_theory.measure.ae_sum_eq -> MeasureTheory.Measure.ae_sum_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] (μ : ι -> (MeasureTheory.Measure.{u1} α m0)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (μ i)))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u2} ι] (μ : ι -> (MeasureTheory.Measure.{u1} α m0)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ)) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toSupSet.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (μ i)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_sum_eq MeasureTheory.Measure.ae_sum_eqₓ'. -/
 @[simp]
 theorem ae_sum_eq [Countable ι] (μ : ι → Measure α) : (sum μ).ae = ⨆ i, (μ i).ae :=
   Filter.ext fun s => ae_sum_iff.trans mem_supᵢ.symm
 #align measure_theory.measure.ae_sum_eq MeasureTheory.Measure.ae_sum_eq
 
+#print MeasureTheory.Measure.sum_bool /-
 @[simp]
 theorem sum_bool (f : Bool → Measure α) : sum f = f true + f false := by
   rw [sum_fintype, Fintype.sum_bool]
 #align measure_theory.measure.sum_bool MeasureTheory.Measure.sum_bool
+-/
 
+#print MeasureTheory.Measure.sum_cond /-
 @[simp]
 theorem sum_cond (μ ν : Measure α) : (sum fun b => cond b μ ν) = μ + ν :=
   sum_bool _
 #align measure_theory.measure.sum_cond MeasureTheory.Measure.sum_cond
+-/
 
+/- warning: measure_theory.measure.restrict_sum -> MeasureTheory.Measure.restrict_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} (μ : ι -> (MeasureTheory.Measure.{u1} α m0)) {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 (MeasureTheory.Measure.sum.{u1, u2} α ι m0 μ) s) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 (μ i) s)))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} (μ : ι -> (MeasureTheory.Measure.{u2} α m0)) {s : Set.{u2} α}, (MeasurableSet.{u2} α m0 s) -> (Eq.{succ u2} (MeasureTheory.Measure.{u2} α m0) (MeasureTheory.Measure.restrict.{u2} α m0 (MeasureTheory.Measure.sum.{u2, u1} α ι m0 μ) s) (MeasureTheory.Measure.sum.{u2, u1} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u2} α m0 (μ i) s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_sum MeasureTheory.Measure.restrict_sumₓ'. -/
 @[simp]
 theorem restrict_sum (μ : ι → Measure α) {s : Set α} (hs : MeasurableSet s) :
     (sum μ).restrict s = sum fun i => (μ i).restrict s :=
   ext fun t ht => by simp only [sum_apply, restrict_apply, ht, ht.inter hs]
 #align measure_theory.measure.restrict_sum MeasureTheory.Measure.restrict_sum
 
+#print MeasureTheory.Measure.sum_of_empty /-
 @[simp]
 theorem sum_of_empty [IsEmpty ι] (μ : ι → Measure α) : sum μ = 0 := by
   rw [← measure_univ_eq_zero, sum_apply _ MeasurableSet.univ, tsum_empty]
 #align measure_theory.measure.sum_of_empty MeasureTheory.Measure.sum_of_empty
+-/
 
+#print MeasureTheory.Measure.sum_add_sum_compl /-
 theorem sum_add_sum_compl (s : Set ι) (μ : ι → Measure α) :
     ((sum fun i : s => μ i) + sum fun i : sᶜ => μ i) = sum μ :=
   by
@@ -2130,18 +3209,24 @@ theorem sum_add_sum_compl (s : Set ι) (μ : ι → Measure α) :
   simp only [add_apply, sum_apply _ ht]
   exact @tsum_add_tsum_compl ℝ≥0∞ ι _ _ _ (fun i => μ i t) _ s ENNReal.summable ENNReal.summable
 #align measure_theory.measure.sum_add_sum_compl MeasureTheory.Measure.sum_add_sum_compl
+-/
 
+#print MeasureTheory.Measure.sum_congr /-
 theorem sum_congr {μ ν : ℕ → Measure α} (h : ∀ n, μ n = ν n) : sum μ = sum ν :=
   congr_arg sum (funext h)
 #align measure_theory.measure.sum_congr MeasureTheory.Measure.sum_congr
+-/
 
+#print MeasureTheory.Measure.sum_add_sum /-
 theorem sum_add_sum (μ ν : ℕ → Measure α) : sum μ + sum ν = sum fun n => μ n + ν n :=
   by
   ext1 s hs
   simp only [add_apply, sum_apply _ hs, Pi.add_apply, coe_add,
     tsum_add ENNReal.summable ENNReal.summable]
 #align measure_theory.measure.sum_add_sum MeasureTheory.Measure.sum_add_sum
+-/
 
+#print MeasureTheory.Measure.map_eq_sum /-
 /-- If `f` is a map with countable codomain, then `μ.map f` is a sum of Dirac measures. -/
 theorem map_eq_sum [Countable β] [MeasurableSingletonClass β] (μ : Measure α) (f : α → β)
     (hf : Measurable f) : μ.map f = sum fun b : β => μ (f ⁻¹' {b}) • dirac b :=
@@ -2151,13 +3236,22 @@ theorem map_eq_sum [Countable β] [MeasurableSingletonClass β] (μ : Measure α
   simp [← tsum_measure_preimage_singleton (to_countable s) this, *,
     tsum_subtype s fun b => μ (f ⁻¹' {b}), ← indicator_mul_right s fun b => μ (f ⁻¹' {b})]
 #align measure_theory.measure.map_eq_sum MeasureTheory.Measure.map_eq_sum
+-/
 
+#print MeasureTheory.Measure.sum_smul_dirac /-
 /-- A measure on a countable type is a sum of Dirac measures. -/
 @[simp]
 theorem sum_smul_dirac [Countable α] [MeasurableSingletonClass α] (μ : Measure α) :
     (sum fun a => μ {a} • dirac a) = μ := by simpa using (map_eq_sum μ id measurable_id).symm
 #align measure_theory.measure.sum_smul_dirac MeasureTheory.Measure.sum_smul_dirac
+-/
 
+/- warning: measure_theory.measure.tsum_indicator_apply_singleton -> MeasureTheory.Measure.tsum_indicator_apply_singleton is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α m0] (μ : MeasureTheory.Measure.{u1} α m0) (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (x : α) => Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (fun (x : α) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) x)) x)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : Countable.{succ u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α m0] (μ : MeasureTheory.Measure.{u1} α m0) (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (x : α) => Set.indicator.{u1, 0} α ENNReal instENNRealZero s (fun (x : α) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) x)) x)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.tsum_indicator_apply_singleton MeasureTheory.Measure.tsum_indicator_apply_singletonₓ'. -/
 /-- Given that `α` is a countable, measurable space with all singleton sets measurable,
 write the measure of a set `s` as the sum of the measure of `{x}` for all `x ∈ s`. -/
 theorem tsum_indicator_apply_singleton [Countable α] [MeasurableSingletonClass α] (μ : Measure α)
@@ -2175,16 +3269,25 @@ omit m0
 
 end Sum
 
+#print MeasureTheory.Measure.restrict_unionᵢ_ae /-
 theorem restrict_unionᵢ_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
   ext fun t ht => by simp only [sum_apply _ ht, restrict_Union_apply_ae hd hm ht]
 #align measure_theory.measure.restrict_Union_ae MeasureTheory.Measure.restrict_unionᵢ_ae
+-/
 
+/- warning: measure_theory.measure.restrict_Union -> MeasureTheory.Measure.restrict_unionᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s)) -> (forall (i : ι), MeasurableSet.{u1} α m0 (s i)) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i))) (MeasureTheory.Measure.sum.{u1, u2} α ι m0 (fun (i : ι) => MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_unionᵢₓ'. -/
 theorem restrict_unionᵢ [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
   restrict_unionᵢ_ae hd.AEDisjoint fun i => (hm i).NullMeasurableSet
 #align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_unionᵢ
 
+#print MeasureTheory.Measure.restrict_unionᵢ_le /-
 theorem restrict_unionᵢ_le [Countable ι] {s : ι → Set α} :
     μ.restrict (⋃ i, s i) ≤ sum fun i => μ.restrict (s i) :=
   by
@@ -2192,16 +3295,25 @@ theorem restrict_unionᵢ_le [Countable ι] {s : ι → Set α} :
   suffices μ (⋃ i, t ∩ s i) ≤ ∑' i, μ (t ∩ s i) by simpa [ht, inter_Union]
   apply measure_Union_le
 #align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_unionᵢ_le
+-/
 
 section Count
 
 variable [MeasurableSpace α]
 
+#print MeasureTheory.Measure.count /-
 /-- Counting measure on any measurable space. -/
 def count : Measure α :=
   sum dirac
 #align measure_theory.measure.count MeasureTheory.Measure.count
+-/
 
+/- warning: measure_theory.measure.le_count_apply -> MeasureTheory.Measure.le_count_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (i : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (i : Set.Elem.{u1} α s) => OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_applyₓ'. -/
 theorem le_count_apply : (∑' i : s, 1 : ℝ≥0∞) ≤ count s :=
   calc
     (∑' i : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i := tsum_subtype s 1
@@ -2210,14 +3322,27 @@ theorem le_count_apply : (∑' i : s, 1 : ℝ≥0∞) ≤ count s :=
     
 #align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_apply
 
+/- warning: measure_theory.measure.count_apply -> MeasureTheory.Measure.count_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (i : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (i : Set.Elem.{u1} α s) => OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply MeasureTheory.Measure.count_applyₓ'. -/
 theorem count_apply (hs : MeasurableSet s) : count s = ∑' i : s, 1 := by
   simp only [count, sum_apply, hs, dirac_apply', ← tsum_subtype s 1, Pi.one_apply]
 #align measure_theory.measure.count_apply MeasureTheory.Measure.count_apply
 
+/- warning: measure_theory.measure.count_empty -> MeasureTheory.Measure.count_empty is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α], Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_empty MeasureTheory.Measure.count_emptyₓ'. -/
 @[simp]
 theorem count_empty : count (∅ : Set α) = 0 := by rw [count_apply MeasurableSet.empty, tsum_empty]
 #align measure_theory.measure.count_empty MeasureTheory.Measure.count_empty
 
+#print MeasureTheory.Measure.count_apply_finset' /-
 @[simp]
 theorem count_apply_finset' {s : Finset α} (s_mble : MeasurableSet (s : Set α)) :
     count (↑s : Set α) = s.card :=
@@ -2227,23 +3352,36 @@ theorem count_apply_finset' {s : Finset α} (s_mble : MeasurableSet (s : Set α)
     _ = s.card := by simp
     
 #align measure_theory.measure.count_apply_finset' MeasureTheory.Measure.count_apply_finset'
+-/
 
+#print MeasureTheory.Measure.count_apply_finset /-
 @[simp]
 theorem count_apply_finset [MeasurableSingletonClass α] (s : Finset α) :
     count (↑s : Set α) = s.card :=
   count_apply_finset' s.MeasurableSet
 #align measure_theory.measure.count_apply_finset MeasureTheory.Measure.count_apply_finset
+-/
 
+#print MeasureTheory.Measure.count_apply_finite' /-
 theorem count_apply_finite' {s : Set α} (s_fin : s.Finite) (s_mble : MeasurableSet s) :
     count s = s_fin.toFinset.card := by
   simp [←
     @count_apply_finset' _ _ s_fin.to_finset (by simpa only [finite.coe_to_finset] using s_mble)]
 #align measure_theory.measure.count_apply_finite' MeasureTheory.Measure.count_apply_finite'
+-/
 
+#print MeasureTheory.Measure.count_apply_finite /-
 theorem count_apply_finite [MeasurableSingletonClass α] (s : Set α) (hs : s.Finite) :
     count s = hs.toFinset.card := by rw [← count_apply_finset, finite.coe_to_finset]
 #align measure_theory.measure.count_apply_finite MeasureTheory.Measure.count_apply_finite
+-/
 
+/- warning: measure_theory.measure.count_apply_infinite -> MeasureTheory.Measure.count_apply_infinite is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (Set.Infinite.{u1} α s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (Set.Infinite.{u1} α s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_infinite MeasureTheory.Measure.count_apply_infiniteₓ'. -/
 /-- `count` measure evaluates to infinity at infinite sets. -/
 theorem count_apply_infinite (hs : s.Infinite) : count s = ∞ :=
   by
@@ -2257,6 +3395,12 @@ theorem count_apply_infinite (hs : s.Infinite) : count s = ∞ :=
     
 #align measure_theory.measure.count_apply_infinite MeasureTheory.Measure.count_apply_infinite
 
+/- warning: measure_theory.measure.count_apply_eq_top' -> MeasureTheory.Measure.count_apply_eq_top' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Infinite.{u1} α s))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Set.Infinite.{u1} α s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_eq_top' MeasureTheory.Measure.count_apply_eq_top'ₓ'. -/
 @[simp]
 theorem count_apply_eq_top' (s_mble : MeasurableSet s) : count s = ∞ ↔ s.Infinite :=
   by
@@ -2266,6 +3410,12 @@ theorem count_apply_eq_top' (s_mble : MeasurableSet s) : count s = ∞ ↔ s.Inf
     simp [hs, count_apply_infinite]
 #align measure_theory.measure.count_apply_eq_top' MeasureTheory.Measure.count_apply_eq_top'
 
+/- warning: measure_theory.measure.count_apply_eq_top -> MeasureTheory.Measure.count_apply_eq_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Infinite.{u1} α s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Set.Infinite.{u1} α s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_eq_top MeasureTheory.Measure.count_apply_eq_topₓ'. -/
 @[simp]
 theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.Infinite :=
   by
@@ -2275,6 +3425,12 @@ theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.I
     simp [hs, count_apply_infinite]
 #align measure_theory.measure.count_apply_eq_top MeasureTheory.Measure.count_apply_eq_top
 
+/- warning: measure_theory.measure.count_apply_lt_top' -> MeasureTheory.Measure.count_apply_lt_top' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Finite.{u1} α s))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Set.Finite.{u1} α s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_lt_top' MeasureTheory.Measure.count_apply_lt_top'ₓ'. -/
 @[simp]
 theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Finite :=
   calc
@@ -2284,6 +3440,12 @@ theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Fin
     
 #align measure_theory.measure.count_apply_lt_top' MeasureTheory.Measure.count_apply_lt_top'
 
+/- warning: measure_theory.measure.count_apply_lt_top -> MeasureTheory.Measure.count_apply_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Set.Finite.{u1} α s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Set.Finite.{u1} α s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_apply_lt_top MeasureTheory.Measure.count_apply_lt_topₓ'. -/
 @[simp]
 theorem count_apply_lt_top [MeasurableSingletonClass α] : count s < ∞ ↔ s.Finite :=
   calc
@@ -2293,6 +3455,12 @@ theorem count_apply_lt_top [MeasurableSingletonClass α] : count s < ∞ ↔ s.F
     
 #align measure_theory.measure.count_apply_lt_top MeasureTheory.Measure.count_apply_lt_top
 
+/- warning: measure_theory.measure.empty_of_count_eq_zero' -> MeasureTheory.Measure.empty_of_count_eq_zero' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.empty_of_count_eq_zero' MeasureTheory.Measure.empty_of_count_eq_zero'ₓ'. -/
 theorem empty_of_count_eq_zero' (s_mble : MeasurableSet s) (hsc : count s = 0) : s = ∅ :=
   by
   have hs : s.finite := by
@@ -2301,6 +3469,12 @@ theorem empty_of_count_eq_zero' (s_mble : MeasurableSet s) (hsc : count s = 0) :
   simpa [count_apply_finite' hs s_mble] using hsc
 #align measure_theory.measure.empty_of_count_eq_zero' MeasureTheory.Measure.empty_of_count_eq_zero'
 
+/- warning: measure_theory.measure.empty_of_count_eq_zero -> MeasureTheory.Measure.empty_of_count_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.empty_of_count_eq_zero MeasureTheory.Measure.empty_of_count_eq_zeroₓ'. -/
 theorem empty_of_count_eq_zero [MeasurableSingletonClass α] (hsc : count s = 0) : s = ∅ :=
   by
   have hs : s.finite := by
@@ -2309,40 +3483,69 @@ theorem empty_of_count_eq_zero [MeasurableSingletonClass α] (hsc : count s = 0)
   simpa [count_apply_finite _ hs] using hsc
 #align measure_theory.measure.empty_of_count_eq_zero MeasureTheory.Measure.empty_of_count_eq_zero
 
+/- warning: measure_theory.measure.count_eq_zero_iff' -> MeasureTheory.Measure.count_eq_zero_iff' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (MeasurableSet.{u1} α _inst_3 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_eq_zero_iff' MeasureTheory.Measure.count_eq_zero_iff'ₓ'. -/
 @[simp]
 theorem count_eq_zero_iff' (s_mble : MeasurableSet s) : count s = 0 ↔ s = ∅ :=
   ⟨empty_of_count_eq_zero' s_mble, fun h => h.symm ▸ count_empty⟩
 #align measure_theory.measure.count_eq_zero_iff' MeasureTheory.Measure.count_eq_zero_iff'
 
+/- warning: measure_theory.measure.count_eq_zero_iff -> MeasureTheory.Measure.count_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{succ u1} (Set.{u1} α) s (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_eq_zero_iff MeasureTheory.Measure.count_eq_zero_iffₓ'. -/
 @[simp]
 theorem count_eq_zero_iff [MeasurableSingletonClass α] : count s = 0 ↔ s = ∅ :=
   ⟨empty_of_count_eq_zero, fun h => h.symm ▸ count_empty⟩
 #align measure_theory.measure.count_eq_zero_iff MeasureTheory.Measure.count_eq_zero_iff
 
+/- warning: measure_theory.measure.count_ne_zero' -> MeasureTheory.Measure.count_ne_zero' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (Set.Nonempty.{u1} α s) -> (MeasurableSet.{u1} α _inst_3 s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α], (Set.Nonempty.{u1} α s) -> (MeasurableSet.{u1} α _inst_3 s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_ne_zero' MeasureTheory.Measure.count_ne_zero'ₓ'. -/
 theorem count_ne_zero' (hs' : s.Nonempty) (s_mble : MeasurableSet s) : count s ≠ 0 :=
   by
   rw [Ne.def, count_eq_zero_iff' s_mble]
   exact hs'.ne_empty
 #align measure_theory.measure.count_ne_zero' MeasureTheory.Measure.count_ne_zero'
 
+/- warning: measure_theory.measure.count_ne_zero -> MeasureTheory.Measure.count_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], (Set.Nonempty.{u1} α s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3], (Set.Nonempty.{u1} α s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 (MeasureTheory.Measure.count.{u1} α _inst_3)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_ne_zero MeasureTheory.Measure.count_ne_zeroₓ'. -/
 theorem count_ne_zero [MeasurableSingletonClass α] (hs' : s.Nonempty) : count s ≠ 0 :=
   by
   rw [Ne.def, count_eq_zero_iff]
   exact hs'.ne_empty
 #align measure_theory.measure.count_ne_zero MeasureTheory.Measure.count_ne_zero
 
+#print MeasureTheory.Measure.count_singleton' /-
 @[simp]
 theorem count_singleton' {a : α} (ha : MeasurableSet ({a} : Set α)) : count ({a} : Set α) = 1 :=
   by
   rw [count_apply_finite' (Set.finite_singleton a) ha, Set.Finite.toFinset]
   simp
 #align measure_theory.measure.count_singleton' MeasureTheory.Measure.count_singleton'
+-/
 
+#print MeasureTheory.Measure.count_singleton /-
 @[simp]
 theorem count_singleton [MeasurableSingletonClass α] (a : α) : count ({a} : Set α) = 1 :=
   count_singleton' (measurableSet_singleton a)
 #align measure_theory.measure.count_singleton MeasureTheory.Measure.count_singleton
+-/
 
+#print MeasureTheory.Measure.count_injective_image' /-
 theorem count_injective_image' {f : β → α} (hf : Function.Injective f) {s : Set β}
     (s_mble : MeasurableSet s) (fs_mble : MeasurableSet (f '' s)) : count (f '' s) = count s :=
   by
@@ -2355,7 +3558,14 @@ theorem count_injective_image' {f : β → α} (hf : Function.Injective f) {s :
   rw [← finite_image_iff <| hf.inj_on _] at hs
   rw [count_apply_infinite hs]
 #align measure_theory.measure.count_injective_image' MeasureTheory.Measure.count_injective_image'
+-/
 
+/- warning: measure_theory.measure.count_injective_image -> MeasureTheory.Measure.count_injective_image is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3] [_inst_5 : MeasurableSingletonClass.{u2} β _inst_1] {f : β -> α}, (Function.Injective.{succ u2, succ u1} β α f) -> (forall (s : Set.{u2} β), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) (MeasureTheory.Measure.count.{u1} α _inst_3) (Set.image.{u2, u1} β α f s)) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) (MeasureTheory.Measure.count.{u2} β _inst_1) s))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] [_inst_3 : MeasurableSpace.{u2} α] [_inst_4 : MeasurableSingletonClass.{u2} α _inst_3] [_inst_5 : MeasurableSingletonClass.{u1} β _inst_1] {f : β -> α}, (Function.Injective.{succ u1, succ u2} β α f) -> (forall (s : Set.{u1} β), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_3 (MeasureTheory.Measure.count.{u2} α _inst_3)) (Set.image.{u1, u2} β α f s)) (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 (MeasureTheory.Measure.count.{u1} β _inst_1)) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.count_injective_image MeasureTheory.Measure.count_injective_imageₓ'. -/
 theorem count_injective_image [MeasurableSingletonClass α] [MeasurableSingletonClass β] {f : β → α}
     (hf : Function.Injective f) (s : Set β) : count (f '' s) = count s :=
   by
@@ -2371,31 +3581,43 @@ end Count
 /-! ### Absolute continuity -/
 
 
+#print MeasureTheory.Measure.AbsolutelyContinuous /-
 /-- We say that `μ` is absolutely continuous with respect to `ν`, or that `μ` is dominated by `ν`,
   if `ν(A) = 0` implies that `μ(A) = 0`. -/
 def AbsolutelyContinuous {m0 : MeasurableSpace α} (μ ν : Measure α) : Prop :=
   ∀ ⦃s : Set α⦄, ν s = 0 → μ s = 0
 #align measure_theory.measure.absolutely_continuous MeasureTheory.Measure.AbsolutelyContinuous
+-/
 
 -- mathport name: measure.absolutely_continuous
 scoped[MeasureTheory] infixl:50 " ≪ " => MeasureTheory.Measure.AbsolutelyContinuous
 
+#print MeasureTheory.Measure.absolutelyContinuous_of_le /-
 theorem absolutelyContinuous_of_le (h : μ ≤ ν) : μ ≪ ν := fun s hs =>
   nonpos_iff_eq_zero.1 <| hs ▸ le_iff'.1 h s
 #align measure_theory.measure.absolutely_continuous_of_le MeasureTheory.Measure.absolutelyContinuous_of_le
+-/
 
 alias absolutely_continuous_of_le ← _root_.has_le.le.absolutely_continuous
 #align has_le.le.absolutely_continuous LE.le.absolutelyContinuous
 
+#print MeasureTheory.Measure.absolutelyContinuous_of_eq /-
 theorem absolutelyContinuous_of_eq (h : μ = ν) : μ ≪ ν :=
   h.le.AbsolutelyContinuous
 #align measure_theory.measure.absolutely_continuous_of_eq MeasureTheory.Measure.absolutelyContinuous_of_eq
+-/
 
 alias absolutely_continuous_of_eq ← _root_.eq.absolutely_continuous
 #align eq.absolutely_continuous Eq.absolutelyContinuous
 
 namespace AbsolutelyContinuous
 
+/- warning: measure_theory.measure.absolutely_continuous.mk -> MeasureTheory.Measure.AbsolutelyContinuous.mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (forall {{s : Set.{u1} α}}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (forall {{s : Set.{u1} α}}, (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.mk MeasureTheory.Measure.AbsolutelyContinuous.mkₓ'. -/
 theorem mk (h : ∀ ⦃s : Set α⦄, MeasurableSet s → ν s = 0 → μ s = 0) : μ ≪ ν :=
   by
   intro s hs
@@ -2403,51 +3625,105 @@ theorem mk (h : ∀ ⦃s : Set α⦄, MeasurableSet s → ν s = 0 → μ s = 0)
   exact measure_mono_null h1t (h h2t h3t)
 #align measure_theory.measure.absolutely_continuous.mk MeasureTheory.Measure.AbsolutelyContinuous.mk
 
+#print MeasureTheory.Measure.AbsolutelyContinuous.refl /-
 @[refl]
 protected theorem refl {m0 : MeasurableSpace α} (μ : Measure α) : μ ≪ μ :=
   rfl.AbsolutelyContinuous
 #align measure_theory.measure.absolutely_continuous.refl MeasureTheory.Measure.AbsolutelyContinuous.refl
+-/
 
+#print MeasureTheory.Measure.AbsolutelyContinuous.rfl /-
 protected theorem rfl : μ ≪ μ := fun s hs => hs
 #align measure_theory.measure.absolutely_continuous.rfl MeasureTheory.Measure.AbsolutelyContinuous.rfl
+-/
 
 instance [MeasurableSpace α] : IsRefl (Measure α) (· ≪ ·) :=
   ⟨fun μ => AbsolutelyContinuous.rfl⟩
 
+#print MeasureTheory.Measure.AbsolutelyContinuous.trans /-
 @[trans]
 protected theorem trans (h1 : μ₁ ≪ μ₂) (h2 : μ₂ ≪ μ₃) : μ₁ ≪ μ₃ := fun s hs => h1 <| h2 hs
 #align measure_theory.measure.absolutely_continuous.trans MeasureTheory.Measure.AbsolutelyContinuous.trans
+-/
 
+/- warning: measure_theory.measure.absolutely_continuous.map -> MeasureTheory.Measure.AbsolutelyContinuous.map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (forall {f : α -> β}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f ν)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u2} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m0 μ ν) -> (forall {f : α -> β}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ) (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f ν)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.map MeasureTheory.Measure.AbsolutelyContinuous.mapₓ'. -/
 @[mono]
 protected theorem map (h : μ ≪ ν) {f : α → β} (hf : Measurable f) : μ.map f ≪ ν.map f :=
   AbsolutelyContinuous.mk fun s hs => by simpa [hf, hs] using @h _
 #align measure_theory.measure.absolutely_continuous.map MeasureTheory.Measure.AbsolutelyContinuous.map
 
+/- warning: measure_theory.measure.absolutely_continuous.smul -> MeasureTheory.Measure.AbsolutelyContinuous.smul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {R : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Monoid.{u2} R] [_inst_4 : DistribMulAction.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))] [_inst_5 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4)))], (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (forall (c : R), MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4))) _inst_5 m0) c μ) ν)
+but is expected to have type
+  forall {α : Type.{u1}} {R : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Monoid.{u2} R] [_inst_4 : DistribMulAction.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))] [_inst_5 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4)))], (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (forall (c : R), MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 (HSMul.hSMul.{u2, u1, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4))) _inst_5 m0)) c μ) ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.smul MeasureTheory.Measure.AbsolutelyContinuous.smulₓ'. -/
 protected theorem smul [Monoid R] [DistribMulAction R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (h : μ ≪ ν)
     (c : R) : c • μ ≪ ν := fun s hνs => by simp only [h hνs, smul_eq_mul, smul_apply, smul_zero]
 #align measure_theory.measure.absolutely_continuous.smul MeasureTheory.Measure.AbsolutelyContinuous.smul
 
 end AbsolutelyContinuous
 
+/- warning: measure_theory.measure.absolutely_continuous_of_le_smul -> MeasureTheory.Measure.absolutelyContinuous_of_le_smul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {μ' : MeasureTheory.Measure.{u1} α m0} {c : ENNReal}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ' (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ' μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {μ' : MeasureTheory.Measure.{u1} α m0} {c : ENNReal}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ' (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ' μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous_of_le_smul MeasureTheory.Measure.absolutelyContinuous_of_le_smulₓ'. -/
 theorem absolutelyContinuous_of_le_smul {μ' : Measure α} {c : ℝ≥0∞} (hμ'_le : μ' ≤ c • μ) :
     μ' ≪ μ :=
   (Measure.absolutelyContinuous_of_le hμ'_le).trans (Measure.AbsolutelyContinuous.rfl.smul c)
 #align measure_theory.measure.absolutely_continuous_of_le_smul MeasureTheory.Measure.absolutelyContinuous_of_le_smul
 
+/- warning: measure_theory.measure.ae_le_iff_absolutely_continuous -> MeasureTheory.Measure.ae_le_iff_absolutelyContinuous is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, Iff (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuousₓ'. -/
 theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
   ⟨fun h s => by
     rw [measure_zero_iff_ae_nmem, measure_zero_iff_ae_nmem]
     exact fun hs => h hs, fun h s hs => h hs⟩
 #align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuous
 
+/- warning: has_le.le.absolutely_continuous_of_ae -> LE.le.absolutelyContinuous_of_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν)) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν)
+Case conversion may be inaccurate. Consider using '#align has_le.le.absolutely_continuous_of_ae LE.le.absolutelyContinuous_of_aeₓ'. -/
+/- warning: measure_theory.measure.absolutely_continuous.ae_le -> MeasureTheory.Measure.AbsolutelyContinuous.ae_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.ae_le MeasureTheory.Measure.AbsolutelyContinuous.ae_leₓ'. -/
 alias ae_le_iff_absolutely_continuous ↔
   _root_.has_le.le.absolutely_continuous_of_ae absolutely_continuous.ae_le
 #align has_le.le.absolutely_continuous_of_ae LE.le.absolutelyContinuous_of_ae
 #align measure_theory.measure.absolutely_continuous.ae_le MeasureTheory.Measure.AbsolutelyContinuous.ae_le
 
+/- warning: measure_theory.measure.ae_mono' -> MeasureTheory.Measure.ae_mono' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.ae_mono' MeasureTheory.Measure.ae_mono'ₓ'. -/
 alias absolutely_continuous.ae_le ← ae_mono'
 #align measure_theory.measure.ae_mono' MeasureTheory.Measure.ae_mono'
 
+/- warning: measure_theory.measure.absolutely_continuous.ae_eq -> MeasureTheory.Measure.AbsolutelyContinuous.ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μ ν) -> (forall {f : α -> δ} {g : α -> δ}, (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 ν) f g) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 μ) f g))
+but is expected to have type
+  forall {α : Type.{u2}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u2} α m0}, (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m0 μ ν) -> (forall {f : α -> δ} {g : α -> δ}, (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 ν) f g) -> (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 μ) f g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.absolutely_continuous.ae_eq MeasureTheory.Measure.AbsolutelyContinuous.ae_eqₓ'. -/
 theorem AbsolutelyContinuous.ae_eq (h : μ ≪ ν) {f g : α → δ} (h' : f =ᵐ[ν] g) : f =ᵐ[μ] g :=
   h.ae_le h'
 #align measure_theory.measure.absolutely_continuous.ae_eq MeasureTheory.Measure.AbsolutelyContinuous.ae_eq
@@ -2455,6 +3731,7 @@ theorem AbsolutelyContinuous.ae_eq (h : μ ≪ ν) {f g : α → δ} (h' : f =
 /-! ### Quasi measure preserving maps (a.k.a. non-singular maps) -/
 
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving /-
 /-- A map `f : α → β` is said to be *quasi measure preserving* (a.k.a. non-singular) w.r.t. measures
 `μa` and `μb` if it is measurable and `μb s = 0` implies `μa (f ⁻¹' s) = 0`. -/
 @[protect_proj]
@@ -2464,36 +3741,69 @@ structure QuasiMeasurePreserving {m0 : MeasurableSpace α} (f : α → β)
   Measurable : Measurable f
   AbsolutelyContinuous : μa.map f ≪ μb
 #align measure_theory.measure.quasi_measure_preserving MeasureTheory.Measure.QuasiMeasurePreserving
+-/
 
 namespace QuasiMeasurePreserving
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.id /-
 protected theorem id {m0 : MeasurableSpace α} (μ : Measure α) : QuasiMeasurePreserving id μ μ :=
   ⟨measurable_id, map_id.AbsolutelyContinuous⟩
 #align measure_theory.measure.quasi_measure_preserving.id MeasureTheory.Measure.QuasiMeasurePreserving.id
+-/
 
 variable {μa μa' : Measure α} {μb μb' : Measure β} {μc : Measure γ} {f : α → β}
 
+/- warning: measurable.quasi_measure_preserving -> Measurable.quasiMeasurePreserving is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {f : α -> β} {m0 : MeasurableSpace.{u1} α}, (Measurable.{u1, u2} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u1} α m0), MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μ (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] {f : α -> β} {m0 : MeasurableSpace.{u2} α}, (Measurable.{u2, u1} α β m0 _inst_1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0), MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μ (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
+Case conversion may be inaccurate. Consider using '#align measurable.quasi_measure_preserving Measurable.quasiMeasurePreservingₓ'. -/
 protected theorem Measurable.quasiMeasurePreserving {m0 : MeasurableSpace α} (hf : Measurable f)
     (μ : Measure α) : QuasiMeasurePreserving f μ (μ.map f) :=
   ⟨hf, AbsolutelyContinuous.rfl⟩
 #align measurable.quasi_measure_preserving Measurable.quasiMeasurePreserving
 
+/- warning: measure_theory.measure.quasi_measure_preserving.mono_left -> MeasureTheory.Measure.QuasiMeasurePreserving.mono_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μa' : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μa' μa) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa' μb)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μa' : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m0 μa' μa) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa' μb)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.mono_left MeasureTheory.Measure.QuasiMeasurePreserving.mono_leftₓ'. -/
 theorem mono_left (h : QuasiMeasurePreserving f μa μb) (ha : μa' ≪ μa) :
     QuasiMeasurePreserving f μa' μb :=
   ⟨h.1, (ha.map h.1).trans h.2⟩
 #align measure_theory.measure.quasi_measure_preserving.mono_left MeasureTheory.Measure.QuasiMeasurePreserving.mono_left
 
+/- warning: measure_theory.measure.quasi_measure_preserving.mono_right -> MeasureTheory.Measure.QuasiMeasurePreserving.mono_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {μb' : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u2} β _inst_1 μb μb') -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb')
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {μb' : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} β _inst_1 μb μb') -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb')
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.mono_right MeasureTheory.Measure.QuasiMeasurePreserving.mono_rightₓ'. -/
 theorem mono_right (h : QuasiMeasurePreserving f μa μb) (ha : μb ≪ μb') :
     QuasiMeasurePreserving f μa μb' :=
   ⟨h.1, h.2.trans ha⟩
 #align measure_theory.measure.quasi_measure_preserving.mono_right MeasureTheory.Measure.QuasiMeasurePreserving.mono_right
 
+/- warning: measure_theory.measure.quasi_measure_preserving.mono -> MeasureTheory.Measure.QuasiMeasurePreserving.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μa' : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {μb' : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m0 μa' μa) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u2} β _inst_1 μb μb') -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa' μb')
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μa' : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {μb' : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m0 μa' μa) -> (MeasureTheory.Measure.AbsolutelyContinuous.{u1} β _inst_1 μb μb') -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa' μb')
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.mono MeasureTheory.Measure.QuasiMeasurePreserving.monoₓ'. -/
 @[mono]
 theorem mono (ha : μa' ≪ μa) (hb : μb ≪ μb') (h : QuasiMeasurePreserving f μa μb) :
     QuasiMeasurePreserving f μa' μb' :=
   (h.mono_left ha).mono_right hb
 #align measure_theory.measure.quasi_measure_preserving.mono MeasureTheory.Measure.QuasiMeasurePreserving.mono
 
+/- warning: measure_theory.measure.quasi_measure_preserving.comp -> MeasureTheory.Measure.QuasiMeasurePreserving.comp is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] [_inst_2 : MeasurableSpace.{u3} γ] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {μc : MeasureTheory.Measure.{u3} γ _inst_2} {g : β -> γ} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u3} β γ _inst_2 _inst_1 g μb μc) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u3} α γ _inst_2 m0 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) μa μc)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u3} β] [_inst_2 : MeasurableSpace.{u2} γ] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u3} β _inst_1} {μc : MeasureTheory.Measure.{u2} γ _inst_2} {g : β -> γ} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u3, u2} β γ _inst_2 _inst_1 g μb μc) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u3} α β _inst_1 m0 f μa μb) -> (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α γ _inst_2 m0 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) μa μc)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.comp MeasureTheory.Measure.QuasiMeasurePreserving.compₓ'. -/
 protected theorem comp {g : β → γ} {f : α → β} (hg : QuasiMeasurePreserving g μb μc)
     (hf : QuasiMeasurePreserving f μa μb) : QuasiMeasurePreserving (g ∘ f) μa μc :=
   ⟨hg.Measurable.comp hf.Measurable, by
@@ -2501,50 +3811,93 @@ protected theorem comp {g : β → γ} {f : α → β} (hg : QuasiMeasurePreserv
     exact (hf.2.map hg.1).trans hg.2⟩
 #align measure_theory.measure.quasi_measure_preserving.comp MeasureTheory.Measure.QuasiMeasurePreserving.comp
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.iterate /-
 protected theorem iterate {f : α → α} (hf : QuasiMeasurePreserving f μa μa) :
     ∀ n, QuasiMeasurePreserving (f^[n]) μa μa
   | 0 => QuasiMeasurePreserving.id μa
   | n + 1 => (iterate n).comp hf
 #align measure_theory.measure.quasi_measure_preserving.iterate MeasureTheory.Measure.QuasiMeasurePreserving.iterate
+-/
 
-protected theorem aEMeasurable (hf : QuasiMeasurePreserving f μa μb) : AEMeasurable f μa :=
+/- warning: measure_theory.measure.quasi_measure_preserving.ae_measurable -> MeasureTheory.Measure.QuasiMeasurePreserving.aemeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (AEMeasurable.{u1, u2} α β _inst_1 m0 f μa)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (AEMeasurable.{u2, u1} α β _inst_1 m0 f μa)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae_measurable MeasureTheory.Measure.QuasiMeasurePreserving.aemeasurableₓ'. -/
+protected theorem aemeasurable (hf : QuasiMeasurePreserving f μa μb) : AEMeasurable f μa :=
   hf.1.AEMeasurable
-#align measure_theory.measure.quasi_measure_preserving.ae_measurable MeasureTheory.Measure.QuasiMeasurePreserving.aEMeasurable
-
+#align measure_theory.measure.quasi_measure_preserving.ae_measurable MeasureTheory.Measure.QuasiMeasurePreserving.aemeasurable
+
+/- warning: measure_theory.measure.quasi_measure_preserving.ae_map_le -> MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μa)) (MeasureTheory.Measure.ae.{u2} β _inst_1 μb))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μa)) (MeasureTheory.Measure.ae.{u1} β _inst_1 μb))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae_map_le MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_leₓ'. -/
 theorem ae_map_le (h : QuasiMeasurePreserving f μa μb) : (μa.map f).ae ≤ μb.ae :=
   h.2.ae_le
 #align measure_theory.measure.quasi_measure_preserving.ae_map_le MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_le
 
+/- warning: measure_theory.measure.quasi_measure_preserving.tendsto_ae -> MeasureTheory.Measure.QuasiMeasurePreserving.tendsto_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (Filter.Tendsto.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α m0 μa) (MeasureTheory.Measure.ae.{u2} β _inst_1 μb))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (Filter.Tendsto.{u2, u1} α β f (MeasureTheory.Measure.ae.{u2} α m0 μa) (MeasureTheory.Measure.ae.{u1} β _inst_1 μb))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.tendsto_ae MeasureTheory.Measure.QuasiMeasurePreserving.tendsto_aeₓ'. -/
 theorem tendsto_ae (h : QuasiMeasurePreserving f μa μb) : Tendsto f μa.ae μb.ae :=
   (tendsto_ae_map h.AEMeasurable).mono_right h.ae_map_le
 #align measure_theory.measure.quasi_measure_preserving.tendsto_ae MeasureTheory.Measure.QuasiMeasurePreserving.tendsto_ae
 
+/- warning: measure_theory.measure.quasi_measure_preserving.ae -> MeasureTheory.Measure.QuasiMeasurePreserving.ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (forall {p : β -> Prop}, (Filter.Eventually.{u2} β (fun (x : β) => p x) (MeasureTheory.Measure.ae.{u2} β _inst_1 μb)) -> (Filter.Eventually.{u1} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u1} α m0 μa)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (forall {p : β -> Prop}, (Filter.Eventually.{u1} β (fun (x : β) => p x) (MeasureTheory.Measure.ae.{u1} β _inst_1 μb)) -> (Filter.Eventually.{u2} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u2} α m0 μa)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae MeasureTheory.Measure.QuasiMeasurePreserving.aeₓ'. -/
 theorem ae (h : QuasiMeasurePreserving f μa μb) {p : β → Prop} (hg : ∀ᵐ x ∂μb, p x) :
     ∀ᵐ x ∂μa, p (f x) :=
   h.tendsto_ae hg
 #align measure_theory.measure.quasi_measure_preserving.ae MeasureTheory.Measure.QuasiMeasurePreserving.ae
 
+/- warning: measure_theory.measure.quasi_measure_preserving.ae_eq -> MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {δ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (forall {g₁ : β -> δ} {g₂ : β -> δ}, (Filter.EventuallyEq.{u2, u3} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 μb) g₁ g₂) -> (Filter.EventuallyEq.{u1, u3} α δ (MeasureTheory.Measure.ae.{u1} α m0 μa) (Function.comp.{succ u1, succ u2, succ u3} α β δ g₁ f) (Function.comp.{succ u1, succ u2, succ u3} α β δ g₂ f)))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u2}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u3} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u3} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u3, u2} α β _inst_1 m0 f μa μb) -> (forall {g₁ : β -> δ} {g₂ : β -> δ}, (Filter.EventuallyEq.{u2, u1} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 μb) g₁ g₂) -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 μa) (Function.comp.{succ u3, succ u2, succ u1} α β δ g₁ f) (Function.comp.{succ u3, succ u2, succ u1} α β δ g₂ f)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.ae_eqₓ'. -/
 theorem ae_eq (h : QuasiMeasurePreserving f μa μb) {g₁ g₂ : β → δ} (hg : g₁ =ᵐ[μb] g₂) :
     g₁ ∘ f =ᵐ[μa] g₂ ∘ f :=
   h.ae hg
 #align measure_theory.measure.quasi_measure_preserving.ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq
 
+/- warning: measure_theory.measure.quasi_measure_preserving.preimage_null -> MeasureTheory.Measure.QuasiMeasurePreserving.preimage_null is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μa : MeasureTheory.Measure.{u1} α m0} {μb : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μa μb) -> (forall {s : Set.{u2} β}, (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_1) (fun (_x : MeasureTheory.Measure.{u2} β _inst_1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_1) μb s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μa (Set.preimage.{u1, u2} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μa : MeasureTheory.Measure.{u2} α m0} {μb : MeasureTheory.Measure.{u1} β _inst_1} {f : α -> β}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} α β _inst_1 m0 f μa μb) -> (forall {s : Set.{u1} β}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_1 μb) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μa) (Set.preimage.{u2, u1} α β f s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.preimage_null MeasureTheory.Measure.QuasiMeasurePreserving.preimage_nullₓ'. -/
 theorem preimage_null (h : QuasiMeasurePreserving f μa μb) {s : Set β} (hs : μb s = 0) :
     μa (f ⁻¹' s) = 0 :=
   preimage_null_of_map_null h.AEMeasurable (h.2 hs)
 #align measure_theory.measure.quasi_measure_preserving.preimage_null MeasureTheory.Measure.QuasiMeasurePreserving.preimage_null
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.preimage_mono_ae /-
 theorem preimage_mono_ae {s t : Set β} (hf : QuasiMeasurePreserving f μa μb) (h : s ≤ᵐ[μb] t) :
     f ⁻¹' s ≤ᵐ[μa] f ⁻¹' t :=
   eventually_map.mp <|
     Eventually.filter_mono (tendsto_ae_map hf.AEMeasurable) (Eventually.filter_mono hf.ae_map_le h)
 #align measure_theory.measure.quasi_measure_preserving.preimage_mono_ae MeasureTheory.Measure.QuasiMeasurePreserving.preimage_mono_ae
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.preimage_ae_eq /-
 theorem preimage_ae_eq {s t : Set β} (hf : QuasiMeasurePreserving f μa μb) (h : s =ᵐ[μb] t) :
     f ⁻¹' s =ᵐ[μa] f ⁻¹' t :=
   EventuallyLE.antisymm (hf.preimage_mono_ae h.le) (hf.preimage_mono_ae h.symm.le)
 #align measure_theory.measure.quasi_measure_preserving.preimage_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.preimage_ae_eq
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.preimage_iterate_ae_eq /-
 theorem preimage_iterate_ae_eq {s : Set α} {f : α → α} (hf : QuasiMeasurePreserving f μ μ) (k : ℕ)
     (hs : f ⁻¹' s =ᵐ[μ] s) : f^[k] ⁻¹' s =ᵐ[μ] s :=
   by
@@ -2552,7 +3905,9 @@ theorem preimage_iterate_ae_eq {s : Set α} {f : α → α} (hf : QuasiMeasurePr
   rw [iterate_succ, preimage_comp]
   exact eventually_eq.trans (hf.preimage_ae_eq ih) hs
 #align measure_theory.measure.quasi_measure_preserving.preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.preimage_iterate_ae_eq
+-/
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq /-
 theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreserving e μ μ)
     (he' : QuasiMeasurePreserving e.symm μ μ) (k : ℤ) (hs : e '' s =ᵐ[μ] s) :
     ⇑(e ^ k) '' s =ᵐ[μ] s := by
@@ -2569,7 +3924,14 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
     replace he : ⇑e^[k] ⁻¹' s =ᵐ[μ] s := he.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e k] at he
 #align measure_theory.measure.quasi_measure_preserving.image_zpow_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq
+-/
 
+/- warning: measure_theory.measure.quasi_measure_preserving.limsup_preimage_iterate_ae_eq -> MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {f : α -> α}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α m0 m0 f μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.preimage.{u1, u1} α α f s) s) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) (fun (n : Nat) => Nat.iterate.{succ u1} (Set.{u1} α) (Set.preimage.{u1, u1} α α f) n s) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) s)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {f : α -> α}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α m0 m0 f μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.preimage.{u1, u1} α α f s) s) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.limsup.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) (fun (n : Nat) => Nat.iterate.{succ u1} (Set.{u1} α) (Set.preimage.{u1, u1} α α f) n s) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.limsup_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eqₓ'. -/
 theorem limsup_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreserving f μ μ)
     (hs : f ⁻¹' s =ᵐ[μ] s) :-- Need `@` below because of diamond; see gh issue #16932
         @limsup
@@ -2583,6 +3945,12 @@ theorem limsup_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreservi
   (limsup_ae_eq_of_forall_ae_eq (fun n => (preimage f^[n]) s) this).trans (ae_eq_refl _)
 #align measure_theory.measure.quasi_measure_preserving.limsup_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq
 
+/- warning: measure_theory.measure.quasi_measure_preserving.liminf_preimage_iterate_ae_eq -> MeasureTheory.Measure.QuasiMeasurePreserving.liminf_preimage_iterate_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {f : α -> α}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α m0 m0 f μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.preimage.{u1, u1} α α f s) s) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))) (fun (n : Nat) => Nat.iterate.{succ u1} (Set.{u1} α) (Set.preimage.{u1, u1} α α f) n s) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) s)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {f : α -> α}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α m0 m0 f μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.preimage.{u1, u1} α α f s) s) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.liminf.{u1, 0} (Set.{u1} α) Nat (CompleteLattice.toConditionallyCompleteLattice.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))) (fun (n : Nat) => Nat.iterate.{succ u1} (Set.{u1} α) (Set.preimage.{u1, u1} α α f) n s) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.liminf_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.liminf_preimage_iterate_ae_eqₓ'. -/
 theorem liminf_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreserving f μ μ)
     (hs : f ⁻¹' s =ᵐ[μ] s) :-- Need `@` below because of diamond; see gh issue #16932
         @liminf
@@ -2597,6 +3965,7 @@ theorem liminf_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreservi
   simp only [← Set.preimage_iterate_eq, comp_app, preimage_compl]
 #align measure_theory.measure.quasi_measure_preserving.liminf_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.liminf_preimage_iterate_ae_eq
 
+#print MeasureTheory.Measure.QuasiMeasurePreserving.exists_preimage_eq_of_preimage_ae /-
 /-- By replacing a measurable set that is almost invariant with the `limsup` of its preimages, we
 obtain a measurable set that is almost equal and strictly invariant.
 
@@ -2609,9 +3978,16 @@ theorem exists_preimage_eq_of_preimage_ae {f : α → α} (h : QuasiMeasurePrese
       @preimage_iterate_eq α f n ▸ h.Measurable.iterate n hs,
     h.limsup_preimage_iterate_ae_eq hs', (CompleteLatticeHom.setPreimage f).apply_limsup_iterate s⟩
 #align measure_theory.measure.quasi_measure_preserving.exists_preimage_eq_of_preimage_ae MeasureTheory.Measure.QuasiMeasurePreserving.exists_preimage_eq_of_preimage_ae
+-/
 
 open Pointwise
 
+/- warning: measure_theory.measure.quasi_measure_preserving.smul_ae_eq_of_ae_eq -> MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {G : Type.{u1}} {α : Type.{u2}} [_inst_3 : Group.{u1} G] [_inst_4 : MulAction.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3))] [_inst_5 : MeasurableSpace.{u2} α] {s : Set.{u2} α} {t : Set.{u2} α} {μ : MeasureTheory.Measure.{u2} α _inst_5} (g : G), (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u2} α α _inst_5 _inst_5 (SMul.smul.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4) (Inv.inv.{u1} G (DivInvMonoid.toHasInv.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) g)) μ μ) -> (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_5 μ) s t) -> (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_5 μ) (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s) (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g t))
+but is expected to have type
+  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α} {μ : MeasureTheory.Measure.{u1} α _inst_5} (g : G), (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40100 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40102 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40100 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40102) (Inv.inv.{u2} G (InvOneClass.toInv.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3)))) g)) μ μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) s t) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_5 μ) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g t))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.smul_ae_eq_of_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eqₓ'. -/
 @[to_additive]
 theorem smul_ae_eq_of_ae_eq {G α : Type _} [Group G] [MulAction G α] [MeasurableSpace α]
     {s t : Set α} {μ : Measure α} (g : G) (h_qmp : QuasiMeasurePreserving ((· • ·) g⁻¹ : α → α) μ μ)
@@ -2626,9 +4002,15 @@ section Pointwise
 
 open Pointwise
 
+/- warning: measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one -> MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_one is a dubious translation:
+lean 3 declaration is
+  forall {G : Type.{u1}} {α : Type.{u2}} [_inst_3 : Group.{u1} G] [_inst_4 : MulAction.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3))] [_inst_5 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_5} {s : Set.{u2} α}, (forall (g : G), (Ne.{succ u1} G g (OfNat.ofNat.{u1} G 1 (OfNat.mk.{u1} G 1 (One.one.{u1} G (MulOneClass.toHasOne.{u1} G (Monoid.toMulOneClass.{u1} G (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)))))))) -> (MeasureTheory.AEDisjoint.{u2} α _inst_5 μ (SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s) s)) -> (forall (g : G), MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u2} α α _inst_5 _inst_5 (SMul.smul.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4) g) μ μ) -> (Pairwise.{u1} G (Function.onFun.{succ u1, succ u2, 1} G (Set.{u2} α) Prop (MeasureTheory.AEDisjoint.{u2} α _inst_5 μ) (fun (g : G) => SMul.smul.{u1, u2} G (Set.{u2} α) (Set.smulSet.{u1, u2} G α (MulAction.toHasSmul.{u1, u2} G α (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_3)) _inst_4)) g s)))
+but is expected to have type
+  forall {G : Type.{u2}} {α : Type.{u1}} [_inst_3 : Group.{u2} G] [_inst_4 : MulAction.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3))] [_inst_5 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_5} {s : Set.{u1} α}, (forall (g : G), (Ne.{succ u2} G g (OfNat.ofNat.{u2} G 1 (One.toOfNat1.{u2} G (InvOneClass.toOne.{u2} G (DivInvOneMonoid.toInvOneClass.{u2} G (DivisionMonoid.toDivInvOneMonoid.{u2} G (Group.toDivisionMonoid.{u2} G _inst_3))))))) -> (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ (HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s) s)) -> (forall (g : G), MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u1} α α _inst_5 _inst_5 ((fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40257 : G) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40259 : α) => HSMul.hSMul.{u2, u1, u1} G α α (instHSMul.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4)) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40257 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.40259) g) μ μ) -> (Pairwise.{u2} G (Function.onFun.{succ u2, succ u1, 1} G (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α _inst_5 μ) (fun (g : G) => HSMul.hSMul.{u2, u1, u1} G (Set.{u1} α) (Set.{u1} α) (instHSMul.{u2, u1} G (Set.{u1} α) (Set.smulSet.{u2, u1} G α (MulAction.toSMul.{u2, u1} G α (DivInvMonoid.toMonoid.{u2} G (Group.toDivInvMonoid.{u2} G _inst_3)) _inst_4))) g s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_oneₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 @[to_additive]
-theorem pairwise_aEDisjoint_of_aEDisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
+theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
     [MeasurableSpace α] {μ : Measure α} {s : Set α}
     (h_ae_disjoint : ∀ (g) (_ : g ≠ (1 : G)), AEDisjoint μ (g • s) s)
     (h_qmp : ∀ g : G, QuasiMeasurePreserving ((· • ·) g : α → α) μ μ) :
@@ -2644,14 +4026,15 @@ theorem pairwise_aEDisjoint_of_aEDisjoint_forall_ne_one {G α : Type _} [Group G
       smul_smul, inv_mul_self, one_smul]
   change μ (g₁ • s ∩ g₂ • s) = 0
   exact this ▸ (h_qmp g₂⁻¹).preimage_null (h_ae_disjoint g hg)
-#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one MeasureTheory.Measure.pairwise_aEDisjoint_of_aEDisjoint_forall_ne_one
-#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_zero MeasureTheory.Measure.pairwise_aEDisjoint_of_aEDisjoint_forall_ne_zero
+#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_one
+#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_zero MeasureTheory.Measure.pairwise_aedisjoint_of_aedisjoint_forall_ne_zero
 
 end Pointwise
 
 /-! ### The `cofinite` filter -/
 
 
+#print MeasureTheory.Measure.cofinite /-
 /-- The filter of sets `s` such that `sᶜ` has finite measure. -/
 def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α
     where
@@ -2665,14 +4048,33 @@ def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α
       
   sets_of_superset s t hs hst := lt_of_le_of_lt (measure_mono <| compl_subset_compl.2 hst) hs
 #align measure_theory.measure.cofinite MeasureTheory.Measure.cofinite
+-/
 
+/- warning: measure_theory.measure.mem_cofinite -> MeasureTheory.Measure.mem_cofinite is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.mem_cofinite MeasureTheory.Measure.mem_cofiniteₓ'. -/
 theorem mem_cofinite : s ∈ μ.cofinite ↔ μ (sᶜ) < ∞ :=
   Iff.rfl
 #align measure_theory.measure.mem_cofinite MeasureTheory.Measure.mem_cofinite
 
+/- warning: measure_theory.measure.compl_mem_cofinite -> MeasureTheory.Measure.compl_mem_cofinite is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.compl_mem_cofinite MeasureTheory.Measure.compl_mem_cofiniteₓ'. -/
 theorem compl_mem_cofinite : sᶜ ∈ μ.cofinite ↔ μ s < ∞ := by rw [mem_cofinite, compl_compl]
 #align measure_theory.measure.compl_mem_cofinite MeasureTheory.Measure.compl_mem_cofinite
 
+/- warning: measure_theory.measure.eventually_cofinite -> MeasureTheory.Measure.eventually_cofinite is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop}, Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (setOf.{u1} α (fun (x : α) => Not (p x)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop}, Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.cofinite.{u1} α m0 μ)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (setOf.{u1} α (fun (x : α) => Not (p x)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eventually_cofinite MeasureTheory.Measure.eventually_cofiniteₓ'. -/
 theorem eventually_cofinite {p : α → Prop} : (∀ᶠ x in μ.cofinite, p x) ↔ μ { x | ¬p x } < ∞ :=
   Iff.rfl
 #align measure_theory.measure.eventually_cofinite MeasureTheory.Measure.eventually_cofinite
@@ -2683,6 +4085,7 @@ open Measure
 
 open MeasureTheory
 
+#print MeasureTheory.NullMeasurableSet.preimage /-
 /-- The preimage of a null measurable set under a (quasi) measure preserving map is a null
 measurable set. -/
 theorem NullMeasurableSet.preimage {ν : Measure β} {f : α → β} {t : Set β}
@@ -2691,61 +4094,118 @@ theorem NullMeasurableSet.preimage {ν : Measure β} {f : α → β} {t : Set β
   ⟨f ⁻¹' toMeasurable ν t, hf.Measurable (measurableSet_toMeasurable _ _),
     hf.ae_eq ht.toMeasurable_ae_eq.symm⟩
 #align measure_theory.null_measurable_set.preimage MeasureTheory.NullMeasurableSet.preimage
+-/
 
+#print MeasureTheory.NullMeasurableSet.mono_ac /-
 theorem NullMeasurableSet.mono_ac (h : NullMeasurableSet s μ) (hle : ν ≪ μ) :
     NullMeasurableSet s ν :=
   h.Preimage <| (QuasiMeasurePreserving.id μ).mono_left hle
 #align measure_theory.null_measurable_set.mono_ac MeasureTheory.NullMeasurableSet.mono_ac
+-/
 
+#print MeasureTheory.NullMeasurableSet.mono /-
 theorem NullMeasurableSet.mono (h : NullMeasurableSet s μ) (hle : ν ≤ μ) : NullMeasurableSet s ν :=
   h.mono_ac hle.AbsolutelyContinuous
 #align measure_theory.null_measurable_set.mono MeasureTheory.NullMeasurableSet.mono
+-/
 
-theorem AEDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AEDisjoint ν s t)
+#print MeasureTheory.AeDisjoint.preimage /-
+theorem AeDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AEDisjoint ν s t)
     (hf : QuasiMeasurePreserving f μ ν) : AEDisjoint μ (f ⁻¹' s) (f ⁻¹' t) :=
   hf.preimage_null ht
-#align measure_theory.ae_disjoint.preimage MeasureTheory.AEDisjoint.preimage
+#align measure_theory.ae_disjoint.preimage MeasureTheory.AeDisjoint.preimage
+-/
 
+/- warning: measure_theory.ae_eq_bot -> MeasureTheory.ae_eq_bot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toHasBot.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α)))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toBot.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α)))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_bot MeasureTheory.ae_eq_botₓ'. -/
 @[simp]
 theorem ae_eq_bot : μ.ae = ⊥ ↔ μ = 0 := by
   rw [← empty_mem_iff_bot, mem_ae_iff, compl_empty, measure_univ_eq_zero]
 #align measure_theory.ae_eq_bot MeasureTheory.ae_eq_bot
 
+#print MeasureTheory.ae_neBot /-
 @[simp]
 theorem ae_neBot : μ.ae.ne_bot ↔ μ ≠ 0 :=
   neBot_iff.trans (not_congr ae_eq_bot)
 #align measure_theory.ae_ne_bot MeasureTheory.ae_neBot
+-/
 
+/- warning: measure_theory.ae_zero -> MeasureTheory.ae_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toHasBot.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toBot.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_zero MeasureTheory.ae_zeroₓ'. -/
 @[simp]
 theorem ae_zero {m0 : MeasurableSpace α} : (0 : Measure α).ae = ⊥ :=
   ae_eq_bot.2 rfl
 #align measure_theory.ae_zero MeasureTheory.ae_zero
 
+/- warning: measure_theory.ae_mono -> MeasureTheory.ae_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (MeasureTheory.Measure.ae.{u1} α m0 μ) (MeasureTheory.Measure.ae.{u1} α m0 ν))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_mono MeasureTheory.ae_monoₓ'. -/
 @[mono]
 theorem ae_mono (h : μ ≤ ν) : μ.ae ≤ ν.ae :=
   h.AbsolutelyContinuous.ae_le
 #align measure_theory.ae_mono MeasureTheory.ae_mono
 
+/- warning: measure_theory.mem_ae_map_iff -> MeasureTheory.mem_ae_map_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {s : Set.{u2} β}, (MeasurableSet.{u2} β _inst_1 s) -> (Iff (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))) (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) (Set.preimage.{u1, u2} α β f s) (MeasureTheory.Measure.ae.{u1} α m0 μ))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {s : Set.{u1} β}, (MeasurableSet.{u1} β _inst_1 s) -> (Iff (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))) (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) (Set.preimage.{u2, u1} α β f s) (MeasureTheory.Measure.ae.{u2} α m0 μ))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.mem_ae_map_iff MeasureTheory.mem_ae_map_iffₓ'. -/
 theorem mem_ae_map_iff {f : α → β} (hf : AEMeasurable f μ) {s : Set β} (hs : MeasurableSet s) :
     s ∈ (μ.map f).ae ↔ f ⁻¹' s ∈ μ.ae := by
   simp only [mem_ae_iff, map_apply_of_ae_measurable hf hs.compl, preimage_compl]
 #align measure_theory.mem_ae_map_iff MeasureTheory.mem_ae_map_iff
 
+/- warning: measure_theory.mem_ae_of_mem_ae_map -> MeasureTheory.mem_ae_of_mem_ae_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {s : Set.{u2} β}, (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) (Set.preimage.{u1, u2} α β f s) (MeasureTheory.Measure.ae.{u1} α m0 μ)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {s : Set.{u1} β}, (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))) -> (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) (Set.preimage.{u2, u1} α β f s) (MeasureTheory.Measure.ae.{u2} α m0 μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.mem_ae_of_mem_ae_map MeasureTheory.mem_ae_of_mem_ae_mapₓ'. -/
 theorem mem_ae_of_mem_ae_map {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : s ∈ (μ.map f).ae) : f ⁻¹' s ∈ μ.ae :=
   (tendsto_ae_map hf).Eventually hs
 #align measure_theory.mem_ae_of_mem_ae_map MeasureTheory.mem_ae_of_mem_ae_map
 
+/- warning: measure_theory.ae_map_iff -> MeasureTheory.ae_map_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {p : β -> Prop}, (MeasurableSet.{u2} β _inst_1 (setOf.{u2} β (fun (x : β) => p x))) -> (Iff (Filter.Eventually.{u2} β (fun (y : β) => p y) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))) (Filter.Eventually.{u1} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u1} α m0 μ))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {p : β -> Prop}, (MeasurableSet.{u1} β _inst_1 (setOf.{u1} β (fun (x : β) => p x))) -> (Iff (Filter.Eventually.{u1} β (fun (y : β) => p y) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))) (Filter.Eventually.{u2} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u2} α m0 μ))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_map_iff MeasureTheory.ae_map_iffₓ'. -/
 theorem ae_map_iff {f : α → β} (hf : AEMeasurable f μ) {p : β → Prop}
     (hp : MeasurableSet { x | p x }) : (∀ᵐ y ∂μ.map f, p y) ↔ ∀ᵐ x ∂μ, p (f x) :=
   mem_ae_map_iff hf hp
 #align measure_theory.ae_map_iff MeasureTheory.ae_map_iff
 
+/- warning: measure_theory.ae_of_ae_map -> MeasureTheory.ae_of_ae_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (forall {p : β -> Prop}, (Filter.Eventually.{u2} β (fun (y : β) => p y) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))) -> (Filter.Eventually.{u1} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u1} α m0 μ)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (forall {p : β -> Prop}, (Filter.Eventually.{u1} β (fun (y : β) => p y) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))) -> (Filter.Eventually.{u2} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u2} α m0 μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_of_ae_map MeasureTheory.ae_of_ae_mapₓ'. -/
 theorem ae_of_ae_map {f : α → β} (hf : AEMeasurable f μ) {p : β → Prop} (h : ∀ᵐ y ∂μ.map f, p y) :
     ∀ᵐ x ∂μ, p (f x) :=
   mem_ae_of_mem_ae_map hf h
 #align measure_theory.ae_of_ae_map MeasureTheory.ae_of_ae_map
 
+/- warning: measure_theory.ae_map_mem_range -> MeasureTheory.ae_map_mem_range is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m0 : MeasurableSpace.{u1} α} (f : α -> β), (MeasurableSet.{u2} β _inst_1 (Set.range.{u2, succ u1} β α f)) -> (forall (μ : MeasureTheory.Measure.{u1} α m0), Filter.Eventually.{u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.range.{u2, succ u1} β α f)) (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] {m0 : MeasurableSpace.{u2} α} (f : α -> β), (MeasurableSet.{u1} β _inst_1 (Set.range.{u1, succ u2} β α f)) -> (forall (μ : MeasureTheory.Measure.{u2} α m0), Filter.Eventually.{u1} β (fun (x : β) => Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.range.{u1, succ u2} β α f)) (MeasureTheory.Measure.ae.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_map_mem_range MeasureTheory.ae_map_mem_rangeₓ'. -/
 theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : MeasurableSet (range f))
     (μ : Measure α) : ∀ᵐ x ∂μ.map f, x ∈ range f :=
   by
@@ -2757,6 +4217,12 @@ theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : Measura
   · simp [map_of_not_ae_measurable h]
 #align measure_theory.ae_map_mem_range MeasureTheory.ae_map_mem_range
 
+/- warning: measure_theory.ae_restrict_Union_eq -> MeasureTheory.ae_restrict_unionᵢ_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] (s : ι -> (Set.{u1} α)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i)))) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] (s : ι -> (Set.{u1} α)), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => s i)))) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toSupSet.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))) ι (fun (i : ι) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_unionᵢ_eqₓ'. -/
 @[simp]
 theorem ae_restrict_unionᵢ_eq [Countable ι] (s : ι → Set α) :
     (μ.restrict (⋃ i, s i)).ae = ⨆ i, (μ.restrict (s i)).ae :=
@@ -2764,90 +4230,158 @@ theorem ae_restrict_unionᵢ_eq [Countable ι] (s : ι → Set α) :
     supᵢ_le fun i => ae_mono <| restrict_mono (subset_unionᵢ s i) le_rfl
 #align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_unionᵢ_eq
 
+#print MeasureTheory.ae_restrict_union_eq /-
 @[simp]
 theorem ae_restrict_union_eq (s t : Set α) :
     (μ.restrict (s ∪ t)).ae = (μ.restrict s).ae ⊔ (μ.restrict t).ae := by
   simp [union_eq_Union, supᵢ_bool_eq]
 #align measure_theory.ae_restrict_union_eq MeasureTheory.ae_restrict_union_eq
+-/
 
-theorem ae_restrict_bUnion_eq (s : ι → Set α) {t : Set ι} (ht : t.Countable) :
+/- warning: measure_theory.ae_restrict_bUnion_eq -> MeasureTheory.ae_restrict_bunionᵢ_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i))))) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => supᵢ.{u1, 0} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (Eq.{succ u2} (Filter.{u2} α) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i))))) (supᵢ.{u2, succ u1} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι (fun (i : ι) => supᵢ.{u2, 0} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_bunionᵢ_eqₓ'. -/
+theorem ae_restrict_bunionᵢ_eq (s : ι → Set α) {t : Set ι} (ht : t.Countable) :
     (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae :=
   by
   haveI := ht.to_subtype
   rw [bUnion_eq_Union, ae_restrict_Union_eq, ← supᵢ_subtype'']
-#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_bUnion_eq
-
-theorem ae_restrict_bUnion_finset_eq (s : ι → Set α) (t : Finset ι) :
+#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_bunionᵢ_eq
+
+/- warning: measure_theory.ae_restrict_bUnion_finset_eq -> MeasureTheory.ae_restrict_bunionᵢ_finset_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u2} ι), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => s i))))) (supᵢ.{u1, succ u2} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι (fun (i : ι) => supᵢ.{u1, 0} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasSup.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) (t : Finset.{u1} ι), Eq.{succ u2} (Filter.{u2} α) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => s i))))) (supᵢ.{u2, succ u1} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι (fun (i : ι) => supᵢ.{u2, 0} (Filter.{u2} α) (ConditionallyCompleteLattice.toSupSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_bunionᵢ_finset_eqₓ'. -/
+theorem ae_restrict_bunionᵢ_finset_eq (s : ι → Set α) (t : Finset ι) :
     (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae :=
-  ae_restrict_bUnion_eq s t.countable_toSet
-#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_bUnion_finset_eq
+  ae_restrict_bunionᵢ_eq s t.countable_toSet
+#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_bunionᵢ_finset_eq
 
+#print MeasureTheory.ae_restrict_unionᵢ_iff /-
 theorem ae_restrict_unionᵢ_iff [Countable ι] (s : ι → Set α) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i, s i), p x) ↔ ∀ i, ∀ᵐ x ∂μ.restrict (s i), p x := by simp
 #align measure_theory.ae_restrict_Union_iff MeasureTheory.ae_restrict_unionᵢ_iff
+-/
 
+#print MeasureTheory.ae_restrict_union_iff /-
 theorem ae_restrict_union_iff (s t : Set α) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (s ∪ t), p x) ↔ (∀ᵐ x ∂μ.restrict s, p x) ∧ ∀ᵐ x ∂μ.restrict t, p x := by simp
 #align measure_theory.ae_restrict_union_iff MeasureTheory.ae_restrict_union_iff
+-/
 
-theorem ae_restrict_bUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (p : α → Prop) :
+/- warning: measure_theory.ae_restrict_bUnion_iff -> MeasureTheory.ae_restrict_bunionᵢ_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (forall (p : α -> Prop), Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) => s i)))))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i t) -> (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) {t : Set.{u1} ι}, (Set.Countable.{u1} ι t) -> (forall (p : α -> Prop), Iff (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) => s i)))))) (forall (i : ι), (Membership.mem.{u1, u1} ι (Set.{u1} ι) (Set.instMembershipSet.{u1} ι) i t) -> (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_bunionᵢ_iffₓ'. -/
+theorem ae_restrict_bunionᵢ_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
   simp_rw [Filter.Eventually, ae_restrict_bUnion_eq s ht, mem_supr]
-#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_bUnion_iff
-
+#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_bunionᵢ_iff
+
+/- warning: measure_theory.ae_restrict_bUnion_finset_iff -> MeasureTheory.ae_restrict_bunionᵢ_finset_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u2} ι) (p : α -> Prop), Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) (fun (H : Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) => s i)))))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Finset.{u2} ι) (Finset.hasMem.{u2} ι) i t) -> (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i)))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} (s : ι -> (Set.{u2} α)) (t : Finset.{u1} ι) (p : α -> Prop), Iff (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => Set.unionᵢ.{u2, 0} α (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) (fun (H : Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) => s i)))))) (forall (i : ι), (Membership.mem.{u1, u1} ι (Finset.{u1} ι) (Finset.instMembershipFinset.{u1} ι) i t) -> (Filter.Eventually.{u2} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_bunionᵢ_finset_iffₓ'. -/
 @[simp]
-theorem ae_restrict_bUnion_finset_iff (s : ι → Set α) (t : Finset ι) (p : α → Prop) :
+theorem ae_restrict_bunionᵢ_finset_iff (s : ι → Set α) (t : Finset ι) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
   simp_rw [Filter.Eventually, ae_restrict_bUnion_finset_eq s, mem_supr]
-#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_bUnion_finset_iff
-
+#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_bunionᵢ_finset_iff
+
+/- warning: measure_theory.ae_eq_restrict_Union_iff -> MeasureTheory.ae_eq_restrict_unionᵢ_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u3} ι] (s : ι -> (Set.{u1} α)) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u3} α ι (fun (i : ι) => s i)))) f g) (forall (i : ι), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g)
+but is expected to have type
+  forall {α : Type.{u2}} {δ : Type.{u1}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_3 : Countable.{succ u3} ι] (s : ι -> (Set.{u2} α)) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.unionᵢ.{u2, succ u3} α ι (fun (i : ι) => s i)))) f g) (forall (i : ι), Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ (s i))) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_unionᵢ_iffₓ'. -/
 theorem ae_eq_restrict_unionᵢ_iff [Countable ι] (s : ι → Set α) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i, s i)] g ↔ ∀ i, f =ᵐ[μ.restrict (s i)] g := by
   simp_rw [eventually_eq, ae_restrict_Union_eq, eventually_supr]
 #align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_unionᵢ_iff
 
-theorem ae_eq_restrict_bUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (f g : α → δ) :
+/- warning: measure_theory.ae_eq_restrict_bUnion_iff -> MeasureTheory.ae_eq_restrict_bunionᵢ_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) {t : Set.{u3} ι}, (Set.Countable.{u3} ι t) -> (forall (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u3} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) (fun (H : Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.Mem.{u3, u3} ι (Set.{u3} ι) (Set.hasMem.{u3} ι) i t) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g)))
+but is expected to have type
+  forall {α : Type.{u3}} {δ : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m0} (s : ι -> (Set.{u3} α)) {t : Set.{u2} ι}, (Set.Countable.{u2} ι t) -> (forall (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (Set.unionᵢ.{u3, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u3, 0} α (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i t) -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (s i))) f g)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_bunionᵢ_iffₓ'. -/
+theorem ae_eq_restrict_bunionᵢ_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g := by
   simp_rw [ae_restrict_bUnion_eq s ht, eventually_eq, eventually_supr]
-#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_bUnion_iff
-
-theorem ae_eq_restrict_bUnion_finset_iff (s : ι → Set α) (t : Finset ι) (f g : α → δ) :
+#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_bunionᵢ_iff
+
+/- warning: measure_theory.ae_eq_restrict_bUnion_finset_iff -> MeasureTheory.ae_eq_restrict_bunionᵢ_finset_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {δ : Type.{u2}} {ι : Type.{u3}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (s : ι -> (Set.{u1} α)) (t : Finset.{u3} ι) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.unionᵢ.{u1, succ u3} α ι (fun (i : ι) => Set.unionᵢ.{u1, 0} α (Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) (fun (H : Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.Mem.{u3, u3} ι (Finset.{u3} ι) (Finset.hasMem.{u3} ι) i t) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (s i))) f g))
+but is expected to have type
+  forall {α : Type.{u3}} {δ : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m0} (s : ι -> (Set.{u3} α)) (t : Finset.{u2} ι) (f : α -> δ) (g : α -> δ), Iff (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (Set.unionᵢ.{u3, succ u2} α ι (fun (i : ι) => Set.unionᵢ.{u3, 0} α (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) (fun (H : Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) => s i))))) f g) (forall (i : ι), (Membership.mem.{u2, u2} ι (Finset.{u2} ι) (Finset.instMembershipFinset.{u2} ι) i t) -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 (MeasureTheory.Measure.restrict.{u3} α m0 μ (s i))) f g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_bunionᵢ_finset_iffₓ'. -/
+theorem ae_eq_restrict_bunionᵢ_finset_iff (s : ι → Set α) (t : Finset ι) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g :=
-  ae_eq_restrict_bUnion_iff s t.countable_toSet f g
-#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_bUnion_finset_iff
-
+  ae_eq_restrict_bunionᵢ_iff s t.countable_toSet f g
+#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_bunionᵢ_finset_iff
+
+/- warning: measure_theory.ae_restrict_uIoc_eq -> MeasureTheory.ae_restrict_uIoc_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : LinearOrder.{u1} α] (a : α) (b : α), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.uIoc.{u1} α _inst_3 a b))) (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))))) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) a b))) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_3)))) b a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : LinearOrder.{u1} α] (a : α) (b : α), Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.uIoc.{u1} α _inst_3 a b))) (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))))) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_3))))) a b))) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_3))))) b a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_uIoc_eq MeasureTheory.ae_restrict_uIoc_eqₓ'. -/
 theorem ae_restrict_uIoc_eq [LinearOrder α] (a b : α) :
     (μ.restrict (Ι a b)).ae = (μ.restrict (Ioc a b)).ae ⊔ (μ.restrict (Ioc b a)).ae := by
   simp only [uIoc_eq_union, ae_restrict_union_eq]
 #align measure_theory.ae_restrict_uIoc_eq MeasureTheory.ae_restrict_uIoc_eq
 
+#print MeasureTheory.ae_restrict_uIoc_iff /-
 /-- See also `measure_theory.ae_uIoc_iff`. -/
 theorem ae_restrict_uIoc_iff [LinearOrder α] {a b : α} {P : α → Prop} :
     (∀ᵐ x ∂μ.restrict (Ι a b), P x) ↔
       (∀ᵐ x ∂μ.restrict (Ioc a b), P x) ∧ ∀ᵐ x ∂μ.restrict (Ioc b a), P x :=
   by rw [ae_restrict_uIoc_eq, eventually_sup]
 #align measure_theory.ae_restrict_uIoc_iff MeasureTheory.ae_restrict_uIoc_iff
+-/
 
+#print MeasureTheory.ae_restrict_iff /-
 theorem ae_restrict_iff {p : α → Prop} (hp : MeasurableSet { x | p x }) :
     (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x :=
   by
   simp only [ae_iff, ← compl_set_of, restrict_apply hp.compl]
   congr with x; simp [and_comm']
 #align measure_theory.ae_restrict_iff MeasureTheory.ae_restrict_iff
+-/
 
+#print MeasureTheory.ae_imp_of_ae_restrict /-
 theorem ae_imp_of_ae_restrict {s : Set α} {p : α → Prop} (h : ∀ᵐ x ∂μ.restrict s, p x) :
     ∀ᵐ x ∂μ, x ∈ s → p x := by
   simp only [ae_iff] at h⊢
   simpa [set_of_and, inter_comm] using measure_inter_eq_zero_of_restrict h
 #align measure_theory.ae_imp_of_ae_restrict MeasureTheory.ae_imp_of_ae_restrict
+-/
 
+#print MeasureTheory.ae_restrict_iff' /-
 theorem ae_restrict_iff' {p : α → Prop} (hs : MeasurableSet s) :
     (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x :=
   by
   simp only [ae_iff, ← compl_set_of, restrict_apply_eq_zero' hs]
   congr with x; simp [and_comm']
 #align measure_theory.ae_restrict_iff' MeasureTheory.ae_restrict_iff'
+-/
 
+/- warning: filter.eventually_eq.restrict -> Filter.EventuallyEq.restrict is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> δ} {g : α -> δ} {s : Set.{u1} α}, (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 μ) f g) -> (Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) f g)
+but is expected to have type
+  forall {α : Type.{u2}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {f : α -> δ} {g : α -> δ} {s : Set.{u2} α}, (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 μ) f g) -> (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 (MeasureTheory.Measure.restrict.{u2} α m0 μ s)) f g)
+Case conversion may be inaccurate. Consider using '#align filter.eventually_eq.restrict Filter.EventuallyEq.restrictₓ'. -/
 theorem Filter.EventuallyEq.restrict {f g : α → δ} {s : Set α} (hfg : f =ᵐ[μ] g) :
     f =ᵐ[μ.restrict s] g :=
   by
@@ -2857,33 +4391,44 @@ theorem Filter.EventuallyEq.restrict {f g : α → δ} {s : Set α} (hfg : f =
   exact measure.absolutely_continuous_of_le measure.restrict_le_self
 #align filter.eventually_eq.restrict Filter.EventuallyEq.restrict
 
+#print MeasureTheory.ae_restrict_mem /-
 theorem ae_restrict_mem (hs : MeasurableSet s) : ∀ᵐ x ∂μ.restrict s, x ∈ s :=
   (ae_restrict_iff' hs).2 (Filter.eventually_of_forall fun x => id)
 #align measure_theory.ae_restrict_mem MeasureTheory.ae_restrict_mem
+-/
 
+#print MeasureTheory.ae_restrict_mem₀ /-
 theorem ae_restrict_mem₀ (hs : NullMeasurableSet s μ) : ∀ᵐ x ∂μ.restrict s, x ∈ s :=
   by
   rcases hs.exists_measurable_subset_ae_eq with ⟨t, hts, htm, ht_eq⟩
   rw [← restrict_congr_set ht_eq]
   exact (ae_restrict_mem htm).mono hts
 #align measure_theory.ae_restrict_mem₀ MeasureTheory.ae_restrict_mem₀
+-/
 
+#print MeasureTheory.ae_restrict_of_ae /-
 theorem ae_restrict_of_ae {s : Set α} {p : α → Prop} (h : ∀ᵐ x ∂μ, p x) : ∀ᵐ x ∂μ.restrict s, p x :=
   Eventually.filter_mono (ae_mono Measure.restrict_le_self) h
 #align measure_theory.ae_restrict_of_ae MeasureTheory.ae_restrict_of_ae
+-/
 
+#print MeasureTheory.ae_restrict_iff'₀ /-
 theorem ae_restrict_iff'₀ {p : α → Prop} (hs : NullMeasurableSet s μ) :
     (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x :=
   by
   refine' ⟨fun h => ae_imp_of_ae_restrict h, fun h => _⟩
   filter_upwards [ae_restrict_mem₀ hs, ae_restrict_of_ae h]with x hx h'x using h'x hx
 #align measure_theory.ae_restrict_iff'₀ MeasureTheory.ae_restrict_iff'₀
+-/
 
+#print MeasureTheory.ae_restrict_of_ae_restrict_of_subset /-
 theorem ae_restrict_of_ae_restrict_of_subset {s t : Set α} {p : α → Prop} (hst : s ⊆ t)
     (h : ∀ᵐ x ∂μ.restrict t, p x) : ∀ᵐ x ∂μ.restrict s, p x :=
   h.filter_mono (ae_mono <| Measure.restrict_mono hst (le_refl μ))
 #align measure_theory.ae_restrict_of_ae_restrict_of_subset MeasureTheory.ae_restrict_of_ae_restrict_of_subset
+-/
 
+#print MeasureTheory.ae_of_ae_restrict_of_ae_restrict_compl /-
 theorem ae_of_ae_restrict_of_ae_restrict_compl (t : Set α) {p : α → Prop}
     (ht : ∀ᵐ x ∂μ.restrict t, p x) (htc : ∀ᵐ x ∂μ.restrict (tᶜ), p x) : ∀ᵐ x ∂μ, p x :=
   nonpos_iff_eq_zero.1 <|
@@ -2896,37 +4441,76 @@ theorem ae_of_ae_restrict_of_ae_restrict_compl (t : Set α) {p : α → Prop}
       _ = 0 := by rw [ae_iff.1 ht, ae_iff.1 htc, zero_add]
       
 #align measure_theory.ae_of_ae_restrict_of_ae_restrict_compl MeasureTheory.ae_of_ae_restrict_of_ae_restrict_compl
+-/
 
+/- warning: measure_theory.mem_map_restrict_ae_iff -> MeasureTheory.mem_map_restrict_ae_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} {s : Set.{u1} α} {t : Set.{u2} β} {f : α -> β}, (MeasurableSet.{u1} α m0 s) -> (Iff (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (Set.preimage.{u1, u2} α β f t)) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} {s : Set.{u1} α} {t : Set.{u2} β} {f : α -> β}, (MeasurableSet.{u1} α m0 s) -> (Iff (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) t (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (Set.preimage.{u1, u2} α β f t)) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.mem_map_restrict_ae_iff MeasureTheory.mem_map_restrict_ae_iffₓ'. -/
 theorem mem_map_restrict_ae_iff {β} {s : Set α} {t : Set β} {f : α → β} (hs : MeasurableSet s) :
     t ∈ Filter.map f (μ.restrict s).ae ↔ μ ((f ⁻¹' t)ᶜ ∩ s) = 0 := by
   rw [mem_map, mem_ae_iff, measure.restrict_apply' hs]
 #align measure_theory.mem_map_restrict_ae_iff MeasureTheory.mem_map_restrict_ae_iff
 
+/- warning: measure_theory.ae_smul_measure -> MeasureTheory.ae_smul_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {R : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop} [_inst_3 : Monoid.{u2} R] [_inst_4 : DistribMulAction.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))] [_inst_5 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4)))], (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (forall (c : R), Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R (SMulZeroClass.toHasSmul.{u2, 0} R ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))) (DistribSMul.toSmulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)) _inst_4))) _inst_5 m0) c μ)))
+but is expected to have type
+  forall {α : Type.{u1}} {R : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : α -> Prop} [_inst_3 : Monoid.{u2} R] [_inst_4 : DistribMulAction.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))] [_inst_5 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4)))], (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (forall (c : R), Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m0 (HSMul.hSMul.{u2, u1, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R (SMulZeroClass.toSMul.{u2, 0} R ENNReal instENNRealZero (DistribSMul.toSMulZeroClass.{u2, 0} R ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne))) (DistribMulAction.toDistribSMul.{u2, 0} R ENNReal _inst_3 (AddMonoidWithOne.toAddMonoid.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal instENNRealAddCommMonoidWithOne)) _inst_4))) _inst_5 m0)) c μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_smul_measure MeasureTheory.ae_smul_measureₓ'. -/
 theorem ae_smul_measure {p : α → Prop} [Monoid R] [DistribMulAction R ℝ≥0∞]
     [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (h : ∀ᵐ x ∂μ, p x) (c : R) : ∀ᵐ x ∂c • μ, p x :=
   ae_iff.2 <| by rw [smul_apply, ae_iff.1 h, smul_zero]
 #align measure_theory.ae_smul_measure MeasureTheory.ae_smul_measure
 
+#print MeasureTheory.ae_add_measure_iff /-
 theorem ae_add_measure_iff {p : α → Prop} {ν} :
     (∀ᵐ x ∂μ + ν, p x) ↔ (∀ᵐ x ∂μ, p x) ∧ ∀ᵐ x ∂ν, p x :=
   add_eq_zero_iff
 #align measure_theory.ae_add_measure_iff MeasureTheory.ae_add_measure_iff
+-/
 
+/- warning: measure_theory.ae_eq_comp' -> MeasureTheory.ae_eq_comp' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {δ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (Filter.EventuallyEq.{u2, u3} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 ν) g g') -> (MeasureTheory.Measure.AbsolutelyContinuous.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ) ν) -> (Filter.EventuallyEq.{u1, u3} α δ (MeasureTheory.Measure.ae.{u1} α m0 μ) (Function.comp.{succ u1, succ u2, succ u3} α β δ g f) (Function.comp.{succ u1, succ u2, succ u3} α β δ g' f))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u3}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u3} β] {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u3} β _inst_1} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (AEMeasurable.{u2, u3} α β _inst_1 m0 f μ) -> (Filter.EventuallyEq.{u3, u1} β δ (MeasureTheory.Measure.ae.{u3} β _inst_1 ν) g g') -> (MeasureTheory.Measure.AbsolutelyContinuous.{u3} β _inst_1 (MeasureTheory.Measure.map.{u2, u3} α β _inst_1 m0 f μ) ν) -> (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 μ) (Function.comp.{succ u2, succ u3, succ u1} α β δ g f) (Function.comp.{succ u2, succ u3, succ u1} α β δ g' f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_comp' MeasureTheory.ae_eq_comp'ₓ'. -/
 theorem ae_eq_comp' {ν : Measure β} {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ)
     (h : g =ᵐ[ν] g') (h2 : μ.map f ≪ ν) : g ∘ f =ᵐ[μ] g' ∘ f :=
   (tendsto_ae_map hf).mono_right h2.ae_le h
 #align measure_theory.ae_eq_comp' MeasureTheory.ae_eq_comp'
 
+/- warning: measure_theory.measure.quasi_measure_preserving.ae_eq_comp -> MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq_comp is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {δ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} α β _inst_1 m0 f μ ν) -> (Filter.EventuallyEq.{u2, u3} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 ν) g g') -> (Filter.EventuallyEq.{u1, u3} α δ (MeasureTheory.Measure.ae.{u1} α m0 μ) (Function.comp.{succ u1, succ u2, succ u3} α β δ g f) (Function.comp.{succ u1, succ u2, succ u3} α β δ g' f))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u3}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u3} β] {μ : MeasureTheory.Measure.{u2} α m0} {ν : MeasureTheory.Measure.{u3} β _inst_1} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u3} α β _inst_1 m0 f μ ν) -> (Filter.EventuallyEq.{u3, u1} β δ (MeasureTheory.Measure.ae.{u3} β _inst_1 ν) g g') -> (Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α m0 μ) (Function.comp.{succ u2, succ u3, succ u1} α β δ g f) (Function.comp.{succ u2, succ u3, succ u1} α β δ g' f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.quasi_measure_preserving.ae_eq_comp MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq_compₓ'. -/
 theorem Measure.QuasiMeasurePreserving.ae_eq_comp {ν : Measure β} {f : α → β} {g g' : β → δ}
     (hf : QuasiMeasurePreserving f μ ν) (h : g =ᵐ[ν] g') : g ∘ f =ᵐ[μ] g' ∘ f :=
   ae_eq_comp' hf.AEMeasurable h hf.AbsolutelyContinuous
 #align measure_theory.measure.quasi_measure_preserving.ae_eq_comp MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq_comp
 
+/- warning: measure_theory.ae_eq_comp -> MeasureTheory.ae_eq_comp is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {δ : Type.{u3}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (Filter.EventuallyEq.{u2, u3} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)) g g') -> (Filter.EventuallyEq.{u1, u3} α δ (MeasureTheory.Measure.ae.{u1} α m0 μ) (Function.comp.{succ u1, succ u2, succ u3} α β δ g f) (Function.comp.{succ u1, succ u2, succ u3} α β δ g' f))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u2}} {δ : Type.{u1}} {m0 : MeasurableSpace.{u3} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u3} α m0} {f : α -> β} {g : β -> δ} {g' : β -> δ}, (AEMeasurable.{u3, u2} α β _inst_1 m0 f μ) -> (Filter.EventuallyEq.{u2, u1} β δ (MeasureTheory.Measure.ae.{u2} β _inst_1 (MeasureTheory.Measure.map.{u3, u2} α β _inst_1 m0 f μ)) g g') -> (Filter.EventuallyEq.{u3, u1} α δ (MeasureTheory.Measure.ae.{u3} α m0 μ) (Function.comp.{succ u3, succ u2, succ u1} α β δ g f) (Function.comp.{succ u3, succ u2, succ u1} α β δ g' f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_comp MeasureTheory.ae_eq_compₓ'. -/
 theorem ae_eq_comp {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ) (h : g =ᵐ[μ.map f] g') :
     g ∘ f =ᵐ[μ] g' ∘ f :=
   ae_eq_comp' hf h AbsolutelyContinuous.rfl
 #align measure_theory.ae_eq_comp MeasureTheory.ae_eq_comp
 
+/- warning: measure_theory.sub_ae_eq_zero -> MeasureTheory.sub_ae_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : AddGroup.{u2} β] (f : α -> β) (g : α -> β), Iff (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (α -> β) (α -> β) (α -> β) (instHSub.{max u1 u2} (α -> β) (Pi.instSub.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) f g) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))))))))) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : AddGroup.{u2} β] (f : α -> β) (g : α -> β), Iff (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) (HSub.hSub.{max u1 u2, max u1 u2, max u1 u2} (α -> β) (α -> β) (α -> β) (instHSub.{max u1 u2} (α -> β) (Pi.instSub.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => SubNegMonoid.toSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) f g) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (Zero.toOfNat0.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => NegZeroClass.toZero.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_3)))))))) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m0 μ) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.sub_ae_eq_zero MeasureTheory.sub_ae_eq_zeroₓ'. -/
 theorem sub_ae_eq_zero {β} [AddGroup β] (f g : α → β) : f - g =ᵐ[μ] 0 ↔ f =ᵐ[μ] g :=
   by
   refine' ⟨fun h => h.mono fun x hx => _, fun h => h.mono fun x hx => _⟩
@@ -2934,10 +4518,22 @@ theorem sub_ae_eq_zero {β} [AddGroup β] (f g : α → β) : f - g =ᵐ[μ] 0 
   · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero]
 #align measure_theory.sub_ae_eq_zero MeasureTheory.sub_ae_eq_zero
 
+/- warning: measure_theory.le_ae_restrict -> MeasureTheory.le_ae_restrict is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.le_ae_restrict MeasureTheory.le_ae_restrictₓ'. -/
 theorem le_ae_restrict : μ.ae ⊓ 𝓟 s ≤ (μ.restrict s).ae := fun s hs =>
   eventually_inf_principal.2 (ae_imp_of_ae_restrict hs)
 #align measure_theory.le_ae_restrict MeasureTheory.le_ae_restrict
 
+/- warning: measure_theory.ae_restrict_eq -> MeasureTheory.ae_restrict_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 μ) (Filter.principal.{u1} α s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_eq MeasureTheory.ae_restrict_eqₓ'. -/
 @[simp]
 theorem ae_restrict_eq (hs : MeasurableSet s) : (μ.restrict s).ae = μ.ae ⊓ 𝓟 s :=
   by
@@ -2947,34 +4543,58 @@ theorem ae_restrict_eq (hs : MeasurableSet s) : (μ.restrict s).ae = μ.ae ⊓ 
   rfl
 #align measure_theory.ae_restrict_eq MeasureTheory.ae_restrict_eq
 
+/- warning: measure_theory.ae_restrict_eq_bot -> MeasureTheory.ae_restrict_eq_bot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toHasBot.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Eq.{succ u1} (Filter.{u1} α) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)) (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toBot.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α)))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_eq_bot MeasureTheory.ae_restrict_eq_botₓ'. -/
 @[simp]
 theorem ae_restrict_eq_bot {s} : (μ.restrict s).ae = ⊥ ↔ μ s = 0 :=
   ae_eq_bot.trans restrict_eq_zero
 #align measure_theory.ae_restrict_eq_bot MeasureTheory.ae_restrict_eq_bot
 
+/- warning: measure_theory.ae_restrict_ne_bot -> MeasureTheory.ae_restrict_neBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_restrict_ne_bot MeasureTheory.ae_restrict_neBotₓ'. -/
 @[simp]
 theorem ae_restrict_neBot {s} : (μ.restrict s).ae.ne_bot ↔ 0 < μ s :=
   neBot_iff.trans <| (not_congr ae_restrict_eq_bot).trans pos_iff_ne_zero.symm
 #align measure_theory.ae_restrict_ne_bot MeasureTheory.ae_restrict_neBot
 
+#print MeasureTheory.self_mem_ae_restrict /-
 theorem self_mem_ae_restrict {s} (hs : MeasurableSet s) : s ∈ (μ.restrict s).ae := by
   simp only [ae_restrict_eq hs, exists_prop, mem_principal, mem_inf_iff] <;>
     exact ⟨_, univ_mem, s, subset.rfl, (univ_inter s).symm⟩
 #align measure_theory.self_mem_ae_restrict MeasureTheory.self_mem_ae_restrict
+-/
 
+#print MeasureTheory.ae_restrict_of_ae_eq_of_ae_restrict /-
 /-- If two measurable sets are ae_eq then any proposition that is almost everywhere true on one
 is almost everywhere true on the other -/
 theorem ae_restrict_of_ae_eq_of_ae_restrict {s t} (hst : s =ᵐ[μ] t) {p : α → Prop} :
     (∀ᵐ x ∂μ.restrict s, p x) → ∀ᵐ x ∂μ.restrict t, p x := by simp [measure.restrict_congr_set hst]
 #align measure_theory.ae_restrict_of_ae_eq_of_ae_restrict MeasureTheory.ae_restrict_of_ae_eq_of_ae_restrict
+-/
 
+#print MeasureTheory.ae_restrict_congr_set /-
 /-- If two measurable sets are ae_eq then any proposition that is almost everywhere true on one
 is almost everywhere true on the other -/
 theorem ae_restrict_congr_set {s t} (hst : s =ᵐ[μ] t) {p : α → Prop} :
     (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ.restrict t, p x :=
   ⟨ae_restrict_of_ae_eq_of_ae_restrict hst, ae_restrict_of_ae_eq_of_ae_restrict hst.symm⟩
 #align measure_theory.ae_restrict_congr_set MeasureTheory.ae_restrict_congr_set
+-/
 
+/- warning: measure_theory.measure_set_of_frequently_eq_zero -> MeasureTheory.measure_setOf_frequently_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : Nat -> α -> Prop}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (setOf.{u1} α (fun (x : α) => p i x)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (setOf.{u1} α (fun (x : α) => Filter.Frequently.{0} Nat (fun (n : Nat) => p n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {p : Nat -> α -> Prop}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (setOf.{u1} α (fun (x : α) => p i x)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (setOf.{u1} α (fun (x : α) => Filter.Frequently.{0} Nat (fun (n : Nat) => p n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_set_of_frequently_eq_zero MeasureTheory.measure_setOf_frequently_eq_zeroₓ'. -/
 /-- A version of the **Borel-Cantelli lemma**: if `pᵢ` is a sequence of predicates such that
 `∑ μ {x | pᵢ x}` is finite, then the measure of `x` such that `pᵢ x` holds frequently as `i → ∞` (or
 equivalently, `pᵢ x` holds for infinitely many `i`) is equal to zero. -/
@@ -2984,6 +4604,12 @@ theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : (∑' i
     measure_limsup_eq_zero hp
 #align measure_theory.measure_set_of_frequently_eq_zero MeasureTheory.measure_setOf_frequently_eq_zero
 
+/- warning: measure_theory.ae_eventually_not_mem -> MeasureTheory.ae_eventually_not_mem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (s i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => Filter.Eventually.{0} Nat (fun (n : Nat) => Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (s n))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (MeasureTheory.Measure.ae.{u1} α m0 μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Nat -> (Set.{u1} α)}, (Ne.{1} ENNReal (tsum.{0, 0} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (s i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => Filter.Eventually.{0} Nat (fun (n : Nat) => Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (s n))) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (MeasureTheory.Measure.ae.{u1} α m0 μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eventually_not_mem MeasureTheory.ae_eventually_not_memₓ'. -/
 /-- A version of the **Borel-Cantelli lemma**: if `sᵢ` is a sequence of sets such that
 `∑ μ sᵢ` exists, then for almost all `x`, `x` does not belong to almost all `sᵢ`. -/
 theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠ ∞) :
@@ -2993,45 +4619,99 @@ theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
 
 section Intervals
 
-theorem bsupr_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
+/- warning: measure_theory.bsupr_measure_Iic -> MeasureTheory.bsupᵢ_measure_Iic is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y s) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3)) s) -> (Eq.{1} ENNReal (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) α (fun (x : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.Iic.{u1} α _inst_3 x)))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Preorder.{u1} α] {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (x : α), Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x y))) -> (DirectedOn.{u1} α (fun (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46872 : α) (x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_3) x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46872 x._@.Mathlib.MeasureTheory.Measure.MeasureSpace._hyg.46874) s) -> (Eq.{1} ENNReal (supᵢ.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) α (fun (x : α) => supᵢ.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.Iic.{u1} α _inst_3 x)))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.bsupr_measure_Iic MeasureTheory.bsupᵢ_measure_Iicₓ'. -/
+theorem bsupᵢ_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
     (hst : ∀ x : α, ∃ y ∈ s, x ≤ y) (hdir : DirectedOn (· ≤ ·) s) : (⨆ x ∈ s, μ (Iic x)) = μ univ :=
   by
   rw [← measure_bUnion_eq_supr hsc]
   · congr
     exact Union₂_eq_univ_iff.2 hst
   · exact directedOn_iff_directed.2 (hdir.directed_coe.mono_comp _ fun x y => Iic_subset_Iic.2)
-#align measure_theory.bsupr_measure_Iic MeasureTheory.bsupr_measure_Iic
+#align measure_theory.bsupr_measure_Iic MeasureTheory.bsupᵢ_measure_Iic
 
 variable [PartialOrder α] {a b : α}
 
+/- warning: measure_theory.Iio_ae_eq_Iic' -> MeasureTheory.Iio_ae_eq_Iic' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.Iio_ae_eq_Iic' MeasureTheory.Iio_ae_eq_Iic'ₓ'. -/
 theorem Iio_ae_eq_Iic' (ha : μ {a} = 0) : Iio a =ᵐ[μ] Iic a := by
   rw [← Iic_diff_right, diff_ae_eq_self, measure_mono_null (Set.inter_subset_right _ _) ha]
 #align measure_theory.Iio_ae_eq_Iic' MeasureTheory.Iio_ae_eq_Iic'
 
+/- warning: measure_theory.Ioi_ae_eq_Ici' -> MeasureTheory.Ioi_ae_eq_Ici' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.Ioi_ae_eq_Ici' MeasureTheory.Ioi_ae_eq_Ici'ₓ'. -/
 theorem Ioi_ae_eq_Ici' (ha : μ {a} = 0) : Ioi a =ᵐ[μ] Ici a :=
   @Iio_ae_eq_Iic' αᵒᵈ ‹_› ‹_› _ _ ha
 #align measure_theory.Ioi_ae_eq_Ici' MeasureTheory.Ioi_ae_eq_Ici'
 
+/- warning: measure_theory.Ioo_ae_eq_Ioc' -> MeasureTheory.Ioo_ae_eq_Ioc' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+Case conversion may be inaccurate. Consider using '#align measure_theory.Ioo_ae_eq_Ioc' MeasureTheory.Ioo_ae_eq_Ioc'ₓ'. -/
 theorem Ioo_ae_eq_Ioc' (hb : μ {b} = 0) : Ioo a b =ᵐ[μ] Ioc a b :=
   (ae_eq_refl _).inter (Iio_ae_eq_Iic' hb)
 #align measure_theory.Ioo_ae_eq_Ioc' MeasureTheory.Ioo_ae_eq_Ioc'
 
+/- warning: measure_theory.Ioc_ae_eq_Icc' -> MeasureTheory.Ioc_ae_eq_Icc' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+Case conversion may be inaccurate. Consider using '#align measure_theory.Ioc_ae_eq_Icc' MeasureTheory.Ioc_ae_eq_Icc'ₓ'. -/
 theorem Ioc_ae_eq_Icc' (ha : μ {a} = 0) : Ioc a b =ᵐ[μ] Icc a b :=
   (Ioi_ae_eq_Ici' ha).inter (ae_eq_refl _)
 #align measure_theory.Ioc_ae_eq_Icc' MeasureTheory.Ioc_ae_eq_Icc'
 
+/- warning: measure_theory.Ioo_ae_eq_Ico' -> MeasureTheory.Ioo_ae_eq_Ico' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+Case conversion may be inaccurate. Consider using '#align measure_theory.Ioo_ae_eq_Ico' MeasureTheory.Ioo_ae_eq_Ico'ₓ'. -/
 theorem Ioo_ae_eq_Ico' (ha : μ {a} = 0) : Ioo a b =ᵐ[μ] Ico a b :=
   (Ioi_ae_eq_Ici' ha).inter (ae_eq_refl _)
 #align measure_theory.Ioo_ae_eq_Ico' MeasureTheory.Ioo_ae_eq_Ico'
 
+/- warning: measure_theory.Ioo_ae_eq_Icc' -> MeasureTheory.Ioo_ae_eq_Icc' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+Case conversion may be inaccurate. Consider using '#align measure_theory.Ioo_ae_eq_Icc' MeasureTheory.Ioo_ae_eq_Icc'ₓ'. -/
 theorem Ioo_ae_eq_Icc' (ha : μ {a} = 0) (hb : μ {b} = 0) : Ioo a b =ᵐ[μ] Icc a b :=
   (Ioi_ae_eq_Ici' ha).inter (Iio_ae_eq_Iic' hb)
 #align measure_theory.Ioo_ae_eq_Icc' MeasureTheory.Ioo_ae_eq_Icc'
 
+/- warning: measure_theory.Ico_ae_eq_Icc' -> MeasureTheory.Ico_ae_eq_Icc' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+Case conversion may be inaccurate. Consider using '#align measure_theory.Ico_ae_eq_Icc' MeasureTheory.Ico_ae_eq_Icc'ₓ'. -/
 theorem Ico_ae_eq_Icc' (hb : μ {b} = 0) : Ico a b =ᵐ[μ] Icc a b :=
   (ae_eq_refl _).inter (Iio_ae_eq_Iic' hb)
 #align measure_theory.Ico_ae_eq_Icc' MeasureTheory.Ico_ae_eq_Icc'
 
+/- warning: measure_theory.Ico_ae_eq_Ioc' -> MeasureTheory.Ico_ae_eq_Ioc' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PartialOrder.{u1} α] {a : α} {b : α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_3) a b))
+Case conversion may be inaccurate. Consider using '#align measure_theory.Ico_ae_eq_Ioc' MeasureTheory.Ico_ae_eq_Ioc'ₓ'. -/
 theorem Ico_ae_eq_Ioc' (ha : μ {a} = 0) (hb : μ {b} = 0) : Ico a b =ᵐ[μ] Ioc a b :=
   (Ioo_ae_eq_Ico' ha).symm.trans (Ioo_ae_eq_Ioc' hb)
 #align measure_theory.Ico_ae_eq_Ioc' MeasureTheory.Ico_ae_eq_Ioc'
@@ -3042,27 +4722,41 @@ section Dirac
 
 variable [MeasurableSpace α]
 
+#print MeasureTheory.mem_ae_dirac_iff /-
 theorem mem_ae_dirac_iff {a : α} (hs : MeasurableSet s) : s ∈ (dirac a).ae ↔ a ∈ s := by
   by_cases a ∈ s <;> simp [mem_ae_iff, dirac_apply', hs.compl, indicator_apply, *]
 #align measure_theory.mem_ae_dirac_iff MeasureTheory.mem_ae_dirac_iff
+-/
 
+#print MeasureTheory.ae_dirac_iff /-
 theorem ae_dirac_iff {a : α} {p : α → Prop} (hp : MeasurableSet { x | p x }) :
     (∀ᵐ x ∂dirac a, p x) ↔ p a :=
   mem_ae_dirac_iff hp
 #align measure_theory.ae_dirac_iff MeasureTheory.ae_dirac_iff
+-/
 
+#print MeasureTheory.ae_dirac_eq /-
 @[simp]
 theorem ae_dirac_eq [MeasurableSingletonClass α] (a : α) : (dirac a).ae = pure a :=
   by
   ext s
   simp [mem_ae_iff, imp_false]
 #align measure_theory.ae_dirac_eq MeasureTheory.ae_dirac_eq
+-/
 
+#print MeasureTheory.ae_eq_dirac' /-
 theorem ae_eq_dirac' [MeasurableSingletonClass β] {a : α} {f : α → β} (hf : Measurable f) :
     f =ᵐ[dirac a] const α (f a) :=
   (ae_dirac_iff <| show MeasurableSet (f ⁻¹' {f a}) from hf <| measurableSet_singleton _).2 rfl
 #align measure_theory.ae_eq_dirac' MeasureTheory.ae_eq_dirac'
+-/
 
+/- warning: measure_theory.ae_eq_dirac -> MeasureTheory.ae_eq_dirac is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {δ : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] [_inst_4 : MeasurableSingletonClass.{u1} α _inst_3] {a : α} (f : α -> δ), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α _inst_3 (MeasureTheory.Measure.dirac.{u1} α _inst_3 a)) f (Function.const.{succ u2, succ u1} δ α (f a))
+but is expected to have type
+  forall {α : Type.{u2}} {δ : Type.{u1}} [_inst_3 : MeasurableSpace.{u2} α] [_inst_4 : MeasurableSingletonClass.{u2} α _inst_3] {a : α} (f : α -> δ), Filter.EventuallyEq.{u2, u1} α δ (MeasureTheory.Measure.ae.{u2} α _inst_3 (MeasureTheory.Measure.dirac.{u2} α _inst_3 a)) f (Function.const.{succ u1, succ u2} δ α (f a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_dirac MeasureTheory.ae_eq_diracₓ'. -/
 theorem ae_eq_dirac [MeasurableSingletonClass α] {a : α} (f : α → δ) :
     f =ᵐ[dirac a] const α (f a) := by simp [Filter.EventuallyEq]
 #align measure_theory.ae_eq_dirac MeasureTheory.ae_eq_dirac
@@ -3073,37 +4767,71 @@ section IsFiniteMeasure
 
 include m0
 
+#print MeasureTheory.FiniteMeasure /-
 /-- A measure `μ` is called finite if `μ univ < ∞`. -/
-class IsFiniteMeasure (μ : Measure α) : Prop where
+class FiniteMeasure (μ : Measure α) : Prop where
   measure_univ_lt_top : μ univ < ∞
-#align measure_theory.is_finite_measure MeasureTheory.IsFiniteMeasure
+#align measure_theory.is_finite_measure MeasureTheory.FiniteMeasure
+-/
 
-theorem not_isFiniteMeasure_iff : ¬IsFiniteMeasure μ ↔ μ Set.univ = ∞ :=
+/- warning: measure_theory.not_is_finite_measure_iff -> MeasureTheory.not_finiteMeasure_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Not (MeasureTheory.FiniteMeasure.{u1} α m0 μ)) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Not (MeasureTheory.FiniteMeasure.{u1} α m0 μ)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.not_is_finite_measure_iff MeasureTheory.not_finiteMeasure_iffₓ'. -/
+theorem not_finiteMeasure_iff : ¬FiniteMeasure μ ↔ μ Set.univ = ∞ :=
   by
   refine' ⟨fun h => _, fun h => fun h' => h'.measure_univ_lt_top.ne h⟩
   by_contra h'
   exact h ⟨lt_top_iff_ne_top.mpr h'⟩
-#align measure_theory.not_is_finite_measure_iff MeasureTheory.not_isFiniteMeasure_iff
-
-instance Restrict.isFiniteMeasure (μ : Measure α) [hs : Fact (μ s < ∞)] :
-    IsFiniteMeasure (μ.restrict s) :=
+#align measure_theory.not_is_finite_measure_iff MeasureTheory.not_finiteMeasure_iff
+
+/- warning: measure_theory.restrict.is_finite_measure -> MeasureTheory.Restrict.finiteMeasure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [hs : Fact (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))], MeasureTheory.FiniteMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {s : Set.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [hs : Fact (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))], MeasureTheory.FiniteMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.finiteMeasureₓ'. -/
+instance Restrict.finiteMeasure (μ : Measure α) [hs : Fact (μ s < ∞)] :
+    FiniteMeasure (μ.restrict s) :=
   ⟨by simp [hs.elim]⟩
-#align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.isFiniteMeasure
-
-theorem measure_lt_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s < ∞ :=
-  (measure_mono (subset_univ s)).trans_lt IsFiniteMeasure.measure_univ_lt_top
+#align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.finiteMeasure
+
+/- warning: measure_theory.measure_lt_top -> MeasureTheory.measure_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_lt_top MeasureTheory.measure_lt_topₓ'. -/
+theorem measure_lt_top (μ : Measure α) [FiniteMeasure μ] (s : Set α) : μ s < ∞ :=
+  (measure_mono (subset_univ s)).trans_lt FiniteMeasure.measure_univ_lt_top
 #align measure_theory.measure_lt_top MeasureTheory.measure_lt_top
 
-instance isFiniteMeasure_restrict (μ : Measure α) (s : Set α) [h : IsFiniteMeasure μ] :
-    IsFiniteMeasure (μ.restrict s) :=
+#print MeasureTheory.finiteMeasureRestrict /-
+instance finiteMeasureRestrict (μ : Measure α) (s : Set α) [h : FiniteMeasure μ] :
+    FiniteMeasure (μ.restrict s) :=
   ⟨by simp [measure_lt_top μ s]⟩
-#align measure_theory.is_finite_measure_restrict MeasureTheory.isFiniteMeasure_restrict
+#align measure_theory.is_finite_measure_restrict MeasureTheory.finiteMeasureRestrict
+-/
 
-theorem measure_ne_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s ≠ ∞ :=
+/- warning: measure_theory.measure_ne_top -> MeasureTheory.measure_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] (s : Set.{u1} α), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_ne_top MeasureTheory.measure_ne_topₓ'. -/
+theorem measure_ne_top (μ : Measure α) [FiniteMeasure μ] (s : Set α) : μ s ≠ ∞ :=
   ne_of_lt (measure_lt_top μ s)
 #align measure_theory.measure_ne_top MeasureTheory.measure_ne_top
 
-theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet s)
+/- warning: measure_theory.measure_compl_le_add_of_le_add -> MeasureTheory.measure_compl_le_add_of_le_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) ε)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) ε)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) ε)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) ε)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_addₓ'. -/
+theorem measure_compl_le_add_of_le_add [FiniteMeasure μ] (hs : MeasurableSet s)
     (ht : MeasurableSet t) {ε : ℝ≥0∞} (h : μ s ≤ μ t + ε) : μ (tᶜ) ≤ μ (sᶜ) + ε :=
   by
   rw [measure_compl ht (measure_ne_top μ _), measure_compl hs (measure_ne_top μ _),
@@ -3115,94 +4843,155 @@ theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet
     
 #align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_add
 
-theorem measure_compl_le_add_iff [IsFiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
+/- warning: measure_theory.measure_compl_le_add_iff -> MeasureTheory.measure_compl_le_add_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t)) ε)) (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) ε)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (MeasurableSet.{u1} α m0 t) -> (forall {ε : ENNReal}, Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) t)) ε)) (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) ε)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_compl_le_add_iff MeasureTheory.measure_compl_le_add_iffₓ'. -/
+theorem measure_compl_le_add_iff [FiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
     {ε : ℝ≥0∞} : μ (sᶜ) ≤ μ (tᶜ) + ε ↔ μ t ≤ μ s + ε :=
   ⟨fun h => compl_compl s ▸ compl_compl t ▸ measure_compl_le_add_of_le_add hs.compl ht.compl h,
     measure_compl_le_add_of_le_add ht hs⟩
 #align measure_theory.measure_compl_le_add_iff MeasureTheory.measure_compl_le_add_iff
 
+#print MeasureTheory.measureUnivNNReal /-
 /-- The measure of the whole space with respect to a finite measure, considered as `ℝ≥0`. -/
-def measureUnivNnreal (μ : Measure α) : ℝ≥0 :=
+def measureUnivNNReal (μ : Measure α) : ℝ≥0 :=
   (μ univ).toNNReal
-#align measure_theory.measure_univ_nnreal MeasureTheory.measureUnivNnreal
+#align measure_theory.measure_univ_nnreal MeasureTheory.measureUnivNNReal
+-/
 
+#print MeasureTheory.coe_measureUnivNNReal /-
 @[simp]
-theorem coe_measureUnivNnreal (μ : Measure α) [IsFiniteMeasure μ] :
-    ↑(measureUnivNnreal μ) = μ univ :=
+theorem coe_measureUnivNNReal (μ : Measure α) [FiniteMeasure μ] : ↑(measureUnivNNReal μ) = μ univ :=
   ENNReal.coe_toNNReal (measure_ne_top μ univ)
-#align measure_theory.coe_measure_univ_nnreal MeasureTheory.coe_measureUnivNnreal
+#align measure_theory.coe_measure_univ_nnreal MeasureTheory.coe_measureUnivNNReal
+-/
 
-instance isFiniteMeasure_zero : IsFiniteMeasure (0 : Measure α) :=
+#print MeasureTheory.finiteMeasureZero /-
+instance finiteMeasureZero : FiniteMeasure (0 : Measure α) :=
   ⟨by simp⟩
-#align measure_theory.is_finite_measure_zero MeasureTheory.isFiniteMeasure_zero
+#align measure_theory.is_finite_measure_zero MeasureTheory.finiteMeasureZero
+-/
 
-instance (priority := 100) isFiniteMeasure_of_isEmpty [IsEmpty α] : IsFiniteMeasure μ :=
+#print MeasureTheory.finiteMeasureOfIsEmpty /-
+instance (priority := 100) finiteMeasureOfIsEmpty [IsEmpty α] : FiniteMeasure μ :=
   by
   rw [eq_zero_of_is_empty μ]
   infer_instance
-#align measure_theory.is_finite_measure_of_is_empty MeasureTheory.isFiniteMeasure_of_isEmpty
+#align measure_theory.is_finite_measure_of_is_empty MeasureTheory.finiteMeasureOfIsEmpty
+-/
 
+/- warning: measure_theory.measure_univ_nnreal_zero -> MeasureTheory.measureUnivNNReal_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, Eq.{1} NNReal (MeasureTheory.measureUnivNNReal.{u1} α m0 (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α}, Eq.{1} NNReal (MeasureTheory.measureUnivNNReal.{u1} α m0 (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_univ_nnreal_zero MeasureTheory.measureUnivNNReal_zeroₓ'. -/
 @[simp]
-theorem measureUnivNnreal_zero : measureUnivNnreal (0 : Measure α) = 0 :=
+theorem measureUnivNNReal_zero : measureUnivNNReal (0 : Measure α) = 0 :=
   rfl
-#align measure_theory.measure_univ_nnreal_zero MeasureTheory.measureUnivNnreal_zero
+#align measure_theory.measure_univ_nnreal_zero MeasureTheory.measureUnivNNReal_zero
 
 omit m0
 
-instance isFiniteMeasure_add [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFiniteMeasure (μ + ν)
+#print MeasureTheory.finiteMeasureAdd /-
+instance finiteMeasureAdd [FiniteMeasure μ] [FiniteMeasure ν] : FiniteMeasure (μ + ν)
     where measure_univ_lt_top :=
     by
     rw [measure.coe_add, Pi.add_apply, ENNReal.add_lt_top]
     exact ⟨measure_lt_top _ _, measure_lt_top _ _⟩
-#align measure_theory.is_finite_measure_add MeasureTheory.isFiniteMeasure_add
+#align measure_theory.is_finite_measure_add MeasureTheory.finiteMeasureAdd
+-/
 
-instance isFiniteMeasure_smul_nNReal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFiniteMeasure (r • μ)
+/- warning: measure_theory.is_finite_measure_smul_nnreal -> MeasureTheory.finiteMeasureSmulNNReal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {r : NNReal}, MeasureTheory.FiniteMeasure.{u1} α m0 (SMul.smul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (MulAction.toHasSmul.{0, 0} NNReal ENNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (ENNReal.mulAction.{0} ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.isScalarTower.{0, 0} ENNReal ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) m0) r μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {r : NNReal}, MeasureTheory.FiniteMeasure.{u1} α m0 (HSMul.hSMul.{0, u1, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (ENNReal.instIsScalarTowerNNRealToSMulToMonoidToMonoidWithZeroInstNNRealSemiringInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiringToSMulInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0, 0} ENNReal ENNReal (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) m0)) r μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.finiteMeasureSmulNNRealₓ'. -/
+instance finiteMeasureSmulNNReal [FiniteMeasure μ] {r : ℝ≥0} : FiniteMeasure (r • μ)
     where measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
-#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.isFiniteMeasure_smul_nNReal
+#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.finiteMeasureSmulNNReal
 
-instance isFiniteMeasure_smul_of_nNReal_tower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞]
-    [IsScalarTower R ℝ≥0 ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [IsFiniteMeasure μ] {r : R} :
-    IsFiniteMeasure (r • μ) := by
+/- warning: measure_theory.is_finite_measure_smul_of_nnreal_tower -> MeasureTheory.finiteMeasureSmulOfNNRealTower is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {R : Type.{u2}} [_inst_3 : SMul.{u2, 0} R NNReal] [_inst_4 : SMul.{u2, 0} R ENNReal] [_inst_5 : IsScalarTower.{u2, 0, 0} R NNReal ENNReal _inst_3 (SMulZeroClass.toHasSmul.{0, 0} NNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} NNReal ENNReal (MulZeroClass.toHasZero.{0} NNReal (MulZeroOneClass.toMulZeroClass.{0} NNReal (MonoidWithZero.toMulZeroOneClass.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} NNReal ENNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} NNReal ENNReal NNReal.semiring (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (ENNReal.module.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Semiring.toModule.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) _inst_4] [_inst_6 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_4 (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) _inst_4] [_inst_7 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {r : R}, MeasureTheory.FiniteMeasure.{u1} α m0 (SMul.smul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R _inst_4 _inst_6 m0) r μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {R : Type.{u2}} [_inst_3 : SMul.{u2, 0} R NNReal] [_inst_4 : SMul.{u2, 0} R ENNReal] [_inst_5 : IsScalarTower.{u2, 0, 0} R NNReal ENNReal _inst_3 (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) _inst_4] [_inst_6 : IsScalarTower.{u2, 0, 0} R ENNReal ENNReal _inst_4 (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) _inst_4] [_inst_7 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {r : R}, MeasureTheory.FiniteMeasure.{u1} α m0 (HSMul.hSMul.{u2, u1, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{u2, u1} R (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, u2} α R _inst_4 _inst_6 m0)) r μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.finiteMeasureSmulOfNNRealTowerₓ'. -/
+instance finiteMeasureSmulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
+    [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [FiniteMeasure μ] {r : R} : FiniteMeasure (r • μ) :=
+  by
   rw [← smul_one_smul ℝ≥0 r μ]
   infer_instance
-#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.isFiniteMeasure_smul_of_nNReal_tower
+#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.finiteMeasureSmulOfNNRealTower
 
-theorem isFiniteMeasure_of_le (μ : Measure α) [IsFiniteMeasure μ] (h : ν ≤ μ) : IsFiniteMeasure ν :=
+#print MeasureTheory.finiteMeasureOfLe /-
+theorem finiteMeasureOfLe (μ : Measure α) [FiniteMeasure μ] (h : ν ≤ μ) : FiniteMeasure ν :=
   { measure_univ_lt_top := lt_of_le_of_lt (h Set.univ MeasurableSet.univ) (measure_lt_top _ _) }
-#align measure_theory.is_finite_measure_of_le MeasureTheory.isFiniteMeasure_of_le
+#align measure_theory.is_finite_measure_of_le MeasureTheory.finiteMeasureOfLe
+-/
 
+/- warning: measure_theory.measure.is_finite_measure_map -> MeasureTheory.Measure.finiteMeasureMap is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m μ] (f : α -> β), MeasureTheory.FiniteMeasure.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m f μ)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} β] {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) [_inst_3 : MeasureTheory.FiniteMeasure.{u2} α m μ] (f : α -> β), MeasureTheory.FiniteMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m f μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.finiteMeasureMapₓ'. -/
 @[instance]
-theorem Measure.isFiniteMeasure_map {m : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
-    (f : α → β) : IsFiniteMeasure (μ.map f) :=
+theorem Measure.finiteMeasureMap {m : MeasurableSpace α} (μ : Measure α) [FiniteMeasure μ]
+    (f : α → β) : FiniteMeasure (μ.map f) :=
   by
   by_cases hf : AEMeasurable f μ
   · constructor
     rw [map_apply_of_ae_measurable hf MeasurableSet.univ]
     exact measure_lt_top μ _
   · rw [map_of_not_ae_measurable hf]
-    exact MeasureTheory.isFiniteMeasure_zero
-#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.isFiniteMeasure_map
-
+    exact MeasureTheory.finiteMeasureZero
+#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.finiteMeasureMap
+
+/- warning: measure_theory.measure_univ_nnreal_eq_zero -> MeasureTheory.measureUnivNNReal_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], Iff (Eq.{1} NNReal (MeasureTheory.measureUnivNNReal.{u1} α m0 μ) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], Iff (Eq.{1} NNReal (MeasureTheory.measureUnivNNReal.{u1} α m0 μ) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero))) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_univ_nnreal_eq_zero MeasureTheory.measureUnivNNReal_eq_zeroₓ'. -/
 @[simp]
-theorem measureUnivNnreal_eq_zero [IsFiniteMeasure μ] : measureUnivNnreal μ = 0 ↔ μ = 0 :=
+theorem measureUnivNNReal_eq_zero [FiniteMeasure μ] : measureUnivNNReal μ = 0 ↔ μ = 0 :=
   by
   rw [← MeasureTheory.Measure.measure_univ_eq_zero, ← coe_measure_univ_nnreal]
   norm_cast
-#align measure_theory.measure_univ_nnreal_eq_zero MeasureTheory.measureUnivNnreal_eq_zero
+#align measure_theory.measure_univ_nnreal_eq_zero MeasureTheory.measureUnivNNReal_eq_zero
 
-theorem measureUnivNnreal_pos [IsFiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureUnivNnreal μ :=
+/- warning: measure_theory.measure_univ_nnreal_pos -> MeasureTheory.measureUnivNNReal_pos is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (MeasureTheory.measureUnivNNReal.{u1} α m0 μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (MeasureTheory.measureUnivNNReal.{u1} α m0 μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNNReal_posₓ'. -/
+theorem measureUnivNNReal_pos [FiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureUnivNNReal μ :=
   by
   contrapose! hμ
   simpa [measure_univ_nnreal_eq_zero, le_zero_iff] using hμ
-#align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNnreal_pos
+#align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNNReal_pos
 
+#print MeasureTheory.Measure.le_of_add_le_add_left /-
 /-- `le_of_add_le_add_left` is normally applicable to `ordered_cancel_add_comm_monoid`,
 but it holds for measures with the additional assumption that μ is finite. -/
-theorem Measure.le_of_add_le_add_left [IsFiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
+theorem Measure.le_of_add_le_add_left [FiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
   fun S B1 => ENNReal.le_of_add_le_add_left (MeasureTheory.measure_ne_top μ S) (A2 S B1)
 #align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_left
+-/
 
-theorem summable_measure_toReal [hμ : IsFiniteMeasure μ] {f : ℕ → Set α}
+/- warning: measure_theory.summable_measure_to_real -> MeasureTheory.summable_measure_toReal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [hμ : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {f : Nat -> (Set.{u1} α)}, (forall (i : Nat), MeasurableSet.{u1} α m0 (f i)) -> (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) f)) -> (Summable.{0, 0} Real Nat Real.addCommMonoid (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : Nat) => ENNReal.toReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [hμ : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {f : Nat -> (Set.{u1} α)}, (forall (i : Nat), MeasurableSet.{u1} α m0 (f i)) -> (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) f)) -> (Summable.{0, 0} Real Nat Real.instAddCommMonoidReal (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (fun (x : Nat) => ENNReal.toReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (f x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.summable_measure_to_real MeasureTheory.summable_measure_toRealₓ'. -/
+theorem summable_measure_toReal [hμ : FiniteMeasure μ] {f : ℕ → Set α}
     (hf₁ : ∀ i : ℕ, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
     Summable fun x => (μ (f x)).toReal :=
   by
@@ -3211,7 +5000,8 @@ theorem summable_measure_toReal [hμ : IsFiniteMeasure μ] {f : ℕ → Set α}
   exact ne_of_lt (measure_lt_top _ _)
 #align measure_theory.summable_measure_to_real MeasureTheory.summable_measure_toReal
 
-theorem ae_eq_univ_iff_measure_eq [IsFiniteMeasure μ] (hs : NullMeasurableSet s μ) :
+#print MeasureTheory.ae_eq_univ_iff_measure_eq /-
+theorem ae_eq_univ_iff_measure_eq [FiniteMeasure μ] (hs : NullMeasurableSet s μ) :
     s =ᵐ[μ] univ ↔ μ s = μ univ :=
   by
   refine' ⟨measure_congr, fun h => _⟩
@@ -3221,18 +5011,23 @@ theorem ae_eq_univ_iff_measure_eq [IsFiniteMeasure μ] (hs : NullMeasurableSet s
       (ae_eq_of_subset_of_measure_ge (subset_univ t) (Eq.le ((measure_congr ht₂).trans h).symm) ht₁
         (measure_ne_top μ univ))
 #align measure_theory.ae_eq_univ_iff_measure_eq MeasureTheory.ae_eq_univ_iff_measure_eq
+-/
 
-theorem ae_iff_measure_eq [IsFiniteMeasure μ] {p : α → Prop}
-    (hp : NullMeasurableSet { a | p a } μ) : (∀ᵐ a ∂μ, p a) ↔ μ { a | p a } = μ univ := by
+#print MeasureTheory.ae_iff_measure_eq /-
+theorem ae_iff_measure_eq [FiniteMeasure μ] {p : α → Prop} (hp : NullMeasurableSet { a | p a } μ) :
+    (∀ᵐ a ∂μ, p a) ↔ μ { a | p a } = μ univ := by
   rw [← ae_eq_univ_iff_measure_eq hp, eventually_eq_univ, eventually_iff]
 #align measure_theory.ae_iff_measure_eq MeasureTheory.ae_iff_measure_eq
+-/
 
-theorem ae_mem_iff_measure_eq [IsFiniteMeasure μ] {s : Set α} (hs : NullMeasurableSet s μ) :
+#print MeasureTheory.ae_mem_iff_measure_eq /-
+theorem ae_mem_iff_measure_eq [FiniteMeasure μ] {s : Set α} (hs : NullMeasurableSet s μ) :
     (∀ᵐ a ∂μ, a ∈ s) ↔ μ s = μ univ :=
   ae_iff_measure_eq hs
 #align measure_theory.ae_mem_iff_measure_eq MeasureTheory.ae_mem_iff_measure_eq
+-/
 
-instance [Finite α] [MeasurableSpace α] : IsFiniteMeasure (Measure.count : Measure α) :=
+instance [Finite α] [MeasurableSpace α] : FiniteMeasure (Measure.count : Measure α) :=
   ⟨by
     cases nonempty_fintype α
     simpa [measure.count_apply, tsum_fintype] using (ENNReal.nat_ne_top _).lt_top⟩
@@ -3243,77 +5038,134 @@ section IsProbabilityMeasure
 
 include m0
 
+#print MeasureTheory.ProbabilityMeasure /-
 /-- A measure `μ` is called a probability measure if `μ univ = 1`. -/
-class IsProbabilityMeasure (μ : Measure α) : Prop where
+class ProbabilityMeasure (μ : Measure α) : Prop where
   measure_univ : μ univ = 1
-#align measure_theory.is_probability_measure MeasureTheory.IsProbabilityMeasure
+#align measure_theory.is_probability_measure MeasureTheory.ProbabilityMeasure
+-/
 
 export IsProbabilityMeasure (measure_univ)
 
 attribute [simp] is_probability_measure.measure_univ
 
-instance (priority := 100) IsProbabilityMeasure.to_isFiniteMeasure (μ : Measure α)
-    [IsProbabilityMeasure μ] : IsFiniteMeasure μ :=
+#print MeasureTheory.ProbabilityMeasure.toIsFiniteMeasure /-
+instance (priority := 100) ProbabilityMeasure.toIsFiniteMeasure (μ : Measure α)
+    [ProbabilityMeasure μ] : FiniteMeasure μ :=
   ⟨by simp only [measure_univ, ENNReal.one_lt_top]⟩
-#align measure_theory.is_probability_measure.to_is_finite_measure MeasureTheory.IsProbabilityMeasure.to_isFiniteMeasure
+#align measure_theory.is_probability_measure.to_is_finite_measure MeasureTheory.ProbabilityMeasure.toIsFiniteMeasure
+-/
 
-theorem IsProbabilityMeasure.ne_zero (μ : Measure α) [IsProbabilityMeasure μ] : μ ≠ 0 :=
+#print MeasureTheory.ProbabilityMeasure.ne_zero /-
+theorem ProbabilityMeasure.ne_zero (μ : Measure α) [ProbabilityMeasure μ] : μ ≠ 0 :=
   mt measure_univ_eq_zero.2 <| by simp [measure_univ]
-#align measure_theory.is_probability_measure.ne_zero MeasureTheory.IsProbabilityMeasure.ne_zero
+#align measure_theory.is_probability_measure.ne_zero MeasureTheory.ProbabilityMeasure.ne_zero
+-/
 
-instance (priority := 200) IsProbabilityMeasure.ae_neBot [IsProbabilityMeasure μ] : NeBot μ.ae :=
-  ae_neBot.2 (IsProbabilityMeasure.ne_zero μ)
-#align measure_theory.is_probability_measure.ae_ne_bot MeasureTheory.IsProbabilityMeasure.ae_neBot
+#print MeasureTheory.ProbabilityMeasure.ae_neBot /-
+instance (priority := 200) ProbabilityMeasure.ae_neBot [ProbabilityMeasure μ] : NeBot μ.ae :=
+  ae_neBot.2 (ProbabilityMeasure.ne_zero μ)
+#align measure_theory.is_probability_measure.ae_ne_bot MeasureTheory.ProbabilityMeasure.ae_neBot
+-/
 
 omit m0
 
+#print MeasureTheory.Measure.dirac.isProbabilityMeasure /-
 instance Measure.dirac.isProbabilityMeasure [MeasurableSpace α] {x : α} :
-    IsProbabilityMeasure (dirac x) :=
+    ProbabilityMeasure (dirac x) :=
   ⟨dirac_apply_of_mem <| mem_univ x⟩
 #align measure_theory.measure.dirac.is_probability_measure MeasureTheory.Measure.dirac.isProbabilityMeasure
+-/
 
-theorem prob_add_prob_compl [IsProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ (sᶜ) = 1 :=
+/- warning: measure_theory.prob_add_prob_compl -> MeasureTheory.prob_add_prob_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s))) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.prob_add_prob_compl MeasureTheory.prob_add_prob_complₓ'. -/
+theorem prob_add_prob_compl [ProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ (sᶜ) = 1 :=
   (measure_add_measure_compl h).trans measure_univ
 #align measure_theory.prob_add_prob_compl MeasureTheory.prob_add_prob_compl
 
-theorem prob_le_one [IsProbabilityMeasure μ] : μ s ≤ 1 :=
+/- warning: measure_theory.prob_le_one -> MeasureTheory.prob_le_one is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.prob_le_one MeasureTheory.prob_le_oneₓ'. -/
+theorem prob_le_one [ProbabilityMeasure μ] : μ s ≤ 1 :=
   (measure_mono <| Set.subset_univ _).trans_eq measure_univ
 #align measure_theory.prob_le_one MeasureTheory.prob_le_one
 
-theorem isProbabilityMeasure_smul [IsFiniteMeasure μ] (h : μ ≠ 0) :
-    IsProbabilityMeasure ((μ univ)⁻¹ • μ) :=
-  by
+/- warning: measure_theory.is_probability_measure_smul -> MeasureTheory.isProbabilityMeasureSmul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (MeasureTheory.ProbabilityMeasure.{u1} α m0 (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) (Inv.inv.{0} ENNReal ENNReal.hasInv (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α))) μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ], (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (MeasureTheory.ProbabilityMeasure.{u1} α m0 (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α))) μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmulₓ'. -/
+theorem isProbabilityMeasureSmul [FiniteMeasure μ] (h : μ ≠ 0) :
+    ProbabilityMeasure ((μ univ)⁻¹ • μ) := by
   constructor
   rw [smul_apply, smul_eq_mul, ENNReal.inv_mul_cancel]
   · rwa [Ne, measure_univ_eq_zero]
   · exact measure_ne_top _ _
-#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasure_smul
-
-theorem isProbabilityMeasure_map [IsProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
-    IsProbabilityMeasure (map f μ) :=
+#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmul
+
+/- warning: measure_theory.is_probability_measure_map -> MeasureTheory.isProbabilityMeasureMap is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ] {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (MeasureTheory.ProbabilityMeasure.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u2} α m0 μ] {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (MeasureTheory.ProbabilityMeasure.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasureMapₓ'. -/
+theorem isProbabilityMeasureMap [ProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
+    ProbabilityMeasure (map f μ) :=
   ⟨by simp [map_apply_of_ae_measurable, hf]⟩
-#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasure_map
-
+#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasureMap
+
+/- warning: measure_theory.one_le_prob_iff -> MeasureTheory.one_le_prob_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], Iff (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.one_le_prob_iff MeasureTheory.one_le_prob_iffₓ'. -/
 @[simp]
-theorem one_le_prob_iff [IsProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
+theorem one_le_prob_iff [ProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
   ⟨fun h => le_antisymm prob_le_one h, fun h => h ▸ le_refl _⟩
 #align measure_theory.one_le_prob_iff MeasureTheory.one_le_prob_iff
 
+/- warning: measure_theory.prob_compl_eq_one_sub -> MeasureTheory.prob_compl_eq_one_sub is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSubENNReal) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.prob_compl_eq_one_sub MeasureTheory.prob_compl_eq_one_subₓ'. -/
 /-- Note that this is not quite as useful as it looks because the measure takes values in `ℝ≥0∞`.
 Thus the subtraction appearing is the truncated subtraction of `ℝ≥0∞`, rather than the
 better-behaved subtraction of `ℝ`. -/
-theorem prob_compl_eq_one_sub [IsProbabilityMeasure μ] (hs : MeasurableSet s) : μ (sᶜ) = 1 - μ s :=
-  by simpa only [measure_univ] using measure_compl hs (measure_lt_top μ s).Ne
+theorem prob_compl_eq_one_sub [ProbabilityMeasure μ] (hs : MeasurableSet s) : μ (sᶜ) = 1 - μ s := by
+  simpa only [measure_univ] using measure_compl hs (measure_lt_top μ s).Ne
 #align measure_theory.prob_compl_eq_one_sub MeasureTheory.prob_compl_eq_one_sub
 
+/- warning: measure_theory.prob_compl_eq_zero_iff -> MeasureTheory.prob_compl_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.prob_compl_eq_zero_iff MeasureTheory.prob_compl_eq_zero_iffₓ'. -/
 @[simp]
-theorem prob_compl_eq_zero_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
+theorem prob_compl_eq_zero_iff [ProbabilityMeasure μ] (hs : MeasurableSet s) :
     μ (sᶜ) = 0 ↔ μ s = 1 := by
   simp only [prob_compl_eq_one_sub hs, tsub_eq_zero_iff_le, one_le_prob_iff]
 #align measure_theory.prob_compl_eq_zero_iff MeasureTheory.prob_compl_eq_zero_iff
 
+/- warning: measure_theory.prob_compl_eq_one_iff -> MeasureTheory.prob_compl_eq_one_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.ProbabilityMeasure.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.prob_compl_eq_one_iff MeasureTheory.prob_compl_eq_one_iffₓ'. -/
 @[simp]
-theorem prob_compl_eq_one_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
+theorem prob_compl_eq_one_iff [ProbabilityMeasure μ] (hs : MeasurableSet s) :
     μ (sᶜ) = 1 ↔ μ s = 0 := by rwa [← prob_compl_eq_zero_iff hs.compl, compl_compl]
 #align measure_theory.prob_compl_eq_one_iff MeasureTheory.prob_compl_eq_one_iff
 
@@ -3321,31 +5173,41 @@ end IsProbabilityMeasure
 
 section NoAtoms
 
+#print MeasureTheory.NoAtoms /-
 /-- Measure `μ` *has no atoms* if the measure of each singleton is zero.
 
 NB: Wikipedia assumes that for any measurable set `s` with positive `μ`-measure,
 there exists a measurable `t ⊆ s` such that `0 < μ t < μ s`. While this implies `μ {x} = 0`,
 the converse is not true. -/
-class HasNoAtoms {m0 : MeasurableSpace α} (μ : Measure α) : Prop where
+class NoAtoms {m0 : MeasurableSpace α} (μ : Measure α) : Prop where
   measure_singleton : ∀ x, μ {x} = 0
-#align measure_theory.has_no_atoms MeasureTheory.HasNoAtoms
+#align measure_theory.has_no_atoms MeasureTheory.NoAtoms
+-/
 
 export HasNoAtoms (measure_singleton)
 
 attribute [simp] measure_singleton
 
-variable [HasNoAtoms μ]
+variable [NoAtoms μ]
 
+/- warning: set.subsingleton.measure_zero -> Set.Subsingleton.measure_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Subsingleton.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Subsingleton.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align set.subsingleton.measure_zero Set.Subsingleton.measure_zeroₓ'. -/
 theorem Set.Subsingleton.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α}
-    (hs : s.Subsingleton) (μ : Measure α) [HasNoAtoms μ] : μ s = 0 :=
+    (hs : s.Subsingleton) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   hs.inductionOn measure_empty measure_singleton
 #align set.subsingleton.measure_zero Set.Subsingleton.measure_zero
 
+#print MeasureTheory.Measure.restrict_singleton' /-
 theorem Measure.restrict_singleton' {a : α} : μ.restrict {a} = 0 := by
   simp only [measure_singleton, measure.restrict_eq_zero]
 #align measure_theory.measure.restrict_singleton' MeasureTheory.Measure.restrict_singleton'
+-/
 
-instance (s : Set α) : HasNoAtoms (μ.restrict s) :=
+instance (s : Set α) : NoAtoms (μ.restrict s) :=
   by
   refine' ⟨fun x => _⟩
   obtain ⟨t, hxt, ht1, ht2⟩ := exists_measurable_superset_of_null (measure_singleton x : μ {x} = 0)
@@ -3353,79 +5215,125 @@ instance (s : Set α) : HasNoAtoms (μ.restrict s) :=
   rw [measure.restrict_apply ht1]
   apply measure_mono_null (inter_subset_left t s) ht2
 
+/- warning: set.countable.measure_zero -> Set.Countable.measure_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align set.countable.measure_zero Set.Countable.measure_zeroₓ'. -/
 theorem Set.Countable.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α}
-    (h : s.Countable) (μ : Measure α) [HasNoAtoms μ] : μ s = 0 :=
+    (h : s.Countable) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   by
   rw [← bUnion_of_singleton s, ← nonpos_iff_eq_zero]
   refine' le_trans (measure_bUnion_le h _) _
   simp
 #align set.countable.measure_zero Set.Countable.measure_zero
 
+#print Set.Countable.ae_not_mem /-
 theorem Set.Countable.ae_not_mem {α : Type _} {m : MeasurableSpace α} {s : Set α} (h : s.Countable)
-    (μ : Measure α) [HasNoAtoms μ] : ∀ᵐ x ∂μ, x ∉ s := by
+    (μ : Measure α) [NoAtoms μ] : ∀ᵐ x ∂μ, x ∉ s := by
   simpa only [ae_iff, Classical.not_not] using h.measure_zero μ
 #align set.countable.ae_not_mem Set.Countable.ae_not_mem
+-/
 
+/- warning: set.finite.measure_zero -> Set.Finite.measure_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {s : Set.{u1} α}, (Set.Finite.{u1} α s) -> (forall (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align set.finite.measure_zero Set.Finite.measure_zeroₓ'. -/
 theorem Set.Finite.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α} (h : s.Finite)
-    (μ : Measure α) [HasNoAtoms μ] : μ s = 0 :=
+    (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   h.Countable.measure_zero μ
 #align set.finite.measure_zero Set.Finite.measure_zero
 
+/- warning: finset.measure_zero -> Finset.measure_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (s : Finset.{u1} α) (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (s : Finset.{u1} α) (μ : MeasureTheory.Measure.{u1} α m) [_inst_4 : MeasureTheory.NoAtoms.{u1} α m μ], Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Finset.toSet.{u1} α s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
+Case conversion may be inaccurate. Consider using '#align finset.measure_zero Finset.measure_zeroₓ'. -/
 theorem Finset.measure_zero {α : Type _} {m : MeasurableSpace α} (s : Finset α) (μ : Measure α)
-    [HasNoAtoms μ] : μ s = 0 :=
+    [NoAtoms μ] : μ s = 0 :=
   s.finite_toSet.measure_zero μ
 #align finset.measure_zero Finset.measure_zero
 
+#print MeasureTheory.insert_ae_eq_self /-
 theorem insert_ae_eq_self (a : α) (s : Set α) : (insert a s : Set α) =ᵐ[μ] s :=
   union_ae_eq_right.2 <| measure_mono_null (diff_subset _ _) (measure_singleton _)
 #align measure_theory.insert_ae_eq_self MeasureTheory.insert_ae_eq_self
+-/
 
 section
 
 variable [PartialOrder α] {a b : α}
 
+#print MeasureTheory.Iio_ae_eq_Iic /-
 theorem Iio_ae_eq_Iic : Iio a =ᵐ[μ] Iic a :=
   Iio_ae_eq_Iic' (measure_singleton a)
 #align measure_theory.Iio_ae_eq_Iic MeasureTheory.Iio_ae_eq_Iic
+-/
 
+#print MeasureTheory.Ioi_ae_eq_Ici /-
 theorem Ioi_ae_eq_Ici : Ioi a =ᵐ[μ] Ici a :=
   Ioi_ae_eq_Ici' (measure_singleton a)
 #align measure_theory.Ioi_ae_eq_Ici MeasureTheory.Ioi_ae_eq_Ici
+-/
 
+#print MeasureTheory.Ioo_ae_eq_Ioc /-
 theorem Ioo_ae_eq_Ioc : Ioo a b =ᵐ[μ] Ioc a b :=
   Ioo_ae_eq_Ioc' (measure_singleton b)
 #align measure_theory.Ioo_ae_eq_Ioc MeasureTheory.Ioo_ae_eq_Ioc
+-/
 
+#print MeasureTheory.Ioc_ae_eq_Icc /-
 theorem Ioc_ae_eq_Icc : Ioc a b =ᵐ[μ] Icc a b :=
   Ioc_ae_eq_Icc' (measure_singleton a)
 #align measure_theory.Ioc_ae_eq_Icc MeasureTheory.Ioc_ae_eq_Icc
+-/
 
+#print MeasureTheory.Ioo_ae_eq_Ico /-
 theorem Ioo_ae_eq_Ico : Ioo a b =ᵐ[μ] Ico a b :=
   Ioo_ae_eq_Ico' (measure_singleton a)
 #align measure_theory.Ioo_ae_eq_Ico MeasureTheory.Ioo_ae_eq_Ico
+-/
 
+#print MeasureTheory.Ioo_ae_eq_Icc /-
 theorem Ioo_ae_eq_Icc : Ioo a b =ᵐ[μ] Icc a b :=
   Ioo_ae_eq_Icc' (measure_singleton a) (measure_singleton b)
 #align measure_theory.Ioo_ae_eq_Icc MeasureTheory.Ioo_ae_eq_Icc
+-/
 
+#print MeasureTheory.Ico_ae_eq_Icc /-
 theorem Ico_ae_eq_Icc : Ico a b =ᵐ[μ] Icc a b :=
   Ico_ae_eq_Icc' (measure_singleton b)
 #align measure_theory.Ico_ae_eq_Icc MeasureTheory.Ico_ae_eq_Icc
+-/
 
+#print MeasureTheory.Ico_ae_eq_Ioc /-
 theorem Ico_ae_eq_Ioc : Ico a b =ᵐ[μ] Ioc a b :=
   Ico_ae_eq_Ioc' (measure_singleton a) (measure_singleton b)
 #align measure_theory.Ico_ae_eq_Ioc MeasureTheory.Ico_ae_eq_Ioc
+-/
 
 end
 
 open Interval
 
+#print MeasureTheory.uIoc_ae_eq_interval /-
 theorem uIoc_ae_eq_interval [LinearOrder α] {a b : α} : Ι a b =ᵐ[μ] [a, b] :=
   Ioc_ae_eq_Icc
 #align measure_theory.uIoc_ae_eq_interval MeasureTheory.uIoc_ae_eq_interval
+-/
 
 end NoAtoms
 
+/- warning: measure_theory.ite_ae_eq_of_measure_zero -> MeasureTheory.ite_ae_eq_of_measure_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {γ : Type.{u2}} (f : α -> γ) (g : α -> γ) (s : Set.{u1} α), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α m0 μ) (fun (x : α) => ite.{succ u2} γ (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (f x) (g x)) g)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {γ : Type.{u2}} (f : α -> γ) (g : α -> γ) (s : Set.{u1} α), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α m0 μ) (fun (x : α) => ite.{succ u2} γ (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (Classical.propDecidable (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (f x) (g x)) g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ite_ae_eq_of_measure_zero MeasureTheory.ite_ae_eq_of_measure_zeroₓ'. -/
 theorem ite_ae_eq_of_measure_zero {γ} (f : α → γ) (g : α → γ) (s : Set α) (hs_zero : μ s = 0) :
     (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] g :=
   by
@@ -3436,6 +5344,12 @@ theorem ite_ae_eq_of_measure_zero {γ} (f : α → γ) (g : α → γ) (s : Set
   rwa [Set.compl_subset_compl]
 #align measure_theory.ite_ae_eq_of_measure_zero MeasureTheory.ite_ae_eq_of_measure_zero
 
+/- warning: measure_theory.ite_ae_eq_of_measure_compl_zero -> MeasureTheory.ite_ae_eq_of_measure_compl_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {γ : Type.{u2}} (f : α -> γ) (g : α -> γ) (s : Set.{u1} α), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α m0 μ) (fun (x : α) => ite.{succ u2} γ (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) (f x) (g x)) f)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {γ : Type.{u2}} (f : α -> γ) (g : α -> γ) (s : Set.{u1} α), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α m0 μ) (fun (x : α) => ite.{succ u2} γ (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (Classical.propDecidable (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (f x) (g x)) f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ite_ae_eq_of_measure_compl_zero MeasureTheory.ite_ae_eq_of_measure_compl_zeroₓ'. -/
 theorem ite_ae_eq_of_measure_compl_zero {γ} (f : α → γ) (g : α → γ) (s : Set α)
     (hs_zero : μ (sᶜ) = 0) : (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] f :=
   by
@@ -3447,26 +5361,43 @@ theorem ite_ae_eq_of_measure_compl_zero {γ} (f : α → γ) (g : α → γ) (s
 
 namespace Measure
 
+#print MeasureTheory.Measure.FiniteAtFilter /-
 /-- A measure is called finite at filter `f` if it is finite at some set `s ∈ f`.
 Equivalently, it is eventually finite at `s` in `f.small_sets`. -/
 def FiniteAtFilter {m0 : MeasurableSpace α} (μ : Measure α) (f : Filter α) : Prop :=
   ∃ s ∈ f, μ s < ∞
 #align measure_theory.measure.finite_at_filter MeasureTheory.Measure.FiniteAtFilter
+-/
 
-theorem finiteAtFilter_of_finite {m0 : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
+#print MeasureTheory.Measure.finiteAtFilterOfFinite /-
+theorem finiteAtFilterOfFinite {m0 : MeasurableSpace α} (μ : Measure α) [FiniteMeasure μ]
     (f : Filter α) : μ.FiniteAtFilter f :=
   ⟨univ, univ_mem, measure_lt_top μ univ⟩
-#align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilter_of_finite
+#align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilterOfFinite
+-/
 
+/- warning: measure_theory.measure.finite_at_filter.exists_mem_basis -> MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (forall {p : ι -> Prop} {s : ι -> (Set.{u1} α)}, (Filter.HasBasis.{u1, succ u2} α ι f p s) -> (Exists.{succ u2} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (s i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
+but is expected to have type
+  forall {α : Type.{u2}} {ι : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {f : Filter.{u2} α}, (MeasureTheory.Measure.FiniteAtFilter.{u2} α m0 μ f) -> (forall {p : ι -> Prop} {s : ι -> (Set.{u2} α)}, (Filter.HasBasis.{u2, succ u1} α ι f p s) -> (Exists.{succ u1} ι (fun (i : ι) => And (p i) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (s i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.exists_mem_basis MeasureTheory.Measure.FiniteAtFilter.exists_mem_basisₓ'. -/
 theorem FiniteAtFilter.exists_mem_basis {f : Filter α} (hμ : FiniteAtFilter μ f) {p : ι → Prop}
     {s : ι → Set α} (hf : f.HasBasis p s) : ∃ (i : _)(hi : p i), μ (s i) < ∞ :=
   (hf.exists_iff fun s t hst ht => (measure_mono hst).trans_lt ht).1 hμ
 #align measure_theory.measure.finite_at_filter.exists_mem_basis MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis
 
-theorem finite_at_bot {m0 : MeasurableSpace α} (μ : Measure α) : μ.FiniteAtFilter ⊥ :=
+/- warning: measure_theory.measure.finite_at_bot -> MeasureTheory.Measure.finiteAtBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0), MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toHasBot.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0), MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toBot.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_bot MeasureTheory.Measure.finiteAtBotₓ'. -/
+theorem finiteAtBot {m0 : MeasurableSpace α} (μ : Measure α) : μ.FiniteAtFilter ⊥ :=
   ⟨∅, mem_bot, by simp only [measure_empty, WithTop.zero_lt_top]⟩
-#align measure_theory.measure.finite_at_bot MeasureTheory.Measure.finite_at_bot
+#align measure_theory.measure.finite_at_bot MeasureTheory.Measure.finiteAtBot
 
+#print MeasureTheory.Measure.FiniteSpanningSetsIn /-
 /-- `μ` has finite spanning sets in `C` if there is a countable sequence of sets in `C` that have
   finite measures. This structure is a type, which is useful if we want to record extra properties
   about the sets, such as that they are monotone.
@@ -3479,27 +5410,35 @@ structure FiniteSpanningSetsIn {m0 : MeasurableSpace α} (μ : Measure α) (C :
   Finite : ∀ i, μ (Set i) < ∞
   spanning : (⋃ i, Set i) = univ
 #align measure_theory.measure.finite_spanning_sets_in MeasureTheory.Measure.FiniteSpanningSetsIn
+-/
 
 end Measure
 
 open Measure
 
+#print MeasureTheory.SigmaFinite /-
 /-- A measure `μ` is called σ-finite if there is a countable collection of sets
  `{ A i | i ∈ ℕ }` such that `μ (A i) < ∞` and `⋃ i, A i = s`. -/
 class SigmaFinite {m0 : MeasurableSpace α} (μ : Measure α) : Prop where
   out' : Nonempty (μ.FiniteSpanningSetsIn univ)
 #align measure_theory.sigma_finite MeasureTheory.SigmaFinite
+-/
 
+#print MeasureTheory.sigmaFinite_iff /-
 theorem sigmaFinite_iff : SigmaFinite μ ↔ Nonempty (μ.FiniteSpanningSetsIn univ) :=
   ⟨fun h => h.1, fun h => ⟨h⟩⟩
 #align measure_theory.sigma_finite_iff MeasureTheory.sigmaFinite_iff
+-/
 
+#print MeasureTheory.SigmaFinite.out /-
 theorem SigmaFinite.out (h : SigmaFinite μ) : Nonempty (μ.FiniteSpanningSetsIn univ) :=
   h.1
 #align measure_theory.sigma_finite.out MeasureTheory.SigmaFinite.out
+-/
 
 include m0
 
+#print MeasureTheory.Measure.toFiniteSpanningSetsIn /-
 /-- If `μ` is σ-finite it has finite spanning sets in the collection of all measurable sets. -/
 def Measure.toFiniteSpanningSetsIn (μ : Measure α) [h : SigmaFinite μ] :
     μ.FiniteSpanningSetsIn { s | MeasurableSet s }
@@ -3511,81 +5450,136 @@ def Measure.toFiniteSpanningSetsIn (μ : Measure α) [h : SigmaFinite μ] :
     exact h.out.some.finite n
   spanning := eq_univ_of_subset (unionᵢ_mono fun n => subset_toMeasurable _ _) h.out.some.spanning
 #align measure_theory.measure.to_finite_spanning_sets_in MeasureTheory.Measure.toFiniteSpanningSetsIn
+-/
 
+#print MeasureTheory.spanningSets /-
 /-- A noncomputable way to get a monotone collection of sets that span `univ` and have finite
   measure using `classical.some`. This definition satisfies monotonicity in addition to all other
   properties in `sigma_finite`. -/
 def spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) : Set α :=
   Accumulate μ.toFiniteSpanningSetsIn.Set i
 #align measure_theory.spanning_sets MeasureTheory.spanningSets
+-/
 
+/- warning: measure_theory.monotone_spanning_sets -> MeasureTheory.monotone_spanningSets is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], Monotone.{0, u1} Nat (Set.{u1} α) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], Monotone.{0, u1} Nat (Set.{u1} α) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3)
+Case conversion may be inaccurate. Consider using '#align measure_theory.monotone_spanning_sets MeasureTheory.monotone_spanningSetsₓ'. -/
 theorem monotone_spanningSets (μ : Measure α) [SigmaFinite μ] : Monotone (spanningSets μ) :=
   monotone_accumulate
 #align measure_theory.monotone_spanning_sets MeasureTheory.monotone_spanningSets
 
+#print MeasureTheory.measurable_spanningSets /-
 theorem measurable_spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
     MeasurableSet (spanningSets μ i) :=
   MeasurableSet.unionᵢ fun j => MeasurableSet.unionᵢ fun hij => μ.toFiniteSpanningSetsIn.set_mem j
 #align measure_theory.measurable_spanning_sets MeasureTheory.measurable_spanningSets
+-/
 
+/- warning: measure_theory.measure_spanning_sets_lt_top -> MeasureTheory.measure_spanningSets_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (i : Nat), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (i : Nat), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_topₓ'. -/
 theorem measure_spanningSets_lt_top (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
     μ (spanningSets μ i) < ∞ :=
   measure_bunionᵢ_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.Finite j).Ne
 #align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_top
 
+#print MeasureTheory.unionᵢ_spanningSets /-
 theorem unionᵢ_spanningSets (μ : Measure α) [SigmaFinite μ] : (⋃ i : ℕ, spanningSets μ i) = univ :=
   by simp_rw [spanning_sets, Union_accumulate, μ.to_finite_spanning_sets_in.spanning]
 #align measure_theory.Union_spanning_sets MeasureTheory.unionᵢ_spanningSets
+-/
 
+#print MeasureTheory.isCountablySpanning_spanningSets /-
 theorem isCountablySpanning_spanningSets (μ : Measure α) [SigmaFinite μ] :
     IsCountablySpanning (range (spanningSets μ)) :=
   ⟨spanningSets μ, mem_range_self, unionᵢ_spanningSets μ⟩
 #align measure_theory.is_countably_spanning_spanning_sets MeasureTheory.isCountablySpanning_spanningSets
+-/
 
+#print MeasureTheory.spanningSetsIndex /-
 /-- `spanning_sets_index μ x` is the least `n : ℕ` such that `x ∈ spanning_sets μ n`. -/
 def spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) : ℕ :=
   Nat.find <| unionᵢ_eq_univ_iff.1 (unionᵢ_spanningSets μ) x
 #align measure_theory.spanning_sets_index MeasureTheory.spanningSetsIndex
+-/
 
+#print MeasureTheory.measurable_spanningSetsIndex /-
 theorem measurable_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] :
     Measurable (spanningSetsIndex μ) :=
   measurable_find _ <| measurable_spanningSets μ
 #align measure_theory.measurable_spanning_sets_index MeasureTheory.measurable_spanningSetsIndex
+-/
 
+/- warning: measure_theory.preimage_spanning_sets_index_singleton -> MeasureTheory.preimage_spanningSetsIndex_singleton is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (n : Nat), Eq.{succ u1} (Set.{u1} α) (Set.preimage.{u1, 0} α Nat (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3) (Singleton.singleton.{0, 0} Nat (Set.{0} Nat) (Set.hasSingleton.{0} Nat) n)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) n)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (n : Nat), Eq.{succ u1} (Set.{u1} α) (Set.preimage.{u1, 0} α Nat (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3) (Singleton.singleton.{0, 0} Nat (Set.{0} Nat) (Set.instSingletonSet.{0} Nat) n)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) n)
+Case conversion may be inaccurate. Consider using '#align measure_theory.preimage_spanning_sets_index_singleton MeasureTheory.preimage_spanningSetsIndex_singletonₓ'. -/
 theorem preimage_spanningSetsIndex_singleton (μ : Measure α) [SigmaFinite μ] (n : ℕ) :
     spanningSetsIndex μ ⁻¹' {n} = disjointed (spanningSets μ) n :=
   preimage_find_eq_disjointed _ _ _
 #align measure_theory.preimage_spanning_sets_index_singleton MeasureTheory.preimage_spanningSetsIndex_singleton
 
+/- warning: measure_theory.spanning_sets_index_eq_iff -> MeasureTheory.spanningSetsIndex_eq_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {x : α} {n : Nat}, Iff (Eq.{1} Nat (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3 x) n) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) n))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {x : α} {n : Nat}, Iff (Eq.{1} Nat (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3 x) n) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) n))
+Case conversion may be inaccurate. Consider using '#align measure_theory.spanning_sets_index_eq_iff MeasureTheory.spanningSetsIndex_eq_iffₓ'. -/
 theorem spanningSetsIndex_eq_iff (μ : Measure α) [SigmaFinite μ] {x : α} {n : ℕ} :
     spanningSetsIndex μ x = n ↔ x ∈ disjointed (spanningSets μ) n := by
   convert Set.ext_iff.1 (preimage_spanning_sets_index_singleton μ n) x
 #align measure_theory.spanning_sets_index_eq_iff MeasureTheory.spanningSetsIndex_eq_iff
 
+/- warning: measure_theory.mem_disjointed_spanning_sets_index -> MeasureTheory.mem_disjointed_spanningSetsIndex is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (x : α), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3 x))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (x : α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3) (MeasureTheory.spanningSetsIndex.{u1} α m0 μ _inst_3 x))
+Case conversion may be inaccurate. Consider using '#align measure_theory.mem_disjointed_spanning_sets_index MeasureTheory.mem_disjointed_spanningSetsIndexₓ'. -/
 theorem mem_disjointed_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) :
     x ∈ disjointed (spanningSets μ) (spanningSetsIndex μ x) :=
   (spanningSetsIndex_eq_iff μ).1 rfl
 #align measure_theory.mem_disjointed_spanning_sets_index MeasureTheory.mem_disjointed_spanningSetsIndex
 
+#print MeasureTheory.mem_spanningSetsIndex /-
 theorem mem_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) :
     x ∈ spanningSets μ (spanningSetsIndex μ x) :=
   disjointed_subset _ _ (mem_disjointed_spanningSetsIndex μ x)
 #align measure_theory.mem_spanning_sets_index MeasureTheory.mem_spanningSetsIndex
+-/
 
+#print MeasureTheory.mem_spanningSets_of_index_le /-
 theorem mem_spanningSets_of_index_le (μ : Measure α) [SigmaFinite μ] (x : α) {n : ℕ}
     (hn : spanningSetsIndex μ x ≤ n) : x ∈ spanningSets μ n :=
   monotone_spanningSets μ hn (mem_spanningSetsIndex μ x)
 #align measure_theory.mem_spanning_sets_of_index_le MeasureTheory.mem_spanningSets_of_index_le
+-/
 
+#print MeasureTheory.eventually_mem_spanningSets /-
 theorem eventually_mem_spanningSets (μ : Measure α) [SigmaFinite μ] (x : α) :
     ∀ᶠ n in atTop, x ∈ spanningSets μ n :=
   eventually_atTop.2 ⟨spanningSetsIndex μ x, fun b => mem_spanningSets_of_index_le μ x⟩
 #align measure_theory.eventually_mem_spanning_sets MeasureTheory.eventually_mem_spanningSets
+-/
 
 omit m0
 
 namespace Measure
 
+/- warning: measure_theory.measure.supr_restrict_spanning_sets -> MeasureTheory.Measure.supᵢ_restrict_spanningSets is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (i : Nat) => coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i)) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ], (MeasurableSet.{u1} α m0 s) -> (Eq.{1} ENNReal (supᵢ.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (i : Nat) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.spanningSets.{u1} α m0 μ _inst_3 i))) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.supᵢ_restrict_spanningSetsₓ'. -/
 theorem supᵢ_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
     (⨆ i, μ.restrict (spanningSets μ i) s) = μ s :=
   calc
@@ -3595,6 +5589,12 @@ theorem supᵢ_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
     
 #align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.supᵢ_restrict_spanningSets
 
+/- warning: measure_theory.measure.exists_subset_measure_lt_top -> MeasureTheory.Measure.exists_subset_measure_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {r : ENNReal}, (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) r (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s)) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (MeasurableSet.{u1} α m0 t) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) r (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {r : ENNReal}, (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) r (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s)) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (MeasurableSet.{u1} α m0 t) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t s) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) r (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_subset_measure_lt_top MeasureTheory.Measure.exists_subset_measure_lt_topₓ'. -/
 /-- In a σ-finite space, any measurable set of measure `> r` contains a measurable subset of
 finite measure `> r`. -/
 theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : MeasurableSet s)
@@ -3609,6 +5609,12 @@ theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : Mea
   exact (measure_mono (inter_subset_right _ _)).trans_lt (measure_spanning_sets_lt_top _ _)
 #align measure_theory.measure.exists_subset_measure_lt_top MeasureTheory.Measure.exists_subset_measure_lt_top
 
+/- warning: measure_theory.measure.forall_measure_inter_spanning_sets_eq_zero -> MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (forall (n : Nat), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (forall (n : Nat), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.forall_measure_inter_spanning_sets_eq_zero MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zeroₓ'. -/
 /-- A set in a σ-finite space has zero measure if and only if its intersection with
 all members of the countable family of finite measure spanning sets has zero measure. -/
 theorem forall_measure_inter_spanningSets_eq_zero [MeasurableSpace α] {μ : Measure α}
@@ -3619,6 +5625,12 @@ theorem forall_measure_inter_spanningSets_eq_zero [MeasurableSpace α] {μ : Mea
   rw [measure_Union_null_iff]
 #align measure_theory.measure.forall_measure_inter_spanning_sets_eq_zero MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zero
 
+/- warning: measure_theory.measure.exists_measure_inter_spanning_sets_pos -> MeasureTheory.Measure.exists_measure_inter_spanningSets_pos is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ s))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] (s : Set.{u1} α), Iff (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (MeasureTheory.spanningSets.{u1} α _inst_3 μ _inst_4 n))))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_measure_inter_spanning_sets_pos MeasureTheory.Measure.exists_measure_inter_spanningSets_posₓ'. -/
 /-- A set in a σ-finite space has positive measure if and only if its intersection with
 some member of the countable family of finite measure spanning sets has positive measure. -/
 theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure α} [SigmaFinite μ]
@@ -3629,6 +5641,12 @@ theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure
   exact forall_measure_inter_spanning_sets_eq_zero s
 #align measure_theory.measure.exists_measure_inter_spanning_sets_pos MeasureTheory.Measure.exists_measure_inter_spanningSets_pos
 
+/- warning: measure_theory.measure.finite_const_le_meas_of_disjoint_Union -> MeasureTheory.Measure.finite_const_le_meas_of_disjoint_unionᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i))))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {ε : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) ε) -> (forall {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Set.Finite.{u2} ι (setOf.{u2} ι (fun (i : ι) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_unionᵢₓ'. -/
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 finitely many members of the union whose measure exceeds any given positive number. -/
 theorem finite_const_le_meas_of_disjoint_unionᵢ {ι : Type _} [MeasurableSpace α] (μ : Measure α)
@@ -3642,6 +5660,12 @@ theorem finite_const_le_meas_of_disjoint_unionᵢ {ι : Type _} [MeasurableSpace
   exact Con (ENNReal.finite_const_le_of_tsum_ne_top aux.ne ε_pos.ne.symm)
 #align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_unionᵢ
 
+/- warning: measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top -> MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_3) {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => As i))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_topₓ'. -/
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 countably many members of the union whose measure is positive. -/
 theorem countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top {ι : Type _} [MeasurableSpace α]
@@ -3664,9 +5688,15 @@ theorem countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top {ι : Type _} [Me
   refine' finite_const_le_meas_of_disjoint_Union μ (as_mem n).1 As_mble As_disj Union_As_finite
 #align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top
 
+/- warning: measure_theory.measure.countable_meas_pos_of_disjoint_Union -> MeasureTheory.Measure.countable_meas_pos_of_disjoint_unionᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) As)) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (As i)))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] {As : ι -> (Set.{u1} α)}, (forall (i : ι), MeasurableSet.{u1} α _inst_3 (As i)) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) As)) -> (Set.Countable.{u2} ι (setOf.{u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_3 μ) (As i)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_unionᵢₓ'. -/
 /-- In a σ-finite space, among disjoint measurable sets, only countably many can have positive
 measure. -/
-theorem countable_meas_pos_of_disjoint_Union {ι : Type _} [MeasurableSpace α] {μ : Measure α}
+theorem countable_meas_pos_of_disjoint_unionᵢ {ι : Type _} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) : Set.Countable { i : ι | 0 < μ (As i) } :=
   by
@@ -3684,8 +5714,14 @@ theorem countable_meas_pos_of_disjoint_Union {ι : Type _} [MeasurableSpace α]
       As_disj i_ne_j (hbi.trans (inter_subset_left _ _)) (hbj.trans (inter_subset_left _ _))
   · refine' (lt_of_le_of_lt (measure_mono _) (measure_spanning_sets_lt_top μ n)).Ne
     exact Union_subset fun i => inter_subset_right _ _
-#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_Union
-
+#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_unionᵢ
+
+/- warning: measure_theory.measure.countable_meas_level_set_pos -> MeasureTheory.Measure.countable_meas_level_set_pos is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_3 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α _inst_3 μ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : MeasurableSingletonClass.{u2} β _inst_5] {g : α -> β}, (Measurable.{u1, u2} α β _inst_3 _inst_5 g) -> (Set.Countable.{u2} β (setOf.{u2} β (fun (t : β) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_3) (fun (_x : MeasureTheory.Measure.{u1} α _inst_3) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_3) μ (setOf.{u1} α (fun (a : α) => Eq.{succ u2} β (g a) t))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_3 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_3} [_inst_4 : MeasureTheory.SigmaFinite.{u2} α _inst_3 μ] [_inst_5 : MeasurableSpace.{u1} β] [_inst_6 : MeasurableSingletonClass.{u1} β _inst_5] {g : α -> β}, (Measurable.{u2, u1} α β _inst_3 _inst_5 g) -> (Set.Countable.{u1} β (setOf.{u1} β (fun (t : β) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_3 μ) (setOf.{u2} α (fun (a : α) => Eq.{succ u1} β (g a) t))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_posₓ'. -/
 theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] [MeasurableSpace β] [MeasurableSingletonClass β] {g : α → β}
     (g_mble : Measurable g) : Set.Countable { t : β | 0 < μ { a : α | g a = t } } :=
@@ -3695,6 +5731,12 @@ theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ :
     (fun b => g_mble (‹MeasurableSingletonClass β›.measurableSet_singleton b)) level_sets_disjoint
 #align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
 
+/- warning: measure_theory.measure.measure_to_measurable_inter_of_cover -> MeasureTheory.Measure.measure_toMeasurable_inter_of_cover is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall {t : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t (v n))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall {t : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t (v n))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_inter_of_cover MeasureTheory.Measure.measure_toMeasurable_inter_of_coverₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
 /-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
 superset `to_measurable μ t` (which has the same measure as `t`) satisfies,
@@ -3773,12 +5815,24 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
   · exact A.some_spec.snd.2 s hs
 #align measure_theory.measure.measure_to_measurable_inter_of_cover MeasureTheory.Measure.measure_toMeasurable_inter_of_cover
 
+/- warning: measure_theory.measure.restrict_to_measurable_of_cover -> MeasureTheory.Measure.restrict_toMeasurable_of_cover is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (v n))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {v : Nat -> (Set.{u1} α)}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => v n))) -> (forall (n : Nat), Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (v n))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.restrict.{u1} α m0 μ (MeasureTheory.toMeasurable.{u1} α m0 μ s)) (MeasureTheory.Measure.restrict.{u1} α m0 μ s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.restrict_to_measurable_of_cover MeasureTheory.Measure.restrict_toMeasurable_of_coverₓ'. -/
 theorem restrict_toMeasurable_of_cover {s : Set α} {v : ℕ → Set α} (hv : s ⊆ ⋃ n, v n)
     (h'v : ∀ n, μ (s ∩ v n) ≠ ∞) : μ.restrict (toMeasurable μ s) = μ.restrict s :=
   ext fun t ht => by
     simp only [restrict_apply ht, inter_comm t, measure_to_measurable_inter_of_cover ht hv h'v]
 #align measure_theory.measure.restrict_to_measurable_of_cover MeasureTheory.Measure.restrict_toMeasurable_of_cover
 
+/- warning: measure_theory.measure.measure_to_measurable_inter_of_sigma_finite -> MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFinite is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] {s : Set.{u1} α}, (MeasurableSet.{u1} α m0 s) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MeasureTheory.toMeasurable.{u1} α m0 μ t) s)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_to_measurable_inter_of_sigma_finite MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFiniteₓ'. -/
 /-- The measurable superset `to_measurable μ t` of `t` (which has the same measure as `t`)
 satisfies, for any measurable set `s`, the equality `μ (to_measurable μ t ∩ s) = μ (t ∩ s)`.
 This only holds when `μ` is σ-finite. For a version without this assumption (but requiring
@@ -3797,17 +5851,25 @@ theorem measure_toMeasurable_inter_of_sigmaFinite [SigmaFinite μ] {s : Set α}
     
 #align measure_theory.measure.measure_to_measurable_inter_of_sigma_finite MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFinite
 
+#print MeasureTheory.Measure.restrict_toMeasurable_of_sigmaFinite /-
 @[simp]
 theorem restrict_toMeasurable_of_sigmaFinite [SigmaFinite μ] (s : Set α) :
     μ.restrict (toMeasurable μ s) = μ.restrict s :=
   ext fun t ht => by
     simp only [restrict_apply ht, inter_comm t, measure_to_measurable_inter_of_sigma_finite ht]
 #align measure_theory.measure.restrict_to_measurable_of_sigma_finite MeasureTheory.Measure.restrict_toMeasurable_of_sigmaFinite
+-/
 
 namespace FiniteSpanningSetsIn
 
 variable {C D : Set (Set α)}
 
+/- warning: measure_theory.measure.finite_spanning_sets_in.mono' -> MeasureTheory.Measure.FiniteSpanningSetsIn.mono' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {C : Set.{u1} (Set.{u1} α)} {D : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) (Inter.inter.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasInter.{u1} (Set.{u1} α)) C (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) D) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ D)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {C : Set.{u1} (Set.{u1} α)} {D : Set.{u1} (Set.{u1} α)}, (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ C) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) (Inter.inter.{u1} (Set.{u1} (Set.{u1} α)) (Set.instInterSet.{u1} (Set.{u1} α)) C (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) D) -> (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ D)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_spanning_sets_in.mono' MeasureTheory.Measure.FiniteSpanningSetsIn.mono'ₓ'. -/
 /-- If `μ` has finite spanning sets in `C` and `C ∩ {s | μ s < ∞} ⊆ D` then `μ` has finite spanning
 sets in `D`. -/
 protected def mono' (h : μ.FiniteSpanningSetsIn C) (hC : C ∩ { s | μ s < ∞ } ⊆ D) :
@@ -3815,30 +5877,44 @@ protected def mono' (h : μ.FiniteSpanningSetsIn C) (hC : C ∩ { s | μ s < ∞
   ⟨h.Set, fun i => hC ⟨h.set_mem i, h.Finite i⟩, h.Finite, h.spanning⟩
 #align measure_theory.measure.finite_spanning_sets_in.mono' MeasureTheory.Measure.FiniteSpanningSetsIn.mono'
 
+#print MeasureTheory.Measure.FiniteSpanningSetsIn.mono /-
 /-- If `μ` has finite spanning sets in `C` and `C ⊆ D` then `μ` has finite spanning sets in `D`. -/
 protected def mono (h : μ.FiniteSpanningSetsIn C) (hC : C ⊆ D) : μ.FiniteSpanningSetsIn D :=
   h.mono' fun s hs => hC hs.1
 #align measure_theory.measure.finite_spanning_sets_in.mono MeasureTheory.Measure.FiniteSpanningSetsIn.mono
+-/
 
+#print MeasureTheory.Measure.FiniteSpanningSetsIn.sigmaFinite /-
 /-- If `μ` has finite spanning sets in the collection of measurable sets `C`, then `μ` is σ-finite.
 -/
 protected theorem sigmaFinite (h : μ.FiniteSpanningSetsIn C) : SigmaFinite μ :=
   ⟨⟨h.mono <| subset_univ C⟩⟩
 #align measure_theory.measure.finite_spanning_sets_in.sigma_finite MeasureTheory.Measure.FiniteSpanningSetsIn.sigmaFinite
+-/
 
+#print MeasureTheory.Measure.FiniteSpanningSetsIn.ext /-
 /-- An extensionality for measures. It is `ext_of_generate_from_of_Union` formulated in terms of
 `finite_spanning_sets_in`. -/
 protected theorem ext {ν : Measure α} {C : Set (Set α)} (hA : ‹_› = generateFrom C)
     (hC : IsPiSystem C) (h : μ.FiniteSpanningSetsIn C) (h_eq : ∀ s ∈ C, μ s = ν s) : μ = ν :=
   ext_of_generateFrom_of_unionᵢ C _ hA hC h.spanning h.set_mem (fun i => (h.Finite i).Ne) h_eq
 #align measure_theory.measure.finite_spanning_sets_in.ext MeasureTheory.Measure.FiniteSpanningSetsIn.ext
+-/
 
+#print MeasureTheory.Measure.FiniteSpanningSetsIn.isCountablySpanning /-
 protected theorem isCountablySpanning (h : μ.FiniteSpanningSetsIn C) : IsCountablySpanning C :=
   ⟨h.Set, h.set_mem, h.spanning⟩
 #align measure_theory.measure.finite_spanning_sets_in.is_countably_spanning MeasureTheory.Measure.FiniteSpanningSetsIn.isCountablySpanning
+-/
 
 end FiniteSpanningSetsIn
 
+/- warning: measure_theory.measure.sigma_finite_of_countable -> MeasureTheory.Measure.sigmaFinite_of_countable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {S : Set.{u1} (Set.{u1} α)}, (Set.Countable.{u1} (Set.{u1} α) S) -> (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) s S) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) -> (Eq.{succ u1} (Set.{u1} α) (Set.unionₛ.{u1} α S) (Set.univ.{u1} α)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countableₓ'. -/
 theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : ∀ s ∈ S, μ s < ∞)
     (hU : ⋃₀ S = univ) : SigmaFinite μ :=
   by
@@ -3847,29 +5923,41 @@ theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : 
   exact ⟨⟨⟨fun n => s n, fun n => trivial, hμ, hs⟩⟩⟩
 #align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countable
 
+#print MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE /-
 /-- Given measures `μ`, `ν` where `ν ≤ μ`, `finite_spanning_sets_in.of_le` provides the induced
 `finite_spanning_set` with respect to `ν` from a `finite_spanning_set` with respect to `μ`. -/
-def FiniteSpanningSetsIn.ofLe (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteSpanningSetsIn C) :
+def FiniteSpanningSetsIn.ofLE (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteSpanningSetsIn C) :
     ν.FiniteSpanningSetsIn C where
   Set := S.Set
   set_mem := S.set_mem
   Finite n := lt_of_le_of_lt (le_iff'.1 h _) (S.Finite n)
   spanning := S.spanning
-#align measure_theory.measure.finite_spanning_sets_in.of_le MeasureTheory.Measure.FiniteSpanningSetsIn.ofLe
+#align measure_theory.measure.finite_spanning_sets_in.of_le MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE
+-/
 
+#print MeasureTheory.Measure.sigmaFinite_of_le /-
 theorem sigmaFinite_of_le (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ) : SigmaFinite ν :=
-  ⟨hs.out.map <| FiniteSpanningSetsIn.ofLe h⟩
+  ⟨hs.out.map <| FiniteSpanningSetsIn.ofLE h⟩
 #align measure_theory.measure.sigma_finite_of_le MeasureTheory.Measure.sigmaFinite_of_le
+-/
 
 end Measure
 
+#print MeasureTheory.FiniteMeasure.toSigmaFinite /-
 /-- Every finite measure is σ-finite. -/
-instance (priority := 100) IsFiniteMeasure.to_sigmaFinite {m0 : MeasurableSpace α} (μ : Measure α)
-    [IsFiniteMeasure μ] : SigmaFinite μ :=
+instance (priority := 100) FiniteMeasure.toSigmaFinite {m0 : MeasurableSpace α} (μ : Measure α)
+    [FiniteMeasure μ] : SigmaFinite μ :=
   ⟨⟨⟨fun _ => univ, fun _ => trivial, fun _ => measure_lt_top μ _, unionᵢ_const _⟩⟩⟩
-#align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.IsFiniteMeasure.to_sigmaFinite
+#align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.FiniteMeasure.toSigmaFinite
+-/
 
-theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFiniteMeasure μ :=
+/- warning: measure_theory.sigma_finite_bot_iff -> MeasureTheory.sigmaFinite_bot_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} (μ : MeasureTheory.Measure.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toHasBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α)))), Iff (MeasureTheory.SigmaFinite.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toHasBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α))) μ) (MeasureTheory.FiniteMeasure.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toHasBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α))) μ)
+but is expected to have type
+  forall {α : Type.{u1}} (μ : MeasureTheory.Measure.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α)))), Iff (MeasureTheory.SigmaFinite.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α))) μ) (MeasureTheory.FiniteMeasure.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α))) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.sigma_finite_bot_iff MeasureTheory.sigmaFinite_bot_iffₓ'. -/
+theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ FiniteMeasure μ :=
   by
   refine'
     ⟨fun h => ⟨_⟩, fun h => by
@@ -3896,6 +5984,7 @@ theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFinite
 
 include m0
 
+#print MeasureTheory.Restrict.sigmaFinite /-
 instance Restrict.sigmaFinite (μ : Measure α) [SigmaFinite μ] (s : Set α) :
     SigmaFinite (μ.restrict s) :=
   by
@@ -3903,8 +5992,10 @@ instance Restrict.sigmaFinite (μ : Measure α) [SigmaFinite μ] (s : Set α) :
   rw [restrict_apply (measurable_spanning_sets μ i)]
   exact (measure_mono <| inter_subset_left _ _).trans_lt (measure_spanning_sets_lt_top μ i)
 #align measure_theory.restrict.sigma_finite MeasureTheory.Restrict.sigmaFinite
+-/
 
-instance Sum.sigmaFinite {ι} [Finite ι] (μ : ι → Measure α) [∀ i, SigmaFinite (μ i)] :
+#print MeasureTheory.sum.sigmaFinite /-
+instance sum.sigmaFinite {ι} [Finite ι] (μ : ι → Measure α) [∀ i, SigmaFinite (μ i)] :
     SigmaFinite (Sum μ) := by
   cases nonempty_fintype ι
   have : ∀ n, MeasurableSet (⋂ i : ι, spanning_sets (μ i) n) := fun n =>
@@ -3916,14 +6007,23 @@ instance Sum.sigmaFinite {ι} [Finite ι] (μ : ι → Measure α) [∀ i, Sigma
   · rw [Union_Inter_of_monotone]
     simp_rw [Union_spanning_sets, Inter_univ]
     exact fun i => monotone_spanning_sets (μ i)
-#align measure_theory.sum.sigma_finite MeasureTheory.Sum.sigmaFinite
+#align measure_theory.sum.sigma_finite MeasureTheory.sum.sigmaFinite
+-/
 
+#print MeasureTheory.Add.sigmaFinite /-
 instance Add.sigmaFinite (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] : SigmaFinite (μ + ν) :=
   by
   rw [← sum_cond]
   refine' @sum.sigma_finite _ _ _ _ _ (Bool.rec _ _) <;> simpa
 #align measure_theory.add.sigma_finite MeasureTheory.Add.sigmaFinite
+-/
 
+/- warning: measure_theory.sigma_finite.of_map -> MeasureTheory.SigmaFinite.of_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] (μ : MeasureTheory.Measure.{u1} α m0) {f : α -> β}, (AEMeasurable.{u1, u2} α β _inst_1 m0 f μ) -> (MeasureTheory.SigmaFinite.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 f μ)) -> (MeasureTheory.SigmaFinite.{u1} α m0 μ)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] (μ : MeasureTheory.Measure.{u2} α m0) {f : α -> β}, (AEMeasurable.{u2, u1} α β _inst_1 m0 f μ) -> (MeasureTheory.SigmaFinite.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 f μ)) -> (MeasureTheory.SigmaFinite.{u2} α m0 μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.sigma_finite.of_map MeasureTheory.SigmaFinite.of_mapₓ'. -/
 theorem SigmaFinite.of_map (μ : Measure α) {f : α → β} (hf : AEMeasurable f μ)
     (h : SigmaFinite (μ.map f)) : SigmaFinite μ :=
   ⟨⟨⟨fun n => f ⁻¹' spanningSets (μ.map f) n, fun n => trivial, fun n => by
@@ -3932,6 +6032,12 @@ theorem SigmaFinite.of_map (μ : Measure α) {f : α → β} (hf : AEMeasurable
         by rw [← preimage_Union, Union_spanning_sets, preimage_univ]⟩⟩⟩
 #align measure_theory.sigma_finite.of_map MeasureTheory.SigmaFinite.of_map
 
+/- warning: measurable_equiv.sigma_finite_map -> MeasurableEquiv.sigmaFinite_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} [_inst_1 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α m0} (f : MeasurableEquiv.{u1, u2} α β m0 _inst_1), (MeasureTheory.SigmaFinite.{u1} α m0 μ) -> (MeasureTheory.SigmaFinite.{u2} β _inst_1 (MeasureTheory.Measure.map.{u1, u2} α β _inst_1 m0 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β m0 _inst_1) (fun (_x : MeasurableEquiv.{u1, u2} α β m0 _inst_1) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β m0 _inst_1) f) μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} [_inst_1 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α m0} (f : MeasurableEquiv.{u2, u1} α β m0 _inst_1), (MeasureTheory.SigmaFinite.{u2} α m0 μ) -> (MeasureTheory.SigmaFinite.{u1} β _inst_1 (MeasureTheory.Measure.map.{u2, u1} α β _inst_1 m0 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β m0 _inst_1) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β m0 _inst_1) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β m0 _inst_1) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β m0 _inst_1))) f) μ))
+Case conversion may be inaccurate. Consider using '#align measurable_equiv.sigma_finite_map MeasurableEquiv.sigmaFinite_mapₓ'. -/
 theorem MeasurableEquiv.sigmaFinite_map {μ : Measure α} (f : α ≃ᵐ β) (h : SigmaFinite μ) :
     SigmaFinite (μ.map f) :=
   by
@@ -3939,6 +6045,12 @@ theorem MeasurableEquiv.sigmaFinite_map {μ : Measure α} (f : α ≃ᵐ β) (h
   rwa [map_map f.symm.measurable f.measurable, f.symm_comp_self, measure.map_id]
 #align measurable_equiv.sigma_finite_map MeasurableEquiv.sigmaFinite_map
 
+/- warning: measure_theory.ae_of_forall_measure_lt_top_ae_restrict' -> MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) ν s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 ν) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_of_forall_measure_lt_top_ae_restrict' MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict'ₓ'. -/
 /-- Similar to `ae_of_forall_measure_lt_top_ae_restrict`, but where you additionally get the
   hypothesis that another σ-finite measure has finite values on `s`. -/
 theorem ae_of_forall_measure_lt_top_ae_restrict' {μ : Measure α} (ν : Measure α) [SigmaFinite μ]
@@ -3955,6 +6067,12 @@ theorem ae_of_forall_measure_lt_top_ae_restrict' {μ : Measure α} (ν : Measure
   filter_upwards [ae_all_iff.2 this]with _ hx using hx _ (mem_spanning_sets_index _ _)
 #align measure_theory.ae_of_forall_measure_lt_top_ae_restrict' MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict'
 
+/- warning: measure_theory.ae_of_forall_measure_lt_top_ae_restrict -> MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] (P : α -> Prop), (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m0 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s)))) -> (Filter.Eventually.{u1} α (fun (x : α) => P x) (MeasureTheory.Measure.ae.{u1} α m0 μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_of_forall_measure_lt_top_ae_restrict MeasureTheory.ae_of_forall_measure_lt_top_ae_restrictₓ'. -/
 /-- To prove something for almost all `x` w.r.t. a σ-finite measure, it is sufficient to show that
   this holds almost everywhere in sets where the measure has finite value. -/
 theorem ae_of_forall_measure_lt_top_ae_restrict {μ : Measure α} [SigmaFinite μ] (P : α → Prop)
@@ -3962,36 +6080,60 @@ theorem ae_of_forall_measure_lt_top_ae_restrict {μ : Measure α} [SigmaFinite 
   ae_of_forall_measure_lt_top_ae_restrict' μ P fun s hs h2s _ => h s hs h2s
 #align measure_theory.ae_of_forall_measure_lt_top_ae_restrict MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict
 
+#print MeasureTheory.LocallyFiniteMeasure /-
 /-- A measure is called locally finite if it is finite in some neighborhood of each point. -/
-class IsLocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α) : Prop where
+class LocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α) : Prop where
   finite_at_nhds : ∀ x, μ.FiniteAtFilter (𝓝 x)
-#align measure_theory.is_locally_finite_measure MeasureTheory.IsLocallyFiniteMeasure
+#align measure_theory.is_locally_finite_measure MeasureTheory.LocallyFiniteMeasure
+-/
 
+#print MeasureTheory.FiniteMeasure.toLocallyFiniteMeasure /-
 -- see Note [lower instance priority]
-instance (priority := 100) IsFiniteMeasure.to_isLocallyFiniteMeasure [TopologicalSpace α]
-    (μ : Measure α) [IsFiniteMeasure μ] : IsLocallyFiniteMeasure μ :=
-  ⟨fun x => finiteAtFilter_of_finite _ _⟩
-#align measure_theory.is_finite_measure.to_is_locally_finite_measure MeasureTheory.IsFiniteMeasure.to_isLocallyFiniteMeasure
+instance (priority := 100) FiniteMeasure.toLocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α)
+    [FiniteMeasure μ] : LocallyFiniteMeasure μ :=
+  ⟨fun x => finiteAtFilterOfFinite _ _⟩
+#align measure_theory.is_finite_measure.to_is_locally_finite_measure MeasureTheory.FiniteMeasure.toLocallyFiniteMeasure
+-/
 
-theorem Measure.finite_at_nhds [TopologicalSpace α] (μ : Measure α) [IsLocallyFiniteMeasure μ]
+#print MeasureTheory.Measure.finiteAt_nhds /-
+theorem Measure.finiteAt_nhds [TopologicalSpace α] (μ : Measure α) [LocallyFiniteMeasure μ]
     (x : α) : μ.FiniteAtFilter (𝓝 x) :=
-  IsLocallyFiniteMeasure.finite_at_nhds x
-#align measure_theory.measure.finite_at_nhds MeasureTheory.Measure.finite_at_nhds
+  LocallyFiniteMeasure.finite_at_nhds x
+#align measure_theory.measure.finite_at_nhds MeasureTheory.Measure.finiteAt_nhds
+-/
 
-theorem Measure.smul_finite (μ : Measure α) [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
-    IsFiniteMeasure (c • μ) := by
+/- warning: measure_theory.measure.smul_finite -> MeasureTheory.Measure.smul_finite is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (MeasureTheory.FiniteMeasure.{u1} α m0 (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.FiniteMeasure.{u1} α m0 μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (MeasureTheory.FiniteMeasure.{u1} α m0 (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.smul_finite MeasureTheory.Measure.smul_finiteₓ'. -/
+theorem Measure.smul_finite (μ : Measure α) [FiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
+    FiniteMeasure (c • μ) := by
   lift c to ℝ≥0 using hc
-  exact MeasureTheory.isFiniteMeasure_smul_nNReal
+  exact MeasureTheory.finiteMeasureSmulNNReal
 #align measure_theory.measure.smul_finite MeasureTheory.Measure.smul_finite
 
+/- warning: measure_theory.measure.exists_is_open_measure_lt_top -> MeasureTheory.Measure.exists_isOpen_measure_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (x : α), Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (x : α), Exists.{succ u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_topₓ'. -/
 theorem Measure.exists_isOpen_measure_lt_top [TopologicalSpace α] (μ : Measure α)
-    [IsLocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
+    [LocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
   simpa only [exists_prop, and_assoc] using
     (μ.finite_at_nhds x).exists_mem_basis (nhds_basis_opens x)
 #align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_top
 
-instance isLocallyFiniteMeasure_smul_nNReal [TopologicalSpace α] (μ : Measure α)
-    [IsLocallyFiniteMeasure μ] (c : ℝ≥0) : IsLocallyFiniteMeasure (c • μ) :=
+/- warning: measure_theory.is_locally_finite_measure_smul_nnreal -> MeasureTheory.locallyFiniteMeasureSmulNnreal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (c : NNReal), MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 (SMul.smul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (MulAction.toHasSmul.{0, 0} NNReal ENNReal (MonoidWithZero.toMonoid.{0} NNReal (Semiring.toMonoidWithZero.{0} NNReal NNReal.semiring)) (ENNReal.mulAction.{0} ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.isScalarTower.{0, 0} ENNReal ENNReal (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Monoid.toMulAction.{0} ENNReal (MonoidWithZero.toMonoid.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) m0) c μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ] (c : NNReal), MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 (HSMul.hSMul.{0, u1, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} NNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α NNReal (Algebra.toSMul.{0, 0} NNReal ENNReal instNNRealCommSemiring (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (ENNReal.instAlgebraNNRealInstNNRealCommSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) (ENNReal.instIsScalarTowerNNRealToSMulToMonoidToMonoidWithZeroInstNNRealSemiringInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiringToSMulInstMulActionNNRealToMonoidToMonoidWithZeroInstNNRealSemiring.{0, 0} ENNReal ENNReal (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (MulActionWithZero.toMulAction.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) instENNRealZero (MonoidWithZero.toMulActionWithZero.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))) (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) m0)) c μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.locallyFiniteMeasureSmulNnrealₓ'. -/
+instance locallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α)
+    [LocallyFiniteMeasure μ] (c : ℝ≥0) : LocallyFiniteMeasure (c • μ) :=
   by
   refine' ⟨fun x => _⟩
   rcases μ.exists_is_open_measure_lt_top x with ⟨o, xo, o_open, μo⟩
@@ -3999,10 +6141,16 @@ instance isLocallyFiniteMeasure_smul_nNReal [TopologicalSpace α] (μ : Measure
   apply ENNReal.mul_lt_top _ μo.ne
   simp only [RingHom.toMonoidHom_eq_coe, [anonymous], ENNReal.coe_ne_top, ENNReal.coe_ofNNRealHom,
     Ne.def, not_false_iff]
-#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.isLocallyFiniteMeasure_smul_nNReal
-
+#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.locallyFiniteMeasureSmulNnreal
+
+/- warning: measure_theory.measure.is_topological_basis_is_open_lt_top -> MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ], TopologicalSpace.IsTopologicalBasis.{u1} α _inst_3 (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m0 _inst_3 μ], TopologicalSpace.IsTopologicalBasis.{u1} α _inst_3 (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => And (IsOpen.{u1} α _inst_3 s) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_topological_basis_is_open_lt_top MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_topₓ'. -/
 protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α] (μ : Measure α)
-    [IsLocallyFiniteMeasure μ] : TopologicalSpace.IsTopologicalBasis { s | IsOpen s ∧ μ s < ∞ } :=
+    [LocallyFiniteMeasure μ] : TopologicalSpace.IsTopologicalBasis { s | IsOpen s ∧ μ s < ∞ } :=
   by
   refine' TopologicalSpace.isTopologicalBasis_of_open_of_nhds (fun s hs => hs.1) _
   intro x s xs hs
@@ -4011,72 +6159,116 @@ protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α]
   exact measure_mono (inter_subset_left _ _)
 #align measure_theory.measure.is_topological_basis_is_open_lt_top MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_top
 
+#print MeasureTheory.FiniteMeasureOnCompacts /-
 /-- A measure `μ` is finite on compacts if any compact set `K` satisfies `μ K < ∞`. -/
 @[protect_proj]
-class IsFiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop where
+class FiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop where
   lt_top_of_isCompact : ∀ ⦃K : Set α⦄, IsCompact K → μ K < ∞
-#align measure_theory.is_finite_measure_on_compacts MeasureTheory.IsFiniteMeasureOnCompacts
+#align measure_theory.is_finite_measure_on_compacts MeasureTheory.FiniteMeasureOnCompacts
+-/
 
+/- warning: is_compact.measure_lt_top -> IsCompact.measure_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {{K : Set.{u1} α}}, (IsCompact.{u1} α _inst_3 K) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ K) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {{K : Set.{u1} α}}, (IsCompact.{u1} α _inst_3 K) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) K) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align is_compact.measure_lt_top IsCompact.measure_lt_topₓ'. -/
 /-- A compact subset has finite measure for a measure which is finite on compacts. -/
-theorem IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α} [IsFiniteMeasureOnCompacts μ]
+theorem IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α} [FiniteMeasureOnCompacts μ]
     ⦃K : Set α⦄ (hK : IsCompact K) : μ K < ∞ :=
-  IsFiniteMeasureOnCompacts.lt_top_of_isCompact hK
+  FiniteMeasureOnCompacts.lt_top_of_isCompact hK
 #align is_compact.measure_lt_top IsCompact.measure_lt_top
 
+/- warning: metric.bounded.measure_lt_top -> Metric.Bounded.measure_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {{s : Set.{u1} α}}, (Metric.Bounded.{u1} α _inst_3 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {{s : Set.{u1} α}}, (Metric.Bounded.{u1} α _inst_3 s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_topₓ'. -/
 /-- A bounded subset has finite measure for a measure which is finite on compact sets, in a
 proper space. -/
 theorem Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [IsFiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Metric.Bounded s) : μ s < ∞ :=
+    [FiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Metric.Bounded s) : μ s < ∞ :=
   calc
     μ s ≤ μ (closure s) := measure_mono subset_closure
     _ < ∞ := (Metric.isCompact_of_isClosed_bounded isClosed_closure hs.closure).measure_lt_top
     
 #align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_top
 
+/- warning: measure_theory.measure_closed_ball_lt_top -> MeasureTheory.measure_closedBall_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.closedBall.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Metric.closedBall.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_topₓ'. -/
 theorem measure_closedBall_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
+    [FiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
   Metric.bounded_closedBall.measure_lt_top
 #align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_top
 
+/- warning: measure_theory.measure_ball_lt_top -> MeasureTheory.measure_ball_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.ball.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : PseudoMetricSpace.{u1} α] [_inst_4 : ProperSpace.{u1} α _inst_3] {μ : MeasureTheory.Measure.{u1} α m0} [_inst_5 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 (UniformSpace.toTopologicalSpace.{u1} α (PseudoMetricSpace.toUniformSpace.{u1} α _inst_3)) μ] {x : α} {r : Real}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Metric.ball.{u1} α _inst_3 x r)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_topₓ'. -/
 theorem measure_ball_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
+    [FiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
   Metric.bounded_ball.measure_lt_top
 #align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_top
 
-protected theorem IsFiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
-    [IsFiniteMeasureOnCompacts μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : IsFiniteMeasureOnCompacts (c • μ) :=
+/- warning: measure_theory.is_finite_measure_on_compacts.smul -> MeasureTheory.FiniteMeasureOnCompacts.smul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m0) c μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} [_inst_3 : TopologicalSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α m0) [_inst_4 : MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (MeasureTheory.FiniteMeasureOnCompacts.{u1} α m0 _inst_3 (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.{u1} α m0) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m0)) c μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.FiniteMeasureOnCompacts.smulₓ'. -/
+protected theorem FiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
+    [FiniteMeasureOnCompacts μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : FiniteMeasureOnCompacts (c • μ) :=
   ⟨fun K hK => ENNReal.mul_lt_top hc hK.measure_lt_top.Ne⟩
-#align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.IsFiniteMeasureOnCompacts.smul
+#align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.FiniteMeasureOnCompacts.smul
 
+#print MeasureTheory.CompactSpace.finiteMeasure /-
 /-- Note this cannot be an instance because it would form a typeclass loop with
 `is_finite_measure_on_compacts_of_is_locally_finite_measure`. -/
-theorem CompactSpace.isFiniteMeasure [TopologicalSpace α] [CompactSpace α]
-    [IsFiniteMeasureOnCompacts μ] : IsFiniteMeasure μ :=
-  ⟨IsFiniteMeasureOnCompacts.lt_top_of_isCompact isCompact_univ⟩
-#align measure_theory.compact_space.is_finite_measure MeasureTheory.CompactSpace.isFiniteMeasure
+theorem CompactSpace.finiteMeasure [TopologicalSpace α] [CompactSpace α]
+    [FiniteMeasureOnCompacts μ] : FiniteMeasure μ :=
+  ⟨FiniteMeasureOnCompacts.lt_top_of_isCompact isCompact_univ⟩
+#align measure_theory.compact_space.is_finite_measure MeasureTheory.CompactSpace.finiteMeasure
+-/
 
 omit m0
 
+#print MeasureTheory.sigmaFinite_of_locallyFinite /-
 -- see Note [lower instance priority]
-instance (priority := 100) sigmaFinite_of_locally_finite [TopologicalSpace α]
-    [SecondCountableTopology α] [IsLocallyFiniteMeasure μ] : SigmaFinite μ :=
+instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
+    [SecondCountableTopology α] [LocallyFiniteMeasure μ] : SigmaFinite μ :=
   by
   choose s hsx hsμ using μ.finite_at_nhds
   rcases TopologicalSpace.countable_cover_nhds hsx with ⟨t, htc, htU⟩
   refine' measure.sigma_finite_of_countable (htc.image s) (ball_image_iff.2 fun x hx => hsμ x) _
   rwa [sUnion_image]
-#align measure_theory.sigma_finite_of_locally_finite MeasureTheory.sigmaFinite_of_locally_finite
+#align measure_theory.sigma_finite_of_locally_finite MeasureTheory.sigmaFinite_of_locallyFinite
+-/
 
+#print MeasureTheory.locallyFiniteMeasure_of_finiteMeasureOnCompacts /-
 /-- A measure which is finite on compact sets in a locally compact space is locally finite.
 Not registered as an instance to avoid a loop with the other direction. -/
-theorem isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α]
-    [LocallyCompactSpace α] [IsFiniteMeasureOnCompacts μ] : IsLocallyFiniteMeasure μ :=
+theorem locallyFiniteMeasure_of_finiteMeasureOnCompacts [TopologicalSpace α] [LocallyCompactSpace α]
+    [FiniteMeasureOnCompacts μ] : LocallyFiniteMeasure μ :=
   ⟨by
     intro x
     rcases exists_compact_mem_nhds x with ⟨K, K_compact, K_mem⟩
     exact ⟨K, K_mem, K_compact.measure_lt_top⟩⟩
-#align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
+#align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.locallyFiniteMeasure_of_finiteMeasureOnCompacts
+-/
 
+/- warning: measure_theory.exists_pos_measure_of_cover -> MeasureTheory.exists_pos_measure_of_cover is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (U i))))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : Countable.{succ u2} ι] {U : ι -> (Set.{u1} α)}, (Eq.{succ u1} (Set.{u1} α) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => U i)) (Set.univ.{u1} α)) -> (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{succ u2} ι (fun (i : ι) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (U i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_measure_of_cover MeasureTheory.exists_pos_measure_of_coverₓ'. -/
 theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (⋃ i, U i) = univ)
     (hμ : μ ≠ 0) : ∃ i, 0 < μ (U i) := by
   contrapose! hμ with H
@@ -4084,16 +6276,34 @@ theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (
   exact measure_Union_null fun i => nonpos_iff_eq_zero.1 (H i)
 #align measure_theory.exists_pos_measure_of_cover MeasureTheory.exists_pos_measure_of_cover
 
+/- warning: measure_theory.exists_pos_preimage_ball -> MeasureTheory.exists_pos_preimage_ball is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u2} δ] (f : α -> δ) (x : δ), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α δ f (Metric.ball.{u2} δ _inst_3 x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n))))))
+but is expected to have type
+  forall {α : Type.{u1}} {δ : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u2} δ] (f : α -> δ) (x : δ), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.preimage.{u1, u2} α δ f (Metric.ball.{u2} δ _inst_3 x (Nat.cast.{0} Real Real.natCast n))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_preimage_ball MeasureTheory.exists_pos_preimage_ballₓ'. -/
 theorem exists_pos_preimage_ball [PseudoMetricSpace δ] (f : α → δ) (x : δ) (hμ : μ ≠ 0) :
     ∃ n : ℕ, 0 < μ (f ⁻¹' Metric.ball x n) :=
   exists_pos_measure_of_cover (by rw [← preimage_Union, Metric.unionᵢ_ball_nat, preimage_univ]) hμ
 #align measure_theory.exists_pos_preimage_ball MeasureTheory.exists_pos_preimage_ball
 
+/- warning: measure_theory.exists_pos_ball -> MeasureTheory.exists_pos_ball is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u1} α] (x : α), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0))))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Metric.ball.{u1} α _inst_3 x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : PseudoMetricSpace.{u1} α] (x : α), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m0) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m0) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instZero.{u1} α m0)))) -> (Exists.{1} Nat (fun (n : Nat) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Metric.ball.{u1} α _inst_3 x (Nat.cast.{0} Real Real.natCast n)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_ball MeasureTheory.exists_pos_ballₓ'. -/
 theorem exists_pos_ball [PseudoMetricSpace α] (x : α) (hμ : μ ≠ 0) :
     ∃ n : ℕ, 0 < μ (Metric.ball x n) :=
   exists_pos_preimage_ball id x hμ
 #align measure_theory.exists_pos_ball MeasureTheory.exists_pos_ball
 
+/- warning: measure_theory.null_of_locally_null -> MeasureTheory.null_of_locally_null is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] (s : Set.{u1} α), (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} (Set.{u1} α) (fun (u : Set.{u1} α) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) u (nhdsWithin.{u1} α _inst_3 x s)) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) u (nhdsWithin.{u1} α _inst_3 x s)) => Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ u) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] (s : Set.{u1} α), (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Exists.{succ u1} (Set.{u1} α) (fun (u : Set.{u1} α) => And (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) u (nhdsWithin.{u1} α _inst_3 x s)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) u) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_of_locally_null MeasureTheory.null_of_locally_nullₓ'. -/
 /-- If a set has zero measure in a neighborhood of each of its points, then it has zero measure
 in a second-countable space. -/
 theorem null_of_locally_null [TopologicalSpace α] [SecondCountableTopology α] (s : Set α)
@@ -4101,11 +6311,23 @@ theorem null_of_locally_null [TopologicalSpace α] [SecondCountableTopology α]
   μ.toOuterMeasure.null_of_locally_null s hs
 #align measure_theory.null_of_locally_null MeasureTheory.null_of_locally_null
 
+/- warning: measure_theory.exists_mem_forall_mem_nhds_within_pos_measure -> MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} α (fun (x : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) => forall (t : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t (nhdsWithin.{u1} α _inst_3 x s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_3 : TopologicalSpace.{u1} α] [_inst_4 : TopologicalSpace.SecondCountableTopology.{u1} α _inst_3] {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} α (fun (x : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) (forall (t : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) t (nhdsWithin.{u1} α _inst_3 x s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_mem_forall_mem_nhds_within_pos_measure MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measureₓ'. -/
 theorem exists_mem_forall_mem_nhdsWithin_pos_measure [TopologicalSpace α]
     [SecondCountableTopology α] {s : Set α} (hs : μ s ≠ 0) : ∃ x ∈ s, ∀ t ∈ 𝓝[s] x, 0 < μ t :=
   μ.toOuterMeasure.exists_mem_forall_mem_nhds_within_pos hs
 #align measure_theory.exists_mem_forall_mem_nhds_within_pos_measure MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measure
 
+/- warning: measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage -> MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : TopologicalSpace.{u2} β] [_inst_4 : T1Space.{u2} β _inst_3] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_3] [_inst_6 : Nonempty.{succ u2} β] {f : α -> β}, (forall (b : β), Filter.Frequently.{u1} α (fun (x : α) => Ne.{succ u2} β (f x) b) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (Exists.{succ u2} β (fun (a : β) => Exists.{succ u2} β (fun (b : β) => And (Ne.{succ u2} β a b) (And (forall (s : Set.{u2} β), (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (nhds.{u2} β _inst_3 a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)))) (forall (t : Set.{u2} β), (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (nhds.{u2} β _inst_3 b)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f t))))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {β : Type.{u2}} [_inst_3 : TopologicalSpace.{u2} β] [_inst_4 : T1Space.{u2} β _inst_3] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_3] [_inst_6 : Nonempty.{succ u2} β] {f : α -> β}, (forall (b : β), Filter.Frequently.{u1} α (fun (x : α) => Ne.{succ u2} β (f x) b) (MeasureTheory.Measure.ae.{u1} α m0 μ)) -> (Exists.{succ u2} β (fun (a : β) => Exists.{succ u2} β (fun (b : β) => And (Ne.{succ u2} β a b) (And (forall (s : Set.{u2} β), (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) s (nhds.{u2} β _inst_3 a)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.preimage.{u1, u2} α β f s)))) (forall (t : Set.{u2} β), (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) t (nhds.{u2} β _inst_3 b)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.preimage.{u1, u2} α β f t))))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimageₓ'. -/
 theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β] [T1Space β]
     [SecondCountableTopology β] [Nonempty β] {f : α → β} (h : ∀ b, ∃ᵐ x ∂μ, f x ≠ b) :
     ∃ a b : β, a ≠ b ∧ (∀ s ∈ 𝓝 a, 0 < μ (f ⁻¹' s)) ∧ ∀ t ∈ 𝓝 b, 0 < μ (f ⁻¹' t) :=
@@ -4122,10 +6344,11 @@ theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β
   exact ⟨a, b, hab, ha, hb⟩
 #align measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimage
 
+#print MeasureTheory.ext_on_measurableSpace_of_generate_finite /-
 /-- If two finite measures give the same mass to the whole space and coincide on a π-system made
 of measurable sets, then they coincide on all sets in the σ-algebra generated by the π-system. -/
 theorem ext_on_measurableSpace_of_generate_finite {α} (m₀ : MeasurableSpace α) {μ ν : Measure α}
-    [IsFiniteMeasure μ] (C : Set (Set α)) (hμν : ∀ s ∈ C, μ s = ν s) {m : MeasurableSpace α}
+    [FiniteMeasure μ] (C : Set (Set α)) (hμν : ∀ s ∈ C, μ s = ν s) {m : MeasurableSpace α}
     (h : m ≤ m₀) (hA : m = MeasurableSpace.generateFrom C) (hC : IsPiSystem C)
     (h_univ : μ Set.univ = ν Set.univ) {s : Set α} (hs : measurable_set[m] s) : μ s = ν s :=
   by
@@ -4143,13 +6366,16 @@ theorem ext_on_measurableSpace_of_generate_finite {α} (m₀ : MeasurableSpace 
     have h_Union : @MeasurableSet α m₀ (⋃ i : ℕ, f i) := @MeasurableSet.unionᵢ α ℕ m₀ _ f h2f_
     simp [measure_Union, h_Union, h1f, h3f, h2f_]
 #align measure_theory.ext_on_measurable_space_of_generate_finite MeasureTheory.ext_on_measurableSpace_of_generate_finite
+-/
 
+#print MeasureTheory.ext_of_generate_finite /-
 /-- Two finite measures are equal if they are equal on the π-system generating the σ-algebra
   (and `univ`). -/
 theorem ext_of_generate_finite (C : Set (Set α)) (hA : m0 = generateFrom C) (hC : IsPiSystem C)
-    [IsFiniteMeasure μ] (hμν : ∀ s ∈ C, μ s = ν s) (h_univ : μ univ = ν univ) : μ = ν :=
+    [FiniteMeasure μ] (hμν : ∀ s ∈ C, μ s = ν s) (h_univ : μ univ = ν univ) : μ = ν :=
   Measure.ext fun s hs => ext_on_measurableSpace_of_generate_finite m0 C hμν le_rfl hA hC h_univ hs
 #align measure_theory.ext_of_generate_finite MeasureTheory.ext_of_generate_finite
+-/
 
 namespace Measure
 
@@ -4157,6 +6383,7 @@ section disjointed
 
 include m0
 
+#print MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed /-
 /-- Given `S : μ.finite_spanning_sets_in {s | measurable_set s}`,
 `finite_spanning_sets_in.disjointed` provides a `finite_spanning_sets_in {s | measurable_set s}`
 such that its underlying sets are pairwise disjoint. -/
@@ -4167,12 +6394,25 @@ protected def FiniteSpanningSetsIn.disjointed {μ : Measure α}
     lt_of_le_of_lt (measure_mono (disjointed_subset S.Set n)) (S.Finite _),
     S.spanning ▸ unionᵢ_disjointed⟩
 #align measure_theory.measure.finite_spanning_sets_in.disjointed MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed
+-/
 
+/- warning: measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq -> MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))), Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) (MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed.{u1} α m0 μ S)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))), Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.Set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) (MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed.{u1} α m0 μ S)) (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.Set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eqₓ'. -/
 theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
     (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) : S.disjointed.Set = disjointed S.Set :=
   rfl
 #align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq
 
+/- warning: measure_theory.measure.exists_eq_disjoint_finite_spanning_sets_in -> MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsIn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν], Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (T : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => And (Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) T)) (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) (MeasureTheory.Measure.FiniteSpanningSetsIn.set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m0) (ν : MeasureTheory.Measure.{u1} α m0) [_inst_3 : MeasureTheory.SigmaFinite.{u1} α m0 μ] [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m0 ν], Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (S : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => Exists.{succ u1} (MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) (fun (T : MeasureTheory.Measure.FiniteSpanningSetsIn.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s))) => And (Eq.{succ u1} (Nat -> (Set.{u1} α)) (MeasureTheory.Measure.FiniteSpanningSetsIn.Set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S) (MeasureTheory.Measure.FiniteSpanningSetsIn.Set.{u1} α m0 ν (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) T)) (Pairwise.{0} Nat (Function.onFun.{1, succ u1, 1} Nat (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (MeasureTheory.Measure.FiniteSpanningSetsIn.Set.{u1} α m0 μ (setOf.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => MeasurableSet.{u1} α m0 s)) S)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.exists_eq_disjoint_finite_spanning_sets_in MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsInₓ'. -/
 theorem exists_eq_disjoint_finiteSpanningSetsIn (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] :
     ∃ (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s })(T :
       ν.FiniteSpanningSetsIn { s | MeasurableSet s }),
@@ -4188,18 +6428,42 @@ namespace FiniteAtFilter
 
 variable {f g : Filter α}
 
+/- warning: measure_theory.measure.finite_at_filter.filter_mono -> MeasureTheory.Measure.FiniteAtFilter.filter_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) f g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.filter_mono MeasureTheory.Measure.FiniteAtFilter.filter_monoₓ'. -/
 theorem filter_mono (h : f ≤ g) : μ.FiniteAtFilter g → μ.FiniteAtFilter f := fun ⟨s, hs, hμ⟩ =>
   ⟨s, h hs, hμ⟩
 #align measure_theory.measure.finite_at_filter.filter_mono MeasureTheory.Measure.FiniteAtFilter.filter_mono
 
+/- warning: measure_theory.measure.finite_at_filter.inf_of_left -> MeasureTheory.Measure.FiniteAtFilter.inf_of_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.inf_of_left MeasureTheory.Measure.FiniteAtFilter.inf_of_leftₓ'. -/
 theorem inf_of_left (h : μ.FiniteAtFilter f) : μ.FiniteAtFilter (f ⊓ g) :=
   h.filter_mono inf_le_left
 #align measure_theory.measure.finite_at_filter.inf_of_left MeasureTheory.Measure.FiniteAtFilter.inf_of_left
 
+/- warning: measure_theory.measure.finite_at_filter.inf_of_right -> MeasureTheory.Measure.FiniteAtFilter.inf_of_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.inf_of_right MeasureTheory.Measure.FiniteAtFilter.inf_of_rightₓ'. -/
 theorem inf_of_right (h : μ.FiniteAtFilter g) : μ.FiniteAtFilter (f ⊓ g) :=
   h.filter_mono inf_le_right
 #align measure_theory.measure.finite_at_filter.inf_of_right MeasureTheory.Measure.FiniteAtFilter.inf_of_right
 
+/- warning: measure_theory.measure.finite_at_filter.inf_ae_iff -> MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ))) (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ))) (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.inf_ae_iff MeasureTheory.Measure.FiniteAtFilter.inf_ae_iffₓ'. -/
 @[simp]
 theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f :=
   by
@@ -4209,48 +6473,90 @@ theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f :=
   exact measure_mono_ae (mem_of_superset hu fun x hu ht => ⟨ht, hu⟩)
 #align measure_theory.measure.finite_at_filter.inf_ae_iff MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff
 
+/- warning: measure_theory.measure.finite_at_filter.of_inf_ae -> MeasureTheory.Measure.FiniteAtFilter.of_inf_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ))) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ))) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.of_inf_ae MeasureTheory.Measure.FiniteAtFilter.of_inf_aeₓ'. -/
 alias inf_ae_iff ↔ of_inf_ae _
 #align measure_theory.measure.finite_at_filter.of_inf_ae MeasureTheory.Measure.FiniteAtFilter.of_inf_ae
 
+/- warning: measure_theory.measure.finite_at_filter.filter_mono_ae -> MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ)) g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) (Inf.inf.{u1} (Filter.{u1} α) (Filter.instInfFilter.{u1} α) f (MeasureTheory.Measure.ae.{u1} α m0 μ)) g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filter_mono_aeₓ'. -/
 theorem filter_mono_ae (h : f ⊓ μ.ae ≤ g) (hg : μ.FiniteAtFilter g) : μ.FiniteAtFilter f :=
   inf_ae_iff.1 (hg.filter_mono h)
 #align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae
 
+#print MeasureTheory.Measure.FiniteAtFilter.measure_mono /-
 protected theorem measure_mono (h : μ ≤ ν) : ν.FiniteAtFilter f → μ.FiniteAtFilter f :=
   fun ⟨s, hs, hν⟩ => ⟨s, hs, (Measure.le_iff'.1 h s).trans_lt hν⟩
 #align measure_theory.measure.finite_at_filter.measure_mono MeasureTheory.Measure.FiniteAtFilter.measure_mono
+-/
 
+/- warning: measure_theory.measure.finite_at_filter.mono -> MeasureTheory.Measure.FiniteAtFilter.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f g) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {ν : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.instPartialOrderFilter.{u1} α))) f g) -> (LE.le.{u1} (MeasureTheory.Measure.{u1} α m0) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m0) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m0) (MeasureTheory.Measure.instPartialOrder.{u1} α m0))) μ ν) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 ν g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.mono MeasureTheory.Measure.FiniteAtFilter.monoₓ'. -/
 @[mono]
 protected theorem mono (hf : f ≤ g) (hμ : μ ≤ ν) : ν.FiniteAtFilter g → μ.FiniteAtFilter f :=
   fun h => (h.filter_mono hf).measure_mono hμ
 #align measure_theory.measure.finite_at_filter.mono MeasureTheory.Measure.FiniteAtFilter.mono
 
+/- warning: measure_theory.measure.finite_at_filter.eventually -> MeasureTheory.Measure.FiniteAtFilter.eventually is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (Filter.Eventually.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (Filter.smallSets.{u1} α f))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (Filter.Eventually.{u1} (Set.{u1} α) (fun (s : Set.{u1} α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Filter.smallSets.{u1} α f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.eventually MeasureTheory.Measure.FiniteAtFilter.eventuallyₓ'. -/
 protected theorem eventually (h : μ.FiniteAtFilter f) : ∀ᶠ s in f.smallSets, μ s < ∞ :=
   (eventually_small_sets' fun s t hst ht => (measure_mono hst).trans_lt ht).2 h
 #align measure_theory.measure.finite_at_filter.eventually MeasureTheory.Measure.FiniteAtFilter.eventually
 
-theorem filter_sup : μ.FiniteAtFilter f → μ.FiniteAtFilter g → μ.FiniteAtFilter (f ⊔ g) :=
+/- warning: measure_theory.measure.finite_at_filter.filter_sup -> MeasureTheory.Measure.FiniteAtFilter.filterSup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toHasSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))))) f g))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Filter.{u1} α} {g : Filter.{u1} α}, (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ f) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ g) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Sup.sup.{u1} (Filter.{u1} α) (SemilatticeSup.toSup.{u1} (Filter.{u1} α) (Lattice.toSemilatticeSup.{u1} (Filter.{u1} α) (ConditionallyCompleteLattice.toLattice.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.instCompleteLatticeFilter.{u1} α))))) f g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_filter.filter_sup MeasureTheory.Measure.FiniteAtFilter.filterSupₓ'. -/
+theorem filterSup : μ.FiniteAtFilter f → μ.FiniteAtFilter g → μ.FiniteAtFilter (f ⊔ g) :=
   fun ⟨s, hsf, hsμ⟩ ⟨t, htg, htμ⟩ =>
   ⟨s ∪ t, union_mem_sup hsf htg, (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hsμ, htμ⟩)⟩
-#align measure_theory.measure.finite_at_filter.filter_sup MeasureTheory.Measure.FiniteAtFilter.filter_sup
+#align measure_theory.measure.finite_at_filter.filter_sup MeasureTheory.Measure.FiniteAtFilter.filterSup
 
 end FiniteAtFilter
 
-theorem finite_at_nhdsWithin [TopologicalSpace α] {m0 : MeasurableSpace α} (μ : Measure α)
-    [IsLocallyFiniteMeasure μ] (x : α) (s : Set α) : μ.FiniteAtFilter (𝓝[s] x) :=
-  (finite_at_nhds μ x).inf_of_left
-#align measure_theory.measure.finite_at_nhds_within MeasureTheory.Measure.finite_at_nhdsWithin
+#print MeasureTheory.Measure.finiteAt_nhdsWithin /-
+theorem finiteAt_nhdsWithin [TopologicalSpace α] {m0 : MeasurableSpace α} (μ : Measure α)
+    [LocallyFiniteMeasure μ] (x : α) (s : Set α) : μ.FiniteAtFilter (𝓝[s] x) :=
+  (finiteAt_nhds μ x).inf_of_left
+#align measure_theory.measure.finite_at_nhds_within MeasureTheory.Measure.finiteAt_nhdsWithin
+-/
 
+/- warning: measure_theory.measure.finite_at_principal -> MeasureTheory.Measure.finiteAt_principal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Filter.principal.{u1} α s)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.Measure.FiniteAtFilter.{u1} α m0 μ (Filter.principal.{u1} α s)) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principalₓ'. -/
 @[simp]
-theorem finite_at_principal : μ.FiniteAtFilter (𝓟 s) ↔ μ s < ∞ :=
+theorem finiteAt_principal : μ.FiniteAtFilter (𝓟 s) ↔ μ s < ∞ :=
   ⟨fun ⟨t, ht, hμ⟩ => (measure_mono ht).trans_lt hμ, fun h => ⟨s, mem_principal_self s, h⟩⟩
-#align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finite_at_principal
+#align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principal
 
-theorem isLocallyFiniteMeasure_of_le [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
-    [H : IsLocallyFiniteMeasure μ] (h : ν ≤ μ) : IsLocallyFiniteMeasure ν :=
+#print MeasureTheory.Measure.locallyFiniteMeasure_of_le /-
+theorem locallyFiniteMeasure_of_le [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
+    [H : LocallyFiniteMeasure μ] (h : ν ≤ μ) : LocallyFiniteMeasure ν :=
   let F := H.finite_at_nhds
   ⟨fun x => (F x).measure_mono h⟩
-#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.isLocallyFiniteMeasure_of_le
+#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.locallyFiniteMeasure_of_le
+-/
 
 end Measure
 
@@ -4264,6 +6570,12 @@ variable {m0 : MeasurableSpace α} {m1 : MeasurableSpace β} {f : α → β} (hf
 
 include hf
 
+/- warning: measurable_embedding.map_apply -> MeasurableEmbedding.map_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasurableEmbedding.{u1, u2} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u1} α m0) (s : Set.{u2} β), Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β m1) (fun (_x : MeasureTheory.Measure.{u2} β m1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β m1) (MeasureTheory.Measure.map.{u1, u2} α β m1 m0 f μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.preimage.{u1, u2} α β f s)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {m1 : MeasurableSpace.{u1} β} {f : α -> β}, (MeasurableEmbedding.{u2, u1} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0) (s : Set.{u1} β), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β m1 (MeasureTheory.Measure.map.{u2, u1} α β m1 m0 f μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.preimage.{u2, u1} α β f s)))
+Case conversion may be inaccurate. Consider using '#align measurable_embedding.map_apply MeasurableEmbedding.map_applyₓ'. -/
 theorem map_apply (μ : Measure α) (s : Set β) : μ.map f s = μ (f ⁻¹' s) :=
   by
   refine' le_antisymm _ (le_map_apply hf.measurable.ae_measurable s)
@@ -4284,13 +6596,16 @@ theorem map_apply (μ : Measure α) (s : Set β) : μ.map f s = μ (f ⁻¹' s)
     
 #align measurable_embedding.map_apply MeasurableEmbedding.map_apply
 
+#print MeasurableEmbedding.map_comap /-
 theorem map_comap (μ : Measure β) : (comap f μ).map f = μ.restrict (range f) :=
   by
   ext1 t ht
   rw [hf.map_apply, comap_apply f hf.injective hf.measurable_set_image' _ (hf.measurable ht),
     image_preimage_eq_inter_range, restrict_apply ht]
 #align measurable_embedding.map_comap MeasurableEmbedding.map_comap
+-/
 
+#print MeasurableEmbedding.comap_apply /-
 theorem comap_apply (μ : Measure β) (s : Set α) : comap f μ s = μ (f '' s) :=
   calc
     comap f μ s = comap f μ (f ⁻¹' (f '' s)) := by rw [hf.injective.preimage_image]
@@ -4300,16 +6615,35 @@ theorem comap_apply (μ : Measure β) (s : Set α) : comap f μ s = μ (f '' s)
         inter_eq_self_of_subset_left (image_subset_range _ _)]
     
 #align measurable_embedding.comap_apply MeasurableEmbedding.comap_apply
+-/
 
+/- warning: measurable_embedding.ae_map_iff -> MeasurableEmbedding.ae_map_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasurableEmbedding.{u1, u2} α β m0 m1 f) -> (forall {p : β -> Prop} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (Filter.Eventually.{u2} β (fun (x : β) => p x) (MeasureTheory.Measure.ae.{u2} β m1 (MeasureTheory.Measure.map.{u1, u2} α β m1 m0 f μ))) (Filter.Eventually.{u1} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u1} α m0 μ)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {m1 : MeasurableSpace.{u1} β} {f : α -> β}, (MeasurableEmbedding.{u2, u1} α β m0 m1 f) -> (forall {p : β -> Prop} {μ : MeasureTheory.Measure.{u2} α m0}, Iff (Filter.Eventually.{u1} β (fun (x : β) => p x) (MeasureTheory.Measure.ae.{u1} β m1 (MeasureTheory.Measure.map.{u2, u1} α β m1 m0 f μ))) (Filter.Eventually.{u2} α (fun (x : α) => p (f x)) (MeasureTheory.Measure.ae.{u2} α m0 μ)))
+Case conversion may be inaccurate. Consider using '#align measurable_embedding.ae_map_iff MeasurableEmbedding.ae_map_iffₓ'. -/
 theorem ae_map_iff {p : β → Prop} {μ : Measure α} : (∀ᵐ x ∂μ.map f, p x) ↔ ∀ᵐ x ∂μ, p (f x) := by
   simp only [ae_iff, hf.map_apply, preimage_set_of_eq]
 #align measurable_embedding.ae_map_iff MeasurableEmbedding.ae_map_iff
 
+/- warning: measurable_embedding.restrict_map -> MeasurableEmbedding.restrict_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasurableEmbedding.{u1, u2} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u1} α m0) (s : Set.{u2} β), Eq.{succ u2} (MeasureTheory.Measure.{u2} β m1) (MeasureTheory.Measure.restrict.{u2} β m1 (MeasureTheory.Measure.map.{u1, u2} α β m1 m0 f μ) s) (MeasureTheory.Measure.map.{u1, u2} α β m1 m0 f (MeasureTheory.Measure.restrict.{u1} α m0 μ (Set.preimage.{u1, u2} α β f s))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {m1 : MeasurableSpace.{u1} β} {f : α -> β}, (MeasurableEmbedding.{u2, u1} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u2} α m0) (s : Set.{u1} β), Eq.{succ u1} (MeasureTheory.Measure.{u1} β m1) (MeasureTheory.Measure.restrict.{u1} β m1 (MeasureTheory.Measure.map.{u2, u1} α β m1 m0 f μ) s) (MeasureTheory.Measure.map.{u2, u1} α β m1 m0 f (MeasureTheory.Measure.restrict.{u2} α m0 μ (Set.preimage.{u2, u1} α β f s))))
+Case conversion may be inaccurate. Consider using '#align measurable_embedding.restrict_map MeasurableEmbedding.restrict_mapₓ'. -/
 theorem restrict_map (μ : Measure α) (s : Set β) :
     (μ.map f).restrict s = (μ.restrict <| f ⁻¹' s).map f :=
   Measure.ext fun t ht => by simp [hf.map_apply, ht, hf.measurable ht]
 #align measurable_embedding.restrict_map MeasurableEmbedding.restrict_map
 
+/- warning: measurable_embedding.comap_preimage -> MeasurableEmbedding.comap_preimage is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasurableEmbedding.{u1, u2} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u2} β m1) {s : Set.{u2} β}, (MeasurableSet.{u2} β m1 s) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) (MeasureTheory.Measure.comap.{u1, u2} α β m1 m0 f μ) (Set.preimage.{u1, u2} α β f s)) (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β m1) (fun (_x : MeasureTheory.Measure.{u2} β m1) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β m1) μ (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) s (Set.range.{u2, succ u1} β α f)))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasurableEmbedding.{u1, u2} α β m0 m1 f) -> (forall (μ : MeasureTheory.Measure.{u2} β m1) {s : Set.{u2} β}, (MeasurableSet.{u2} β m1 s) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 (MeasureTheory.Measure.comap.{u1, u2} α β m1 m0 f μ)) (Set.preimage.{u1, u2} α β f s)) (MeasureTheory.OuterMeasure.measureOf.{u2} β (MeasureTheory.Measure.toOuterMeasure.{u2} β m1 μ) (Inter.inter.{u2} (Set.{u2} β) (Set.instInterSet.{u2} β) s (Set.range.{u2, succ u1} β α f)))))
+Case conversion may be inaccurate. Consider using '#align measurable_embedding.comap_preimage MeasurableEmbedding.comap_preimageₓ'. -/
 protected theorem comap_preimage (μ : Measure β) {s : Set β} (hs : MeasurableSet s) :
     μ.comap f (f ⁻¹' s) = μ (s ∩ range f) :=
   comap_preimage _ _ hf.Injective hf.Measurable
@@ -4320,21 +6654,27 @@ end MeasurableEmbedding
 
 section Subtype
 
+#print comap_subtype_coe_apply /-
 theorem comap_subtype_coe_apply {m0 : MeasurableSpace α} {s : Set α} (hs : MeasurableSet s)
     (μ : Measure α) (t : Set s) : comap coe μ t = μ (coe '' t) :=
   (MeasurableEmbedding.subtype_coe hs).comap_apply _ _
 #align comap_subtype_coe_apply comap_subtype_coe_apply
+-/
 
+#print map_comap_subtype_coe /-
 theorem map_comap_subtype_coe {m0 : MeasurableSpace α} {s : Set α} (hs : MeasurableSet s)
     (μ : Measure α) : (comap coe μ).map (coe : s → α) = μ.restrict s := by
   rw [(MeasurableEmbedding.subtype_coe hs).map_comap, Subtype.range_coe]
 #align map_comap_subtype_coe map_comap_subtype_coe
+-/
 
+#print ae_restrict_iff_subtype /-
 theorem ae_restrict_iff_subtype {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α}
     (hs : MeasurableSet s) {p : α → Prop} :
     (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂comap (coe : s → α) μ, p ↑x := by
   rw [← map_comap_subtype_coe hs, (MeasurableEmbedding.subtype_coe hs).ae_map_iff]
 #align ae_restrict_iff_subtype ae_restrict_iff_subtype
+-/
 
 variable [MeasureSpace α] {s t : Set α}
 
@@ -4343,24 +6683,38 @@ variable [MeasureSpace α] {s t : Set α}
 -/
 
 
+#print SetCoe.measureSpace /-
 instance SetCoe.measureSpace (s : Set α) : MeasureSpace s :=
   ⟨comap (coe : s → α) volume⟩
 #align set_coe.measure_space SetCoe.measureSpace
+-/
 
+#print volume_set_coe_def /-
 theorem volume_set_coe_def (s : Set α) : (volume : Measure s) = comap (coe : s → α) volume :=
   rfl
 #align volume_set_coe_def volume_set_coe_def
+-/
 
+#print MeasurableSet.map_coe_volume /-
 theorem MeasurableSet.map_coe_volume {s : Set α} (hs : MeasurableSet s) :
     volume.map (coe : s → α) = restrict volume s := by
   rw [volume_set_coe_def, (MeasurableEmbedding.subtype_coe hs).map_comap volume, Subtype.range_coe]
 #align measurable_set.map_coe_volume MeasurableSet.map_coe_volume
+-/
 
+#print volume_image_subtype_coe /-
 theorem volume_image_subtype_coe {s : Set α} (hs : MeasurableSet s) (t : Set s) :
     volume (coe '' t : Set α) = volume t :=
   (comap_subtype_coe_apply hs volume t).symm
 #align volume_image_subtype_coe volume_image_subtype_coe
+-/
 
+/- warning: volume_preimage_coe -> volume_preimage_coe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasureTheory.MeasureSpace.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_1)) -> (MeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1) t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (SetCoe.measureSpace.{u1} α _inst_1 s))) (fun (_x : MeasureTheory.Measure.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (SetCoe.measureSpace.{u1} α _inst_1 s))) => (Set.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s)) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (SetCoe.measureSpace.{u1} α _inst_1 s))) (MeasureTheory.MeasureSpace.volume.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (SetCoe.measureSpace.{u1} α _inst_1 s)) (Set.preimage.{u1, u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)))))) t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1)) (fun (_x : MeasureTheory.Measure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1)) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1)) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t s)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasureTheory.MeasureSpace.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1) s (MeasureTheory.MeasureSpace.volume.{u1} α _inst_1)) -> (MeasurableSet.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1) t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (MeasureTheory.Measure.toOuterMeasure.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (SetCoe.measureSpace.{u1} α _inst_1 s)) (MeasureTheory.MeasureSpace.volume.{u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) (SetCoe.measureSpace.{u1} α _inst_1 s))) (Set.preimage.{u1, u1} (Subtype.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) α (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α (MeasureTheory.MeasureSpace.toMeasurableSpace.{u1} α _inst_1) (MeasureTheory.MeasureSpace.volume.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) t s)))
+Case conversion may be inaccurate. Consider using '#align volume_preimage_coe volume_preimage_coeₓ'. -/
 @[simp]
 theorem volume_preimage_coe (hs : NullMeasurableSet s) (ht : MeasurableSet t) :
     volume ((coe : s → α) ⁻¹' t) = volume (t ∩ s) := by
@@ -4382,22 +6736,46 @@ open Equiv MeasureTheory.Measure
 
 variable [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β}
 
+/- warning: measurable_equiv.map_apply -> MeasurableEquiv.map_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (s : Set.{u2} β), Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} β _inst_2) (fun (_x : MeasureTheory.Measure.{u2} β _inst_2) => (Set.{u2} β) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} β _inst_2) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) μ) s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) s))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α _inst_1} (f : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) (s : Set.{u1} β), Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} β (MeasureTheory.Measure.toOuterMeasure.{u1} β _inst_2 (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (a : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) f) μ)) s) (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_1 μ) (Set.preimage.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) f) s))
+Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_apply MeasurableEquiv.map_applyₓ'. -/
 /-- If we map a measure along a measurable equivalence, we can compute the measure on all sets
   (not just the measurable ones). -/
 protected theorem map_apply (f : α ≃ᵐ β) (s : Set β) : μ.map f s = μ (f ⁻¹' s) :=
   f.MeasurableEmbedding.map_apply _ _
 #align measurable_equiv.map_apply MeasurableEquiv.map_apply
 
+/- warning: measurable_equiv.map_symm_map -> MeasurableEquiv.map_symm_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α _inst_1} (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2), Eq.{succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (MeasureTheory.Measure.map.{u2, u1} β α _inst_1 _inst_2 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) (fun (_x : MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) => β -> α) (MeasurableEquiv.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (MeasurableEquiv.symm.{u1, u2} α β _inst_1 _inst_2 e)) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) μ)) μ
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α _inst_1} (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), Eq.{succ u2} (MeasureTheory.Measure.{u2} α _inst_1) (MeasureTheory.Measure.map.{u1, u2} β α _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (MeasurableEquiv.instEquivLike.{u1, u2} β α _inst_2 _inst_1))) (MeasurableEquiv.symm.{u2, u1} α β _inst_1 _inst_2 e)) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) μ)) μ
+Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_symm_map MeasurableEquiv.map_symm_mapₓ'. -/
 @[simp]
 theorem map_symm_map (e : α ≃ᵐ β) : (μ.map e).map e.symm = μ := by
   simp [map_map e.symm.measurable e.measurable]
 #align measurable_equiv.map_symm_map MeasurableEquiv.map_symm_map
 
+/- warning: measurable_equiv.map_map_symm -> MeasurableEquiv.map_map_symm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {ν : MeasureTheory.Measure.{u2} β _inst_2} (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_2) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) (MeasureTheory.Measure.map.{u2, u1} β α _inst_1 _inst_2 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) (fun (_x : MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) => β -> α) (MeasurableEquiv.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (MeasurableEquiv.symm.{u1, u2} α β _inst_1 _inst_2 e)) ν)) ν
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {ν : MeasureTheory.Measure.{u1} β _inst_2} (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_2) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) (MeasureTheory.Measure.map.{u1, u2} β α _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (MeasurableEquiv.instEquivLike.{u1, u2} β α _inst_2 _inst_1))) (MeasurableEquiv.symm.{u2, u1} α β _inst_1 _inst_2 e)) ν)) ν
+Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_map_symm MeasurableEquiv.map_map_symmₓ'. -/
 @[simp]
 theorem map_map_symm (e : α ≃ᵐ β) : (ν.map e.symm).map e = ν := by
   simp [map_map e.measurable e.symm.measurable]
 #align measurable_equiv.map_map_symm MeasurableEquiv.map_map_symm
 
+/- warning: measurable_equiv.map_measurable_equiv_injective -> MeasurableEquiv.map_measurableEquiv_injective is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2), Function.Injective.{succ u1, succ u2} (MeasureTheory.Measure.{u1} α _inst_1) (MeasureTheory.Measure.{u2} β _inst_2) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), Function.Injective.{succ u2, succ u1} (MeasureTheory.Measure.{u2} α _inst_1) (MeasureTheory.Measure.{u1} β _inst_2) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e))
+Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injectiveₓ'. -/
 theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (map e) :=
   by
   intro μ₁ μ₂ hμ
@@ -4405,21 +6783,45 @@ theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (map e) :=
   simpa [map_symm_map e] using hμ
 #align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injective
 
+/- warning: measurable_equiv.map_apply_eq_iff_map_symm_apply_eq -> MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α _inst_1} {ν : MeasureTheory.Measure.{u2} β _inst_2} (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2), Iff (Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_2) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) μ) ν) (Eq.{succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (MeasureTheory.Measure.map.{u2, u1} β α _inst_1 _inst_2 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) (fun (_x : MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) => β -> α) (MeasurableEquiv.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (MeasurableEquiv.symm.{u1, u2} α β _inst_1 _inst_2 e)) ν) μ)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α _inst_1} {ν : MeasureTheory.Measure.{u1} β _inst_2} (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), Iff (Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_2) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) μ) ν) (Eq.{succ u2} (MeasureTheory.Measure.{u2} α _inst_1) (MeasureTheory.Measure.map.{u1, u2} β α _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (MeasurableEquiv.instEquivLike.{u1, u2} β α _inst_2 _inst_1))) (MeasurableEquiv.symm.{u2, u1} α β _inst_1 _inst_2 e)) ν) μ)
+Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_apply_eq_iff_map_symm_apply_eq MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eqₓ'. -/
 theorem map_apply_eq_iff_map_symm_apply_eq (e : α ≃ᵐ β) : μ.map e = ν ↔ ν.map e.symm = μ := by
   rw [← (map_measurable_equiv_injective e).eq_iff, map_map_symm, eq_comm]
 #align measurable_equiv.map_apply_eq_iff_map_symm_apply_eq MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eq
 
+/- warning: measurable_equiv.restrict_map -> MeasurableEquiv.restrict_map is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α _inst_1} (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (s : Set.{u2} β), Eq.{succ u2} (MeasureTheory.Measure.{u2} β _inst_2) (MeasureTheory.Measure.restrict.{u2} β _inst_2 (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) μ) s) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) s)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α _inst_1} (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) (s : Set.{u1} β), Eq.{succ u1} (MeasureTheory.Measure.{u1} β _inst_2) (MeasureTheory.Measure.restrict.{u1} β _inst_2 (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) μ) s) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (Set.preimage.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) s)))
+Case conversion may be inaccurate. Consider using '#align measurable_equiv.restrict_map MeasurableEquiv.restrict_mapₓ'. -/
 theorem restrict_map (e : α ≃ᵐ β) (s : Set β) :
     (μ.map e).restrict s = (μ.restrict <| e ⁻¹' s).map e :=
   e.MeasurableEmbedding.restrict_map _ _
 #align measurable_equiv.restrict_map MeasurableEquiv.restrict_map
 
+/- warning: measurable_equiv.map_ae -> MeasurableEquiv.map_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] (f : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (μ : MeasureTheory.Measure.{u1} α _inst_1), Eq.{succ u2} (Filter.{u2} β) (Filter.map.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)) (MeasureTheory.Measure.ae.{u2} β _inst_2 (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) f) μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] (f : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) (μ : MeasureTheory.Measure.{u2} α _inst_1), Eq.{succ u1} (Filter.{u1} β) (Filter.map.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) f) (MeasureTheory.Measure.ae.{u2} α _inst_1 μ)) (MeasureTheory.Measure.ae.{u1} β _inst_2 (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) f) μ))
+Case conversion may be inaccurate. Consider using '#align measurable_equiv.map_ae MeasurableEquiv.map_aeₓ'. -/
 theorem map_ae (f : α ≃ᵐ β) (μ : Measure α) : Filter.map f μ.ae = (map f μ).ae :=
   by
   ext s
   simp_rw [mem_map, mem_ae_iff, ← preimage_compl, f.map_apply]
 #align measurable_equiv.map_ae MeasurableEquiv.map_ae
 
+/- warning: measurable_equiv.quasi_measure_preserving_symm -> MeasurableEquiv.quasiMeasurePreserving_symm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] (μ : MeasureTheory.Measure.{u1} α _inst_1) (e : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2), MeasureTheory.Measure.QuasiMeasurePreserving.{u2, u1} β α _inst_1 _inst_2 (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) (fun (_x : MeasurableEquiv.{u2, u1} β α _inst_2 _inst_1) => β -> α) (MeasurableEquiv.hasCoeToFun.{u2, u1} β α _inst_2 _inst_1) (MeasurableEquiv.symm.{u1, u2} α β _inst_1 _inst_2 e)) (MeasureTheory.Measure.map.{u1, u2} α β _inst_2 _inst_1 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) (fun (_x : MeasurableEquiv.{u1, u2} α β _inst_1 _inst_2) => α -> β) (MeasurableEquiv.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2) e) μ) μ
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] (μ : MeasureTheory.Measure.{u2} α _inst_1) (e : MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2), MeasureTheory.Measure.QuasiMeasurePreserving.{u1, u2} β α _inst_1 _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u1, succ u2} (MeasurableEquiv.{u1, u2} β α _inst_2 _inst_1) β α (MeasurableEquiv.instEquivLike.{u1, u2} β α _inst_2 _inst_1))) (MeasurableEquiv.symm.{u2, u1} α β _inst_1 _inst_2 e)) (MeasureTheory.Measure.map.{u2, u1} α β _inst_2 _inst_1 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (EquivLike.toEmbeddingLike.{max (succ u2) (succ u1), succ u2, succ u1} (MeasurableEquiv.{u2, u1} α β _inst_1 _inst_2) α β (MeasurableEquiv.instEquivLike.{u2, u1} α β _inst_1 _inst_2))) e) μ) μ
+Case conversion may be inaccurate. Consider using '#align measurable_equiv.quasi_measure_preserving_symm MeasurableEquiv.quasiMeasurePreserving_symmₓ'. -/
 theorem quasiMeasurePreserving_symm (μ : Measure α) (e : α ≃ᵐ β) :
     QuasiMeasurePreserving e.symm (map e μ) μ :=
   ⟨e.symm.Measurable, by rw [measure.map_map, e.symm_comp_self, measure.map_id] <;> measurability⟩
@@ -4429,14 +6831,17 @@ end MeasurableEquiv
 
 namespace MeasureTheory
 
+#print MeasureTheory.OuterMeasure.toMeasure_zero /-
 theorem OuterMeasure.toMeasure_zero [MeasurableSpace α] :
     (0 : OuterMeasure α).toMeasure (le_top.trans OuterMeasure.zero_caratheodory.symm.le) = 0 := by
   rw [← measure.measure_univ_eq_zero, to_measure_apply _ _ MeasurableSet.univ,
     outer_measure.coe_zero, Pi.zero_apply]
 #align measure_theory.outer_measure.to_measure_zero MeasureTheory.OuterMeasure.toMeasure_zero
+-/
 
 section Trim
 
+#print MeasureTheory.Measure.trim /-
 /-- Restriction of a measure to a sub-sigma algebra.
 It is common to see a measure `μ` on a measurable space structure `m0` as being also a measure on
 any `m ≤ m0`. Since measures in mathlib have to be trimmed to the measurable space, `μ` itself
@@ -4447,58 +6852,92 @@ This notion is related to `outer_measure.trim`, see the lemma
 def Measure.trim {m m0 : MeasurableSpace α} (μ : @Measure α m0) (hm : m ≤ m0) : @Measure α m :=
   @OuterMeasure.toMeasure α m μ.toOuterMeasure (hm.trans (le_toOuterMeasure_caratheodory μ))
 #align measure_theory.measure.trim MeasureTheory.Measure.trim
+-/
 
+#print MeasureTheory.trim_eq_self /-
 @[simp]
 theorem trim_eq_self [MeasurableSpace α] {μ : Measure α} : μ.trim le_rfl = μ := by
   simp [measure.trim]
 #align measure_theory.trim_eq_self MeasureTheory.trim_eq_self
+-/
 
 variable {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α}
 
+#print MeasureTheory.toOuterMeasure_trim_eq_trim_toOuterMeasure /-
 theorem toOuterMeasure_trim_eq_trim_toOuterMeasure (μ : Measure α) (hm : m ≤ m0) :
     @Measure.toOuterMeasure _ m (μ.trim hm) = @OuterMeasure.trim _ m μ.toOuterMeasure := by
   rw [measure.trim, to_measure_to_outer_measure]
 #align measure_theory.to_outer_measure_trim_eq_trim_to_outer_measure MeasureTheory.toOuterMeasure_trim_eq_trim_toOuterMeasure
+-/
 
+#print MeasureTheory.zero_trim /-
 @[simp]
 theorem zero_trim (hm : m ≤ m0) : (0 : Measure α).trim hm = (0 : @Measure α m) := by
   simp [measure.trim, outer_measure.to_measure_zero]
 #align measure_theory.zero_trim MeasureTheory.zero_trim
+-/
 
+#print MeasureTheory.trim_measurableSet_eq /-
 theorem trim_measurableSet_eq (hm : m ≤ m0) (hs : @MeasurableSet α m s) : μ.trim hm s = μ s := by
   simp [measure.trim, hs]
 #align measure_theory.trim_measurable_set_eq MeasureTheory.trim_measurableSet_eq
+-/
 
+/- warning: measure_theory.le_trim -> MeasureTheory.le_trim is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.le_trim MeasureTheory.le_trimₓ'. -/
 theorem le_trim (hm : m ≤ m0) : μ s ≤ μ.trim hm s :=
   by
   simp_rw [measure.trim]
   exact @le_to_measure_apply _ m _ _ _
 #align measure_theory.le_trim MeasureTheory.le_trim
 
+/- warning: measure_theory.measure_eq_zero_of_trim_eq_zero -> MeasureTheory.measure_eq_zero_of_trim_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_eq_zero_of_trim_eq_zero MeasureTheory.measure_eq_zero_of_trim_eq_zeroₓ'. -/
 theorem measure_eq_zero_of_trim_eq_zero (hm : m ≤ m0) (h : μ.trim hm s = 0) : μ s = 0 :=
   le_antisymm ((le_trim hm).trans (le_of_eq h)) (zero_le _)
 #align measure_theory.measure_eq_zero_of_trim_eq_zero MeasureTheory.measure_eq_zero_of_trim_eq_zero
 
+/- warning: measure_theory.measure_trim_to_measurable_eq_zero -> MeasureTheory.measure_trim_toMeasurable_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (MeasureTheory.toMeasurable.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (MeasureTheory.toMeasurable.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_trim_to_measurable_eq_zero MeasureTheory.measure_trim_toMeasurable_eq_zeroₓ'. -/
 theorem measure_trim_toMeasurable_eq_zero {hm : m ≤ m0} (hs : μ.trim hm s = 0) :
     μ (@toMeasurable α m (μ.trim hm) s) = 0 :=
   measure_eq_zero_of_trim_eq_zero hm (by rwa [measure_to_measurable])
 #align measure_theory.measure_trim_to_measurable_eq_zero MeasureTheory.measure_trim_toMeasurable_eq_zero
 
+#print MeasureTheory.ae_of_ae_trim /-
 theorem ae_of_ae_trim (hm : m ≤ m0) {μ : Measure α} {P : α → Prop} (h : ∀ᵐ x ∂μ.trim hm, P x) :
     ∀ᵐ x ∂μ, P x :=
   measure_eq_zero_of_trim_eq_zero hm h
 #align measure_theory.ae_of_ae_trim MeasureTheory.ae_of_ae_trim
+-/
 
+#print MeasureTheory.ae_eq_of_ae_eq_trim /-
 theorem ae_eq_of_ae_eq_trim {E} {hm : m ≤ m0} {f₁ f₂ : α → E}
     (h12 : f₁ =ᶠ[@Measure.ae α m (μ.trim hm)] f₂) : f₁ =ᵐ[μ] f₂ :=
   measure_eq_zero_of_trim_eq_zero hm h12
 #align measure_theory.ae_eq_of_ae_eq_trim MeasureTheory.ae_eq_of_ae_eq_trim
+-/
 
+#print MeasureTheory.ae_le_of_ae_le_trim /-
 theorem ae_le_of_ae_le_trim {E} [LE E] {hm : m ≤ m0} {f₁ f₂ : α → E}
     (h12 : f₁ ≤ᶠ[@Measure.ae α m (μ.trim hm)] f₂) : f₁ ≤ᵐ[μ] f₂ :=
   measure_eq_zero_of_trim_eq_zero hm h12
 #align measure_theory.ae_le_of_ae_le_trim MeasureTheory.ae_le_of_ae_le_trim
+-/
 
+#print MeasureTheory.trim_trim /-
 theorem trim_trim {m₁ m₂ : MeasurableSpace α} {hm₁₂ : m₁ ≤ m₂} {hm₂ : m₂ ≤ m0} :
     (μ.trim hm₂).trim hm₁₂ = μ.trim (hm₁₂.trans hm₂) :=
   by
@@ -4506,7 +6945,9 @@ theorem trim_trim {m₁ m₂ : MeasurableSpace α} {hm₁₂ : m₁ ≤ m₂} {h
   rw [trim_measurable_set_eq hm₁₂ ht, trim_measurable_set_eq (hm₁₂.trans hm₂) ht,
     trim_measurable_set_eq hm₂ (hm₁₂ t ht)]
 #align measure_theory.trim_trim MeasureTheory.trim_trim
+-/
 
+#print MeasureTheory.restrict_trim /-
 theorem restrict_trim (hm : m ≤ m0) (μ : Measure α) (hs : @MeasurableSet α m s) :
     @Measure.restrict α m (μ.trim hm) s = (μ.restrict s).trim hm :=
   by
@@ -4515,15 +6956,19 @@ theorem restrict_trim (hm : m ≤ m0) (μ : Measure α) (hs : @MeasurableSet α
     measure.restrict_apply (hm t ht),
     trim_measurable_set_eq hm (@MeasurableSet.inter α m t s ht hs)]
 #align measure_theory.restrict_trim MeasureTheory.restrict_trim
+-/
 
-instance isFiniteMeasure_trim (hm : m ≤ m0) [IsFiniteMeasure μ] : IsFiniteMeasure (μ.trim hm)
+#print MeasureTheory.finiteMeasure_trim /-
+instance finiteMeasure_trim (hm : m ≤ m0) [FiniteMeasure μ] : FiniteMeasure (μ.trim hm)
     where measure_univ_lt_top :=
     by
     rw [trim_measurable_set_eq hm (@MeasurableSet.univ _ m)]
     exact measure_lt_top _ _
-#align measure_theory.is_finite_measure_trim MeasureTheory.isFiniteMeasure_trim
+#align measure_theory.is_finite_measure_trim MeasureTheory.finiteMeasure_trim
+-/
 
-theorem sigmaFinite_trim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm : m ≤ m0)
+#print MeasureTheory.sigmaFiniteTrim_mono /-
+theorem sigmaFiniteTrim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm : m ≤ m0)
     (hm₂ : m₂ ≤ m) [SigmaFinite (μ.trim (hm₂.trans hm))] : SigmaFinite (μ.trim hm) :=
   by
   have h := measure.finite_spanning_sets_in (μ.trim (hm₂.trans hm)) Set.univ
@@ -4543,9 +6988,16 @@ theorem sigmaFinite_trim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α}
         rw [@trim_trim _ _ μ _ _ hm₂ hm]
       _ < ∞ := measure_spanning_sets_lt_top _ _
       
-#align measure_theory.sigma_finite_trim_mono MeasureTheory.sigmaFinite_trim_mono
+#align measure_theory.sigma_finite_trim_mono MeasureTheory.sigmaFiniteTrim_mono
+-/
 
-theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ IsFiniteMeasure μ :=
+/- warning: measure_theory.sigma_finite_trim_bot_iff -> MeasureTheory.sigmaFinite_trim_bot_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (MeasureTheory.SigmaFinite.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (OrderBot.toHasBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α))))) (MeasureTheory.Measure.trim.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (OrderBot.toHasBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α))))) m0 μ (bot_le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α))) m0))) (MeasureTheory.FiniteMeasure.{u1} α m0 μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (MeasureTheory.SigmaFinite.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (OrderBot.toBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α))))) (MeasureTheory.Measure.trim.{u1} α (Bot.bot.{u1} (MeasurableSpace.{u1} α) (OrderBot.toBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α))))) m0 μ (bot_le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (BoundedOrder.toOrderBot.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) (CompleteLattice.toBoundedOrder.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α))) m0))) (MeasureTheory.FiniteMeasure.{u1} α m0 μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.sigma_finite_trim_bot_iff MeasureTheory.sigmaFinite_trim_bot_iffₓ'. -/
+theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ FiniteMeasure μ :=
   by
   rw [sigma_finite_bot_iff]
   refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ <;> have h_univ := h.measure_univ_lt_top
@@ -4561,6 +7013,12 @@ namespace IsCompact
 
 variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set α}
 
+/- warning: is_compact.exists_open_superset_measure_lt_top' -> IsCompact.exists_open_superset_measure_lt_top' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhds.{u1} α _inst_1 x))) -> (Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ U) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhds.{u1} α _inst_1 x))) -> (Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) U) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))))
+Case conversion may be inaccurate. Consider using '#align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
 superset of finite measure. -/
@@ -4581,20 +7039,38 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
     exact ⟨U, nhdsWithin_le_nhds (hUo.mem_nhds hx), U, subset.rfl, hUo, hU⟩
 #align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'
 
+/- warning: is_compact.exists_open_superset_measure_lt_top -> IsCompact.exists_open_superset_measure_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) [_inst_3 : MeasureTheory.LocallyFiniteMeasure.{u1} α _inst_2 _inst_1 μ], Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ U) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) [_inst_3 : MeasureTheory.LocallyFiniteMeasure.{u1} α _inst_2 _inst_1 μ], Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) (fun (H : Superset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) U s) => And (IsOpen.{u1} α _inst_1 U) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) U) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))))
+Case conversion may be inaccurate. Consider using '#align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
 theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
-    [IsLocallyFiniteMeasure μ] : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
+    [LocallyFiniteMeasure μ] : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
   h.exists_open_superset_measure_lt_top' fun x hx => μ.finite_at_nhds x
 #align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_top
 
+/- warning: is_compact.measure_lt_top_of_nhds_within -> IsCompact.measure_lt_top_of_nhdsWithin is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhdsWithin.{u1} α _inst_1 x s))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (MeasureTheory.Measure.FiniteAtFilter.{u1} α _inst_2 μ (nhdsWithin.{u1} α _inst_1 x s))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align is_compact.measure_lt_top_of_nhds_within IsCompact.measure_lt_top_of_nhdsWithinₓ'. -/
 theorem measure_lt_top_of_nhdsWithin (h : IsCompact s) (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝[s] x)) :
     μ s < ∞ :=
   IsCompact.induction_on h (by simp) (fun s t hst ht => (measure_mono hst).trans_lt ht)
     (fun s t hs ht => (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hs, ht⟩)) hμ
 #align is_compact.measure_lt_top_of_nhds_within IsCompact.measure_lt_top_of_nhdsWithin
 
+/- warning: is_compact.measure_zero_of_nhds_within -> IsCompact.measure_zero_of_nhdsWithin is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t (nhdsWithin.{u1} α _inst_1 a s)) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t (nhdsWithin.{u1} α _inst_1 a s)) => Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_2) (fun (_x : MeasureTheory.Measure.{u1} α _inst_2) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_2) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_2} {s : Set.{u1} α}, (IsCompact.{u1} α _inst_1 s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) t (nhdsWithin.{u1} α _inst_1 a s)) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_2 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align is_compact.measure_zero_of_nhds_within IsCompact.measure_zero_of_nhdsWithinₓ'. -/
 theorem measure_zero_of_nhdsWithin (hs : IsCompact s) :
     (∀ a ∈ s, ∃ t ∈ 𝓝[s] a, μ t = 0) → μ s = 0 := by
   simpa only [← compl_mem_ae_iff] using hs.compl_mem_sets_of_nhds_within
@@ -4602,26 +7078,30 @@ theorem measure_zero_of_nhdsWithin (hs : IsCompact s) :
 
 end IsCompact
 
+#print finiteMeasureOnCompacts_of_locallyFiniteMeasure /-
 -- see Note [lower instance priority]
-instance (priority := 100) isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure [TopologicalSpace α]
-    {m : MeasurableSpace α} {μ : Measure α} [IsLocallyFiniteMeasure μ] :
-    IsFiniteMeasureOnCompacts μ :=
-  ⟨fun s hs => hs.measure_lt_top_of_nhdsWithin fun x hx => μ.finite_at_nhdsWithin _ _⟩
-#align is_finite_measure_on_compacts_of_is_locally_finite_measure isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure
+instance (priority := 100) finiteMeasureOnCompacts_of_locallyFiniteMeasure [TopologicalSpace α]
+    {m : MeasurableSpace α} {μ : Measure α} [LocallyFiniteMeasure μ] : FiniteMeasureOnCompacts μ :=
+  ⟨fun s hs => hs.measure_lt_top_of_nhdsWithin fun x hx => μ.finiteAt_nhdsWithin _ _⟩
+#align is_finite_measure_on_compacts_of_is_locally_finite_measure finiteMeasureOnCompacts_of_locallyFiniteMeasure
+-/
 
-theorem isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace [TopologicalSpace α]
+#print finiteMeasure_iff_finiteMeasureOnCompacts_of_compactSpace /-
+theorem finiteMeasure_iff_finiteMeasureOnCompacts_of_compactSpace [TopologicalSpace α]
     [MeasurableSpace α] {μ : Measure α} [CompactSpace α] :
-    IsFiniteMeasure μ ↔ IsFiniteMeasureOnCompacts μ :=
+    FiniteMeasure μ ↔ FiniteMeasureOnCompacts μ :=
   by
   constructor <;> intros
   · infer_instance
   · exact compact_space.is_finite_measure
-#align is_finite_measure_iff_is_finite_measure_on_compacts_of_compact_space isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace
+#align is_finite_measure_iff_is_finite_measure_on_compacts_of_compact_space finiteMeasure_iff_finiteMeasureOnCompacts_of_compactSpace
+-/
 
+#print MeasureTheory.Measure.finiteSpanningSetsInCompact /-
 /-- Compact covering of a `σ`-compact topological space as
 `measure_theory.measure.finite_spanning_sets_in`. -/
 def MeasureTheory.Measure.finiteSpanningSetsInCompact [TopologicalSpace α] [SigmaCompactSpace α]
-    {m : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
+    {m : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
     μ.FiniteSpanningSetsIn { K | IsCompact K }
     where
   Set := compactCovering α
@@ -4629,11 +7109,13 @@ def MeasureTheory.Measure.finiteSpanningSetsInCompact [TopologicalSpace α] [Sig
   Finite n := (isCompact_compactCovering α n).measure_lt_top
   spanning := unionᵢ_compactCovering α
 #align measure_theory.measure.finite_spanning_sets_in_compact MeasureTheory.Measure.finiteSpanningSetsInCompact
+-/
 
+#print MeasureTheory.Measure.finiteSpanningSetsInOpen /-
 /-- A locally finite measure on a `σ`-compact topological space admits a finite spanning sequence
 of open sets. -/
 def MeasureTheory.Measure.finiteSpanningSetsInOpen [TopologicalSpace α] [SigmaCompactSpace α]
-    {m : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
+    {m : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
     μ.FiniteSpanningSetsIn { K | IsOpen K }
     where
   Set n := ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).some
@@ -4647,13 +7129,15 @@ def MeasureTheory.Measure.finiteSpanningSetsInOpen [TopologicalSpace α] [SigmaC
         ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose_spec.fst)
       (unionᵢ_compactCovering α)
 #align measure_theory.measure.finite_spanning_sets_in_open MeasureTheory.Measure.finiteSpanningSetsInOpen
+-/
 
 open TopologicalSpace
 
+#print MeasureTheory.Measure.finiteSpanningSetsInOpen' /-
 /-- A locally finite measure on a second countable topological space admits a finite spanning
 sequence of open sets. -/
 irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpace α]
-  [SecondCountableTopology α] {m : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
+  [SecondCountableTopology α] {m : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
   μ.FiniteSpanningSetsIn { K | IsOpen K } :=
   by
   suffices H : Nonempty (μ.finite_spanning_sets_in { K | IsOpen K })
@@ -4694,24 +7178,49 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
   obtain ⟨n, rfl⟩ : ∃ n : ℕ, f n = t := by simpa only using tT
   exact mem_Union_of_mem _ xt
 #align measure_theory.measure.finite_spanning_sets_in_open' MeasureTheory.Measure.finiteSpanningSetsInOpen'
+-/
 
 section MeasureIxx
 
 variable [Preorder α] [TopologicalSpace α] [CompactIccSpace α] {m : MeasurableSpace α}
-  {μ : Measure α} [IsLocallyFiniteMeasure μ] {a b : α}
-
+  {μ : Measure α} [LocallyFiniteMeasure μ] {a b : α}
+
+/- warning: measure_Icc_lt_top -> measure_Icc_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Icc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Icc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align measure_Icc_lt_top measure_Icc_lt_topₓ'. -/
 theorem measure_Icc_lt_top : μ (Icc a b) < ∞ :=
   isCompact_Icc.measure_lt_top
 #align measure_Icc_lt_top measure_Icc_lt_top
 
+/- warning: measure_Ico_lt_top -> measure_Ico_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ico.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Ico.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align measure_Ico_lt_top measure_Ico_lt_topₓ'. -/
 theorem measure_Ico_lt_top : μ (Ico a b) < ∞ :=
   (measure_mono Ico_subset_Icc_self).trans_lt measure_Icc_lt_top
 #align measure_Ico_lt_top measure_Ico_lt_top
 
+/- warning: measure_Ioc_lt_top -> measure_Ioc_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ioc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Ioc.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align measure_Ioc_lt_top measure_Ioc_lt_topₓ'. -/
 theorem measure_Ioc_lt_top : μ (Ioc a b) < ∞ :=
   (measure_mono Ioc_subset_Icc_self).trans_lt measure_Icc_lt_top
 #align measure_Ioc_lt_top measure_Ioc_lt_top
 
+/- warning: measure_Ioo_lt_top -> measure_Ioo_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.Ioo.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : CompactIccSpace.{u1} α _inst_2 _inst_1] {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.LocallyFiniteMeasure.{u1} α m _inst_2 μ] {a : α} {b : α}, LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.Ioo.{u1} α _inst_1 a b)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))
+Case conversion may be inaccurate. Consider using '#align measure_Ioo_lt_top measure_Ioo_lt_topₓ'. -/
 theorem measure_Ioo_lt_top : μ (Ioo a b) < ∞ :=
   (measure_mono Ioo_subset_Icc_self).trans_lt measure_Icc_lt_top
 #align measure_Ioo_lt_top measure_Ioo_lt_top
@@ -4722,12 +7231,24 @@ section Piecewise
 
 variable [MeasurableSpace α] {μ : Measure α} {s t : Set α} {f g : α → β}
 
+/- warning: piecewise_ae_eq_restrict -> piecewise_ae_eq_restrict is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} {g : α -> β}, (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s)) (Set.piecewise.{u1, succ u2} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s))) f)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} {g : α -> β}, (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ s)) (Set.piecewise.{u2, succ u1} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j s))) f)
+Case conversion may be inaccurate. Consider using '#align piecewise_ae_eq_restrict piecewise_ae_eq_restrictₓ'. -/
 theorem piecewise_ae_eq_restrict (hs : MeasurableSet s) : piecewise s f g =ᵐ[μ.restrict s] f :=
   by
   rw [ae_restrict_eq hs]
   exact (piecewise_eq_on s f g).EventuallyEq.filter_mono inf_le_right
 #align piecewise_ae_eq_restrict piecewise_ae_eq_restrict
 
+/- warning: piecewise_ae_eq_restrict_compl -> piecewise_ae_eq_restrict_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} {g : α -> β}, (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (Set.piecewise.{u1, succ u2} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s))) g)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} {g : α -> β}, (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (HasCompl.compl.{u2} (Set.{u2} α) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} α) (Set.instBooleanAlgebraSet.{u2} α)) s))) (Set.piecewise.{u2, succ u1} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j s))) g)
+Case conversion may be inaccurate. Consider using '#align piecewise_ae_eq_restrict_compl piecewise_ae_eq_restrict_complₓ'. -/
 theorem piecewise_ae_eq_restrict_compl (hs : MeasurableSet s) :
     piecewise s f g =ᵐ[μ.restrict (sᶜ)] g :=
   by
@@ -4735,6 +7256,12 @@ theorem piecewise_ae_eq_restrict_compl (hs : MeasurableSet s) :
   exact (piecewise_eq_on_compl s f g).EventuallyEq.filter_mono inf_le_right
 #align piecewise_ae_eq_restrict_compl piecewise_ae_eq_restrict_compl
 
+/- warning: piecewise_ae_eq_of_ae_eq_set -> piecewise_ae_eq_of_ae_eq_set is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) s t) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.piecewise.{u1, succ u2} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j s))) (Set.piecewise.{u1, succ u2} α (fun (ᾰ : α) => β) t f g (fun (j : α) => Classical.propDecidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) j t))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {t : Set.{u2} α} {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) s t) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.piecewise.{u2, succ u1} α (fun (ᾰ : α) => β) s f g (fun (j : α) => Classical.propDecidable (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j s))) (Set.piecewise.{u2, succ u1} α (fun (ᾰ : α) => β) t f g (fun (j : α) => Classical.propDecidable (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) j t))))
+Case conversion may be inaccurate. Consider using '#align piecewise_ae_eq_of_ae_eq_set piecewise_ae_eq_of_ae_eq_setₓ'. -/
 theorem piecewise_ae_eq_of_ae_eq_set (hst : s =ᵐ[μ] t) : s.piecewise f g =ᵐ[μ] t.piecewise f g :=
   hst.mem_iff.mono fun x hx => by simp [piecewise, hx]
 #align piecewise_ae_eq_of_ae_eq_set piecewise_ae_eq_of_ae_eq_set
@@ -4745,6 +7272,7 @@ section IndicatorFunction
 
 variable [MeasurableSpace α] {μ : Measure α} {s t : Set α} {f : α → β}
 
+#print mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem /-
 theorem mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem [Zero β] {t : Set β}
     (ht : (0 : β) ∈ t) (hs : MeasurableSet s) :
     t ∈ Filter.map (s.indicator f) μ.ae ↔ t ∈ Filter.map f (μ.restrict s).ae :=
@@ -4757,7 +7285,14 @@ theorem mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem [Zero β] {t :
     Set.preimage_const]
   simp_rw [Set.union_inter_distrib_right, Set.compl_inter_self s, Set.union_empty]
 #align mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem
+-/
 
+/- warning: mem_map_indicator_ae_iff_of_zero_nmem -> mem_map_indicator_ae_iff_of_zero_nmem is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β] {t : Set.{u2} β}, (Not (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β _inst_2))) t)) -> (Iff (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) (Set.preimage.{u1, u2} α β f t)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β] {t : Set.{u2} β}, (Not (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β _inst_2)) t)) -> (Iff (Membership.mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (instMembershipSetFilter.{u2} β) t (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) (Set.preimage.{u1, u2} α β f t)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align mem_map_indicator_ae_iff_of_zero_nmem mem_map_indicator_ae_iff_of_zero_nmemₓ'. -/
 theorem mem_map_indicator_ae_iff_of_zero_nmem [Zero β] {t : Set β} (ht : (0 : β) ∉ t) :
     t ∈ Filter.map (s.indicator f) μ.ae ↔ μ ((f ⁻¹' t)ᶜ ∪ sᶜ) = 0 :=
   by
@@ -4766,6 +7301,12 @@ theorem mem_map_indicator_ae_iff_of_zero_nmem [Zero β] {t : Set β} (ht : (0 :
   simp only [ht, if_false, Set.compl_empty, Set.empty_diff, Set.inter_univ, Set.preimage_const]
 #align mem_map_indicator_ae_iff_of_zero_nmem mem_map_indicator_ae_iff_of_zero_nmem
 
+/- warning: map_restrict_ae_le_map_indicator_ae -> map_restrict_ae_le_map_indicator_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s))) (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β))) (Filter.map.{u1, u2} α β f (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s))) (Filter.map.{u1, u2} α β (Set.indicator.{u1, u2} α β _inst_2 s f) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))
+Case conversion may be inaccurate. Consider using '#align map_restrict_ae_le_map_indicator_ae map_restrict_ae_le_map_indicator_aeₓ'. -/
 theorem map_restrict_ae_le_map_indicator_ae [Zero β] (hs : MeasurableSet s) :
     Filter.map f (μ.restrict s).ae ≤ Filter.map (s.indicator f) μ.ae :=
   by
@@ -4779,15 +7320,33 @@ theorem map_restrict_ae_le_map_indicator_ae [Zero β] (hs : MeasurableSet s) :
 
 variable [Zero β]
 
+/- warning: indicator_ae_eq_restrict -> indicator_ae_eq_restrict is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s)) (Set.indicator.{u1, u2} α β _inst_2 s f) f)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ s)) (Set.indicator.{u2, u1} α β _inst_2 s f) f)
+Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_restrict indicator_ae_eq_restrictₓ'. -/
 theorem indicator_ae_eq_restrict (hs : MeasurableSet s) : indicator s f =ᵐ[μ.restrict s] f :=
   piecewise_ae_eq_restrict hs
 #align indicator_ae_eq_restrict indicator_ae_eq_restrict
 
+/- warning: indicator_ae_eq_restrict_compl -> indicator_ae_eq_restrict_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (Set.indicator.{u1, u2} α β _inst_2 s f) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (HasCompl.compl.{u2} (Set.{u2} α) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} α) (Set.instBooleanAlgebraSet.{u2} α)) s))) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => _inst_2)))))
+Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_restrict_compl indicator_ae_eq_restrict_complₓ'. -/
 theorem indicator_ae_eq_restrict_compl (hs : MeasurableSet s) :
     indicator s f =ᵐ[μ.restrict (sᶜ)] 0 :=
   piecewise_ae_eq_restrict_compl hs
 #align indicator_ae_eq_restrict_compl indicator_ae_eq_restrict_compl
 
+/- warning: indicator_ae_eq_of_restrict_compl_ae_eq_zero -> indicator_ae_eq_of_restrict_compl_ae_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) f (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2)))))) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) f)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ (HasCompl.compl.{u2} (Set.{u2} α) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} α) (Set.instBooleanAlgebraSet.{u2} α)) s))) f (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => _inst_2))))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) f)
+Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_of_restrict_compl_ae_eq_zero indicator_ae_eq_of_restrict_compl_ae_eq_zeroₓ'. -/
 theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict (sᶜ)] 0) : s.indicator f =ᵐ[μ] f :=
   by
@@ -4798,6 +7357,12 @@ theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
   · simp only [hx hxs, Pi.zero_apply, Set.indicator_apply_eq_zero, eq_self_iff_true, imp_true_iff]
 #align indicator_ae_eq_of_restrict_compl_ae_eq_zero indicator_ae_eq_of_restrict_compl_ae_eq_zero
 
+/- warning: indicator_ae_eq_zero_of_restrict_ae_eq_zero -> indicator_ae_eq_zero_of_restrict_ae_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (MeasurableSet.{u1} α _inst_1 s) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s)) f (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2)))))) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (MeasurableSet.{u2} α _inst_1 s) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ s)) f (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => _inst_2))))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => _inst_2)))))
+Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_zero_of_restrict_ae_eq_zero indicator_ae_eq_zero_of_restrict_ae_eq_zeroₓ'. -/
 theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict s] 0) : s.indicator f =ᵐ[μ] 0 :=
   by
@@ -4808,14 +7373,32 @@ theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
   · simp [hx, hxs]
 #align indicator_ae_eq_zero_of_restrict_ae_eq_zero indicator_ae_eq_zero_of_restrict_ae_eq_zero
 
+/- warning: indicator_ae_eq_of_ae_eq_set -> indicator_ae_eq_of_ae_eq_set is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) s t) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) (Set.indicator.{u1, u2} α β _inst_2 t f))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {t : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) s t) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (Set.indicator.{u2, u1} α β _inst_2 t f))
+Case conversion may be inaccurate. Consider using '#align indicator_ae_eq_of_ae_eq_set indicator_ae_eq_of_ae_eq_setₓ'. -/
 theorem indicator_ae_eq_of_ae_eq_set (hst : s =ᵐ[μ] t) : s.indicator f =ᵐ[μ] t.indicator f :=
   piecewise_ae_eq_of_ae_eq_set hst
 #align indicator_ae_eq_of_ae_eq_set indicator_ae_eq_of_ae_eq_set
 
+/- warning: indicator_meas_zero -> indicator_meas_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β], (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) (OfNat.ofNat.{max u1 u2} (α -> β) 0 (OfNat.mk.{max u1 u2} (α -> β) 0 (Zero.zero.{max u1 u2} (α -> β) (Pi.instZero.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => _inst_2))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β], (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α _inst_1 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (OfNat.ofNat.{max u2 u1} (α -> β) 0 (Zero.toOfNat0.{max u2 u1} (α -> β) (Pi.instZero.{u2, u1} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19133 : α) => β) (fun (i : α) => _inst_2)))))
+Case conversion may be inaccurate. Consider using '#align indicator_meas_zero indicator_meas_zeroₓ'. -/
 theorem indicator_meas_zero (hs : μ s = 0) : indicator s f =ᵐ[μ] 0 :=
   indicator_empty' f ▸ indicator_ae_eq_of_ae_eq_set (ae_eq_empty.2 hs)
 #align indicator_meas_zero indicator_meas_zero
 
+/- warning: ae_eq_restrict_iff_indicator_ae_eq -> ae_eq_restrict_iff_indicator_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {s : Set.{u1} α} {f : α -> β} [_inst_2 : Zero.{u2} β] {g : α -> β}, (MeasurableSet.{u1} α _inst_1 s) -> (Iff (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 μ s)) f g) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (Set.indicator.{u1, u2} α β _inst_2 s f) (Set.indicator.{u1, u2} α β _inst_2 s g)))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} {s : Set.{u2} α} {f : α -> β} [_inst_2 : Zero.{u1} β] {g : α -> β}, (MeasurableSet.{u2} α _inst_1 s) -> (Iff (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 (MeasureTheory.Measure.restrict.{u2} α _inst_1 μ s)) f g) (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (Set.indicator.{u2, u1} α β _inst_2 s f) (Set.indicator.{u2, u1} α β _inst_2 s g)))
+Case conversion may be inaccurate. Consider using '#align ae_eq_restrict_iff_indicator_ae_eq ae_eq_restrict_iff_indicator_ae_eqₓ'. -/
 theorem ae_eq_restrict_iff_indicator_ae_eq {g : α → β} (hs : MeasurableSet s) :
     f =ᵐ[μ.restrict s] g ↔ s.indicator f =ᵐ[μ] s.indicator g :=
   by
Diff
@@ -126,11 +126,11 @@ theorem ae_uIoc_iff [LinearOrder α] {a b : α} {P : α → Prop} :
 #align measure_theory.ae_uIoc_iff MeasureTheory.ae_uIoc_iff
 
 theorem measure_union (hd : Disjoint s₁ s₂) (h : MeasurableSet s₂) : μ (s₁ ∪ s₂) = μ s₁ + μ s₂ :=
-  measure_union₀ h.NullMeasurableSet hd.AeDisjoint
+  measure_union₀ h.NullMeasurableSet hd.AEDisjoint
 #align measure_theory.measure_union MeasureTheory.measure_union
 
 theorem measure_union' (hd : Disjoint s₁ s₂) (h : MeasurableSet s₁) : μ (s₁ ∪ s₂) = μ s₁ + μ s₂ :=
-  measure_union₀' h.NullMeasurableSet hd.AeDisjoint
+  measure_union₀' h.NullMeasurableSet hd.AEDisjoint
 #align measure_theory.measure_union' MeasureTheory.measure_union'
 
 theorem measure_inter_add_diff (s : Set α) (ht : MeasurableSet t) : μ (s ∩ t) + μ (s \ t) = μ s :=
@@ -159,7 +159,7 @@ theorem measure_add_measure_compl (h : MeasurableSet s) : μ s + μ (sᶜ) = μ
 #align measure_theory.measure_add_measure_compl MeasureTheory.measure_add_measure_compl
 
 theorem measure_bUnion₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
-    (hd : s.Pairwise (AeDisjoint μ on f)) (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
+    (hd : s.Pairwise (AEDisjoint μ on f)) (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
   by
   haveI := hs.to_encodable
@@ -169,10 +169,10 @@ theorem measure_bUnion₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
 
 theorem measure_bUnion {s : Set β} {f : β → Set α} (hs : s.Countable) (hd : s.PairwiseDisjoint f)
     (h : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
-  measure_bUnion₀ hs hd.AeDisjoint fun b hb => (h b hb).NullMeasurableSet
+  measure_bUnion₀ hs hd.AEDisjoint fun b hb => (h b hb).NullMeasurableSet
 #align measure_theory.measure_bUnion MeasureTheory.measure_bUnion
 
-theorem measure_sUnion₀ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise (AeDisjoint μ))
+theorem measure_sUnion₀ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise (AEDisjoint μ))
     (h : ∀ s ∈ S, NullMeasurableSet s μ) : μ (⋃₀ S) = ∑' s : S, μ s := by
   rw [sUnion_eq_bUnion, measure_bUnion₀ hs hd h]
 #align measure_theory.measure_sUnion₀ MeasureTheory.measure_sUnion₀
@@ -183,7 +183,7 @@ theorem measure_unionₛ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise
 #align measure_theory.measure_sUnion MeasureTheory.measure_unionₛ
 
 theorem measure_bUnion_finset₀ {s : Finset ι} {f : ι → Set α}
-    (hd : Set.Pairwise (↑s) (AeDisjoint μ on f)) (hm : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
+    (hd : Set.Pairwise (↑s) (AEDisjoint μ on f)) (hm : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
   by
   rw [← Finset.sum_attach, Finset.attach_eq_univ, ← tsum_fintype]
@@ -192,7 +192,7 @@ theorem measure_bUnion_finset₀ {s : Finset ι} {f : ι → Set α}
 
 theorem measure_bUnion_finset {s : Finset ι} {f : ι → Set α} (hd : PairwiseDisjoint (↑s) f)
     (hm : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
-  measure_bUnion_finset₀ hd.AeDisjoint fun b hb => (hm b hb).NullMeasurableSet
+  measure_bUnion_finset₀ hd.AEDisjoint fun b hb => (hm b hb).NullMeasurableSet
 #align measure_theory.measure_bUnion_finset MeasureTheory.measure_bUnion_finset
 
 /-- The measure of a disjoint union (even uncountable) of measurable sets is at least the sum of
@@ -1713,14 +1713,14 @@ theorem restrict_union_add_inter' (hs : MeasurableSet s) (t : Set α) :
   simpa only [union_comm, inter_comm, add_comm] using restrict_union_add_inter t hs
 #align measure_theory.measure.restrict_union_add_inter' MeasureTheory.Measure.restrict_union_add_inter'
 
-theorem restrict_union₀ (h : AeDisjoint μ s t) (ht : NullMeasurableSet t μ) :
+theorem restrict_union₀ (h : AEDisjoint μ s t) (ht : NullMeasurableSet t μ) :
     μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t := by
   simp [← restrict_union_add_inter₀ s ht, restrict_zero_set h]
 #align measure_theory.measure.restrict_union₀ MeasureTheory.Measure.restrict_union₀
 
 theorem restrict_union (h : Disjoint s t) (ht : MeasurableSet t) :
     μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t :=
-  restrict_union₀ h.AeDisjoint ht.NullMeasurableSet
+  restrict_union₀ h.AEDisjoint ht.NullMeasurableSet
 #align measure_theory.measure.restrict_union MeasureTheory.Measure.restrict_union
 
 theorem restrict_union' (h : Disjoint s t) (hs : MeasurableSet s) :
@@ -1747,7 +1747,7 @@ theorem restrict_union_le (s s' : Set α) : μ.restrict (s ∪ s') ≤ μ.restri
   apply measure_union_le
 #align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_le
 
-theorem restrict_unionᵢ_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AeDisjoint μ on s))
+theorem restrict_unionᵢ_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
   by
@@ -1760,7 +1760,7 @@ theorem restrict_unionᵢ_apply_ae [Countable ι] {s : ι → Set α} (hd : Pair
 theorem restrict_unionᵢ_apply [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
-  restrict_unionᵢ_apply_ae hd.AeDisjoint (fun i => (hm i).NullMeasurableSet) ht
+  restrict_unionᵢ_apply_ae hd.AEDisjoint (fun i => (hm i).NullMeasurableSet) ht
 #align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_unionᵢ_apply
 
 theorem restrict_unionᵢ_apply_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s)
@@ -2175,14 +2175,14 @@ omit m0
 
 end Sum
 
-theorem restrict_unionᵢ_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AeDisjoint μ on s))
+theorem restrict_unionᵢ_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
   ext fun t ht => by simp only [sum_apply _ ht, restrict_Union_apply_ae hd hm ht]
 #align measure_theory.measure.restrict_Union_ae MeasureTheory.Measure.restrict_unionᵢ_ae
 
 theorem restrict_unionᵢ [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
-  restrict_unionᵢ_ae hd.AeDisjoint fun i => (hm i).NullMeasurableSet
+  restrict_unionᵢ_ae hd.AEDisjoint fun i => (hm i).NullMeasurableSet
 #align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_unionᵢ
 
 theorem restrict_unionᵢ_le [Countable ι] {s : ι → Set α} :
@@ -2628,11 +2628,11 @@ open Pointwise
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 @[to_additive]
-theorem pairwise_aeDisjoint_of_aeDisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
+theorem pairwise_aEDisjoint_of_aEDisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
     [MeasurableSpace α] {μ : Measure α} {s : Set α}
-    (h_ae_disjoint : ∀ (g) (_ : g ≠ (1 : G)), AeDisjoint μ (g • s) s)
+    (h_ae_disjoint : ∀ (g) (_ : g ≠ (1 : G)), AEDisjoint μ (g • s) s)
     (h_qmp : ∀ g : G, QuasiMeasurePreserving ((· • ·) g : α → α) μ μ) :
-    Pairwise (AeDisjoint μ on fun g : G => g • s) :=
+    Pairwise (AEDisjoint μ on fun g : G => g • s) :=
   by
   intro g₁ g₂ hg
   let g := g₂⁻¹ * g₁
@@ -2644,8 +2644,8 @@ theorem pairwise_aeDisjoint_of_aeDisjoint_forall_ne_one {G α : Type _} [Group G
       smul_smul, inv_mul_self, one_smul]
   change μ (g₁ • s ∩ g₂ • s) = 0
   exact this ▸ (h_qmp g₂⁻¹).preimage_null (h_ae_disjoint g hg)
-#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one MeasureTheory.Measure.pairwise_aeDisjoint_of_aeDisjoint_forall_ne_one
-#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_zero MeasureTheory.Measure.pairwise_aeDisjoint_of_aeDisjoint_forall_ne_zero
+#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one MeasureTheory.Measure.pairwise_aEDisjoint_of_aEDisjoint_forall_ne_one
+#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_zero MeasureTheory.Measure.pairwise_aEDisjoint_of_aEDisjoint_forall_ne_zero
 
 end Pointwise
 
@@ -2701,10 +2701,10 @@ theorem NullMeasurableSet.mono (h : NullMeasurableSet s μ) (hle : ν ≤ μ) :
   h.mono_ac hle.AbsolutelyContinuous
 #align measure_theory.null_measurable_set.mono MeasureTheory.NullMeasurableSet.mono
 
-theorem AeDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AeDisjoint ν s t)
-    (hf : QuasiMeasurePreserving f μ ν) : AeDisjoint μ (f ⁻¹' s) (f ⁻¹' t) :=
+theorem AEDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AEDisjoint ν s t)
+    (hf : QuasiMeasurePreserving f μ ν) : AEDisjoint μ (f ⁻¹' s) (f ⁻¹' t) :=
   hf.preimage_null ht
-#align measure_theory.ae_disjoint.preimage MeasureTheory.AeDisjoint.preimage
+#align measure_theory.ae_disjoint.preimage MeasureTheory.AEDisjoint.preimage
 
 @[simp]
 theorem ae_eq_bot : μ.ae = ⊥ ↔ μ = 0 := by
Diff
@@ -1151,14 +1151,14 @@ theorem mapₗ_congr {f g : α → β} (hf : Measurable f) (hg : Measurable g) (
 /-- The pushforward of a measure. It is defined to be `0` if `f` is not an almost everywhere
 measurable function. -/
 irreducible_def map [MeasurableSpace α] (f : α → β) (μ : Measure α) : Measure β :=
-  if hf : AeMeasurable f μ then mapₗ (hf.mk f) μ else 0
+  if hf : AEMeasurable f μ then mapₗ (hf.mk f) μ else 0
 #align measure_theory.measure.map MeasureTheory.Measure.map
 
 include m0
 
-theorem mapₗ_mk_apply_of_aeMeasurable {f : α → β} (hf : AeMeasurable f μ) :
+theorem mapₗ_mk_apply_of_aEMeasurable {f : α → β} (hf : AEMeasurable f μ) :
     mapₗ (hf.mk f) μ = map f μ := by simp [map, hf]
-#align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aeMeasurable
+#align measure_theory.measure.mapₗ_mk_apply_of_ae_measurable MeasureTheory.Measure.mapₗ_mk_apply_of_aEMeasurable
 
 theorem mapₗ_apply_of_measurable {f : α → β} (hf : Measurable f) (μ : Measure α) :
     mapₗ f μ = map f μ :=
@@ -1174,21 +1174,21 @@ theorem map_add (μ ν : Measure α) {f : α → β} (hf : Measurable f) :
 
 @[simp]
 theorem map_zero (f : α → β) : (0 : Measure α).map f = 0 := by
-  by_cases hf : AeMeasurable f (0 : Measure α) <;> simp [map, hf]
+  by_cases hf : AEMeasurable f (0 : Measure α) <;> simp [map, hf]
 #align measure_theory.measure.map_zero MeasureTheory.Measure.map_zero
 
-theorem map_of_not_aeMeasurable {f : α → β} {μ : Measure α} (hf : ¬AeMeasurable f μ) :
+theorem map_of_not_aEMeasurable {f : α → β} {μ : Measure α} (hf : ¬AEMeasurable f μ) :
     μ.map f = 0 := by simp [map, hf]
-#align measure_theory.measure.map_of_not_ae_measurable MeasureTheory.Measure.map_of_not_aeMeasurable
+#align measure_theory.measure.map_of_not_ae_measurable MeasureTheory.Measure.map_of_not_aEMeasurable
 
 theorem map_congr {f g : α → β} (h : f =ᵐ[μ] g) : Measure.map f μ = Measure.map g μ :=
   by
-  by_cases hf : AeMeasurable f μ
-  · have hg : AeMeasurable g μ := hf.congr h
+  by_cases hf : AEMeasurable f μ
+  · have hg : AEMeasurable g μ := hf.congr h
     simp only [← mapₗ_mk_apply_of_ae_measurable hf, ← mapₗ_mk_apply_of_ae_measurable hg]
     exact
       mapₗ_congr hf.measurable_mk hg.measurable_mk (hf.ae_eq_mk.symm.trans (h.trans hg.ae_eq_mk))
-  · have hg : ¬AeMeasurable g μ := by simpa [← aeMeasurable_congr h] using hf
+  · have hg : ¬AEMeasurable g μ := by simpa [← aemeasurable_congr h] using hf
     simp [map_of_not_ae_measurable, hf, hg]
 #align measure_theory.measure.map_congr MeasureTheory.Measure.map_congr
 
@@ -1196,15 +1196,15 @@ theorem map_congr {f g : α → β} (h : f =ᵐ[μ] g) : Measure.map f μ = Meas
 protected theorem map_smul (c : ℝ≥0∞) (μ : Measure α) (f : α → β) : (c • μ).map f = c • μ.map f :=
   by
   rcases eq_or_ne c 0 with (rfl | hc); · simp
-  by_cases hf : AeMeasurable f μ
-  · have hfc : AeMeasurable f (c • μ) :=
+  by_cases hf : AEMeasurable f μ
+  · have hfc : AEMeasurable f (c • μ) :=
       ⟨hf.mk f, hf.measurable_mk, (ae_smul_measure_iff hc).2 hf.ae_eq_mk⟩
     simp only [← mapₗ_mk_apply_of_ae_measurable hf, ← mapₗ_mk_apply_of_ae_measurable hfc,
       LinearMap.map_smulₛₗ, RingHom.id_apply]
     congr 1
     apply mapₗ_congr hfc.measurable_mk hf.measurable_mk
     exact eventually_eq.trans ((ae_smul_measure_iff hc).1 hfc.ae_eq_mk.symm) hf.ae_eq_mk
-  · have hfc : ¬AeMeasurable f (c • μ) := by
+  · have hfc : ¬AEMeasurable f (c • μ) := by
       intro hfc
       exact hf ⟨hfc.mk f, hfc.measurable_mk, (ae_smul_measure_iff hc).1 hfc.ae_eq_mk⟩
     simp [map_of_not_ae_measurable hf, map_of_not_ae_measurable hfc]
@@ -1219,20 +1219,20 @@ protected theorem map_smul_nNReal (c : ℝ≥0) (μ : Measure α) (f : α → β
 /-- We can evaluate the pushforward on measurable sets. For non-measurable sets, see
   `measure_theory.measure.le_map_apply` and `measurable_equiv.map_apply`. -/
 @[simp]
-theorem map_apply_of_aeMeasurable {f : α → β} (hf : AeMeasurable f μ) {s : Set β}
+theorem map_apply_of_aEMeasurable {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : MeasurableSet s) : μ.map f s = μ (f ⁻¹' s) := by
   simpa only [mapₗ, hf.measurable_mk, hs, dif_pos, lift_linear_apply, outer_measure.map_apply,
     coe_to_outer_measure, ← mapₗ_mk_apply_of_ae_measurable hf] using
     measure_congr (hf.ae_eq_mk.symm.preimage s)
-#align measure_theory.measure.map_apply_of_ae_measurable MeasureTheory.Measure.map_apply_of_aeMeasurable
+#align measure_theory.measure.map_apply_of_ae_measurable MeasureTheory.Measure.map_apply_of_aEMeasurable
 
 @[simp]
 theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
     μ.map f s = μ (f ⁻¹' s) :=
-  map_apply_of_aeMeasurable hf.AeMeasurable hs
+  map_apply_of_aEMeasurable hf.AEMeasurable hs
 #align measure_theory.measure.map_apply MeasureTheory.Measure.map_apply
 
-theorem map_toOuterMeasure {f : α → β} (hf : AeMeasurable f μ) :
+theorem map_toOuterMeasure {f : α → β} (hf : AEMeasurable f μ) :
     (μ.map f).toOuterMeasure = (OuterMeasure.map f μ.toOuterMeasure).trim :=
   by
   rw [← trimmed, outer_measure.trim_eq_trim_iff]
@@ -1263,23 +1263,23 @@ theorem map_mono {f : α → β} (h : μ ≤ ν) (hf : Measurable f) : μ.map f
 
 /-- Even if `s` is not measurable, we can bound `map f μ s` from below.
   See also `measurable_equiv.map_apply`. -/
-theorem le_map_apply {f : α → β} (hf : AeMeasurable f μ) (s : Set β) : μ (f ⁻¹' s) ≤ μ.map f s :=
+theorem le_map_apply {f : α → β} (hf : AEMeasurable f μ) (s : Set β) : μ (f ⁻¹' s) ≤ μ.map f s :=
   calc
     μ (f ⁻¹' s) ≤ μ (f ⁻¹' toMeasurable (μ.map f) s) :=
       measure_mono <| preimage_mono <| subset_toMeasurable _ _
     _ = μ.map f (toMeasurable (μ.map f) s) :=
-      (map_apply_of_aeMeasurable hf <| measurableSet_toMeasurable _ _).symm
+      (map_apply_of_aEMeasurable hf <| measurableSet_toMeasurable _ _).symm
     _ = μ.map f s := measure_toMeasurable _
     
 #align measure_theory.measure.le_map_apply MeasureTheory.Measure.le_map_apply
 
 /-- Even if `s` is not measurable, `map f μ s = 0` implies that `μ (f ⁻¹' s) = 0`. -/
-theorem preimage_null_of_map_null {f : α → β} (hf : AeMeasurable f μ) {s : Set β}
+theorem preimage_null_of_map_null {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : μ.map f s = 0) : μ (f ⁻¹' s) = 0 :=
   nonpos_iff_eq_zero.mp <| (le_map_apply hf s).trans_eq hs
 #align measure_theory.measure.preimage_null_of_map_null MeasureTheory.Measure.preimage_null_of_map_null
 
-theorem tendsto_ae_map {f : α → β} (hf : AeMeasurable f μ) : Tendsto f μ.ae (μ.map f).ae :=
+theorem tendsto_ae_map {f : α → β} (hf : AEMeasurable f μ) : Tendsto f μ.ae (μ.map f).ae :=
   fun s hs => preimage_null_of_map_null hf hs
 #align measure_theory.measure.tendsto_ae_map MeasureTheory.Measure.tendsto_ae_map
 
@@ -1402,7 +1402,7 @@ section Subtype
 
 section ComapAnyMeasure
 
-theorem MeasurableSet.nullMeasurableSetSubtypeCoe {t : Set s} (hs : NullMeasurableSet s μ)
+theorem MeasurableSet.nullMeasurableSet_subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
     (ht : MeasurableSet t) : NullMeasurableSet ((coe : s → α) '' t) μ :=
   by
   rw [Subtype.measurableSpace, comap_eq_generate_from] at ht
@@ -1419,17 +1419,18 @@ theorem MeasurableSet.nullMeasurableSetSubtypeCoe {t : Set s} (hs : NullMeasurab
   · intro f
     rw [image_Union]
     exact null_measurable_set.Union
-#align measure_theory.measure.measurable_set.null_measurable_set_subtype_coe MeasureTheory.Measure.MeasurableSet.nullMeasurableSetSubtypeCoe
+#align measure_theory.measure.measurable_set.null_measurable_set_subtype_coe MeasureTheory.Measure.MeasurableSet.nullMeasurableSet_subtype_coe
 
-theorem NullMeasurableSet.subtypeCoe {t : Set s} (hs : NullMeasurableSet s μ)
+theorem NullMeasurableSet.subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
     (ht : NullMeasurableSet t (μ.comap Subtype.val)) : NullMeasurableSet ((coe : s → α) '' t) μ :=
   NullMeasurableSet.image coe μ Subtype.coe_injective
-    (fun t => MeasurableSet.nullMeasurableSetSubtypeCoe hs) ht
-#align measure_theory.measure.null_measurable_set.subtype_coe MeasureTheory.Measure.NullMeasurableSet.subtypeCoe
+    (fun t => MeasurableSet.nullMeasurableSet_subtype_coe hs) ht
+#align measure_theory.measure.null_measurable_set.subtype_coe MeasureTheory.Measure.NullMeasurableSet.subtype_coe
 
 theorem measure_subtype_coe_le_comap (hs : NullMeasurableSet s μ) (t : Set s) :
     μ ((coe : s → α) '' t) ≤ μ.comap Subtype.val t :=
-  le_comap_apply _ _ Subtype.coe_injective (fun t => MeasurableSet.nullMeasurableSetSubtypeCoe hs) _
+  le_comap_apply _ _ Subtype.coe_injective (fun t => MeasurableSet.nullMeasurableSet_subtype_coe hs)
+    _
 #align measure_theory.measure.measure_subtype_coe_le_comap MeasureTheory.Measure.measure_subtype_coe_le_comap
 
 theorem measure_subtype_coe_eq_zero_of_comap_eq_zero (hs : NullMeasurableSet s μ) {t : Set s}
@@ -2379,16 +2380,16 @@ def AbsolutelyContinuous {m0 : MeasurableSpace α} (μ ν : Measure α) : Prop :
 -- mathport name: measure.absolutely_continuous
 scoped[MeasureTheory] infixl:50 " ≪ " => MeasureTheory.Measure.AbsolutelyContinuous
 
-theorem absolutelyContinuousOfLe (h : μ ≤ ν) : μ ≪ ν := fun s hs =>
+theorem absolutelyContinuous_of_le (h : μ ≤ ν) : μ ≪ ν := fun s hs =>
   nonpos_iff_eq_zero.1 <| hs ▸ le_iff'.1 h s
-#align measure_theory.measure.absolutely_continuous_of_le MeasureTheory.Measure.absolutelyContinuousOfLe
+#align measure_theory.measure.absolutely_continuous_of_le MeasureTheory.Measure.absolutelyContinuous_of_le
 
 alias absolutely_continuous_of_le ← _root_.has_le.le.absolutely_continuous
 #align has_le.le.absolutely_continuous LE.le.absolutelyContinuous
 
-theorem absolutelyContinuousOfEq (h : μ = ν) : μ ≪ ν :=
+theorem absolutelyContinuous_of_eq (h : μ = ν) : μ ≪ ν :=
   h.le.AbsolutelyContinuous
-#align measure_theory.measure.absolutely_continuous_of_eq MeasureTheory.Measure.absolutelyContinuousOfEq
+#align measure_theory.measure.absolutely_continuous_of_eq MeasureTheory.Measure.absolutelyContinuous_of_eq
 
 alias absolutely_continuous_of_eq ← _root_.eq.absolutely_continuous
 #align eq.absolutely_continuous Eq.absolutelyContinuous
@@ -2428,9 +2429,10 @@ protected theorem smul [Monoid R] [DistribMulAction R ℝ≥0∞] [IsScalarTower
 
 end AbsolutelyContinuous
 
-theorem absolutelyContinuousOfLeSmul {μ' : Measure α} {c : ℝ≥0∞} (hμ'_le : μ' ≤ c • μ) : μ' ≪ μ :=
-  (Measure.absolutelyContinuousOfLe hμ'_le).trans (Measure.AbsolutelyContinuous.rfl.smul c)
-#align measure_theory.measure.absolutely_continuous_of_le_smul MeasureTheory.Measure.absolutelyContinuousOfLeSmul
+theorem absolutelyContinuous_of_le_smul {μ' : Measure α} {c : ℝ≥0∞} (hμ'_le : μ' ≤ c • μ) :
+    μ' ≪ μ :=
+  (Measure.absolutelyContinuous_of_le hμ'_le).trans (Measure.AbsolutelyContinuous.rfl.smul c)
+#align measure_theory.measure.absolutely_continuous_of_le_smul MeasureTheory.Measure.absolutelyContinuous_of_le_smul
 
 theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
   ⟨fun h s => by
@@ -2440,7 +2442,7 @@ theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
 
 alias ae_le_iff_absolutely_continuous ↔
   _root_.has_le.le.absolutely_continuous_of_ae absolutely_continuous.ae_le
-#align has_le.le.absolutely_continuous_of_ae LE.le.absolutelyContinuousOfAe
+#align has_le.le.absolutely_continuous_of_ae LE.le.absolutelyContinuous_of_ae
 #align measure_theory.measure.absolutely_continuous.ae_le MeasureTheory.Measure.AbsolutelyContinuous.ae_le
 
 alias absolutely_continuous.ae_le ← ae_mono'
@@ -2476,15 +2478,15 @@ protected theorem Measurable.quasiMeasurePreserving {m0 : MeasurableSpace α} (h
   ⟨hf, AbsolutelyContinuous.rfl⟩
 #align measurable.quasi_measure_preserving Measurable.quasiMeasurePreserving
 
-theorem monoLeft (h : QuasiMeasurePreserving f μa μb) (ha : μa' ≪ μa) :
+theorem mono_left (h : QuasiMeasurePreserving f μa μb) (ha : μa' ≪ μa) :
     QuasiMeasurePreserving f μa' μb :=
   ⟨h.1, (ha.map h.1).trans h.2⟩
-#align measure_theory.measure.quasi_measure_preserving.mono_left MeasureTheory.Measure.QuasiMeasurePreserving.monoLeft
+#align measure_theory.measure.quasi_measure_preserving.mono_left MeasureTheory.Measure.QuasiMeasurePreserving.mono_left
 
-theorem monoRight (h : QuasiMeasurePreserving f μa μb) (ha : μb ≪ μb') :
+theorem mono_right (h : QuasiMeasurePreserving f μa μb) (ha : μb ≪ μb') :
     QuasiMeasurePreserving f μa μb' :=
   ⟨h.1, h.2.trans ha⟩
-#align measure_theory.measure.quasi_measure_preserving.mono_right MeasureTheory.Measure.QuasiMeasurePreserving.monoRight
+#align measure_theory.measure.quasi_measure_preserving.mono_right MeasureTheory.Measure.QuasiMeasurePreserving.mono_right
 
 @[mono]
 theorem mono (ha : μa' ≪ μa) (hb : μb ≪ μb') (h : QuasiMeasurePreserving f μa μb) :
@@ -2505,16 +2507,16 @@ protected theorem iterate {f : α → α} (hf : QuasiMeasurePreserving f μa μa
   | n + 1 => (iterate n).comp hf
 #align measure_theory.measure.quasi_measure_preserving.iterate MeasureTheory.Measure.QuasiMeasurePreserving.iterate
 
-protected theorem aeMeasurable (hf : QuasiMeasurePreserving f μa μb) : AeMeasurable f μa :=
-  hf.1.AeMeasurable
-#align measure_theory.measure.quasi_measure_preserving.ae_measurable MeasureTheory.Measure.QuasiMeasurePreserving.aeMeasurable
+protected theorem aEMeasurable (hf : QuasiMeasurePreserving f μa μb) : AEMeasurable f μa :=
+  hf.1.AEMeasurable
+#align measure_theory.measure.quasi_measure_preserving.ae_measurable MeasureTheory.Measure.QuasiMeasurePreserving.aEMeasurable
 
 theorem ae_map_le (h : QuasiMeasurePreserving f μa μb) : (μa.map f).ae ≤ μb.ae :=
   h.2.ae_le
 #align measure_theory.measure.quasi_measure_preserving.ae_map_le MeasureTheory.Measure.QuasiMeasurePreserving.ae_map_le
 
 theorem tendsto_ae (h : QuasiMeasurePreserving f μa μb) : Tendsto f μa.ae μb.ae :=
-  (tendsto_ae_map h.AeMeasurable).mono_right h.ae_map_le
+  (tendsto_ae_map h.AEMeasurable).mono_right h.ae_map_le
 #align measure_theory.measure.quasi_measure_preserving.tendsto_ae MeasureTheory.Measure.QuasiMeasurePreserving.tendsto_ae
 
 theorem ae (h : QuasiMeasurePreserving f μa μb) {p : β → Prop} (hg : ∀ᵐ x ∂μb, p x) :
@@ -2529,13 +2531,13 @@ theorem ae_eq (h : QuasiMeasurePreserving f μa μb) {g₁ g₂ : β → δ} (hg
 
 theorem preimage_null (h : QuasiMeasurePreserving f μa μb) {s : Set β} (hs : μb s = 0) :
     μa (f ⁻¹' s) = 0 :=
-  preimage_null_of_map_null h.AeMeasurable (h.2 hs)
+  preimage_null_of_map_null h.AEMeasurable (h.2 hs)
 #align measure_theory.measure.quasi_measure_preserving.preimage_null MeasureTheory.Measure.QuasiMeasurePreserving.preimage_null
 
 theorem preimage_mono_ae {s t : Set β} (hf : QuasiMeasurePreserving f μa μb) (h : s ≤ᵐ[μb] t) :
     f ⁻¹' s ≤ᵐ[μa] f ⁻¹' t :=
   eventually_map.mp <|
-    Eventually.filter_mono (tendsto_ae_map hf.AeMeasurable) (Eventually.filter_mono hf.ae_map_le h)
+    Eventually.filter_mono (tendsto_ae_map hf.AEMeasurable) (Eventually.filter_mono hf.ae_map_le h)
 #align measure_theory.measure.quasi_measure_preserving.preimage_mono_ae MeasureTheory.Measure.QuasiMeasurePreserving.preimage_mono_ae
 
 theorem preimage_ae_eq {s t : Set β} (hf : QuasiMeasurePreserving f μa μb) (h : s =ᵐ[μb] t) :
@@ -2643,7 +2645,7 @@ theorem pairwise_aeDisjoint_of_aeDisjoint_forall_ne_one {G α : Type _} [Group G
   change μ (g₁ • s ∩ g₂ • s) = 0
   exact this ▸ (h_qmp g₂⁻¹).preimage_null (h_ae_disjoint g hg)
 #align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one MeasureTheory.Measure.pairwise_aeDisjoint_of_aeDisjoint_forall_ne_one
-#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_zero MeasureTheory.Measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_zero
+#align measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_zero MeasureTheory.Measure.pairwise_aeDisjoint_of_aeDisjoint_forall_ne_zero
 
 end Pointwise
 
@@ -2690,13 +2692,13 @@ theorem NullMeasurableSet.preimage {ν : Measure β} {f : α → β} {t : Set β
     hf.ae_eq ht.toMeasurable_ae_eq.symm⟩
 #align measure_theory.null_measurable_set.preimage MeasureTheory.NullMeasurableSet.preimage
 
-theorem NullMeasurableSet.monoAc (h : NullMeasurableSet s μ) (hle : ν ≪ μ) :
+theorem NullMeasurableSet.mono_ac (h : NullMeasurableSet s μ) (hle : ν ≪ μ) :
     NullMeasurableSet s ν :=
   h.Preimage <| (QuasiMeasurePreserving.id μ).mono_left hle
-#align measure_theory.null_measurable_set.mono_ac MeasureTheory.NullMeasurableSet.monoAc
+#align measure_theory.null_measurable_set.mono_ac MeasureTheory.NullMeasurableSet.mono_ac
 
 theorem NullMeasurableSet.mono (h : NullMeasurableSet s μ) (hle : ν ≤ μ) : NullMeasurableSet s ν :=
-  h.monoAc hle.AbsolutelyContinuous
+  h.mono_ac hle.AbsolutelyContinuous
 #align measure_theory.null_measurable_set.mono MeasureTheory.NullMeasurableSet.mono
 
 theorem AeDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AeDisjoint ν s t)
@@ -2724,22 +2726,22 @@ theorem ae_mono (h : μ ≤ ν) : μ.ae ≤ ν.ae :=
   h.AbsolutelyContinuous.ae_le
 #align measure_theory.ae_mono MeasureTheory.ae_mono
 
-theorem mem_ae_map_iff {f : α → β} (hf : AeMeasurable f μ) {s : Set β} (hs : MeasurableSet s) :
+theorem mem_ae_map_iff {f : α → β} (hf : AEMeasurable f μ) {s : Set β} (hs : MeasurableSet s) :
     s ∈ (μ.map f).ae ↔ f ⁻¹' s ∈ μ.ae := by
   simp only [mem_ae_iff, map_apply_of_ae_measurable hf hs.compl, preimage_compl]
 #align measure_theory.mem_ae_map_iff MeasureTheory.mem_ae_map_iff
 
-theorem mem_ae_of_mem_ae_map {f : α → β} (hf : AeMeasurable f μ) {s : Set β}
+theorem mem_ae_of_mem_ae_map {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : s ∈ (μ.map f).ae) : f ⁻¹' s ∈ μ.ae :=
   (tendsto_ae_map hf).Eventually hs
 #align measure_theory.mem_ae_of_mem_ae_map MeasureTheory.mem_ae_of_mem_ae_map
 
-theorem ae_map_iff {f : α → β} (hf : AeMeasurable f μ) {p : β → Prop}
+theorem ae_map_iff {f : α → β} (hf : AEMeasurable f μ) {p : β → Prop}
     (hp : MeasurableSet { x | p x }) : (∀ᵐ y ∂μ.map f, p y) ↔ ∀ᵐ x ∂μ, p (f x) :=
   mem_ae_map_iff hf hp
 #align measure_theory.ae_map_iff MeasureTheory.ae_map_iff
 
-theorem ae_of_ae_map {f : α → β} (hf : AeMeasurable f μ) {p : β → Prop} (h : ∀ᵐ y ∂μ.map f, p y) :
+theorem ae_of_ae_map {f : α → β} (hf : AEMeasurable f μ) {p : β → Prop} (h : ∀ᵐ y ∂μ.map f, p y) :
     ∀ᵐ x ∂μ, p (f x) :=
   mem_ae_of_mem_ae_map hf h
 #align measure_theory.ae_of_ae_map MeasureTheory.ae_of_ae_map
@@ -2747,7 +2749,7 @@ theorem ae_of_ae_map {f : α → β} (hf : AeMeasurable f μ) {p : β → Prop}
 theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : MeasurableSet (range f))
     (μ : Measure α) : ∀ᵐ x ∂μ.map f, x ∈ range f :=
   by
-  by_cases h : AeMeasurable f μ
+  by_cases h : AEMeasurable f μ
   · change range f ∈ (μ.map f).ae
     rw [mem_ae_map_iff h hf]
     apply eventually_of_forall
@@ -2910,17 +2912,17 @@ theorem ae_add_measure_iff {p : α → Prop} {ν} :
   add_eq_zero_iff
 #align measure_theory.ae_add_measure_iff MeasureTheory.ae_add_measure_iff
 
-theorem ae_eq_comp' {ν : Measure β} {f : α → β} {g g' : β → δ} (hf : AeMeasurable f μ)
+theorem ae_eq_comp' {ν : Measure β} {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ)
     (h : g =ᵐ[ν] g') (h2 : μ.map f ≪ ν) : g ∘ f =ᵐ[μ] g' ∘ f :=
   (tendsto_ae_map hf).mono_right h2.ae_le h
 #align measure_theory.ae_eq_comp' MeasureTheory.ae_eq_comp'
 
 theorem Measure.QuasiMeasurePreserving.ae_eq_comp {ν : Measure β} {f : α → β} {g g' : β → δ}
     (hf : QuasiMeasurePreserving f μ ν) (h : g =ᵐ[ν] g') : g ∘ f =ᵐ[μ] g' ∘ f :=
-  ae_eq_comp' hf.AeMeasurable h hf.AbsolutelyContinuous
+  ae_eq_comp' hf.AEMeasurable h hf.AbsolutelyContinuous
 #align measure_theory.measure.quasi_measure_preserving.ae_eq_comp MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq_comp
 
-theorem ae_eq_comp {f : α → β} {g g' : β → δ} (hf : AeMeasurable f μ) (h : g =ᵐ[μ.map f] g') :
+theorem ae_eq_comp {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ) (h : g =ᵐ[μ.map f] g') :
     g ∘ f =ᵐ[μ] g' ∘ f :=
   ae_eq_comp' hf h AbsolutelyContinuous.rfl
 #align measure_theory.ae_eq_comp MeasureTheory.ae_eq_comp
@@ -3092,10 +3094,10 @@ theorem measure_lt_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ
   (measure_mono (subset_univ s)).trans_lt IsFiniteMeasure.measure_univ_lt_top
 #align measure_theory.measure_lt_top MeasureTheory.measure_lt_top
 
-instance isFiniteMeasureRestrict (μ : Measure α) (s : Set α) [h : IsFiniteMeasure μ] :
+instance isFiniteMeasure_restrict (μ : Measure α) (s : Set α) [h : IsFiniteMeasure μ] :
     IsFiniteMeasure (μ.restrict s) :=
   ⟨by simp [measure_lt_top μ s]⟩
-#align measure_theory.is_finite_measure_restrict MeasureTheory.isFiniteMeasureRestrict
+#align measure_theory.is_finite_measure_restrict MeasureTheory.isFiniteMeasure_restrict
 
 theorem measure_ne_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s ≠ ∞ :=
   ne_of_lt (measure_lt_top μ s)
@@ -3130,15 +3132,15 @@ theorem coe_measureUnivNnreal (μ : Measure α) [IsFiniteMeasure μ] :
   ENNReal.coe_toNNReal (measure_ne_top μ univ)
 #align measure_theory.coe_measure_univ_nnreal MeasureTheory.coe_measureUnivNnreal
 
-instance isFiniteMeasureZero : IsFiniteMeasure (0 : Measure α) :=
+instance isFiniteMeasure_zero : IsFiniteMeasure (0 : Measure α) :=
   ⟨by simp⟩
-#align measure_theory.is_finite_measure_zero MeasureTheory.isFiniteMeasureZero
+#align measure_theory.is_finite_measure_zero MeasureTheory.isFiniteMeasure_zero
 
-instance (priority := 100) isFiniteMeasureOfIsEmpty [IsEmpty α] : IsFiniteMeasure μ :=
+instance (priority := 100) isFiniteMeasure_of_isEmpty [IsEmpty α] : IsFiniteMeasure μ :=
   by
   rw [eq_zero_of_is_empty μ]
   infer_instance
-#align measure_theory.is_finite_measure_of_is_empty MeasureTheory.isFiniteMeasureOfIsEmpty
+#align measure_theory.is_finite_measure_of_is_empty MeasureTheory.isFiniteMeasure_of_isEmpty
 
 @[simp]
 theorem measureUnivNnreal_zero : measureUnivNnreal (0 : Measure α) = 0 :=
@@ -3147,39 +3149,39 @@ theorem measureUnivNnreal_zero : measureUnivNnreal (0 : Measure α) = 0 :=
 
 omit m0
 
-instance isFiniteMeasureAdd [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFiniteMeasure (μ + ν)
+instance isFiniteMeasure_add [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFiniteMeasure (μ + ν)
     where measure_univ_lt_top :=
     by
     rw [measure.coe_add, Pi.add_apply, ENNReal.add_lt_top]
     exact ⟨measure_lt_top _ _, measure_lt_top _ _⟩
-#align measure_theory.is_finite_measure_add MeasureTheory.isFiniteMeasureAdd
+#align measure_theory.is_finite_measure_add MeasureTheory.isFiniteMeasure_add
 
-instance isFiniteMeasureSmulNnreal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFiniteMeasure (r • μ)
+instance isFiniteMeasure_smul_nNReal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFiniteMeasure (r • μ)
     where measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
-#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.isFiniteMeasureSmulNnreal
+#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.isFiniteMeasure_smul_nNReal
 
-instance isFiniteMeasureSmulOfNnrealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
-    [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [IsFiniteMeasure μ] {r : R} : IsFiniteMeasure (r • μ) :=
-  by
+instance isFiniteMeasure_smul_of_nNReal_tower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞]
+    [IsScalarTower R ℝ≥0 ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [IsFiniteMeasure μ] {r : R} :
+    IsFiniteMeasure (r • μ) := by
   rw [← smul_one_smul ℝ≥0 r μ]
   infer_instance
-#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.isFiniteMeasureSmulOfNnrealTower
+#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.isFiniteMeasure_smul_of_nNReal_tower
 
-theorem isFiniteMeasureOfLe (μ : Measure α) [IsFiniteMeasure μ] (h : ν ≤ μ) : IsFiniteMeasure ν :=
+theorem isFiniteMeasure_of_le (μ : Measure α) [IsFiniteMeasure μ] (h : ν ≤ μ) : IsFiniteMeasure ν :=
   { measure_univ_lt_top := lt_of_le_of_lt (h Set.univ MeasurableSet.univ) (measure_lt_top _ _) }
-#align measure_theory.is_finite_measure_of_le MeasureTheory.isFiniteMeasureOfLe
+#align measure_theory.is_finite_measure_of_le MeasureTheory.isFiniteMeasure_of_le
 
 @[instance]
-theorem Measure.isFiniteMeasureMap {m : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
+theorem Measure.isFiniteMeasure_map {m : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
     (f : α → β) : IsFiniteMeasure (μ.map f) :=
   by
-  by_cases hf : AeMeasurable f μ
+  by_cases hf : AEMeasurable f μ
   · constructor
     rw [map_apply_of_ae_measurable hf MeasurableSet.univ]
     exact measure_lt_top μ _
   · rw [map_of_not_ae_measurable hf]
-    exact MeasureTheory.isFiniteMeasureZero
-#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.isFiniteMeasureMap
+    exact MeasureTheory.isFiniteMeasure_zero
+#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.isFiniteMeasure_map
 
 @[simp]
 theorem measureUnivNnreal_eq_zero [IsFiniteMeasure μ] : measureUnivNnreal μ = 0 ↔ μ = 0 :=
@@ -3250,10 +3252,10 @@ export IsProbabilityMeasure (measure_univ)
 
 attribute [simp] is_probability_measure.measure_univ
 
-instance (priority := 100) IsProbabilityMeasure.toIsFiniteMeasure (μ : Measure α)
+instance (priority := 100) IsProbabilityMeasure.to_isFiniteMeasure (μ : Measure α)
     [IsProbabilityMeasure μ] : IsFiniteMeasure μ :=
   ⟨by simp only [measure_univ, ENNReal.one_lt_top]⟩
-#align measure_theory.is_probability_measure.to_is_finite_measure MeasureTheory.IsProbabilityMeasure.toIsFiniteMeasure
+#align measure_theory.is_probability_measure.to_is_finite_measure MeasureTheory.IsProbabilityMeasure.to_isFiniteMeasure
 
 theorem IsProbabilityMeasure.ne_zero (μ : Measure α) [IsProbabilityMeasure μ] : μ ≠ 0 :=
   mt measure_univ_eq_zero.2 <| by simp [measure_univ]
@@ -3278,19 +3280,19 @@ theorem prob_le_one [IsProbabilityMeasure μ] : μ s ≤ 1 :=
   (measure_mono <| Set.subset_univ _).trans_eq measure_univ
 #align measure_theory.prob_le_one MeasureTheory.prob_le_one
 
-theorem isProbabilityMeasureSmul [IsFiniteMeasure μ] (h : μ ≠ 0) :
+theorem isProbabilityMeasure_smul [IsFiniteMeasure μ] (h : μ ≠ 0) :
     IsProbabilityMeasure ((μ univ)⁻¹ • μ) :=
   by
   constructor
   rw [smul_apply, smul_eq_mul, ENNReal.inv_mul_cancel]
   · rwa [Ne, measure_univ_eq_zero]
   · exact measure_ne_top _ _
-#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmul
+#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasure_smul
 
-theorem isProbabilityMeasureMap [IsProbabilityMeasure μ] {f : α → β} (hf : AeMeasurable f μ) :
+theorem isProbabilityMeasure_map [IsProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
     IsProbabilityMeasure (map f μ) :=
   ⟨by simp [map_apply_of_ae_measurable, hf]⟩
-#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasureMap
+#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasure_map
 
 @[simp]
 theorem one_le_prob_iff [IsProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
@@ -3451,19 +3453,19 @@ def FiniteAtFilter {m0 : MeasurableSpace α} (μ : Measure α) (f : Filter α) :
   ∃ s ∈ f, μ s < ∞
 #align measure_theory.measure.finite_at_filter MeasureTheory.Measure.FiniteAtFilter
 
-theorem finiteAtFilterOfFinite {m0 : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
+theorem finiteAtFilter_of_finite {m0 : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
     (f : Filter α) : μ.FiniteAtFilter f :=
   ⟨univ, univ_mem, measure_lt_top μ univ⟩
-#align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilterOfFinite
+#align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilter_of_finite
 
 theorem FiniteAtFilter.exists_mem_basis {f : Filter α} (hμ : FiniteAtFilter μ f) {p : ι → Prop}
     {s : ι → Set α} (hf : f.HasBasis p s) : ∃ (i : _)(hi : p i), μ (s i) < ∞ :=
   (hf.exists_iff fun s t hst ht => (measure_mono hst).trans_lt ht).1 hμ
 #align measure_theory.measure.finite_at_filter.exists_mem_basis MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis
 
-theorem finiteAtBot {m0 : MeasurableSpace α} (μ : Measure α) : μ.FiniteAtFilter ⊥ :=
+theorem finite_at_bot {m0 : MeasurableSpace α} (μ : Measure α) : μ.FiniteAtFilter ⊥ :=
   ⟨∅, mem_bot, by simp only [measure_empty, WithTop.zero_lt_top]⟩
-#align measure_theory.measure.finite_at_bot MeasureTheory.Measure.finiteAtBot
+#align measure_theory.measure.finite_at_bot MeasureTheory.Measure.finite_at_bot
 
 /-- `μ` has finite spanning sets in `C` if there is a countable sequence of sets in `C` that have
   finite measures. This structure is a type, which is useful if we want to record extra properties
@@ -3528,7 +3530,7 @@ theorem measurable_spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
 
 theorem measure_spanningSets_lt_top (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
     μ (spanningSets μ i) < ∞ :=
-  measure_bUnion_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.Finite j).Ne
+  measure_bunionᵢ_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.Finite j).Ne
 #align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_top
 
 theorem unionᵢ_spanningSets (μ : Measure α) [SigmaFinite μ] : (⋃ i : ℕ, spanningSets μ i) = univ :=
@@ -3837,13 +3839,13 @@ protected theorem isCountablySpanning (h : μ.FiniteSpanningSetsIn C) : IsCounta
 
 end FiniteSpanningSetsIn
 
-theorem sigmaFiniteOfCountable {S : Set (Set α)} (hc : S.Countable) (hμ : ∀ s ∈ S, μ s < ∞)
+theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : ∀ s ∈ S, μ s < ∞)
     (hU : ⋃₀ S = univ) : SigmaFinite μ :=
   by
   obtain ⟨s, hμ, hs⟩ : ∃ s : ℕ → Set α, (∀ n, μ (s n) < ∞) ∧ (⋃ n, s n) = univ
   exact (@exists_seq_cover_iff_countable _ (fun x => μ x < ⊤) ⟨∅, by simp⟩).2 ⟨S, hc, hμ, hU⟩
   exact ⟨⟨⟨fun n => s n, fun n => trivial, hμ, hs⟩⟩⟩
-#align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFiniteOfCountable
+#align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countable
 
 /-- Given measures `μ`, `ν` where `ν ≤ μ`, `finite_spanning_sets_in.of_le` provides the induced
 `finite_spanning_set` with respect to `ν` from a `finite_spanning_set` with respect to `μ`. -/
@@ -3855,17 +3857,17 @@ def FiniteSpanningSetsIn.ofLe (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteS
   spanning := S.spanning
 #align measure_theory.measure.finite_spanning_sets_in.of_le MeasureTheory.Measure.FiniteSpanningSetsIn.ofLe
 
-theorem sigmaFiniteOfLe (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ) : SigmaFinite ν :=
+theorem sigmaFinite_of_le (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ) : SigmaFinite ν :=
   ⟨hs.out.map <| FiniteSpanningSetsIn.ofLe h⟩
-#align measure_theory.measure.sigma_finite_of_le MeasureTheory.Measure.sigmaFiniteOfLe
+#align measure_theory.measure.sigma_finite_of_le MeasureTheory.Measure.sigmaFinite_of_le
 
 end Measure
 
 /-- Every finite measure is σ-finite. -/
-instance (priority := 100) IsFiniteMeasure.toSigmaFinite {m0 : MeasurableSpace α} (μ : Measure α)
+instance (priority := 100) IsFiniteMeasure.to_sigmaFinite {m0 : MeasurableSpace α} (μ : Measure α)
     [IsFiniteMeasure μ] : SigmaFinite μ :=
   ⟨⟨⟨fun _ => univ, fun _ => trivial, fun _ => measure_lt_top μ _, unionᵢ_const _⟩⟩⟩
-#align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.IsFiniteMeasure.toSigmaFinite
+#align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.IsFiniteMeasure.to_sigmaFinite
 
 theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFiniteMeasure μ :=
   by
@@ -3922,20 +3924,20 @@ instance Add.sigmaFinite (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν]
   refine' @sum.sigma_finite _ _ _ _ _ (Bool.rec _ _) <;> simpa
 #align measure_theory.add.sigma_finite MeasureTheory.Add.sigmaFinite
 
-theorem SigmaFinite.ofMap (μ : Measure α) {f : α → β} (hf : AeMeasurable f μ)
+theorem SigmaFinite.of_map (μ : Measure α) {f : α → β} (hf : AEMeasurable f μ)
     (h : SigmaFinite (μ.map f)) : SigmaFinite μ :=
   ⟨⟨⟨fun n => f ⁻¹' spanningSets (μ.map f) n, fun n => trivial, fun n => by
         simp only [← map_apply_of_ae_measurable hf, measurable_spanning_sets,
           measure_spanning_sets_lt_top],
         by rw [← preimage_Union, Union_spanning_sets, preimage_univ]⟩⟩⟩
-#align measure_theory.sigma_finite.of_map MeasureTheory.SigmaFinite.ofMap
+#align measure_theory.sigma_finite.of_map MeasureTheory.SigmaFinite.of_map
 
-theorem MeasurableEquiv.sigmaFiniteMap {μ : Measure α} (f : α ≃ᵐ β) (h : SigmaFinite μ) :
+theorem MeasurableEquiv.sigmaFinite_map {μ : Measure α} (f : α ≃ᵐ β) (h : SigmaFinite μ) :
     SigmaFinite (μ.map f) :=
   by
   refine' sigma_finite.of_map _ f.symm.measurable.ae_measurable _
   rwa [map_map f.symm.measurable f.measurable, f.symm_comp_self, measure.map_id]
-#align measurable_equiv.sigma_finite_map MeasurableEquiv.sigmaFiniteMap
+#align measurable_equiv.sigma_finite_map MeasurableEquiv.sigmaFinite_map
 
 /-- Similar to `ae_of_forall_measure_lt_top_ae_restrict`, but where you additionally get the
   hypothesis that another σ-finite measure has finite values on `s`. -/
@@ -3962,25 +3964,25 @@ theorem ae_of_forall_measure_lt_top_ae_restrict {μ : Measure α} [SigmaFinite 
 
 /-- A measure is called locally finite if it is finite in some neighborhood of each point. -/
 class IsLocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α) : Prop where
-  finiteAtNhds : ∀ x, μ.FiniteAtFilter (𝓝 x)
+  finite_at_nhds : ∀ x, μ.FiniteAtFilter (𝓝 x)
 #align measure_theory.is_locally_finite_measure MeasureTheory.IsLocallyFiniteMeasure
 
 -- see Note [lower instance priority]
-instance (priority := 100) IsFiniteMeasure.toIsLocallyFiniteMeasure [TopologicalSpace α]
+instance (priority := 100) IsFiniteMeasure.to_isLocallyFiniteMeasure [TopologicalSpace α]
     (μ : Measure α) [IsFiniteMeasure μ] : IsLocallyFiniteMeasure μ :=
-  ⟨fun x => finiteAtFilterOfFinite _ _⟩
-#align measure_theory.is_finite_measure.to_is_locally_finite_measure MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
+  ⟨fun x => finiteAtFilter_of_finite _ _⟩
+#align measure_theory.is_finite_measure.to_is_locally_finite_measure MeasureTheory.IsFiniteMeasure.to_isLocallyFiniteMeasure
 
-theorem Measure.finiteAtNhds [TopologicalSpace α] (μ : Measure α) [IsLocallyFiniteMeasure μ]
+theorem Measure.finite_at_nhds [TopologicalSpace α] (μ : Measure α) [IsLocallyFiniteMeasure μ]
     (x : α) : μ.FiniteAtFilter (𝓝 x) :=
-  IsLocallyFiniteMeasure.finiteAtNhds x
-#align measure_theory.measure.finite_at_nhds MeasureTheory.Measure.finiteAtNhds
+  IsLocallyFiniteMeasure.finite_at_nhds x
+#align measure_theory.measure.finite_at_nhds MeasureTheory.Measure.finite_at_nhds
 
-theorem Measure.smulFinite (μ : Measure α) [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
+theorem Measure.smul_finite (μ : Measure α) [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
     IsFiniteMeasure (c • μ) := by
   lift c to ℝ≥0 using hc
-  exact MeasureTheory.isFiniteMeasureSmulNnreal
-#align measure_theory.measure.smul_finite MeasureTheory.Measure.smulFinite
+  exact MeasureTheory.isFiniteMeasure_smul_nNReal
+#align measure_theory.measure.smul_finite MeasureTheory.Measure.smul_finite
 
 theorem Measure.exists_isOpen_measure_lt_top [TopologicalSpace α] (μ : Measure α)
     [IsLocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
@@ -3988,7 +3990,7 @@ theorem Measure.exists_isOpen_measure_lt_top [TopologicalSpace α] (μ : Measure
     (μ.finite_at_nhds x).exists_mem_basis (nhds_basis_opens x)
 #align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_top
 
-instance isLocallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α)
+instance isLocallyFiniteMeasure_smul_nNReal [TopologicalSpace α] (μ : Measure α)
     [IsLocallyFiniteMeasure μ] (c : ℝ≥0) : IsLocallyFiniteMeasure (c • μ) :=
   by
   refine' ⟨fun x => _⟩
@@ -3997,7 +3999,7 @@ instance isLocallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α
   apply ENNReal.mul_lt_top _ μo.ne
   simp only [RingHom.toMonoidHom_eq_coe, [anonymous], ENNReal.coe_ne_top, ENNReal.coe_ofNNRealHom,
     Ne.def, not_false_iff]
-#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.isLocallyFiniteMeasureSmulNnreal
+#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.isLocallyFiniteMeasure_smul_nNReal
 
 protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α] (μ : Measure α)
     [IsLocallyFiniteMeasure μ] : TopologicalSpace.IsTopologicalBasis { s | IsOpen s ∧ μ s < ∞ } :=
@@ -4056,24 +4058,24 @@ theorem CompactSpace.isFiniteMeasure [TopologicalSpace α] [CompactSpace α]
 omit m0
 
 -- see Note [lower instance priority]
-instance (priority := 100) sigmaFiniteOfLocallyFinite [TopologicalSpace α]
+instance (priority := 100) sigmaFinite_of_locally_finite [TopologicalSpace α]
     [SecondCountableTopology α] [IsLocallyFiniteMeasure μ] : SigmaFinite μ :=
   by
   choose s hsx hsμ using μ.finite_at_nhds
   rcases TopologicalSpace.countable_cover_nhds hsx with ⟨t, htc, htU⟩
   refine' measure.sigma_finite_of_countable (htc.image s) (ball_image_iff.2 fun x hx => hsμ x) _
   rwa [sUnion_image]
-#align measure_theory.sigma_finite_of_locally_finite MeasureTheory.sigmaFiniteOfLocallyFinite
+#align measure_theory.sigma_finite_of_locally_finite MeasureTheory.sigmaFinite_of_locally_finite
 
 /-- A measure which is finite on compact sets in a locally compact space is locally finite.
 Not registered as an instance to avoid a loop with the other direction. -/
-theorem isLocallyFiniteMeasureOfIsFiniteMeasureOnCompacts [TopologicalSpace α]
+theorem isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α]
     [LocallyCompactSpace α] [IsFiniteMeasureOnCompacts μ] : IsLocallyFiniteMeasure μ :=
   ⟨by
     intro x
     rcases exists_compact_mem_nhds x with ⟨K, K_compact, K_mem⟩
     exact ⟨K, K_mem, K_compact.measure_lt_top⟩⟩
-#align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.isLocallyFiniteMeasureOfIsFiniteMeasureOnCompacts
+#align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
 
 theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (⋃ i, U i) = univ)
     (hμ : μ ≠ 0) : ∃ i, 0 < μ (U i) := by
@@ -4186,17 +4188,17 @@ namespace FiniteAtFilter
 
 variable {f g : Filter α}
 
-theorem filterMono (h : f ≤ g) : μ.FiniteAtFilter g → μ.FiniteAtFilter f := fun ⟨s, hs, hμ⟩ =>
+theorem filter_mono (h : f ≤ g) : μ.FiniteAtFilter g → μ.FiniteAtFilter f := fun ⟨s, hs, hμ⟩ =>
   ⟨s, h hs, hμ⟩
-#align measure_theory.measure.finite_at_filter.filter_mono MeasureTheory.Measure.FiniteAtFilter.filterMono
+#align measure_theory.measure.finite_at_filter.filter_mono MeasureTheory.Measure.FiniteAtFilter.filter_mono
 
-theorem infOfLeft (h : μ.FiniteAtFilter f) : μ.FiniteAtFilter (f ⊓ g) :=
+theorem inf_of_left (h : μ.FiniteAtFilter f) : μ.FiniteAtFilter (f ⊓ g) :=
   h.filter_mono inf_le_left
-#align measure_theory.measure.finite_at_filter.inf_of_left MeasureTheory.Measure.FiniteAtFilter.infOfLeft
+#align measure_theory.measure.finite_at_filter.inf_of_left MeasureTheory.Measure.FiniteAtFilter.inf_of_left
 
-theorem infOfRight (h : μ.FiniteAtFilter g) : μ.FiniteAtFilter (f ⊓ g) :=
+theorem inf_of_right (h : μ.FiniteAtFilter g) : μ.FiniteAtFilter (f ⊓ g) :=
   h.filter_mono inf_le_right
-#align measure_theory.measure.finite_at_filter.inf_of_right MeasureTheory.Measure.FiniteAtFilter.infOfRight
+#align measure_theory.measure.finite_at_filter.inf_of_right MeasureTheory.Measure.FiniteAtFilter.inf_of_right
 
 @[simp]
 theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f :=
@@ -4208,15 +4210,15 @@ theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f :=
 #align measure_theory.measure.finite_at_filter.inf_ae_iff MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff
 
 alias inf_ae_iff ↔ of_inf_ae _
-#align measure_theory.measure.finite_at_filter.of_inf_ae MeasureTheory.Measure.FiniteAtFilter.ofInfAe
+#align measure_theory.measure.finite_at_filter.of_inf_ae MeasureTheory.Measure.FiniteAtFilter.of_inf_ae
 
-theorem filterMonoAe (h : f ⊓ μ.ae ≤ g) (hg : μ.FiniteAtFilter g) : μ.FiniteAtFilter f :=
+theorem filter_mono_ae (h : f ⊓ μ.ae ≤ g) (hg : μ.FiniteAtFilter g) : μ.FiniteAtFilter f :=
   inf_ae_iff.1 (hg.filter_mono h)
-#align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filterMonoAe
+#align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae
 
-protected theorem measureMono (h : μ ≤ ν) : ν.FiniteAtFilter f → μ.FiniteAtFilter f :=
+protected theorem measure_mono (h : μ ≤ ν) : ν.FiniteAtFilter f → μ.FiniteAtFilter f :=
   fun ⟨s, hs, hν⟩ => ⟨s, hs, (Measure.le_iff'.1 h s).trans_lt hν⟩
-#align measure_theory.measure.finite_at_filter.measure_mono MeasureTheory.Measure.FiniteAtFilter.measureMono
+#align measure_theory.measure.finite_at_filter.measure_mono MeasureTheory.Measure.FiniteAtFilter.measure_mono
 
 @[mono]
 protected theorem mono (hf : f ≤ g) (hμ : μ ≤ ν) : ν.FiniteAtFilter g → μ.FiniteAtFilter f :=
@@ -4227,28 +4229,28 @@ protected theorem eventually (h : μ.FiniteAtFilter f) : ∀ᶠ s in f.smallSets
   (eventually_small_sets' fun s t hst ht => (measure_mono hst).trans_lt ht).2 h
 #align measure_theory.measure.finite_at_filter.eventually MeasureTheory.Measure.FiniteAtFilter.eventually
 
-theorem filterSup : μ.FiniteAtFilter f → μ.FiniteAtFilter g → μ.FiniteAtFilter (f ⊔ g) :=
+theorem filter_sup : μ.FiniteAtFilter f → μ.FiniteAtFilter g → μ.FiniteAtFilter (f ⊔ g) :=
   fun ⟨s, hsf, hsμ⟩ ⟨t, htg, htμ⟩ =>
   ⟨s ∪ t, union_mem_sup hsf htg, (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hsμ, htμ⟩)⟩
-#align measure_theory.measure.finite_at_filter.filter_sup MeasureTheory.Measure.FiniteAtFilter.filterSup
+#align measure_theory.measure.finite_at_filter.filter_sup MeasureTheory.Measure.FiniteAtFilter.filter_sup
 
 end FiniteAtFilter
 
-theorem finiteAtNhdsWithin [TopologicalSpace α] {m0 : MeasurableSpace α} (μ : Measure α)
+theorem finite_at_nhdsWithin [TopologicalSpace α] {m0 : MeasurableSpace α} (μ : Measure α)
     [IsLocallyFiniteMeasure μ] (x : α) (s : Set α) : μ.FiniteAtFilter (𝓝[s] x) :=
-  (finiteAtNhds μ x).inf_of_left
-#align measure_theory.measure.finite_at_nhds_within MeasureTheory.Measure.finiteAtNhdsWithin
+  (finite_at_nhds μ x).inf_of_left
+#align measure_theory.measure.finite_at_nhds_within MeasureTheory.Measure.finite_at_nhdsWithin
 
 @[simp]
 theorem finite_at_principal : μ.FiniteAtFilter (𝓟 s) ↔ μ s < ∞ :=
   ⟨fun ⟨t, ht, hμ⟩ => (measure_mono ht).trans_lt hμ, fun h => ⟨s, mem_principal_self s, h⟩⟩
 #align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finite_at_principal
 
-theorem isLocallyFiniteMeasureOfLe [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
+theorem isLocallyFiniteMeasure_of_le [TopologicalSpace α] {m : MeasurableSpace α} {μ ν : Measure α}
     [H : IsLocallyFiniteMeasure μ] (h : ν ≤ μ) : IsLocallyFiniteMeasure ν :=
-  let F := H.finiteAtNhds
+  let F := H.finite_at_nhds
   ⟨fun x => (F x).measure_mono h⟩
-#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.isLocallyFiniteMeasureOfLe
+#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.isLocallyFiniteMeasure_of_le
 
 end Measure
 
@@ -4418,10 +4420,10 @@ theorem map_ae (f : α ≃ᵐ β) (μ : Measure α) : Filter.map f μ.ae = (map
   simp_rw [mem_map, mem_ae_iff, ← preimage_compl, f.map_apply]
 #align measurable_equiv.map_ae MeasurableEquiv.map_ae
 
-theorem quasiMeasurePreservingSymm (μ : Measure α) (e : α ≃ᵐ β) :
+theorem quasiMeasurePreserving_symm (μ : Measure α) (e : α ≃ᵐ β) :
     QuasiMeasurePreserving e.symm (map e μ) μ :=
   ⟨e.symm.Measurable, by rw [measure.map_map, e.symm_comp_self, measure.map_id] <;> measurability⟩
-#align measurable_equiv.quasi_measure_preserving_symm MeasurableEquiv.quasiMeasurePreservingSymm
+#align measurable_equiv.quasi_measure_preserving_symm MeasurableEquiv.quasiMeasurePreserving_symm
 
 end MeasurableEquiv
 
@@ -4514,14 +4516,14 @@ theorem restrict_trim (hm : m ≤ m0) (μ : Measure α) (hs : @MeasurableSet α
     trim_measurable_set_eq hm (@MeasurableSet.inter α m t s ht hs)]
 #align measure_theory.restrict_trim MeasureTheory.restrict_trim
 
-instance isFiniteMeasureTrim (hm : m ≤ m0) [IsFiniteMeasure μ] : IsFiniteMeasure (μ.trim hm)
+instance isFiniteMeasure_trim (hm : m ≤ m0) [IsFiniteMeasure μ] : IsFiniteMeasure (μ.trim hm)
     where measure_univ_lt_top :=
     by
     rw [trim_measurable_set_eq hm (@MeasurableSet.univ _ m)]
     exact measure_lt_top _ _
-#align measure_theory.is_finite_measure_trim MeasureTheory.isFiniteMeasureTrim
+#align measure_theory.is_finite_measure_trim MeasureTheory.isFiniteMeasure_trim
 
-theorem sigmaFiniteTrimMono {m m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm : m ≤ m0)
+theorem sigmaFinite_trim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm : m ≤ m0)
     (hm₂ : m₂ ≤ m) [SigmaFinite (μ.trim (hm₂.trans hm))] : SigmaFinite (μ.trim hm) :=
   by
   have h := measure.finite_spanning_sets_in (μ.trim (hm₂.trans hm)) Set.univ
@@ -4541,7 +4543,7 @@ theorem sigmaFiniteTrimMono {m m₂ m0 : MeasurableSpace α} {μ : Measure α} (
         rw [@trim_trim _ _ μ _ _ hm₂ hm]
       _ < ∞ := measure_spanning_sets_lt_top _ _
       
-#align measure_theory.sigma_finite_trim_mono MeasureTheory.sigmaFiniteTrimMono
+#align measure_theory.sigma_finite_trim_mono MeasureTheory.sigmaFinite_trim_mono
 
 theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ IsFiniteMeasure μ :=
   by
@@ -4584,7 +4586,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
 finite measure. -/
 theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
     [IsLocallyFiniteMeasure μ] : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
-  h.exists_open_superset_measure_lt_top' fun x hx => μ.finiteAtNhds x
+  h.exists_open_superset_measure_lt_top' fun x hx => μ.finite_at_nhds x
 #align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_top
 
 theorem measure_lt_top_of_nhdsWithin (h : IsCompact s) (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝[s] x)) :
@@ -4601,11 +4603,11 @@ theorem measure_zero_of_nhdsWithin (hs : IsCompact s) :
 end IsCompact
 
 -- see Note [lower instance priority]
-instance (priority := 100) isFiniteMeasureOnCompactsOfIsLocallyFiniteMeasure [TopologicalSpace α]
+instance (priority := 100) isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure [TopologicalSpace α]
     {m : MeasurableSpace α} {μ : Measure α} [IsLocallyFiniteMeasure μ] :
     IsFiniteMeasureOnCompacts μ :=
-  ⟨fun s hs => hs.measure_lt_top_of_nhdsWithin fun x hx => μ.finiteAtNhdsWithin _ _⟩
-#align is_finite_measure_on_compacts_of_is_locally_finite_measure isFiniteMeasureOnCompactsOfIsLocallyFiniteMeasure
+  ⟨fun s hs => hs.measure_lt_top_of_nhdsWithin fun x hx => μ.finite_at_nhdsWithin _ _⟩
+#align is_finite_measure_on_compacts_of_is_locally_finite_measure isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure
 
 theorem isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace [TopologicalSpace α]
     [MeasurableSpace α] {μ : Measure α} [CompactSpace α] :
Diff
@@ -4101,7 +4101,7 @@ theorem null_of_locally_null [TopologicalSpace α] [SecondCountableTopology α]
 
 theorem exists_mem_forall_mem_nhdsWithin_pos_measure [TopologicalSpace α]
     [SecondCountableTopology α] {s : Set α} (hs : μ s ≠ 0) : ∃ x ∈ s, ∀ t ∈ 𝓝[s] x, 0 < μ t :=
-  μ.toOuterMeasure.exists_mem_forall_mem_nhdsWithin_pos hs
+  μ.toOuterMeasure.exists_mem_forall_mem_nhds_within_pos hs
 #align measure_theory.exists_mem_forall_mem_nhds_within_pos_measure MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measure
 
 theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β] [T1Space β]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
 
 ! This file was ported from Lean 3 source module measure_theory.measure.measure_space
-! leanprover-community/mathlib commit 97d1aa955750bd57a7eeef91de310e633881670b
+! leanprover-community/mathlib commit 88fcb83fe7996142dfcfe7368d31304a9adc874a
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1099,6 +1099,15 @@ theorem measure_univ_eq_zero : μ univ = 0 ↔ μ = 0 :=
     h.symm ▸ rfl⟩
 #align measure_theory.measure.measure_univ_eq_zero MeasureTheory.Measure.measure_univ_eq_zero
 
+theorem measure_univ_ne_zero : μ univ ≠ 0 ↔ μ ≠ 0 :=
+  measure_univ_eq_zero.Not
+#align measure_theory.measure.measure_univ_ne_zero MeasureTheory.Measure.measure_univ_ne_zero
+
+@[simp]
+theorem measure_univ_pos : 0 < μ univ ↔ μ ≠ 0 :=
+  pos_iff_ne_zero.trans measure_univ_ne_zero
+#align measure_theory.measure.measure_univ_pos MeasureTheory.Measure.measure_univ_pos
+
 /-! ### Pushforward and pullback -/
 
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
 
 ! This file was ported from Lean 3 source module measure_theory.measure.measure_space
-! leanprover-community/mathlib commit 57ac39bd365c2f80589a700f9fbb664d3a1a30c2
+! leanprover-community/mathlib commit 97d1aa955750bd57a7eeef91de310e633881670b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -798,8 +798,13 @@ theorem coe_zero {m : MeasurableSpace α} : ⇑(0 : Measure α) = 0 :=
   rfl
 #align measure_theory.measure.coe_zero MeasureTheory.Measure.coe_zero
 
+instance [IsEmpty α] {m : MeasurableSpace α} : Subsingleton (Measure α) :=
+  ⟨fun μ ν => by
+    ext1 s hs
+    simp only [eq_empty_of_is_empty s, measure_empty]⟩
+
 theorem eq_zero_of_isEmpty [IsEmpty α] {m : MeasurableSpace α} (μ : Measure α) : μ = 0 :=
-  ext fun s hs => by simp only [eq_empty_of_is_empty s, measure_empty]
+  Subsingleton.elim μ 0
 #align measure_theory.measure.eq_zero_of_is_empty MeasureTheory.Measure.eq_zero_of_isEmpty
 
 instance [MeasurableSpace α] : Inhabited (Measure α) :=
Diff
@@ -2151,7 +2151,7 @@ theorem tsum_indicator_apply_singleton [Countable α] [MeasurableSingletonClass
     (∑' x : α, s.indicator (fun x => μ {x}) x) = Measure.sum (fun a => μ {a} • Measure.dirac a) s :=
       by
       simp only [measure.sum_apply _ hs, measure.smul_apply, smul_eq_mul, measure.dirac_apply,
-        Set.indicator_apply, mul_ite, Pi.one_apply, mul_one, mul_zero]
+        Set.indicator_apply, mul_ite, Pi.one_apply, mul_one, MulZeroClass.mul_zero]
     _ = μ s := by rw [μ.sum_smul_dirac]
     
 #align measure_theory.measure.tsum_indicator_apply_singleton MeasureTheory.Measure.tsum_indicator_apply_singleton
Diff
@@ -203,7 +203,7 @@ theorem tsum_meas_le_meas_unionᵢ_of_disjoint {ι : Type _} [MeasurableSpace α
   by
   rcases show Summable fun i => μ (As i) from ENNReal.summable with ⟨S, hS⟩
   rw [hS.tsum_eq]
-  refine' tendsto_le_of_eventuallyLe hS tendsto_const_nhds (eventually_of_forall _)
+  refine' tendsto_le_of_eventuallyLE hS tendsto_const_nhds (eventually_of_forall _)
   intro s
   rw [← measure_bUnion_finset (fun i hi j hj hij => As_disj hij) fun i _ => As_mble i]
   exact measure_mono (Union₂_subset_Union (fun i : ι => i ∈ s) fun i : ι => As i)
@@ -267,7 +267,7 @@ theorem measure_diff_le_iff_le_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' :
 
 theorem measure_eq_measure_of_null_diff {s t : Set α} (hst : s ⊆ t) (h_nulldiff : μ (t \ s) = 0) :
     μ s = μ t :=
-  measure_congr (hst.EventuallyLe.antisymm <| ae_le_set.mpr h_nulldiff)
+  measure_congr (hst.EventuallyLE.antisymm <| ae_le_set.mpr h_nulldiff)
 #align measure_theory.measure_eq_measure_of_null_diff MeasureTheory.measure_eq_measure_of_null_diff
 
 theorem measure_eq_measure_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 : s₁ ⊆ s₂) (h23 : s₂ ⊆ s₃)
@@ -308,7 +308,7 @@ theorem union_ae_eq_left_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] s ↔ t ≤
     ⟨fun h => by simpa only [union_diff_left] using (ae_eq_set.mp h).1, fun h =>
       eventually_le_antisymm_iff.mpr
         ⟨by rwa [ae_le_set, union_diff_left],
-          HasSubset.Subset.eventuallyLe <| subset_union_left s t⟩⟩
+          HasSubset.Subset.eventuallyLE <| subset_union_left s t⟩⟩
 #align measure_theory.union_ae_eq_left_iff_ae_subset MeasureTheory.union_ae_eq_left_iff_ae_subset
 
 @[simp]
@@ -328,7 +328,7 @@ theorem ae_eq_of_ae_subset_of_measure_ge (h₁ : s ≤ᵐ[μ] t) (h₂ : μ t 
 /-- If `s ⊆ t`, `μ t ≤ μ s`, `μ t ≠ ∞`, and `s` is measurable, then `s =ᵐ[μ] t`. -/
 theorem ae_eq_of_subset_of_measure_ge (h₁ : s ⊆ t) (h₂ : μ t ≤ μ s) (hsm : MeasurableSet s)
     (ht : μ t ≠ ∞) : s =ᵐ[μ] t :=
-  ae_eq_of_ae_subset_of_measure_ge (HasSubset.Subset.eventuallyLe h₁) h₂ hsm ht
+  ae_eq_of_ae_subset_of_measure_ge (HasSubset.Subset.eventuallyLE h₁) h₂ hsm ht
 #align measure_theory.ae_eq_of_subset_of_measure_ge MeasureTheory.ae_eq_of_subset_of_measure_ge
 
 theorem measure_unionᵢ_congr_of_subset [Countable β] {s : β → Set α} {t : β → Set α}
@@ -2526,7 +2526,7 @@ theorem preimage_mono_ae {s t : Set β} (hf : QuasiMeasurePreserving f μa μb)
 
 theorem preimage_ae_eq {s t : Set β} (hf : QuasiMeasurePreserving f μa μb) (h : s =ᵐ[μb] t) :
     f ⁻¹' s =ᵐ[μa] f ⁻¹' t :=
-  EventuallyLe.antisymm (hf.preimage_mono_ae h.le) (hf.preimage_mono_ae h.symm.le)
+  EventuallyLE.antisymm (hf.preimage_mono_ae h.le) (hf.preimage_mono_ae h.symm.le)
 #align measure_theory.measure.quasi_measure_preserving.preimage_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.preimage_ae_eq
 
 theorem preimage_iterate_ae_eq {s : Set α} {f : α → α} (hf : QuasiMeasurePreserving f μ μ) (k : ℕ)
Diff
@@ -249,7 +249,7 @@ theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
   tsub_le_iff_left.2 <|
     calc
       μ s₁ ≤ μ (s₂ ∪ s₁) := measure_mono (subset_union_right _ _)
-      _ = μ (s₂ ∪ s₁ \ s₂) := congr_arg μ union_diff_self.symm
+      _ = μ (s₂ ∪ s₁ \ s₂) := (congr_arg μ union_diff_self.symm)
       _ ≤ μ s₂ + μ (s₁ \ s₂) := measure_union_le _ _
       
 #align measure_theory.le_measure_diff MeasureTheory.le_measure_diff
@@ -278,7 +278,7 @@ theorem measure_eq_measure_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 :
   have key : μ s₃ ≤ μ s₁ :=
     calc
       μ s₃ = μ (s₃ \ s₁ ∪ s₁) := by rw [diff_union_of_subset (h12.trans h23)]
-      _ ≤ μ (s₃ \ s₁) + μ s₁ := measure_union_le _ _
+      _ ≤ μ (s₃ \ s₁) + μ s₁ := (measure_union_le _ _)
       _ = μ s₁ := by simp only [h_nulldiff, zero_add]
       
   exact ⟨le12.antisymm (le23.trans key), le23.antisymm (key.trans le12)⟩
@@ -349,7 +349,7 @@ theorem measure_unionᵢ_congr_of_subset [Countable β] {s : β → Set α} {t :
     ·
       calc
         μ (M (t b)) = μ (t b) := measure_to_measurable _
-        _ ≤ μ (s b) := h_le b
+        _ ≤ μ (s b) := (h_le b)
         _ ≤ μ (M (t b) ∩ M (⋃ b, s b)) :=
           measure_mono <|
             subset_inter ((hsub b).trans <| subset_to_measurable _ _)
@@ -360,8 +360,8 @@ theorem measure_unionᵢ_congr_of_subset [Countable β] {s : β → Set α} {t :
       exact htop b
   calc
     μ (⋃ b, t b) ≤ μ (⋃ b, M (t b)) := measure_mono (Union_mono fun b => subset_to_measurable _ _)
-    _ = μ (⋃ b, M (t b) ∩ M (⋃ b, s b)) := measure_congr (EventuallyEq.countable_unionᵢ H).symm
-    _ ≤ μ (M (⋃ b, s b)) := measure_mono (Union_subset fun b => inter_subset_right _ _)
+    _ = μ (⋃ b, M (t b) ∩ M (⋃ b, s b)) := (measure_congr (EventuallyEq.countable_unionᵢ H).symm)
+    _ ≤ μ (M (⋃ b, s b)) := (measure_mono (Union_subset fun b => inter_subset_right _ _))
     _ = μ (⋃ b, s b) := measure_to_measurable _
     
 #align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_unionᵢ_congr_of_subset
@@ -492,7 +492,7 @@ theorem measure_unionᵢ_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Dire
   calc
     μ (⋃ n, t n) ≤ μ (⋃ n, T n) := measure_mono (Union_mono fun i => subset_to_measurable _ _)
     _ = μ (⋃ n, Td n) := by rw [unionᵢ_disjointed]
-    _ ≤ ∑' n, μ (Td n) := measure_Union_le _
+    _ ≤ ∑' n, μ (Td n) := (measure_Union_le _)
     _ = ⨆ I : Finset ℕ, ∑ n in I, μ (Td n) := ENNReal.tsum_eq_supᵢ_sum
     _ ≤ ⨆ n, μ (t n) := supᵢ_le fun I => _
     
@@ -500,9 +500,9 @@ theorem measure_unionᵢ_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Dire
   calc
     (∑ n in I, μ (Td n)) = μ (⋃ n ∈ I, Td n) :=
       (measure_bUnion_finset ((disjoint_disjointed T).set_pairwise I) fun n _ => hm n).symm
-    _ ≤ μ (⋃ n ∈ I, T n) := measure_mono (Union₂_mono fun n hn => disjointed_subset _ _)
-    _ = μ (⋃ n ∈ I, t n) := measure_bUnion_to_measurable I.countable_to_set _
-    _ ≤ μ (t N) := measure_mono (Union₂_subset hN)
+    _ ≤ μ (⋃ n ∈ I, T n) := (measure_mono (Union₂_mono fun n hn => disjointed_subset _ _))
+    _ = μ (⋃ n ∈ I, t n) := (measure_bUnion_to_measurable I.countable_to_set _)
+    _ ≤ μ (t N) := (measure_mono (Union₂_subset hN))
     _ ≤ ⨆ n, μ (t n) := le_supᵢ (μ ∘ t) N
     
 #align measure_theory.measure_Union_eq_supr MeasureTheory.measure_unionᵢ_eq_supᵢ
@@ -514,7 +514,7 @@ theorem measure_bUnion_eq_supᵢ {s : ι → Set α} {t : Set ι} (ht : t.Counta
   rw [bUnion_eq_Union, measure_Union_eq_supr hd.directed_coe, ← supᵢ_subtype'']
 #align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_bUnion_eq_supᵢ
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s k) -/
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the infimum of the measures. -/
 theorem measure_interᵢ_eq_infᵢ [Countable ι] {s : ι → Set α} (h : ∀ i, MeasurableSet (s i))
@@ -632,8 +632,8 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
   exact fun ⟨i, hi⟩ => ⟨i + (m - n), by simpa only [add_assoc, tsub_add_cancel_of_le hnm] using hi⟩
 #align measure_theory.measure_limsup_eq_zero MeasureTheory.measure_limsup_eq_zero
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠ ⊤) : μ (liminf s atTop) = 0 :=
   by
   rw [← le_zero_iff]
@@ -727,7 +727,7 @@ theorem toMeasure_apply₀ (m : OuterMeasure α) (h : ms ≤ m.caratheodory) {s
   rcases hs.exists_measurable_subset_ae_eq with ⟨t, hts, htm, heq⟩
   calc
     m.to_measure h s = m.to_measure h t := measure_congr HEq.symm
-    _ = m t := to_measure_apply m h htm
+    _ = m t := (to_measure_apply m h htm)
     _ ≤ m s := m.mono hts
     
 #align measure_theory.to_measure_apply₀ MeasureTheory.toMeasure_apply₀
@@ -1509,8 +1509,8 @@ theorem restrict_mono' {m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν :
     (hμν : μ ≤ ν) : μ.restrict s ≤ ν.restrict s' := fun t ht =>
   calc
     μ.restrict s t = μ (t ∩ s) := restrict_apply ht
-    _ ≤ μ (t ∩ s') := measure_mono_ae <| hs.mono fun x hx ⟨hxt, hxs⟩ => ⟨hxt, hx hxs⟩
-    _ ≤ ν (t ∩ s') := le_iff'.1 hμν (t ∩ s')
+    _ ≤ μ (t ∩ s') := (measure_mono_ae <| hs.mono fun x hx ⟨hxt, hxs⟩ => ⟨hxt, hx hxs⟩)
+    _ ≤ ν (t ∩ s') := (le_iff'.1 hμν (t ∩ s'))
     _ = ν.restrict s' t := (restrict_apply ht).symm
     
 #align measure_theory.measure.restrict_mono' MeasureTheory.Measure.restrict_mono'
@@ -1777,7 +1777,7 @@ theorem restrict_eq_self_of_ae_mem {m0 : MeasurableSpace α} ⦃s : Set α⦄ 
     
 #align measure_theory.measure.restrict_eq_self_of_ae_mem MeasureTheory.Measure.restrict_eq_self_of_ae_mem
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 theorem restrict_congr_meas (hs : MeasurableSet s) :
     μ.restrict s = ν.restrict s ↔ ∀ (t) (_ : t ⊆ s), MeasurableSet t → μ t = ν t :=
   ⟨fun H t hts ht => by
@@ -1814,7 +1814,7 @@ theorem restrict_union_congr :
     _ = restrict ν s u + restrict ν t (u \ US) := by rw [hs, ht]
     _ = ν US + ν ((u ∩ t) \ US) := by
       simp only [restrict_apply, hu, hu.diff hm, hν, ← inter_comm t, inter_diff_assoc]
-    _ = ν (US ∪ u ∩ t) := measure_add_diff hm _
+    _ = ν (US ∪ u ∩ t) := (measure_add_diff hm _)
     _ = ν (u ∩ s ∪ u ∩ t) := Eq.symm <| measure_union_congr_of_subset hsub hν.le subset.rfl le_rfl
     
 #align measure_theory.measure.restrict_union_congr MeasureTheory.Measure.restrict_union_congr
@@ -2190,7 +2190,7 @@ def count : Measure α :=
 theorem le_count_apply : (∑' i : s, 1 : ℝ≥0∞) ≤ count s :=
   calc
     (∑' i : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i := tsum_subtype s 1
-    _ ≤ ∑' i, dirac i s := ENNReal.tsum_le_tsum fun x => le_dirac_apply
+    _ ≤ ∑' i, dirac i s := (ENNReal.tsum_le_tsum fun x => le_dirac_apply)
     _ ≤ count s := le_sum_apply _ _
     
 #align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_apply
@@ -2208,7 +2208,7 @@ theorem count_apply_finset' {s : Finset α} (s_mble : MeasurableSet (s : Set α)
     count (↑s : Set α) = s.card :=
   calc
     count (↑s : Set α) = ∑' i : (↑s : Set α), 1 := count_apply s_mble
-    _ = ∑ i in s, 1 := s.tsum_subtype 1
+    _ = ∑ i in s, 1 := (s.tsum_subtype 1)
     _ = s.card := by simp
     
 #align measure_theory.measure.count_apply_finset' MeasureTheory.Measure.count_apply_finset'
@@ -2264,7 +2264,7 @@ theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.I
 theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Finite :=
   calc
     count s < ∞ ↔ count s ≠ ∞ := lt_top_iff_ne_top
-    _ ↔ ¬s.Infinite := not_congr (count_apply_eq_top' s_mble)
+    _ ↔ ¬s.Infinite := (not_congr (count_apply_eq_top' s_mble))
     _ ↔ s.Finite := Classical.not_not
     
 #align measure_theory.measure.count_apply_lt_top' MeasureTheory.Measure.count_apply_lt_top'
@@ -2273,7 +2273,7 @@ theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Fin
 theorem count_apply_lt_top [MeasurableSingletonClass α] : count s < ∞ ↔ s.Finite :=
   calc
     count s < ∞ ↔ count s ≠ ∞ := lt_top_iff_ne_top
-    _ ↔ ¬s.Infinite := not_congr count_apply_eq_top
+    _ ↔ ¬s.Infinite := (not_congr count_apply_eq_top)
     _ ↔ s.Finite := Classical.not_not
     
 #align measure_theory.measure.count_apply_lt_top MeasureTheory.Measure.count_apply_lt_top
@@ -2610,7 +2610,7 @@ section Pointwise
 
 open Pointwise
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (g «expr ≠ » (1 : G)) -/
 @[to_additive]
 theorem pairwise_aeDisjoint_of_aeDisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
     [MeasurableSpace α] {μ : Measure α} {s : Set α}
@@ -2874,9 +2874,9 @@ theorem ae_of_ae_restrict_of_ae_restrict_compl (t : Set α) {p : α → Prop}
     calc
       μ { x | ¬p x } = μ ({ x | ¬p x } ∩ t ∪ { x | ¬p x } ∩ tᶜ) := by
         rw [← inter_union_distrib_left, union_compl_self, inter_univ]
-      _ ≤ μ ({ x | ¬p x } ∩ t) + μ ({ x | ¬p x } ∩ tᶜ) := measure_union_le _ _
+      _ ≤ μ ({ x | ¬p x } ∩ t) + μ ({ x | ¬p x } ∩ tᶜ) := (measure_union_le _ _)
       _ ≤ μ.restrict t { x | ¬p x } + μ.restrict (tᶜ) { x | ¬p x } :=
-        add_le_add (le_restrict_apply _ _) (le_restrict_apply _ _)
+        (add_le_add (le_restrict_apply _ _) (le_restrict_apply _ _))
       _ = 0 := by rw [ae_iff.1 ht, ae_iff.1 htc, zero_add]
       
 #align measure_theory.ae_of_ae_restrict_of_ae_restrict_compl MeasureTheory.ae_of_ae_restrict_of_ae_restrict_compl
@@ -3094,7 +3094,7 @@ theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet
     tsub_le_iff_right]
   calc
     μ univ = μ univ - μ s + μ s := (tsub_add_cancel_of_le <| measure_mono s.subset_univ).symm
-    _ ≤ μ univ - μ s + (μ t + ε) := add_le_add_left h _
+    _ ≤ μ univ - μ s + (μ t + ε) := (add_le_add_left h _)
     _ = _ := by rw [add_right_comm, add_assoc]
     
 #align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_add
@@ -3679,7 +3679,7 @@ theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ :
     (fun b => g_mble (‹MeasurableSingletonClass β›.measurableSet_singleton b)) level_sets_disjoint
 #align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t' «expr ⊇ » t) -/
 /-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
 superset `to_measurable μ t` (which has the same measure as `t`) satisfies,
 for any measurable set `s`, the equality `μ (to_measurable μ t ∩ s) = μ (t ∩ s)`. -/
@@ -3728,7 +3728,7 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
         calc
           μ (t ∩ disjointed w n) ≤ μ (t ∩ w n) :=
             measure_mono (inter_subset_inter_right _ (disjointed_le w n))
-          _ ≤ μ (w n) := measure_mono (inter_subset_right _ _)
+          _ ≤ μ (w n) := (measure_mono (inter_subset_right _ _))
           _ < ∞ := hw n
           
       _ = ∑' n, μ.restrict (t ∩ u) (disjointed w n) :=
@@ -3745,7 +3745,7 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
         · intro i
           apply MeasurableSet.disjointed fun n => _
           exact measurable_set_to_measurable _ _
-      _ ≤ μ.restrict (t ∩ u) univ := measure_mono (subset_univ _)
+      _ ≤ μ.restrict (t ∩ u) univ := (measure_mono (subset_univ _))
       _ = μ (t ∩ u) := by rw [restrict_apply MeasurableSet.univ, univ_inter]
       
   -- thanks to the definition of `to_measurable`, the previous property will also be shared
@@ -4545,7 +4545,7 @@ namespace IsCompact
 
 variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set α}
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
 superset of finite measure. -/
 theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
@@ -4565,7 +4565,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
     exact ⟨U, nhdsWithin_le_nhds (hUo.mem_nhds hx), U, subset.rfl, hUo, hU⟩
 #align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (U «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (U «expr ⊇ » s) -/
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
 theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
 
 ! This file was ported from Lean 3 source module measure_theory.measure.measure_space
-! leanprover-community/mathlib commit 3f5c9d30716c775bda043456728a1a3ee31412e7
+! leanprover-community/mathlib commit 57ac39bd365c2f80589a700f9fbb664d3a1a30c2
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -3634,7 +3634,8 @@ theorem countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top {ι : Type _} [Me
     Set.Countable { i : ι | 0 < μ (As i) } :=
   by
   set posmeas := { i : ι | 0 < μ (As i) } with posmeas_def
-  rcases exists_seq_strictAnti_tendsto' ENNReal.zero_lt_one with ⟨as, ⟨as_decr, ⟨as_mem, as_lim⟩⟩⟩
+  rcases exists_seq_strictAnti_tendsto' (zero_lt_one : (0 : ℝ≥0∞) < 1) with
+    ⟨as, as_decr, as_mem, as_lim⟩
   set fairmeas := fun n : ℕ => { i : ι | as n ≤ μ (As i) } with fairmeas_def
   have countable_union : posmeas = ⋃ n, fairmeas n :=
     by
Diff
@@ -103,7 +103,7 @@ open Function MeasurableSpace
 
 open TopologicalSpace (SecondCountableTopology)
 
-open Classical Topology BigOperators Filter Ennreal NNReal Interval MeasureTheory
+open Classical Topology BigOperators Filter ENNReal NNReal Interval MeasureTheory
 
 variable {α β γ δ ι R R' : Type _}
 
@@ -201,7 +201,7 @@ theorem tsum_meas_le_meas_unionᵢ_of_disjoint {ι : Type _} [MeasurableSpace α
     {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) : (∑' i, μ (As i)) ≤ μ (⋃ i, As i) :=
   by
-  rcases show Summable fun i => μ (As i) from Ennreal.summable with ⟨S, hS⟩
+  rcases show Summable fun i => μ (As i) from ENNReal.summable with ⟨S, hS⟩
   rw [hS.tsum_eq]
   refine' tendsto_le_of_eventuallyLe hS tendsto_const_nhds (eventually_of_forall _)
   intro s
@@ -238,7 +238,7 @@ theorem measure_add_diff (hs : MeasurableSet s) (t : Set α) : μ s + μ (t \ s)
 
 theorem measure_diff' (s : Set α) (hm : MeasurableSet t) (h_fin : μ t ≠ ∞) :
     μ (s \ t) = μ (s ∪ t) - μ t :=
-  Eq.symm <| Ennreal.sub_eq_of_add_eq h_fin <| by rw [add_comm, measure_add_diff hm, union_comm]
+  Eq.symm <| ENNReal.sub_eq_of_add_eq h_fin <| by rw [add_comm, measure_add_diff hm, union_comm]
 #align measure_theory.measure_diff' MeasureTheory.measure_diff'
 
 theorem measure_diff (h : s₂ ⊆ s₁) (h₂ : MeasurableSet s₂) (h_fin : μ s₂ ≠ ∞) :
@@ -258,7 +258,7 @@ theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' :
     (h : μ t < μ s + ε) : μ (t \ s) < ε :=
   by
   rw [measure_diff hst hs hs']; rw [add_comm] at h
-  exact Ennreal.sub_lt_of_lt_add (measure_mono hst) h
+  exact ENNReal.sub_lt_of_lt_add (measure_mono hst) h
 #align measure_theory.measure_diff_lt_of_lt_add MeasureTheory.measure_diff_lt_of_lt_add
 
 theorem measure_diff_le_iff_le_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞} :
@@ -413,7 +413,7 @@ theorem sum_measure_le_measure_univ {s : Finset ι} {t : ι → Set α}
 theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i))
     (H : Pairwise (Disjoint on s)) : (∑' i, μ (s i)) ≤ μ (univ : Set α) :=
   by
-  rw [Ennreal.tsum_eq_supᵢ_sum]
+  rw [ENNReal.tsum_eq_supᵢ_sum]
   exact supᵢ_le fun s => sum_measure_le_measure_univ (fun i hi => hs i) fun i hi j hj hij => H hij
 #align measure_theory.tsum_measure_le_measure_univ MeasureTheory.tsum_measure_le_measure_univ
 
@@ -493,7 +493,7 @@ theorem measure_unionᵢ_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Dire
     μ (⋃ n, t n) ≤ μ (⋃ n, T n) := measure_mono (Union_mono fun i => subset_to_measurable _ _)
     _ = μ (⋃ n, Td n) := by rw [unionᵢ_disjointed]
     _ ≤ ∑' n, μ (Td n) := measure_Union_le _
-    _ = ⨆ I : Finset ℕ, ∑ n in I, μ (Td n) := Ennreal.tsum_eq_supᵢ_sum
+    _ = ⨆ I : Finset ℕ, ∑ n in I, μ (Td n) := ENNReal.tsum_eq_supᵢ_sum
     _ ≤ ⨆ n, μ (t n) := supᵢ_le fun I => _
     
   rcases hd.finset_le I with ⟨N, hN⟩
@@ -522,8 +522,8 @@ theorem measure_interᵢ_eq_infᵢ [Countable ι] {s : ι → Set α} (h : ∀ i
   by
   rcases hfin with ⟨k, hk⟩
   have : ∀ (t) (_ : t ⊆ s k), μ t ≠ ∞ := fun t ht => ne_top_of_le_ne_top hk (measure_mono ht)
-  rw [← Ennreal.sub_sub_cancel hk (infᵢ_le _ k), Ennreal.sub_infᵢ, ←
-    Ennreal.sub_sub_cancel hk (measure_mono (Inter_subset _ k)), ←
+  rw [← ENNReal.sub_sub_cancel hk (infᵢ_le _ k), ENNReal.sub_infᵢ, ←
+    ENNReal.sub_sub_cancel hk (measure_mono (Inter_subset _ k)), ←
     measure_diff (Inter_subset _ k) (MeasurableSet.interᵢ h) (this _ (Inter_subset _ k)),
     diff_Inter, measure_Union_eq_supr]
   · congr 1
@@ -626,7 +626,7 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
       (tendsto_measure_Inter
         (fun i => MeasurableSet.unionᵢ fun b => measurable_set_to_measurable _ _) _
         ⟨0, ne_top_of_le_ne_top ht (measure_Union_le t)⟩)
-      (Ennreal.tendsto_sum_nat_add (μ ∘ t) ht) fun n => measure_Union_le _
+      (ENNReal.tendsto_sum_nat_add (μ ∘ t) ht) fun n => measure_Union_le _
   intro n m hnm x
   simp only [Set.mem_unionᵢ]
   exact fun ⟨i, hi⟩ => ⟨i + (m - n), by simpa only [add_assoc, tsub_add_cancel_of_le hnm] using hi⟩
@@ -767,7 +767,7 @@ theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (
         add_le_add le_rfl (measure_mono (diff_subset_diff htu subset.rfl))
       
   have B : μ (u \ s) ≠ ∞ := (lt_of_le_of_lt (measure_mono (diff_subset _ _)) ht_ne_top.lt_top).Ne
-  exact Ennreal.le_of_add_le_add_right B A
+  exact ENNReal.le_of_add_le_add_right B A
 #align measure_theory.measure.measure_inter_eq_of_measure_eq MeasureTheory.Measure.measure_inter_eq_of_measure_eq
 
 /-- The measurable superset `to_measurable μ t` of `t` (which has the same measure as `t`)
@@ -810,7 +810,7 @@ instance [MeasurableSpace α] : Add (Measure α) :=
     { toOuterMeasure := μ₁.toOuterMeasure + μ₂.toOuterMeasure
       m_unionᵢ := fun s hs hd =>
         show μ₁ (⋃ i, s i) + μ₂ (⋃ i, s i) = ∑' i, μ₁ (s i) + μ₂ (s i) by
-          rw [Ennreal.tsum_add, measure_Union hd hs, measure_Union hd hs]
+          rw [ENNReal.tsum_add, measure_Union hd hs, measure_Union hd hs]
       trimmed := by rw [outer_measure.trim_add, μ₁.trimmed, μ₂.trimmed] }⟩
 
 @[simp]
@@ -842,7 +842,7 @@ instance [MeasurableSpace α] : SMul R (Measure α) :=
         by
         rw [← smul_one_smul ℝ≥0∞ c (_ : outer_measure α)]
         dsimp
-        simp_rw [measure_Union hd hs, Ennreal.tsum_mul_left]
+        simp_rw [measure_Union hd hs, ENNReal.tsum_mul_left]
       trimmed := by rw [outer_measure.trim_smul, μ.trimmed] }⟩
 
 @[simp]
@@ -928,8 +928,8 @@ theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν
       μ t + ν t = μ s + ν s := h''.symm
       _ ≤ μ s + ν t := add_le_add le_rfl (measure_mono h')
       
-  apply Ennreal.le_of_add_le_add_right _ this
-  simp only [not_or, Ennreal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at h
+  apply ENNReal.le_of_add_le_add_right _ this
+  simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at h
   exact h.2
 #align measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eq
 
@@ -948,7 +948,7 @@ theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s
       measure_eq_left_of_subset_of_measure_add_eq _ (subset_to_measurable _ _)
         (measure_to_measurable t).symm
     rwa [measure_to_measurable t]
-  · simp only [not_or, Ennreal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at ht
+  · simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at ht
     exact ht.1
 #align measure_theory.measure.measure_to_measurable_add_inter_left MeasureTheory.Measure.measure_toMeasurable_add_inter_left
 
@@ -1917,7 +1917,7 @@ theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = gen
     have := T_eq t ht
     rw [Set.inter_comm] at hvt⊢
     rwa [← measure_inter_add_diff t hv, ← measure_inter_add_diff t hv, ← hvt,
-      Ennreal.add_right_inj] at this
+      ENNReal.add_right_inj] at this
     exact ne_top_of_le_ne_top (htop t ht) (measure_mono <| Set.inter_subset_left _ _)
   · intro f hfd hfm h_eq
     simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.unionᵢ hfm)] at h_eq⊢
@@ -2031,7 +2031,7 @@ theorem sum_apply (f : ι → Measure α) {s : Set α} (hs : MeasurableSet s) :
 #align measure_theory.measure.sum_apply MeasureTheory.Measure.sum_apply
 
 theorem le_sum (μ : ι → Measure α) (i : ι) : μ i ≤ sum μ := fun s hs => by
-  simp only [sum_apply μ hs, Ennreal.le_tsum i]
+  simp only [sum_apply μ hs, ENNReal.le_tsum i]
 #align measure_theory.measure.le_sum MeasureTheory.Measure.le_sum
 
 @[simp]
@@ -2057,7 +2057,7 @@ theorem sum_comm {ι' : Type _} (μ : ι → ι' → Measure α) :
   by
   ext1 s hs
   simp_rw [sum_apply _ hs]
-  rw [Ennreal.tsum_comm]
+  rw [ENNReal.tsum_comm]
 #align measure_theory.measure.sum_comm MeasureTheory.Measure.sum_comm
 
 theorem ae_sum_iff [Countable ι] {μ : ι → Measure α} {p : α → Prop} :
@@ -2113,7 +2113,7 @@ theorem sum_add_sum_compl (s : Set ι) (μ : ι → Measure α) :
   by
   ext1 t ht
   simp only [add_apply, sum_apply _ ht]
-  exact @tsum_add_tsum_compl ℝ≥0∞ ι _ _ _ (fun i => μ i t) _ s Ennreal.summable Ennreal.summable
+  exact @tsum_add_tsum_compl ℝ≥0∞ ι _ _ _ (fun i => μ i t) _ s ENNReal.summable ENNReal.summable
 #align measure_theory.measure.sum_add_sum_compl MeasureTheory.Measure.sum_add_sum_compl
 
 theorem sum_congr {μ ν : ℕ → Measure α} (h : ∀ n, μ n = ν n) : sum μ = sum ν :=
@@ -2124,7 +2124,7 @@ theorem sum_add_sum (μ ν : ℕ → Measure α) : sum μ + sum ν = sum fun n =
   by
   ext1 s hs
   simp only [add_apply, sum_apply _ hs, Pi.add_apply, coe_add,
-    tsum_add Ennreal.summable Ennreal.summable]
+    tsum_add ENNReal.summable ENNReal.summable]
 #align measure_theory.measure.sum_add_sum MeasureTheory.Measure.sum_add_sum
 
 /-- If `f` is a map with countable codomain, then `μ.map f` is a sum of Dirac measures. -/
@@ -2190,7 +2190,7 @@ def count : Measure α :=
 theorem le_count_apply : (∑' i : s, 1 : ℝ≥0∞) ≤ count s :=
   calc
     (∑' i : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i := tsum_subtype s 1
-    _ ≤ ∑' i, dirac i s := Ennreal.tsum_le_tsum fun x => le_dirac_apply
+    _ ≤ ∑' i, dirac i s := ENNReal.tsum_le_tsum fun x => le_dirac_apply
     _ ≤ count s := le_sum_apply _ _
     
 #align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_apply
@@ -2232,7 +2232,7 @@ theorem count_apply_finite [MeasurableSingletonClass α] (s : Set α) (hs : s.Fi
 /-- `count` measure evaluates to infinity at infinite sets. -/
 theorem count_apply_infinite (hs : s.Infinite) : count s = ∞ :=
   by
-  refine' top_unique (le_of_tendsto' Ennreal.tendsto_nat_nhds_top fun n => _)
+  refine' top_unique (le_of_tendsto' ENNReal.tendsto_nat_nhds_top fun n => _)
   rcases hs.exists_subset_card_eq n with ⟨t, ht, rfl⟩
   calc
     (t.card : ℝ≥0∞) = ∑ i in t, 1 := by simp
@@ -2645,7 +2645,7 @@ def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α
     simp only [compl_inter, mem_set_of_eq]
     calc
       μ (sᶜ ∪ tᶜ) ≤ μ (sᶜ) + μ (tᶜ) := measure_union_le _ _
-      _ < ∞ := Ennreal.add_lt_top.2 ⟨hs, ht⟩
+      _ < ∞ := ENNReal.add_lt_top.2 ⟨hs, ht⟩
       
   sets_of_superset s t hs hst := lt_of_le_of_lt (measure_mono <| compl_subset_compl.2 hst) hs
 #align measure_theory.measure.cofinite MeasureTheory.Measure.cofinite
@@ -3113,7 +3113,7 @@ def measureUnivNnreal (μ : Measure α) : ℝ≥0 :=
 @[simp]
 theorem coe_measureUnivNnreal (μ : Measure α) [IsFiniteMeasure μ] :
     ↑(measureUnivNnreal μ) = μ univ :=
-  Ennreal.coe_toNnreal (measure_ne_top μ univ)
+  ENNReal.coe_toNNReal (measure_ne_top μ univ)
 #align measure_theory.coe_measure_univ_nnreal MeasureTheory.coe_measureUnivNnreal
 
 instance isFiniteMeasureZero : IsFiniteMeasure (0 : Measure α) :=
@@ -3136,12 +3136,12 @@ omit m0
 instance isFiniteMeasureAdd [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFiniteMeasure (μ + ν)
     where measure_univ_lt_top :=
     by
-    rw [measure.coe_add, Pi.add_apply, Ennreal.add_lt_top]
+    rw [measure.coe_add, Pi.add_apply, ENNReal.add_lt_top]
     exact ⟨measure_lt_top _ _, measure_lt_top _ _⟩
 #align measure_theory.is_finite_measure_add MeasureTheory.isFiniteMeasureAdd
 
 instance isFiniteMeasureSmulNnreal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFiniteMeasure (r • μ)
-    where measure_univ_lt_top := Ennreal.mul_lt_top Ennreal.coe_ne_top (measure_ne_top _ _)
+    where measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
 #align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.isFiniteMeasureSmulNnreal
 
 instance isFiniteMeasureSmulOfNnrealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
@@ -3183,14 +3183,14 @@ theorem measureUnivNnreal_pos [IsFiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measur
 /-- `le_of_add_le_add_left` is normally applicable to `ordered_cancel_add_comm_monoid`,
 but it holds for measures with the additional assumption that μ is finite. -/
 theorem Measure.le_of_add_le_add_left [IsFiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
-  fun S B1 => Ennreal.le_of_add_le_add_left (MeasureTheory.measure_ne_top μ S) (A2 S B1)
+  fun S B1 => ENNReal.le_of_add_le_add_left (MeasureTheory.measure_ne_top μ S) (A2 S B1)
 #align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_left
 
 theorem summable_measure_toReal [hμ : IsFiniteMeasure μ] {f : ℕ → Set α}
     (hf₁ : ∀ i : ℕ, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
     Summable fun x => (μ (f x)).toReal :=
   by
-  apply Ennreal.summable_toReal
+  apply ENNReal.summable_toReal
   rw [← MeasureTheory.measure_unionᵢ hf₂ hf₁]
   exact ne_of_lt (measure_lt_top _ _)
 #align measure_theory.summable_measure_to_real MeasureTheory.summable_measure_toReal
@@ -3219,7 +3219,7 @@ theorem ae_mem_iff_measure_eq [IsFiniteMeasure μ] {s : Set α} (hs : NullMeasur
 instance [Finite α] [MeasurableSpace α] : IsFiniteMeasure (Measure.count : Measure α) :=
   ⟨by
     cases nonempty_fintype α
-    simpa [measure.count_apply, tsum_fintype] using (Ennreal.nat_ne_top _).lt_top⟩
+    simpa [measure.count_apply, tsum_fintype] using (ENNReal.nat_ne_top _).lt_top⟩
 
 end IsFiniteMeasure
 
@@ -3238,7 +3238,7 @@ attribute [simp] is_probability_measure.measure_univ
 
 instance (priority := 100) IsProbabilityMeasure.toIsFiniteMeasure (μ : Measure α)
     [IsProbabilityMeasure μ] : IsFiniteMeasure μ :=
-  ⟨by simp only [measure_univ, Ennreal.one_lt_top]⟩
+  ⟨by simp only [measure_univ, ENNReal.one_lt_top]⟩
 #align measure_theory.is_probability_measure.to_is_finite_measure MeasureTheory.IsProbabilityMeasure.toIsFiniteMeasure
 
 theorem IsProbabilityMeasure.ne_zero (μ : Measure α) [IsProbabilityMeasure μ] : μ ≠ 0 :=
@@ -3268,7 +3268,7 @@ theorem isProbabilityMeasureSmul [IsFiniteMeasure μ] (h : μ ≠ 0) :
     IsProbabilityMeasure ((μ univ)⁻¹ • μ) :=
   by
   constructor
-  rw [smul_apply, smul_eq_mul, Ennreal.inv_mul_cancel]
+  rw [smul_apply, smul_eq_mul, ENNReal.inv_mul_cancel]
   · rwa [Ne, measure_univ_eq_zero]
   · exact measure_ne_top _ _
 #align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmul
@@ -3623,7 +3623,7 @@ theorem finite_const_le_meas_of_disjoint_unionᵢ {ι : Type _} [MeasurableSpace
   have aux :=
     lt_of_le_of_lt (tsum_meas_le_meas_Union_of_disjoint μ As_mble As_disj)
       (lt_top_iff_ne_top.mpr Union_As_finite)
-  exact Con (Ennreal.finite_const_le_of_tsum_ne_top aux.ne ε_pos.ne.symm)
+  exact Con (ENNReal.finite_const_le_of_tsum_ne_top aux.ne ε_pos.ne.symm)
 #align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_unionᵢ
 
 /-- If the union of disjoint measurable sets has finite measure, then there are only
@@ -3634,7 +3634,7 @@ theorem countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top {ι : Type _} [Me
     Set.Countable { i : ι | 0 < μ (As i) } :=
   by
   set posmeas := { i : ι | 0 < μ (As i) } with posmeas_def
-  rcases exists_seq_strictAnti_tendsto' Ennreal.zero_lt_one with ⟨as, ⟨as_decr, ⟨as_mem, as_lim⟩⟩⟩
+  rcases exists_seq_strictAnti_tendsto' ENNReal.zero_lt_one with ⟨as, ⟨as_decr, ⟨as_mem, as_lim⟩⟩⟩
   set fairmeas := fun n : ℕ => { i : ι | as n ≤ μ (As i) } with fairmeas_def
   have countable_union : posmeas = ⋃ n, fairmeas n :=
     by
@@ -3893,7 +3893,7 @@ instance Sum.sigmaFinite {ι} [Finite ι] (μ : ι → Measure α) [∀ i, Sigma
   have : ∀ n, MeasurableSet (⋂ i : ι, spanning_sets (μ i) n) := fun n =>
     MeasurableSet.interᵢ fun i => measurable_spanning_sets (μ i) n
   refine' ⟨⟨⟨fun n => ⋂ i, spanning_sets (μ i) n, fun _ => trivial, fun n => _, _⟩⟩⟩
-  · rw [sum_apply _ (this n), tsum_fintype, Ennreal.sum_lt_top_iff]
+  · rw [sum_apply _ (this n), tsum_fintype, ENNReal.sum_lt_top_iff]
     rintro i -
     exact (measure_mono <| Inter_subset _ i).trans_lt (measure_spanning_sets_lt_top (μ i) n)
   · rw [Union_Inter_of_monotone]
@@ -3979,8 +3979,8 @@ instance isLocallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α
   refine' ⟨fun x => _⟩
   rcases μ.exists_is_open_measure_lt_top x with ⟨o, xo, o_open, μo⟩
   refine' ⟨o, o_open.mem_nhds xo, _⟩
-  apply Ennreal.mul_lt_top _ μo.ne
-  simp only [RingHom.toMonoidHom_eq_coe, [anonymous], Ennreal.coe_ne_top, Ennreal.coe_ofNnrealHom,
+  apply ENNReal.mul_lt_top _ μo.ne
+  simp only [RingHom.toMonoidHom_eq_coe, [anonymous], ENNReal.coe_ne_top, ENNReal.coe_ofNNRealHom,
     Ne.def, not_false_iff]
 #align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.isLocallyFiniteMeasureSmulNnreal
 
@@ -4028,7 +4028,7 @@ theorem measure_ball_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measur
 
 protected theorem IsFiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
     [IsFiniteMeasureOnCompacts μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : IsFiniteMeasureOnCompacts (c • μ) :=
-  ⟨fun K hK => Ennreal.mul_lt_top hc hK.measure_lt_top.Ne⟩
+  ⟨fun K hK => ENNReal.mul_lt_top hc hK.measure_lt_top.Ne⟩
 #align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.IsFiniteMeasureOnCompacts.smul
 
 /-- Note this cannot be an instance because it would form a typeclass loop with
@@ -4214,7 +4214,7 @@ protected theorem eventually (h : μ.FiniteAtFilter f) : ∀ᶠ s in f.smallSets
 
 theorem filterSup : μ.FiniteAtFilter f → μ.FiniteAtFilter g → μ.FiniteAtFilter (f ⊔ g) :=
   fun ⟨s, hsf, hsμ⟩ ⟨t, htg, htμ⟩ =>
-  ⟨s ∪ t, union_mem_sup hsf htg, (measure_union_le s t).trans_lt (Ennreal.add_lt_top.2 ⟨hsμ, htμ⟩)⟩
+  ⟨s ∪ t, union_mem_sup hsf htg, (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hsμ, htμ⟩)⟩
 #align measure_theory.measure.finite_at_filter.filter_sup MeasureTheory.Measure.FiniteAtFilter.filterSup
 
 end FiniteAtFilter
@@ -4558,7 +4558,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
   · rintro s t ⟨U, hsU, hUo, hU⟩ ⟨V, htV, hVo, hV⟩
     refine'
       ⟨U ∪ V, union_subset_union hsU htV, hUo.union hVo,
-        (measure_union_le _ _).trans_lt <| Ennreal.add_lt_top.2 ⟨hU, hV⟩⟩
+        (measure_union_le _ _).trans_lt <| ENNReal.add_lt_top.2 ⟨hU, hV⟩⟩
   · intro x hx
     rcases(hμ x hx).exists_mem_basis (nhds_basis_opens _) with ⟨U, ⟨hx, hUo⟩, hU⟩
     exact ⟨U, nhdsWithin_le_nhds (hUo.mem_nhds hx), U, subset.rfl, hUo, hU⟩
@@ -4575,7 +4575,7 @@ theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
 theorem measure_lt_top_of_nhdsWithin (h : IsCompact s) (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝[s] x)) :
     μ s < ∞ :=
   IsCompact.induction_on h (by simp) (fun s t hst ht => (measure_mono hst).trans_lt ht)
-    (fun s t hs ht => (measure_union_le s t).trans_lt (Ennreal.add_lt_top.2 ⟨hs, ht⟩)) hμ
+    (fun s t hs ht => (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hs, ht⟩)) hμ
 #align is_compact.measure_lt_top_of_nhds_within IsCompact.measure_lt_top_of_nhdsWithin
 
 theorem measure_zero_of_nhdsWithin (hs : IsCompact s) :
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
 
 ! This file was ported from Lean 3 source module measure_theory.measure.measure_space
-! leanprover-community/mathlib commit a75898643b2d774cced9ae7c0b28c21663b99666
+! leanprover-community/mathlib commit 3f5c9d30716c775bda043456728a1a3ee31412e7
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -2143,6 +2143,19 @@ theorem sum_smul_dirac [Countable α] [MeasurableSingletonClass α] (μ : Measur
     (sum fun a => μ {a} • dirac a) = μ := by simpa using (map_eq_sum μ id measurable_id).symm
 #align measure_theory.measure.sum_smul_dirac MeasureTheory.Measure.sum_smul_dirac
 
+/-- Given that `α` is a countable, measurable space with all singleton sets measurable,
+write the measure of a set `s` as the sum of the measure of `{x}` for all `x ∈ s`. -/
+theorem tsum_indicator_apply_singleton [Countable α] [MeasurableSingletonClass α] (μ : Measure α)
+    (s : Set α) (hs : MeasurableSet s) : (∑' x : α, s.indicator (fun x => μ {x}) x) = μ s :=
+  calc
+    (∑' x : α, s.indicator (fun x => μ {x}) x) = Measure.sum (fun a => μ {a} • Measure.dirac a) s :=
+      by
+      simp only [measure.sum_apply _ hs, measure.smul_apply, smul_eq_mul, measure.dirac_apply,
+        Set.indicator_apply, mul_ite, Pi.one_apply, mul_one, mul_zero]
+    _ = μ s := by rw [μ.sum_smul_dirac]
+    
+#align measure_theory.measure.tsum_indicator_apply_singleton MeasureTheory.Measure.tsum_indicator_apply_singleton
+
 omit m0
 
 end Sum

Changes in mathlib4

mathlib3
mathlib4
feat: absolute continuity of a sum of measures (#12441)
Diff
@@ -1670,6 +1670,16 @@ lemma absolutelyContinuous_zero_iff : μ ≪ 0 ↔ μ = 0 :=
 alias absolutelyContinuous_refl := AbsolutelyContinuous.refl
 alias absolutelyContinuous_rfl := AbsolutelyContinuous.rfl
 
+lemma absolutelyContinuous_sum_left {μs : ι → Measure α} (hμs : ∀ i, μs i ≪ ν) :
+    Measure.sum μs ≪ ν :=
+  AbsolutelyContinuous.mk fun s hs hs0 ↦ by simp [sum_apply _ hs, fun i ↦ hμs i hs0]
+
+lemma absolutelyContinuous_sum_right {μs : ι → Measure α} (i : ι) (hνμ : ν ≪ μs i) :
+    ν ≪ Measure.sum μs := by
+  refine AbsolutelyContinuous.mk fun s hs hs0 ↦ ?_
+  simp only [sum_apply _ hs, ENNReal.tsum_eq_zero] at hs0
+  exact hνμ (hs0 i)
+
 theorem absolutelyContinuous_of_le_smul {μ' : Measure α} {c : ℝ≥0∞} (hμ'_le : μ' ≤ c • μ) :
     μ' ≪ μ :=
   (Measure.absolutelyContinuous_of_le hμ'_le).trans (Measure.AbsolutelyContinuous.rfl.smul c)
feat: add absolutelyContinuous_zero_iff (#12399)

Add lemma absolutelyContinuous_zero_iff to handle the case where a measure is absolutely continuous wrt 0.

Co-authored-by: Lorenzo Luccioli <71074618+LorenzoLuccioli@users.noreply.github.com>

Diff
@@ -1663,6 +1663,10 @@ lemma add_right (h1 : μ ≪ ν) (ν' : Measure α) : μ ≪ ν + ν' := by
 
 end AbsolutelyContinuous
 
+@[simp]
+lemma absolutelyContinuous_zero_iff : μ ≪ 0 ↔ μ = 0 :=
+  ⟨fun h ↦ measure_univ_eq_zero.mp (h rfl), fun h ↦ h.symm ▸ AbsolutelyContinuous.zero _⟩
+
 alias absolutelyContinuous_refl := AbsolutelyContinuous.refl
 alias absolutelyContinuous_rfl := AbsolutelyContinuous.rfl
 
feat: When the symmetric difference has finite measure (#12370)

Add the following lemma: is s and t are two measurable sets such that s and s ∆ t have finite measures, then so does t.

Co-authored-by: Etienne <66847262+EtienneC30@users.noreply.github.com>

Diff
@@ -86,7 +86,7 @@ open Set
 open Filter hiding map
 
 open Function MeasurableSpace
-open scoped Classical
+open scoped Classical symmDiff
 open Topology BigOperators Filter ENNReal NNReal Interval MeasureTheory
 
 variable {α β γ δ ι R R' : Type*}
@@ -137,12 +137,10 @@ theorem measure_union_add_inter' (hs : MeasurableSet s) (t : Set α) :
   rw [union_comm, inter_comm, measure_union_add_inter t hs, add_comm]
 #align measure_theory.measure_union_add_inter' MeasureTheory.measure_union_add_inter'
 
-open scoped symmDiff in
 lemma measure_symmDiff_eq (hs : MeasurableSet s) (ht : MeasurableSet t) :
     μ (s ∆ t) = μ (s \ t) + μ (t \ s) := by
   simpa only [symmDiff_def, sup_eq_union] using measure_union disjoint_sdiff_sdiff (ht.diff hs)
 
-open scoped symmDiff in
 lemma measure_symmDiff_le (s t u : Set α) :
     μ (s ∆ u) ≤ μ (s ∆ t) + μ (t ∆ u) :=
   le_trans (μ.mono <| symmDiff_triangle s t u) (measure_union_le (s ∆ t) (t ∆ u))
@@ -256,6 +254,25 @@ theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
 
 #align measure_theory.le_measure_diff MeasureTheory.le_measure_diff
 
+/-- If the measure of the symmetric difference of two sets is finite,
+then one has infinite measure if and only if the other one does. -/
+theorem measure_eq_top_iff_of_symmDiff (hμst : μ (s ∆ t) ≠ ∞) : μ s = ∞ ↔ μ t = ∞ := by
+  suffices h : ∀ u v, μ (u ∆ v) ≠ ∞ → μ u = ∞ → μ v = ∞
+    from ⟨h s t hμst, h t s (symmDiff_comm s t ▸ hμst)⟩
+  intro u v hμuv hμu
+  by_contra! hμv
+  apply hμuv
+  rw [Set.symmDiff_def, eq_top_iff]
+  calc
+    ∞ = μ u - μ v := (WithTop.sub_eq_top_iff.2 ⟨hμu, hμv⟩).symm
+    _ ≤ μ (u \ v) := le_measure_diff
+    _ ≤ μ (u \ v ∪ v \ u) := measure_mono <| subset_union_left ..
+
+/-- If the measure of the symmetric difference of two sets is finite,
+then one has finite measure if and only if the other one does. -/
+theorem measure_ne_top_iff_of_symmDiff (hμst : μ (s ∆ t) ≠ ∞) : μ s ≠ ∞ ↔ μ t ≠ ∞ :=
+    (measure_eq_top_iff_of_symmDiff hμst).ne
+
 theorem measure_diff_lt_of_lt_add (hs : MeasurableSet s) (hst : s ⊆ t) (hs' : μ s ≠ ∞) {ε : ℝ≥0∞}
     (h : μ t < μ s + ε) : μ (t \ s) < ε := by
   rw [measure_diff hst hs hs']; rw [add_comm] at h
chore: superfluous parentheses part 2 (#12131)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -251,7 +251,7 @@ theorem le_measure_diff : μ s₁ - μ s₂ ≤ μ (s₁ \ s₂) :=
   tsub_le_iff_left.2 <|
     calc
       μ s₁ ≤ μ (s₂ ∪ s₁) := measure_mono (subset_union_right _ _)
-      _ = μ (s₂ ∪ s₁ \ s₂) := (congr_arg μ union_diff_self.symm)
+      _ = μ (s₂ ∪ s₁ \ s₂) := congr_arg μ union_diff_self.symm
       _ ≤ μ s₂ + μ (s₁ \ s₂) := measure_union_le _ _
 
 #align measure_theory.le_measure_diff MeasureTheory.le_measure_diff
@@ -278,7 +278,7 @@ theorem measure_eq_measure_of_between_null_diff {s₁ s₂ s₃ : Set α} (h12 :
   have key : μ s₃ ≤ μ s₁ :=
     calc
       μ s₃ = μ (s₃ \ s₁ ∪ s₁) := by rw [diff_union_of_subset (h12.trans h23)]
-      _ ≤ μ (s₃ \ s₁) + μ s₁ := (measure_union_le _ _)
+      _ ≤ μ (s₃ \ s₁) + μ s₁ := measure_union_le _ _
       _ = μ s₁ := by simp only [h_nulldiff, zero_add]
 
   exact ⟨le12.antisymm (le23.trans key), le23.antisymm (key.trans le12)⟩
@@ -350,7 +350,7 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
     refine' fun b => ae_eq_of_subset_of_measure_ge (inter_subset_left _ _) _ _ _
     · calc
         μ (M (t b)) = μ (t b) := measure_toMeasurable _
-        _ ≤ μ (s b) := (h_le b)
+        _ ≤ μ (s b) := h_le b
         _ ≤ μ (M (t b) ∩ M (⋃ b, s b)) :=
           measure_mono <|
             subset_inter ((hsub b).trans <| subset_toMeasurable _ _)
@@ -360,8 +360,8 @@ theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : 
       exact htop b
   calc
     μ (⋃ b, t b) ≤ μ (⋃ b, M (t b)) := measure_mono (iUnion_mono fun b => subset_toMeasurable _ _)
-    _ = μ (⋃ b, M (t b) ∩ M (⋃ b, s b)) := (measure_congr (EventuallyEq.countable_iUnion H).symm)
-    _ ≤ μ (M (⋃ b, s b)) := (measure_mono (iUnion_subset fun b => inter_subset_right _ _))
+    _ = μ (⋃ b, M (t b) ∩ M (⋃ b, s b)) := measure_congr (EventuallyEq.countable_iUnion H).symm
+    _ ≤ μ (M (⋃ b, s b)) := measure_mono (iUnion_subset fun b => inter_subset_right _ _)
     _ = μ (⋃ b, s b) := measure_toMeasurable _
 #align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_iUnion_congr_of_subset
 
@@ -483,16 +483,16 @@ theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed
   calc
     μ (⋃ n, t n) ≤ μ (⋃ n, T n) := measure_mono (iUnion_mono fun i => subset_toMeasurable _ _)
     _ = μ (⋃ n, Td n) := by rw [iUnion_disjointed]
-    _ ≤ ∑' n, μ (Td n) := (measure_iUnion_le _)
+    _ ≤ ∑' n, μ (Td n) := measure_iUnion_le _
     _ = ⨆ I : Finset ℕ, ∑ n in I, μ (Td n) := ENNReal.tsum_eq_iSup_sum
     _ ≤ ⨆ n, μ (t n) := iSup_le fun I => by
       rcases hd.finset_le I with ⟨N, hN⟩
       calc
         (∑ n in I, μ (Td n)) = μ (⋃ n ∈ I, Td n) :=
           (measure_biUnion_finset ((disjoint_disjointed T).set_pairwise I) fun n _ => hm n).symm
-        _ ≤ μ (⋃ n ∈ I, T n) := (measure_mono (iUnion₂_mono fun n _hn => disjointed_subset _ _))
-        _ = μ (⋃ n ∈ I, t n) := (measure_biUnion_toMeasurable I.countable_toSet _)
-        _ ≤ μ (t N) := (measure_mono (iUnion₂_subset hN))
+        _ ≤ μ (⋃ n ∈ I, T n) := measure_mono (iUnion₂_mono fun n _hn => disjointed_subset _ _)
+        _ = μ (⋃ n ∈ I, t n) := measure_biUnion_toMeasurable I.countable_toSet _
+        _ ≤ μ (t N) := measure_mono (iUnion₂_subset hN)
         _ ≤ ⨆ n, μ (t n) := le_iSup (μ ∘ t) N
 #align measure_theory.measure_Union_eq_supr MeasureTheory.measure_iUnion_eq_iSup
 
@@ -691,7 +691,7 @@ theorem toMeasure_apply₀ (m : OuterMeasure α) (h : ms ≤ m.caratheodory) {s
   rcases hs.exists_measurable_subset_ae_eq with ⟨t, hts, htm, heq⟩
   calc
     m.toMeasure h s = m.toMeasure h t := measure_congr heq.symm
-    _ = m t := (toMeasure_apply m h htm)
+    _ = m t := toMeasure_apply m h htm
     _ ≤ m s := m.mono hts
 
 #align measure_theory.to_measure_apply₀ MeasureTheory.toMeasure_apply₀
chore: remove mathport name: <expression> lines (#11928)

Quoting [@digama0](https://github.com/digama0):

These were actually never meant to go in the file, they are basically debugging information and only useful on significantly broken mathport files. You can safely remove all of them.

Diff
@@ -1571,7 +1571,6 @@ def AbsolutelyContinuous {_m0 : MeasurableSpace α} (μ ν : Measure α) : Prop
   ∀ ⦃s : Set α⦄, ν s = 0 → μ s = 0
 #align measure_theory.measure.absolutely_continuous MeasureTheory.Measure.AbsolutelyContinuous
 
--- mathport name: measure.absolutely_continuous
 @[inherit_doc MeasureTheory.Measure.AbsolutelyContinuous]
 scoped[MeasureTheory] infixl:50 " ≪ " => MeasureTheory.Measure.AbsolutelyContinuous
 
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -868,7 +868,7 @@ end SMul
 
 instance instNoZeroSMulDivisors [Zero R] [SMulWithZero R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞]
     [NoZeroSMulDivisors R ℝ≥0∞] : NoZeroSMulDivisors R (Measure α) where
-  eq_zero_or_eq_zero_of_smul_eq_zero h := by simpa [Ne.def, ext_iff', forall_or_left] using h
+  eq_zero_or_eq_zero_of_smul_eq_zero h := by simpa [Ne, ext_iff', forall_or_left] using h
 
 instance instMulAction [Monoid R] [MulAction R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞]
     [MeasurableSpace α] : MulAction R (Measure α) :=
@@ -936,7 +936,7 @@ theorem measure_eq_left_of_subset_of_measure_add_eq {s t : Set α} (h : (μ + ν
       μ t + ν t = μ s + ν s := h''.symm
       _ ≤ μ s + ν t := add_le_add le_rfl (measure_mono h')
   apply ENNReal.le_of_add_le_add_right _ this
-  simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at h
+  simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne, coe_add] at h
   exact h.2
 #align measure_theory.measure.measure_eq_left_of_subset_of_measure_add_eq MeasureTheory.Measure.measure_eq_left_of_subset_of_measure_add_eq
 
@@ -953,7 +953,7 @@ theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s
       measure_eq_left_of_subset_of_measure_add_eq _ (subset_toMeasurable _ _)
         (measure_toMeasurable t).symm
     rwa [measure_toMeasurable t]
-  · simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at ht
+  · simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne, coe_add] at ht
     exact ht.1
 #align measure_theory.measure.measure_to_measurable_add_inter_left MeasureTheory.Measure.measure_toMeasurable_add_inter_left
 
@@ -1866,7 +1866,7 @@ theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type*} [Group G]
   intro g₁ g₂ hg
   let g := g₂⁻¹ * g₁
   replace hg : g ≠ 1 := by
-    rw [Ne.def, inv_mul_eq_one]
+    rw [Ne, inv_mul_eq_one]
     exact hg.symm
   have : (g₂⁻¹ • ·) ⁻¹' (g • s ∩ s) = g₁ • s ∩ g₂ • s := by
     rw [preimage_eq_iff_eq_image (MulAction.bijective g₂⁻¹), image_smul, smul_set_inter, smul_smul,
feat: Radon-Nikodym theorem for transition kernels (#10950)

Let γ be a countably generated measurable space and κ η : kernel α γ be finite kernels. We build a function rnDeriv κ η : α → γ → ℝ≥0∞ jointly measurable on α × γ and a kernel singularPart κ η : kernel α γ such that κ = withDensity η (rnDeriv κ η) + singularPart κ η and for all a : α, singularPart κ η a ⟂ₘ η a .

Diff
@@ -1631,6 +1631,15 @@ protected lemma add (h1 : μ₁ ≪ ν) (h2 : μ₂ ≪ ν') : μ₁ + μ₂ ≪
   simp only [add_toOuterMeasure, OuterMeasure.coe_add, Pi.add_apply, add_eq_zero] at hs ⊢
   exact ⟨h1 hs.1, h2 hs.2⟩
 
+lemma add_left_iff {μ₁ μ₂ ν : Measure α} :
+    μ₁ + μ₂ ≪ ν ↔ μ₁ ≪ ν ∧ μ₂ ≪ ν := by
+  refine ⟨fun h ↦ ?_, fun h ↦ (h.1.add h.2).trans ?_⟩
+  · have : ∀ s, ν s = 0 → μ₁ s = 0 ∧ μ₂ s = 0 := by intro s hs0; simpa using h hs0
+    exact ⟨fun s hs0 ↦ (this s hs0).1, fun s hs0 ↦ (this s hs0).2⟩
+  · have : ν + ν = 2 • ν := by ext; simp [two_mul]
+    rw [this]
+    exact AbsolutelyContinuous.rfl.smul 2
+
 lemma add_right (h1 : μ ≪ ν) (ν' : Measure α) : μ ≪ ν + ν' := by
   intro s hs
   simp only [add_toOuterMeasure, OuterMeasure.coe_add, Pi.add_apply, add_eq_zero] at hs ⊢
chore: Rename zpow_coe_nat to zpow_natCast (#11528)

... and add a deprecated alias for the old name. This is mostly just me discovering the power of F2

Diff
@@ -1788,7 +1788,7 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
   · replace hs : (⇑e⁻¹) ⁻¹' s =ᵐ[μ] s := by rwa [Equiv.image_eq_preimage] at hs
     replace he' : (⇑e⁻¹)^[k] ⁻¹' s =ᵐ[μ] s := he'.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e⁻¹ k, inv_pow e k] at he'
-  · rw [zpow_neg, zpow_coe_nat]
+  · rw [zpow_neg, zpow_natCast]
     replace hs : e ⁻¹' s =ᵐ[μ] s := by
       convert he.preimage_ae_eq hs.symm
       rw [Equiv.preimage_image]
chore: golf using filter_upwards (#11208)

This is presumably not exhaustive, but covers about a hundred instances.

Style opinions (e.g., why a particular change is great/not a good idea) are very welcome; I'm still forming my own.

Diff
@@ -1973,8 +1973,7 @@ theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : Measura
   by_cases h : AEMeasurable f μ
   · change range f ∈ (μ.map f).ae
     rw [mem_ae_map_iff h hf]
-    apply eventually_of_forall
-    exact mem_range_self
+    filter_upwards using mem_range_self
   · simp [map_of_not_aemeasurable h]
 #align measure_theory.ae_map_mem_range MeasureTheory.ae_map_mem_range
 
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -715,7 +715,6 @@ section
 synthesizing instances in `MeasureSpace` section. -/
 
 variable {m0 : MeasurableSpace α} [MeasurableSpace β] [MeasurableSpace γ]
-
 variable {μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α} {s s' t : Set α}
 namespace Measure
 
@@ -811,7 +810,6 @@ theorem add_apply {_m : MeasurableSpace α} (μ₁ μ₂ : Measure α) (s : Set
 section SMul
 
 variable [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞]
-
 variable [SMul R' ℝ≥0∞] [IsScalarTower R' ℝ≥0∞ ℝ≥0∞]
 
 -- TODO: refactor
chore: Remove ball and bex from lemma names (#10816)

ball for "bounded forall" and bex for "bounded exists" are from experience very confusing abbreviations. This PR renames them to forall_mem and exists_mem in the few Set lemma names that mention them.

Also deprecate ball_image_of_ball, mem_image_elim, mem_image_elim_on since those lemmas are duplicates of the renamed lemmas (apart from argument order and implicitness, which I am also fixing by making the binder in the RHS of forall_mem_image semi-implicit), have obscure names and are completely unused.

Diff
@@ -1017,7 +1017,7 @@ theorem sInf_caratheodory (s : Set α) (hs : MeasurableSet s) :
     MeasurableSet[(sInf (toOuterMeasure '' m)).caratheodory] s := by
   rw [OuterMeasure.sInf_eq_boundedBy_sInfGen]
   refine' OuterMeasure.boundedBy_caratheodory fun t => _
-  simp only [OuterMeasure.sInfGen, le_iInf_iff, ball_image_iff,
+  simp only [OuterMeasure.sInfGen, le_iInf_iff, forall_mem_image,
     measure_eq_iInf t]
   intro μ hμ u htu _hu
   have hm : ∀ {s t}, s ⊆ t → OuterMeasure.sInfGen (toOuterMeasure '' m) s ≤ μ t := by
@@ -1042,7 +1042,7 @@ private theorem measure_sInf_le (h : μ ∈ m) : sInf m ≤ μ :=
 
 private theorem measure_le_sInf (h : ∀ μ' ∈ m, μ ≤ μ') : μ ≤ sInf m :=
   have : μ.toOuterMeasure ≤ sInf (toOuterMeasure '' m) :=
-    le_sInf <| ball_image_of_ball fun μ hμ => toOuterMeasure_le.2 <| h _ hμ
+    le_sInf <| forall_mem_image.2 fun μ hμ ↦ toOuterMeasure_le.2 <| h _ hμ
   le_iff.2 fun s hs => by rw [sInf_apply hs]; exact this s
 
 instance instCompleteSemilatticeInf [MeasurableSpace α] : CompleteSemilatticeInf (Measure α) :=
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -86,7 +86,8 @@ open Set
 open Filter hiding map
 
 open Function MeasurableSpace
-open Classical Topology BigOperators Filter ENNReal NNReal Interval MeasureTheory
+open scoped Classical
+open Topology BigOperators Filter ENNReal NNReal Interval MeasureTheory
 
 variable {α β γ δ ι R R' : Type*}
 
fix: correct statement of zpow_ofNat and ofNat_zsmul (#10969)

Previously these were syntactically identical to the corresponding zpow_coe_nat and coe_nat_zsmul lemmas, now they are about OfNat.ofNat.

Unfortunately, almost every call site uses the ofNat name to refer to Nat.cast, so the downstream proofs had to be adjusted too.

Diff
@@ -1789,7 +1789,7 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
   · replace hs : (⇑e⁻¹) ⁻¹' s =ᵐ[μ] s := by rwa [Equiv.image_eq_preimage] at hs
     replace he' : (⇑e⁻¹)^[k] ⁻¹' s =ᵐ[μ] s := he'.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e⁻¹ k, inv_pow e k] at he'
-  · rw [zpow_neg, zpow_ofNat]
+  · rw [zpow_neg, zpow_coe_nat]
     replace hs : e ⁻¹' s =ᵐ[μ] s := by
       convert he.preimage_ae_eq hs.symm
       rw [Equiv.preimage_image]
chore: more backporting of simp changes from #10995 (#11001)

Co-authored-by: Patrick Massot <patrickmassot@free.fr> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -590,7 +590,7 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
   -- First we replace the sequence `sₙ` with a sequence of measurable sets `tₙ ⊇ sₙ` of the same
   -- measure.
   set t : ℕ → Set α := fun n => toMeasurable μ (s n)
-  have ht : (∑' i, μ (t i)) ≠ ∞ := by simpa only [measure_toMeasurable] using hs
+  have ht : (∑' i, μ (t i)) ≠ ∞ := by simpa only [t, measure_toMeasurable] using hs
   suffices μ (limsup t atTop) = 0 by
     have A : s ≤ t := fun n => subset_toMeasurable μ (s n)
     -- TODO default args fail
chore(Measure.MeasureSpace): clean up uses of @ (#10932)

We eliminate all possible uses of @'s either through deletion or replacement with an explicit argument. A comment about a diamond is slightly clarified.

Co-authored-by: Kevin Buzzard <k.buzzard@imperial.ac.uk>

Diff
@@ -234,7 +234,7 @@ theorem measure_diff_null (h : μ s₂ = 0) : μ (s₁ \ s₂) = μ s₁ :=
 #align measure_theory.measure_diff_null MeasureTheory.measure_diff_null
 
 theorem measure_add_diff (hs : MeasurableSet s) (t : Set α) : μ s + μ (t \ s) = μ (s ∪ t) := by
-  rw [← measure_union' (@disjoint_sdiff_right _ s t) hs, union_diff_self]
+  rw [← measure_union' disjoint_sdiff_right hs, union_diff_self]
 #align measure_theory.measure_add_diff MeasureTheory.measure_add_diff
 
 theorem measure_diff' (s : Set α) (hm : MeasurableSet t) (h_fin : μ t ≠ ∞) :
@@ -617,9 +617,9 @@ theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠
   exact (μ.mono this).trans (by simp [measure_limsup_eq_zero h])
 #align measure_theory.measure_liminf_eq_zero MeasureTheory.measure_liminf_eq_zero
 
+-- Need to specify `α := Set α` below because of diamond; see #19041
 theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
-    (h : ∀ n, s n =ᵐ[μ] t) : @limsup (Set α) ℕ _ s atTop =ᵐ[μ] t := by
-    -- Need `@` below because of diamond; see gh issue #16932
+    (h : ∀ n, s n =ᵐ[μ] t) : limsup (α := Set α) s atTop =ᵐ[μ] t := by
   simp_rw [ae_eq_set] at h ⊢
   constructor
   · rw [atTop.limsup_sdiff s t]
@@ -630,9 +630,9 @@ theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     simp [h]
 #align measure_theory.limsup_ae_eq_of_forall_ae_eq MeasureTheory.limsup_ae_eq_of_forall_ae_eq
 
+-- Need to specify `α := Set α` above because of diamond; see #19041
 theorem liminf_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
-    (h : ∀ n, s n =ᵐ[μ] t) : @liminf (Set α) ℕ _ s atTop =ᵐ[μ] t := by
-    -- Need `@` below because of diamond; see gh issue #16932
+    (h : ∀ n, s n =ᵐ[μ] t) : liminf (α := Set α) s atTop =ᵐ[μ] t := by
   simp_rw [ae_eq_set] at h ⊢
   constructor
   · rw [atTop.liminf_sdiff s t]
@@ -813,7 +813,7 @@ variable [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞]
 
 variable [SMul R' ℝ≥0∞] [IsScalarTower R' ℝ≥0∞ ℝ≥0∞]
 
--- porting note: TODO: refactor
+-- TODO: refactor
 instance instSMul [MeasurableSpace α] : SMul R (Measure α) :=
   ⟨fun c μ =>
     { toOuterMeasure := c • μ.toOuterMeasure
@@ -869,7 +869,7 @@ end SMul
 
 instance instNoZeroSMulDivisors [Zero R] [SMulWithZero R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞]
     [NoZeroSMulDivisors R ℝ≥0∞] : NoZeroSMulDivisors R (Measure α) where
-  eq_zero_or_eq_zero_of_smul_eq_zero h := by simpa [Ne.def, @ext_iff', forall_or_left] using h
+  eq_zero_or_eq_zero_of_smul_eq_zero h := by simpa [Ne.def, ext_iff', forall_or_left] using h
 
 instance instMulAction [Monoid R] [MulAction R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞]
     [MeasurableSpace α] : MulAction R (Measure α) :=
@@ -1405,7 +1405,7 @@ theorem NullMeasurableSet.image {β} [MeasurableSpace α] {mβ : MeasurableSpace
   swap
   · exact hf _ (measurableSet_toMeasurable _ _)
   have h : toMeasurable (comap f μ) s =ᵐ[comap f μ] s :=
-    @NullMeasurableSet.toMeasurable_ae_eq _ _ (μ.comap f : Measure α) s hs
+    NullMeasurableSet.toMeasurable_ae_eq hs
   exact ae_eq_image_of_ae_eq_comap f μ hfi hf h.symm
 #align measure_theory.measure.null_measurable_set.image MeasureTheory.Measure.NullMeasurableSet.image
 
@@ -1797,9 +1797,9 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
     rwa [Equiv.Perm.iterate_eq_pow e k] at he
 #align measure_theory.measure.quasi_measure_preserving.image_zpow_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq
 
+-- Need to specify `α := Set α` below because of diamond; see #19041
 theorem limsup_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreserving f μ μ)
-    (hs : f ⁻¹' s =ᵐ[μ] s) : @limsup (Set α) ℕ _ (fun n => (preimage f)^[n] s) atTop =ᵐ[μ] s :=
-    -- Need `@` below because of diamond; see gh issue #16932
+    (hs : f ⁻¹' s =ᵐ[μ] s) : limsup (α := Set α) (fun n => (preimage f)^[n] s) atTop =ᵐ[μ] s :=
   haveI : ∀ n, (preimage f)^[n] s =ᵐ[μ] s := by
     intro n
     induction' n with n ih
@@ -1808,9 +1808,9 @@ theorem limsup_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreservi
   (limsup_ae_eq_of_forall_ae_eq (fun n => (preimage f)^[n] s) this).trans (ae_eq_refl _)
 #align measure_theory.measure.quasi_measure_preserving.limsup_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq
 
+-- Need to specify `α := Set α` below because of diamond; see #19041
 theorem liminf_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreserving f μ μ)
-    (hs : f ⁻¹' s =ᵐ[μ] s) : @liminf (Set α) ℕ _ (fun n => (preimage f)^[n] s) atTop =ᵐ[μ] s := by
-    -- Need `@` below because of diamond; see gh issue #16932
+    (hs : f ⁻¹' s =ᵐ[μ] s) : liminf (α := Set α) (fun n => (preimage f)^[n] s) atTop =ᵐ[μ] s := by
   rw [← ae_eq_set_compl_compl, @Filter.liminf_compl (Set α)]
   rw [← ae_eq_set_compl_compl, ← preimage_compl] at hs
   convert hf.limsup_preimage_iterate_ae_eq hs
@@ -1827,7 +1827,7 @@ theorem exists_preimage_eq_of_preimage_ae {f : α → α} (h : QuasiMeasurePrese
     ∃ t : Set α, MeasurableSet t ∧ t =ᵐ[μ] s ∧ f ⁻¹' t = t :=
   ⟨limsup (fun n => (preimage f)^[n] s) atTop,
     MeasurableSet.measurableSet_limsup fun n =>
-      @preimage_iterate_eq α f n ▸ h.measurable.iterate n hs,
+      preimage_iterate_eq ▸ h.measurable.iterate n hs,
     h.limsup_preimage_iterate_ae_eq hs',
     Filter.CompleteLatticeHom.apply_limsup_iterate (CompleteLatticeHom.setPreimage f) s⟩
 #align measure_theory.measure.quasi_measure_preserving.exists_preimage_eq_of_preimage_ae MeasureTheory.Measure.QuasiMeasurePreserving.exists_preimage_eq_of_preimage_ae
@@ -2061,7 +2061,7 @@ theorem Iio_ae_eq_Iic' (ha : μ {a} = 0) : Iio a =ᵐ[μ] Iic a := by
 #align measure_theory.Iio_ae_eq_Iic' MeasureTheory.Iio_ae_eq_Iic'
 
 theorem Ioi_ae_eq_Ici' (ha : μ {a} = 0) : Ioi a =ᵐ[μ] Ici a :=
-  @Iio_ae_eq_Iic' αᵒᵈ _ μ _ _ ha
+  Iio_ae_eq_Iic' (α := αᵒᵈ) ha
 #align measure_theory.Ioi_ae_eq_Ici' MeasureTheory.Ioi_ae_eq_Ici'
 
 theorem Ioo_ae_eq_Ioc' (hb : μ {b} = 0) : Ioo a b =ᵐ[μ] Ioc a b :=
chore: remove terminal, terminal refines (#10762)

I replaced a few "terminal" refine/refine's with exact.

The strategy was very simple-minded: essentially any refine whose following line had smaller indentation got replaced by exact and then I cleaned up the mess.

This PR certainly leaves some further terminal refines, but maybe the current change is beneficial.

Diff
@@ -1023,9 +1023,9 @@ theorem sInf_caratheodory (s : Set α) (hs : MeasurableSet s) :
     intro s t hst
     rw [OuterMeasure.sInfGen_def]
     refine' iInf_le_of_le μ.toOuterMeasure (iInf_le_of_le (mem_image_of_mem _ hμ) _)
-    refine' measure_mono hst
+    exact measure_mono hst
   rw [← measure_inter_add_diff u hs]
-  refine' add_le_add (hm <| inter_subset_inter_left _ htu) (hm <| diff_subset_diff_left htu)
+  exact add_le_add (hm <| inter_subset_inter_left _ htu) (hm <| diff_subset_diff_left htu)
 #align measure_theory.measure.Inf_caratheodory MeasureTheory.Measure.sInf_caratheodory
 
 instance [MeasurableSpace α] : InfSet (Measure α) :=
refactor(MeasureTheory): redefine on measures (#10714)

Redefine on MeasureTheory.Measure so that μ ≤ ν ↔ ∀ s, μ s ≤ ν s by definition instead of ∀ s, MeasurableSet s → μ s ≤ ν s.

Reasons

  • this way it is defeq to on outer measures;
  • if we decide to introduce an order on all DFunLike types and migrate measures to FunLike, then this is unavoidable;
  • the reasoning for the old definition was "it's slightly easier to prove μ ≤ ν this way"; the counter-argument is "it's slightly harder to apply μ ≤ ν this way".

Other changes

  • golf some proofs broken by this change;
  • add @[gcongr] tags to some ENNReal lemmas;
  • fix the name ENNReal.coe_lt_coe_of_le -> ENNReal.ENNReal.coe_lt_coe_of_lt;
  • drop an unneeded MeasurableSet assumption in set_lintegral_pdf_le_map
Diff
@@ -967,29 +967,25 @@ theorem measure_toMeasurable_add_inter_right {s t : Set α} (hs : MeasurableSet
 /-! ### The complete lattice of measures -/
 
 
-/-- Measures are partially ordered.
-
-The definition of less equal here is equivalent to the definition without the
-measurable set condition, and this is shown by `Measure.le_iff'`. It is defined
-this way since, to prove `μ ≤ ν`, we may simply `intros s hs` instead of rewriting followed
-by `intros s hs`. -/
+/-- Measures are partially ordered. -/
 instance instPartialOrder [MeasurableSpace α] : PartialOrder (Measure α) where
-  le m₁ m₂ := ∀ s, MeasurableSet s → m₁ s ≤ m₂ s
-  le_refl m s _hs := le_rfl
-  le_trans m₁ m₂ m₃ h₁ h₂ s hs := le_trans (h₁ s hs) (h₂ s hs)
-  le_antisymm m₁ m₂ h₁ h₂ := ext fun s hs => le_antisymm (h₁ s hs) (h₂ s hs)
+  le m₁ m₂ := ∀ s, m₁ s ≤ m₂ s
+  le_refl m s := le_rfl
+  le_trans m₁ m₂ m₃ h₁ h₂ s := le_trans (h₁ s) (h₂ s)
+  le_antisymm m₁ m₂ h₁ h₂ := ext fun s _ => le_antisymm (h₁ s) (h₂ s)
 #align measure_theory.measure.partial_order MeasureTheory.Measure.instPartialOrder
 
-theorem le_iff : μ₁ ≤ μ₂ ↔ ∀ s, MeasurableSet s → μ₁ s ≤ μ₂ s :=
-  Iff.rfl
+theorem toOuterMeasure_le : μ₁.toOuterMeasure ≤ μ₂.toOuterMeasure ↔ μ₁ ≤ μ₂ := .rfl
+#align measure_theory.measure.to_outer_measure_le MeasureTheory.Measure.toOuterMeasure_le
+
+theorem le_iff : μ₁ ≤ μ₂ ↔ ∀ s, MeasurableSet s → μ₁ s ≤ μ₂ s := by
+  rw [← toOuterMeasure_le, ← OuterMeasure.le_trim_iff, μ₂.trimmed]
 #align measure_theory.measure.le_iff MeasureTheory.Measure.le_iff
 
-theorem toOuterMeasure_le : μ₁.toOuterMeasure ≤ μ₂.toOuterMeasure ↔ μ₁ ≤ μ₂ := by
-  rw [← μ₂.trimmed, OuterMeasure.le_trim_iff]; rfl
-#align measure_theory.measure.to_outer_measure_le MeasureTheory.Measure.toOuterMeasure_le
+theorem le_intro (h : ∀ s, MeasurableSet s → s.Nonempty → μ₁ s ≤ μ₂ s) : μ₁ ≤ μ₂ :=
+  le_iff.2 fun s hs ↦ s.eq_empty_or_nonempty.elim (by rintro rfl; simp) (h s hs)
 
-theorem le_iff' : μ₁ ≤ μ₂ ↔ ∀ s, μ₁ s ≤ μ₂ s :=
-  toOuterMeasure_le.symm
+theorem le_iff' : μ₁ ≤ μ₂ ↔ ∀ s, μ₁ s ≤ μ₂ s := .rfl
 #align measure_theory.measure.le_iff' MeasureTheory.Measure.le_iff'
 
 theorem lt_iff : μ < ν ↔ μ ≤ ν ∧ ∃ s, MeasurableSet s ∧ μ s < ν s :=
@@ -1003,13 +999,13 @@ theorem lt_iff' : μ < ν ↔ μ ≤ ν ∧ ∃ s, μ s < ν s :=
 
 instance covariantAddLE [MeasurableSpace α] :
     CovariantClass (Measure α) (Measure α) (· + ·) (· ≤ ·) :=
-  ⟨fun _ν _μ₁ _μ₂ hμ s hs => add_le_add_left (hμ s hs) _⟩
+  ⟨fun _ν _μ₁ _μ₂ hμ s => add_le_add_left (hμ s) _⟩
 #align measure_theory.measure.covariant_add_le MeasureTheory.Measure.covariantAddLE
 
-protected theorem le_add_left (h : μ ≤ ν) : μ ≤ ν' + ν := fun s hs => le_add_left (h s hs)
+protected theorem le_add_left (h : μ ≤ ν) : μ ≤ ν' + ν := fun s => le_add_left (h s)
 #align measure_theory.measure.le_add_left MeasureTheory.Measure.le_add_left
 
-protected theorem le_add_right (h : μ ≤ ν) : μ ≤ ν + ν' := fun s hs => le_add_right (h s hs)
+protected theorem le_add_right (h : μ ≤ ν) : μ ≤ ν + ν' := fun s => le_add_right (h s)
 #align measure_theory.measure.le_add_right MeasureTheory.Measure.le_add_right
 
 section sInf
@@ -1041,17 +1037,16 @@ theorem sInf_apply (hs : MeasurableSet s) : sInf m s = sInf (toOuterMeasure '' m
 
 private theorem measure_sInf_le (h : μ ∈ m) : sInf m ≤ μ :=
   have : sInf (toOuterMeasure '' m) ≤ μ.toOuterMeasure := sInf_le (mem_image_of_mem _ h)
-  fun s hs => by rw [sInf_apply hs]; exact this s
+  le_iff.2 fun s hs => by rw [sInf_apply hs]; exact this s
 
 private theorem measure_le_sInf (h : ∀ μ' ∈ m, μ ≤ μ') : μ ≤ sInf m :=
   have : μ.toOuterMeasure ≤ sInf (toOuterMeasure '' m) :=
     le_sInf <| ball_image_of_ball fun μ hμ => toOuterMeasure_le.2 <| h _ hμ
-  fun s hs => by rw [sInf_apply hs]; exact this s
+  le_iff.2 fun s hs => by rw [sInf_apply hs]; exact this s
 
 instance instCompleteSemilatticeInf [MeasurableSpace α] : CompleteSemilatticeInf (Measure α) :=
   { (by infer_instance : PartialOrder (Measure α)),
-    (by infer_instance :
-      InfSet (Measure α)) with
+    (by infer_instance : InfSet (Measure α)) with
     sInf_le := fun _s _a => measure_sInf_le
     le_sInf := fun _s _a => measure_le_sInf }
 #align measure_theory.measure.complete_semilattice_Inf MeasureTheory.Measure.instCompleteSemilatticeInf
@@ -1069,7 +1064,7 @@ instance instCompleteLattice [MeasurableSpace α] : CompleteLattice (Measure α)
     -/
     completeLatticeOfCompleteSemilatticeInf (Measure α) with
     bot := 0
-    bot_le := fun _a _s _hs => bot_le }
+    bot_le := fun _a _s => bot_le }
 #align measure_theory.measure.complete_lattice MeasureTheory.Measure.instCompleteLattice
 
 end sInf
@@ -1078,9 +1073,8 @@ end sInf
 theorem _root_.MeasureTheory.OuterMeasure.toMeasure_top [MeasurableSpace α] :
     (⊤ : OuterMeasure α).toMeasure (by rw [OuterMeasure.top_caratheodory]; exact le_top) =
       (⊤ : Measure α) :=
-  top_unique fun s hs => by
-    rcases s.eq_empty_or_nonempty with h | h <;>
-      simp [h, toMeasure_apply ⊤ _ hs, OuterMeasure.top_apply]
+  top_unique <| le_intro fun s hs hne => by
+    simp [hne, toMeasure_apply ⊤ _ hs, OuterMeasure.top_apply]
 #align measure_theory.outer_measure.to_measure_top MeasureTheory.OuterMeasure.toMeasure_top
 
 @[simp]
@@ -1109,7 +1103,7 @@ theorem nonpos_iff_eq_zero' : μ ≤ 0 ↔ μ = 0 :=
 
 @[simp]
 theorem measure_univ_eq_zero : μ univ = 0 ↔ μ = 0 :=
-  ⟨fun h => bot_unique fun s _ => (h ▸ measure_mono (subset_univ s) : μ s ≤ 0), fun h =>
+  ⟨fun h => bot_unique fun s => (h ▸ measure_mono (subset_univ s) : μ s ≤ 0), fun h =>
     h.symm ▸ rfl⟩
 #align measure_theory.measure.measure_univ_eq_zero MeasureTheory.Measure.measure_univ_eq_zero
 
@@ -1292,8 +1286,8 @@ theorem map_map {g : β → γ} {f : α → β} (hg : Measurable g) (hf : Measur
 #align measure_theory.measure.map_map MeasureTheory.Measure.map_map
 
 @[mono]
-theorem map_mono {f : α → β} (h : μ ≤ ν) (hf : Measurable f) : μ.map f ≤ ν.map f := fun s hs => by
-  simp [hf.aemeasurable, hs, h _ (hf hs)]
+theorem map_mono {f : α → β} (h : μ ≤ ν) (hf : Measurable f) : μ.map f ≤ ν.map f :=
+  le_iff.2 fun s hs ↦ by simp [hf.aemeasurable, hs, h _]
 #align measure_theory.measure.map_mono MeasureTheory.Measure.map_mono
 
 /-- Even if `s` is not measurable, we can bound `map f μ s` from below.
@@ -1467,8 +1461,8 @@ theorem sum_apply_of_countable [Countable ι] (f : ι → Measure α) (s : Set 
   _ = ∑' i, f i t := sum_apply _ htm
   _ = ∑' i, f i s := by simp [ht]
 
-theorem le_sum (μ : ι → Measure α) (i : ι) : μ i ≤ sum μ := fun s hs => by
-  simpa only [sum_apply μ hs] using ENNReal.le_tsum i
+theorem le_sum (μ : ι → Measure α) (i : ι) : μ i ≤ sum μ :=
+  le_iff.2 fun s hs ↦ by simpa only [sum_apply μ hs] using ENNReal.le_tsum i
 #align measure_theory.measure.le_sum MeasureTheory.Measure.le_sum
 
 @[simp]
@@ -1481,7 +1475,6 @@ theorem sum_apply_eq_zero [Countable ι] {μ : ι → Measure α} {s : Set α} :
   calc
     sum μ s ≤ sum μ t := measure_mono hst
     _ = 0 := by simp [*]
-
 #align measure_theory.measure.sum_apply_eq_zero MeasureTheory.Measure.sum_apply_eq_zero
 
 theorem sum_apply_eq_zero' {μ : ι → Measure α} {s : Set α} (hs : MeasurableSet s) :
feat: add MeasurableEmbedding.comap_add (#10795)

Also add a simp attribute to AbsolutelyContinuous.zero.

Co-authored-by: Rémy Degenne <remydegenne@gmail.com>

Diff
@@ -1617,6 +1617,7 @@ instance instIsRefl [MeasurableSpace α] : IsRefl (Measure α) (· ≪ ·) :=
   ⟨fun _ => AbsolutelyContinuous.rfl⟩
 #align measure_theory.measure.absolutely_continuous.is_refl MeasureTheory.Measure.AbsolutelyContinuous.instIsRefl
 
+@[simp]
 protected lemma zero (μ : Measure α) : 0 ≪ μ := fun s _ ↦ by simp
 
 @[trans]
@@ -2123,6 +2124,11 @@ nonrec theorem map_apply (μ : Measure α) (s : Set β) : μ.map f s = μ (f ⁻
     _ = μ (f ⁻¹' s) := by rw [map_apply hf.measurable htm, hft, measure_toMeasurable]
 #align measurable_embedding.map_apply MeasurableEmbedding.map_apply
 
+lemma comap_add (μ ν : Measure β) : (μ + ν).comap f = μ.comap f + ν.comap f := by
+  ext s hs
+  simp only [← comapₗ_eq_comap _ hf.injective (fun _ ↦ hf.measurableSet_image.mpr) _ hs,
+    _root_.map_add, add_apply]
+
 end MeasurableEmbedding
 
 namespace MeasurableEquiv
chore: classify simp can do this porting notes (#10619)

Classify by adding issue number (#10618) to porting notes claiming anything semantically equivalent to simp can prove this or simp can simplify this.

Diff
@@ -701,7 +701,7 @@ theorem toOuterMeasure_toMeasure {μ : Measure α} :
   Measure.ext fun _s => μ.toOuterMeasure.trim_eq
 #align measure_theory.to_outer_measure_to_measure MeasureTheory.toOuterMeasure_toMeasure
 
--- @[simp] -- Porting note: simp can prove this
+-- @[simp] -- Porting note (#10618): simp can prove this
 theorem boundedBy_measure (μ : Measure α) : OuterMeasure.boundedBy μ = μ.toOuterMeasure :=
   μ.toOuterMeasure.boundedBy_eq_self
 #align measure_theory.bounded_by_measure MeasureTheory.boundedBy_measure
@@ -1528,17 +1528,17 @@ theorem ae_sum_eq [Countable ι] (μ : ι → Measure α) : (sum μ).ae = ⨆ i,
   Filter.ext fun _ => ae_sum_iff.trans mem_iSup.symm
 #align measure_theory.measure.ae_sum_eq MeasureTheory.Measure.ae_sum_eq
 
--- @[simp] -- Porting note: simp can prove this
+-- @[simp] -- Porting note (#10618): simp can prove this
 theorem sum_bool (f : Bool → Measure α) : sum f = f true + f false := by
   rw [sum_fintype, Fintype.sum_bool]
 #align measure_theory.measure.sum_bool MeasureTheory.Measure.sum_bool
 
--- @[simp] -- Porting note: simp can prove this
+-- @[simp] -- Porting note (#10618): simp can prove this
 theorem sum_cond (μ ν : Measure α) : (sum fun b => cond b μ ν) = μ + ν :=
   sum_bool _
 #align measure_theory.measure.sum_cond MeasureTheory.Measure.sum_cond
 
--- @[simp] -- Porting note: simp can prove this
+-- @[simp] -- Porting note (#10618): simp can prove this
 theorem sum_of_empty [IsEmpty ι] (μ : ι → Measure α) : sum μ = 0 := by
   rw [← measure_univ_eq_zero, sum_apply _ MeasurableSet.univ, tsum_empty]
 #align measure_theory.measure.sum_of_empty MeasureTheory.Measure.sum_of_empty
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -325,8 +325,8 @@ theorem union_ae_eq_right_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] t ↔ s 
 theorem ae_eq_of_ae_subset_of_measure_ge (h₁ : s ≤ᵐ[μ] t) (h₂ : μ t ≤ μ s) (hsm : MeasurableSet s)
     (ht : μ t ≠ ∞) : s =ᵐ[μ] t := by
   refine' eventuallyLE_antisymm_iff.mpr ⟨h₁, ae_le_set.mpr _⟩
-  replace h₂ : μ t = μ s; exact h₂.antisymm (measure_mono_ae h₁)
-  replace ht : μ s ≠ ∞; exact h₂ ▸ ht
+  replace h₂ : μ t = μ s := h₂.antisymm (measure_mono_ae h₁)
+  replace ht : μ s ≠ ∞ := h₂ ▸ ht
   rw [measure_diff' t hsm ht, measure_congr (union_ae_eq_left_iff_ae_subset.mpr h₁), h₂, tsub_self]
 #align measure_theory.ae_eq_of_ae_subset_of_measure_ge MeasureTheory.ae_eq_of_ae_subset_of_measure_ge
 
@@ -1792,13 +1792,12 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
     (⇑(e ^ k)) '' s =ᵐ[μ] s := by
   rw [Equiv.image_eq_preimage]
   obtain ⟨k, rfl | rfl⟩ := k.eq_nat_or_neg
-  · replace hs : (⇑e⁻¹) ⁻¹' s =ᵐ[μ] s
-    · rwa [Equiv.image_eq_preimage] at hs
+  · replace hs : (⇑e⁻¹) ⁻¹' s =ᵐ[μ] s := by rwa [Equiv.image_eq_preimage] at hs
     replace he' : (⇑e⁻¹)^[k] ⁻¹' s =ᵐ[μ] s := he'.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e⁻¹ k, inv_pow e k] at he'
   · rw [zpow_neg, zpow_ofNat]
-    replace hs : e ⁻¹' s =ᵐ[μ] s
-    · convert he.preimage_ae_eq hs.symm
+    replace hs : e ⁻¹' s =ᵐ[μ] s := by
+      convert he.preimage_ae_eq hs.symm
       rw [Equiv.preimage_image]
     replace he : (⇑e)^[k] ⁻¹' s =ᵐ[μ] s := he.preimage_iterate_ae_eq k hs
     rwa [Equiv.Perm.iterate_eq_pow e k] at he
@@ -1864,8 +1863,8 @@ theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type*} [Group G]
     Pairwise (AEDisjoint μ on fun g : G => g • s) := by
   intro g₁ g₂ hg
   let g := g₂⁻¹ * g₁
-  replace hg : g ≠ 1
-  · rw [Ne.def, inv_mul_eq_one]
+  replace hg : g ≠ 1 := by
+    rw [Ne.def, inv_mul_eq_one]
     exact hg.symm
   have : (g₂⁻¹ • ·) ⁻¹' (g • s ∩ s) = g₁ • s ∩ g₂ • s := by
     rw [preimage_eq_iff_eq_image (MulAction.bijective g₂⁻¹), image_smul, smul_set_inter, smul_smul,
chore: scope symmDiff notations (#9844)

Those notations are not scoped whereas the file is very low in the import hierarchy.

Diff
@@ -136,10 +136,12 @@ theorem measure_union_add_inter' (hs : MeasurableSet s) (t : Set α) :
   rw [union_comm, inter_comm, measure_union_add_inter t hs, add_comm]
 #align measure_theory.measure_union_add_inter' MeasureTheory.measure_union_add_inter'
 
+open scoped symmDiff in
 lemma measure_symmDiff_eq (hs : MeasurableSet s) (ht : MeasurableSet t) :
     μ (s ∆ t) = μ (s \ t) + μ (t \ s) := by
   simpa only [symmDiff_def, sup_eq_union] using measure_union disjoint_sdiff_sdiff (ht.diff hs)
 
+open scoped symmDiff in
 lemma measure_symmDiff_le (s t u : Set α) :
     μ (s ∆ u) ≤ μ (s ∆ t) + μ (t ∆ u) :=
   le_trans (μ.mono <| symmDiff_triangle s t u) (measure_union_le (s ∆ t) (t ∆ u))
chore(*): use for ⊤ : ENNReal (#9541)
Diff
@@ -608,7 +608,7 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
   exact fun ⟨i, hi⟩ => ⟨i + (m - n), by simpa only [add_assoc, tsub_add_cancel_of_le hnm] using hi⟩
 #align measure_theory.measure_limsup_eq_zero MeasureTheory.measure_limsup_eq_zero
 
-theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠ ⊤) :
+theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠ ∞) :
     μ (liminf s atTop) = 0 := by
   rw [← le_zero_iff]
   have : liminf s atTop ≤ limsup s atTop := liminf_le_limsup
chore(*): replace $ with <| (#9319)

See Zulip thread for the discussion.

Diff
@@ -142,7 +142,7 @@ lemma measure_symmDiff_eq (hs : MeasurableSet s) (ht : MeasurableSet t) :
 
 lemma measure_symmDiff_le (s t u : Set α) :
     μ (s ∆ u) ≤ μ (s ∆ t) + μ (t ∆ u) :=
-  le_trans (μ.mono $ symmDiff_triangle s t u) (measure_union_le (s ∆ t) (t ∆ u))
+  le_trans (μ.mono <| symmDiff_triangle s t u) (measure_union_le (s ∆ t) (t ∆ u))
 
 theorem measure_add_measure_compl (h : MeasurableSet s) : μ s + μ sᶜ = μ univ :=
   measure_add_measure_compl₀ h.nullMeasurableSet
feat(Order/Filter) : add 2 constructors (#9200)

Add two constructors to create filters from a property on sets:

  • Filter.comk if the property is stable under finite unions and set shrinking.
  • Filter.ofCountableUnion if the property is stable under countable unions and set shrinking

Filter.comk is the key ingredient in IsCompact.induction_on but may be convenient to have as individual building block. A Filter generated by Filter.ofCountableUnion is a CountableInterFilter, which is given by the instance Filter.countableInter_ofCountableUnion.

Other changes

  • Use Filter.comk for Filter.cofinite, Bornology.ofBounded and MeasureTheory.Measure.cofinite.
  • Use Filter.ofCountableUnion for MeasureTheory.Measure.ae.
  • Use {_ : Bornology _} instead of [Bornology _] in some lemmas so that rw/simp work with non-instance bornologies.

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -1878,15 +1878,9 @@ end Pointwise
 /-! ### The `cofinite` filter -/
 
 /-- The filter of sets `s` such that `sᶜ` has finite measure. -/
-def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α where
-  sets := { s | μ sᶜ < ∞ }
-  univ_sets := by simp
-  inter_sets {s t} hs ht := by
-    simp only [compl_inter, mem_setOf_eq]
-    calc
-      μ (sᶜ ∪ tᶜ) ≤ μ sᶜ + μ tᶜ := measure_union_le _ _
-      _ < ∞ := ENNReal.add_lt_top.2 ⟨hs, ht⟩
-  sets_of_superset {s t} hs hst := lt_of_le_of_lt (measure_mono <| compl_subset_compl.2 hst) hs
+def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α :=
+  comk (μ · < ∞) (by simp) (fun t ht s hs ↦ (measure_mono hs).trans_lt ht) fun s hs t ht ↦
+    (measure_union_le s t).trans_lt <| ENNReal.add_lt_top.2 ⟨hs, ht⟩
 #align measure_theory.measure.cofinite MeasureTheory.Measure.cofinite
 
 theorem mem_cofinite : s ∈ μ.cofinite ↔ μ sᶜ < ∞ :=
chore(*): use ∃ x ∈ s, _ instead of ∃ (x) (_ : x ∈ s), _ (#9215)

Follow-up #9184

Diff
@@ -1857,7 +1857,7 @@ open Pointwise
 @[to_additive]
 theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type*} [Group G] [MulAction G α]
     [MeasurableSpace α] {μ : Measure α} {s : Set α}
-    (h_ae_disjoint : ∀ (g) (_ : g ≠ (1 : G)), AEDisjoint μ (g • s) s)
+    (h_ae_disjoint : ∀ g ≠ (1 : G), AEDisjoint μ (g • s) s)
     (h_qmp : ∀ g : G, QuasiMeasurePreserving (g • ·) μ μ) :
     Pairwise (AEDisjoint μ on fun g : G => g • s) := by
   intro g₁ g₂ hg
chore(*): use ∃ x ∈ s, _ instead of ∃ (x) (_ : x ∈ s), _ (#9184)

Search for [∀∃].*(_ and manually replace some occurrences with more readable versions. In case of , the new expressions are defeq to the old ones. In case of , they differ by exists_prop.

In some rare cases, golf proofs that needed fixing.

Diff
@@ -414,7 +414,7 @@ theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, Measurable
 one of the intersections `s i ∩ s j` is not empty. -/
 theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpace α}
     (μ : Measure α) {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i))
-    (H : μ (univ : Set α) < ∑' i, μ (s i)) : ∃ (i j : _) (_h : i ≠ j), (s i ∩ s j).Nonempty := by
+    (H : μ (univ : Set α) < ∑' i, μ (s i)) : ∃ i j, i ≠ j ∧ (s i ∩ s j).Nonempty := by
   contrapose! H
   apply tsum_measure_le_measure_univ hs
   intro i j hij
@@ -504,7 +504,7 @@ sets is the infimum of the measures. -/
 theorem measure_iInter_eq_iInf [Countable ι] {s : ι → Set α} (h : ∀ i, MeasurableSet (s i))
     (hd : Directed (· ⊇ ·) s) (hfin : ∃ i, μ (s i) ≠ ∞) : μ (⋂ i, s i) = ⨅ i, μ (s i) := by
   rcases hfin with ⟨k, hk⟩
-  have : ∀ (t) (_ : t ⊆ s k), μ t ≠ ∞ := fun t ht => ne_top_of_le_ne_top hk (measure_mono ht)
+  have : ∀ t ⊆ s k, μ t ≠ ∞ := fun t ht => ne_top_of_le_ne_top hk (measure_mono ht)
   rw [← ENNReal.sub_sub_cancel hk (iInf_le _ k), ENNReal.sub_iInf, ←
     ENNReal.sub_sub_cancel hk (measure_mono (iInter_subset _ k)), ←
     measure_diff (iInter_subset _ k) (MeasurableSet.iInter h) (this _ (iInter_subset _ k)),
chore: remove uses of cases' (#9171)

I literally went through and regex'd some uses of cases', replacing them with rcases; this is meant to be a low effort PR as I hope that tools can do this in the future.

rcases is an easier replacement than cases, though with better tools we could in future do a second pass converting simple rcases added here (and existing ones) to cases.

Diff
@@ -1077,7 +1077,7 @@ theorem _root_.MeasureTheory.OuterMeasure.toMeasure_top [MeasurableSpace α] :
     (⊤ : OuterMeasure α).toMeasure (by rw [OuterMeasure.top_caratheodory]; exact le_top) =
       (⊤ : Measure α) :=
   top_unique fun s hs => by
-    cases' s.eq_empty_or_nonempty with h h <;>
+    rcases s.eq_empty_or_nonempty with h | h <;>
       simp [h, toMeasure_apply ⊤ _ hs, OuterMeasure.top_apply]
 #align measure_theory.outer_measure.to_measure_top MeasureTheory.OuterMeasure.toMeasure_top
 
feat: Checking ae on a countable type (#8945)

and other simple measure lemmas

From PFR and LeanCamCombi

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -211,6 +211,10 @@ theorem tsum_measure_preimage_singleton {s : Set β} (hs : s.Countable) {f : α
   rw [← Set.biUnion_preimage_singleton, measure_biUnion hs (pairwiseDisjoint_fiber f s) hf]
 #align measure_theory.tsum_measure_preimage_singleton MeasureTheory.tsum_measure_preimage_singleton
 
+lemma measure_preimage_eq_zero_iff_of_countable {s : Set β} {f : α → β} (hs : s.Countable) :
+    μ (f ⁻¹' s) = 0 ↔ ∀ x ∈ s, μ (f ⁻¹' {x}) = 0 := by
+  rw [← biUnion_preimage_singleton, measure_biUnion_null_iff hs]
+
 /-- If `s` is a `Finset`, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem sum_measure_preimage_singleton (s : Finset β) {f : α → β}
@@ -287,11 +291,20 @@ theorem measure_eq_measure_larger_of_between_null_diff {s₁ s₂ s₃ : Set α}
   (measure_eq_measure_of_between_null_diff h12 h23 h_nulldiff).2
 #align measure_theory.measure_eq_measure_larger_of_between_null_diff MeasureTheory.measure_eq_measure_larger_of_between_null_diff
 
-theorem measure_compl (h₁ : MeasurableSet s) (h_fin : μ s ≠ ∞) : μ sᶜ = μ univ - μ s := by
-  rw [compl_eq_univ_diff]
-  exact measure_diff (subset_univ s) h₁ h_fin
+lemma measure_compl₀ (h : NullMeasurableSet s μ) (hs : μ s ≠ ∞) :
+    μ sᶜ = μ Set.univ - μ s := by
+  rw [← measure_add_measure_compl₀ h, ENNReal.add_sub_cancel_left hs]
+
+theorem measure_compl (h₁ : MeasurableSet s) (h_fin : μ s ≠ ∞) : μ sᶜ = μ univ - μ s :=
+  measure_compl₀ h₁.nullMeasurableSet h_fin
 #align measure_theory.measure_compl MeasureTheory.measure_compl
 
+lemma measure_inter_conull' (ht : μ (s \ t) = 0) : μ (s ∩ t) = μ s := by
+  rw [← diff_compl, measure_diff_null']; rwa [← diff_eq]
+
+lemma measure_inter_conull (ht : μ tᶜ = 0) : μ (s ∩ t) = μ s := by
+  rw [← diff_compl, measure_diff_null ht]
+
 @[simp]
 theorem union_ae_eq_left_iff_ae_subset : (s ∪ t : Set α) =ᵐ[μ] s ↔ t ≤ᵐ[μ] s := by
   rw [ae_le_set]
@@ -852,6 +865,10 @@ instance instIsCentralScalar [SMul Rᵐᵒᵖ ℝ≥0∞] [IsCentralScalar R ℝ
 
 end SMul
 
+instance instNoZeroSMulDivisors [Zero R] [SMulWithZero R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞]
+    [NoZeroSMulDivisors R ℝ≥0∞] : NoZeroSMulDivisors R (Measure α) where
+  eq_zero_or_eq_zero_of_smul_eq_zero h := by simpa [Ne.def, @ext_iff', forall_or_left] using h
+
 instance instMulAction [Monoid R] [MulAction R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞]
     [MeasurableSpace α] : MulAction R (Measure α) :=
   Injective.mulAction _ toOuterMeasure_injective smul_toOuterMeasure
@@ -1219,6 +1236,8 @@ protected theorem map_smul_nnreal (c : ℝ≥0) (μ : Measure α) (f : α → β
   μ.map_smul (c : ℝ≥0∞) f
 #align measure_theory.measure.map_smul_nnreal MeasureTheory.Measure.map_smul_nnreal
 
+variable {f : α → β}
+
 lemma map_apply₀ {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : NullMeasurableSet s (map f μ)) : μ.map f s = μ (f ⁻¹' s) := by
   rw [map, dif_pos hf, mapₗ, dif_pos hf.measurable_mk] at hs ⊢
@@ -1228,24 +1247,33 @@ lemma map_apply₀ {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
 /-- We can evaluate the pushforward on measurable sets. For non-measurable sets, see
   `MeasureTheory.Measure.le_map_apply` and `MeasurableEquiv.map_apply`. -/
 @[simp]
-theorem map_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
-    (hs : MeasurableSet s) : μ.map f s = μ (f ⁻¹' s) :=
-  map_apply₀ hf hs.nullMeasurableSet
+theorem map_apply_of_aemeasurable (hf : AEMeasurable f μ) {s : Set β} (hs : MeasurableSet s) :
+    μ.map f s = μ (f ⁻¹' s) := map_apply₀ hf hs.nullMeasurableSet
 #align measure_theory.measure.map_apply_of_ae_measurable MeasureTheory.Measure.map_apply_of_aemeasurable
 
 @[simp]
-theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
+theorem map_apply (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
     μ.map f s = μ (f ⁻¹' s) :=
   map_apply_of_aemeasurable hf.aemeasurable hs
 #align measure_theory.measure.map_apply MeasureTheory.Measure.map_apply
 
-theorem map_toOuterMeasure {f : α → β} (hf : AEMeasurable f μ) :
+theorem map_toOuterMeasure (hf : AEMeasurable f μ) :
     (μ.map f).toOuterMeasure = (OuterMeasure.map f μ.toOuterMeasure).trim := by
   rw [← trimmed, OuterMeasure.trim_eq_trim_iff]
   intro s hs
   rw [map_apply_of_aemeasurable hf hs, OuterMeasure.map_apply]
 #align measure_theory.measure.map_to_outer_measure MeasureTheory.Measure.map_toOuterMeasure
 
+@[simp] lemma map_eq_zero_iff (hf : AEMeasurable f μ) : μ.map f = 0 ↔ μ = 0 := by
+  simp_rw [← measure_univ_eq_zero, map_apply_of_aemeasurable hf .univ, preimage_univ]
+
+@[simp] lemma mapₗ_eq_zero_iff (hf : Measurable f) : Measure.mapₗ f μ = 0 ↔ μ = 0 := by
+  rw [mapₗ_apply_of_measurable hf, map_eq_zero_iff hf.aemeasurable]
+
+lemma map_ne_zero_iff (hf : AEMeasurable f μ) : μ.map f ≠ 0 ↔ μ ≠ 0 := (map_eq_zero_iff hf).not
+lemma mapₗ_ne_zero_iff (hf : Measurable f) : Measure.mapₗ f μ ≠ 0 ↔ μ ≠ 0 :=
+  (mapₗ_eq_zero_iff hf).not
+
 @[simp]
 theorem map_id : map id μ = μ :=
   ext fun _ => map_apply measurable_id
@@ -1615,11 +1643,19 @@ lemma add_right (h1 : μ ≪ ν) (ν' : Measure α) : μ ≪ ν + ν' := by
 
 end AbsolutelyContinuous
 
+alias absolutelyContinuous_refl := AbsolutelyContinuous.refl
+alias absolutelyContinuous_rfl := AbsolutelyContinuous.rfl
+
 theorem absolutelyContinuous_of_le_smul {μ' : Measure α} {c : ℝ≥0∞} (hμ'_le : μ' ≤ c • μ) :
     μ' ≪ μ :=
   (Measure.absolutelyContinuous_of_le hμ'_le).trans (Measure.AbsolutelyContinuous.rfl.smul c)
 #align measure_theory.measure.absolutely_continuous_of_le_smul MeasureTheory.Measure.absolutelyContinuous_of_le_smul
 
+lemma smul_absolutelyContinuous {c : ℝ≥0∞} : c • μ ≪ μ := absolutelyContinuous_of_le_smul le_rfl
+
+lemma absolutelyContinuous_smul {c : ℝ≥0∞} (hc : c ≠ 0) : μ ≪ c • μ := by
+  simp [AbsolutelyContinuous, hc]
+
 theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
   ⟨fun h s => by
     rw [measure_zero_iff_ae_nmem, measure_zero_iff_ae_nmem]
@@ -1870,6 +1906,15 @@ open Measure
 
 open MeasureTheory
 
+protected theorem _root_.AEMeasurable.nullMeasurable {f : α → β} (h : AEMeasurable f μ) :
+    NullMeasurable f μ :=
+  let ⟨_g, hgm, hg⟩ := h; hgm.nullMeasurable.congr hg.symm
+#align ae_measurable.null_measurable AEMeasurable.nullMeasurable
+
+lemma _root_.AEMeasurable.nullMeasurableSet_preimage {f : α → β} {s : Set β}
+    (hf : AEMeasurable f μ) (hs : MeasurableSet s) : NullMeasurableSet (f ⁻¹' s) μ :=
+  hf.nullMeasurable hs
+
 /-- The preimage of a null measurable set under a (quasi) measure preserving map is a null
 measurable set. -/
 theorem NullMeasurableSet.preimage {ν : Measure β} {f : α → β} {t : Set β}
chore: Replace (· op ·) a by (a op ·) (#8843)

I used the regex \(\(· (.) ·\) (.)\), replacing with ($2 $1 ·).

Diff
@@ -1806,7 +1806,7 @@ open Pointwise
 @[to_additive]
 theorem smul_ae_eq_of_ae_eq {G α : Type*} [Group G] [MulAction G α] [MeasurableSpace α]
     {s t : Set α} {μ : Measure α} (g : G)
-    (h_qmp : QuasiMeasurePreserving ((· • ·) g⁻¹ : α → α) μ μ)
+    (h_qmp : QuasiMeasurePreserving (g⁻¹ • · : α → α) μ μ)
     (h_ae_eq : s =ᵐ[μ] t) : (g • s : Set α) =ᵐ[μ] (g • t : Set α) := by
   simpa only [← preimage_smul_inv] using h_qmp.ae_eq h_ae_eq
 #align measure_theory.measure.quasi_measure_preserving.smul_ae_eq_of_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.smul_ae_eq_of_ae_eq
@@ -1822,14 +1822,14 @@ open Pointwise
 theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type*} [Group G] [MulAction G α]
     [MeasurableSpace α] {μ : Measure α} {s : Set α}
     (h_ae_disjoint : ∀ (g) (_ : g ≠ (1 : G)), AEDisjoint μ (g • s) s)
-    (h_qmp : ∀ g : G, QuasiMeasurePreserving ((· • ·) g : α → α) μ μ) :
+    (h_qmp : ∀ g : G, QuasiMeasurePreserving (g • ·) μ μ) :
     Pairwise (AEDisjoint μ on fun g : G => g • s) := by
   intro g₁ g₂ hg
   let g := g₂⁻¹ * g₁
   replace hg : g ≠ 1
   · rw [Ne.def, inv_mul_eq_one]
     exact hg.symm
-  have : (· • ·) g₂⁻¹ ⁻¹' (g • s ∩ s) = g₁ • s ∩ g₂ • s := by
+  have : (g₂⁻¹ • ·) ⁻¹' (g • s ∩ s) = g₁ • s ∩ g₂ • s := by
     rw [preimage_eq_iff_eq_image (MulAction.bijective g₂⁻¹), image_smul, smul_set_inter, smul_smul,
       smul_smul, inv_mul_self, one_smul]
   change μ (g₁ • s ∩ g₂ • s) = 0
chore: remove deprecated MonoidHom.map_prod, AddMonoidHom.map_sum (#8787)
Diff
@@ -871,7 +871,7 @@ def coeAddHom {_ : MeasurableSpace α} : Measure α →+ Set α → ℝ≥0∞ w
 
 @[simp]
 theorem coe_finset_sum {_m : MeasurableSpace α} (I : Finset ι) (μ : ι → Measure α) :
-    ⇑(∑ i in I, μ i) = ∑ i in I, ⇑(μ i) := coeAddHom.map_sum μ I
+    ⇑(∑ i in I, μ i) = ∑ i in I, ⇑(μ i) := map_sum coeAddHom μ I
 #align measure_theory.measure.coe_finset_sum MeasureTheory.Measure.coe_finset_sum
 
 theorem finset_sum_apply {m : MeasurableSpace α} (I : Finset ι) (μ : ι → Measure α) (s : Set α) :
feat: extend results on product measures from sigma-finite to s-finite measures (#8713)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -452,7 +452,7 @@ theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed
   generalize ht : Function.extend Encodable.encode s ⊥ = t
   replace hd : Directed (· ⊆ ·) t := ht ▸ hd.extend_bot Encodable.encode_injective
   suffices μ (⋃ n, t n) = ⨆ n, μ (t n) by
-    simp only [← ht, Encodable.encode_injective.apply_extend μ, ← iSup_eq_iUnion,
+    simp only [← ht, Function.apply_extend μ, ← iSup_eq_iUnion,
       iSup_extend_bot Encodable.encode_injective, (· ∘ ·), Pi.bot_apply, bot_eq_empty,
       measure_empty] at this
     exact this.trans (iSup_extend_bot Encodable.encode_injective _)
@@ -478,7 +478,6 @@ theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed
         _ = μ (⋃ n ∈ I, t n) := (measure_biUnion_toMeasurable I.countable_toSet _)
         _ ≤ μ (t N) := (measure_mono (iUnion₂_subset hN))
         _ ≤ ⨆ n, μ (t n) := le_iSup (μ ∘ t) N
-
 #align measure_theory.measure_Union_eq_supr MeasureTheory.measure_iUnion_eq_iSup
 
 theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countable)
@@ -1407,7 +1406,8 @@ theorem le_sum_apply (f : ι → Measure α) (s : Set α) : ∑' i, f i s ≤ su
 #align measure_theory.measure.le_sum_apply MeasureTheory.Measure.le_sum_apply
 
 @[simp]
-theorem sum_apply (f : ι → Measure α) {s : Set α} (hs : MeasurableSet s) : sum f s = ∑' i, f i s :=
+theorem sum_apply (f : ι → Measure α) {s : Set α} (hs : MeasurableSet s) :
+    sum f s = ∑' i, f i s :=
   toMeasure_apply _ _ hs
 #align measure_theory.measure.sum_apply MeasureTheory.Measure.sum_apply
 
@@ -1420,6 +1420,23 @@ theorem sum_apply₀ (f : ι → Measure α) {s : Set α} (hs : NullMeasurableSe
   _ = ∑' i, f i t := sum_apply _ t_meas
   _ ≤ ∑' i, f i s := ENNReal.tsum_le_tsum (fun i ↦ measure_mono ts)
 
+/-! For the next theorem, the countability assumption is necessary. For a counterexample, consider
+an uncountable space, with a distinguished point `x₀`, and the sigma-algebra made of countable sets
+not containing `x₀`, and their complements. All points but `x₀` are measurable.
+Consider the sum of the Dirac masses at points different from `x₀`, and `s = x₀`. For any Dirac mass
+`δ_x`, we have `δ_x (x₀) = 0`, so `∑' x, δ_x (x₀) = 0`. On the other hand, the measure `sum δ_x`
+gives mass one to each point different from `x₀`, so it gives infinite mass to any measurable set
+containing `x₀` (as such a set is uncountable), and by outer regularity one get `sum δ_x {x₀} = ∞`.
+-/
+theorem sum_apply_of_countable [Countable ι] (f : ι → Measure α) (s : Set α) :
+    sum f s = ∑' i, f i s := by
+  apply le_antisymm ?_ (le_sum_apply _ _)
+  rcases exists_measurable_superset_forall_eq f s with ⟨t, hst, htm, ht⟩
+  calc
+  sum f s ≤ sum f t := measure_mono hst
+  _ = ∑' i, f i t := sum_apply _ htm
+  _ = ∑' i, f i s := by simp [ht]
+
 theorem le_sum (μ : ι → Measure α) (i : ι) : μ i ≤ sum μ := fun s hs => by
   simpa only [sum_apply μ hs] using ENNReal.le_tsum i
 #align measure_theory.measure.le_sum MeasureTheory.Measure.le_sum
@@ -1441,6 +1458,11 @@ theorem sum_apply_eq_zero' {μ : ι → Measure α} {s : Set α} (hs : Measurabl
     sum μ s = 0 ↔ ∀ i, μ i s = 0 := by simp [hs]
 #align measure_theory.measure.sum_apply_eq_zero' MeasureTheory.Measure.sum_apply_eq_zero'
 
+theorem sum_sum {ι' : Type*} (μ : ι → ι' → Measure α) :
+    (sum fun n => sum (μ n)) = sum (fun (p : ι × ι') ↦ μ p.1 p.2) := by
+  ext1 s hs
+  simp [sum_apply _ hs, ENNReal.tsum_prod']
+
 theorem sum_comm {ι' : Type*} (μ : ι → ι' → Measure α) :
     (sum fun n => sum (μ n)) = sum fun m => sum fun n => μ n m := by
   ext1 s hs
@@ -1502,12 +1524,21 @@ theorem sum_congr {μ ν : ℕ → Measure α} (h : ∀ n, μ n = ν n) : sum μ
   congr_arg sum (funext h)
 #align measure_theory.measure.sum_congr MeasureTheory.Measure.sum_congr
 
-theorem sum_add_sum (μ ν : ℕ → Measure α) : sum μ + sum ν = sum fun n => μ n + ν n := by
+theorem sum_add_sum {ι : Type*} (μ ν : ι → Measure α) : sum μ + sum ν = sum fun n => μ n + ν n := by
   ext1 s hs
   simp only [add_apply, sum_apply _ hs, Pi.add_apply, coe_add,
     tsum_add ENNReal.summable ENNReal.summable]
 #align measure_theory.measure.sum_add_sum MeasureTheory.Measure.sum_add_sum
 
+@[simp] lemma sum_comp_equiv {ι ι' : Type*} (e : ι' ≃ ι) (m : ι → Measure α) :
+    sum (m ∘ e) = sum m := by
+  ext s hs
+  simpa [hs, sum_apply] using e.tsum_eq (fun n ↦ m n s)
+
+@[simp] lemma sum_extend_zero {ι ι' : Type*} {f : ι → ι'} (hf : Injective f) (m : ι → Measure α) :
+    sum (Function.extend f m 0) = sum m := by
+  ext s hs
+  simp [*, Function.apply_extend (fun μ : Measure α ↦ μ s)]
 end Sum
 
 /-! ### Absolute continuity -/
feat(Probability/BorelCantelli): clarify documentation (#8527)

Some of the students from my Lean seminar got quite confused trying to find the Borel-Cantelli lemmas in Mathlib, because there is a file Probability.Martingale.BorelCantelli but neither of the Borel-Cantelli lemmas are in it! This PR adds cross-links between the documentation strings for the various files concerned. (There are no changes to actual code.)

Diff
@@ -565,8 +565,12 @@ theorem tendsto_measure_biInter_gt {ι : Type*} [LinearOrder ι] [TopologicalSpa
   filter_upwards [this] with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
 #align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gt
 
-/-- One direction of the **Borel-Cantelli lemma**: if (sᵢ) is a sequence of sets such
-that `∑ μ sᵢ` is finite, then the limit superior of the `sᵢ` is a null set. -/
+/-- One direction of the **Borel-Cantelli lemma** (sometimes called the "*first* Borel-Cantelli
+lemma"): if (sᵢ) is a sequence of sets such that `∑ μ sᵢ` is finite, then the limit superior of the
+`sᵢ` is a null set.
+
+Note: for the *second* Borel-Cantelli lemma (applying to independent sets in a probability space),
+see `ProbabilityTheory.measure_limsup_eq_one`. -/
 theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠ ∞) :
     μ (limsup s atTop) = 0 := by
   -- First we replace the sequence `sₙ` with a sequence of measurable sets `tₙ ⊇ sₙ` of the same
feat: s-finite measures (#8405)

We define s-finite measures, i.e., measures which can be written as a countable sum of finite measures. We show that sigma-finite measures are s-finite, and extend a few results in the library from the sigma-finite case to the s-finite case.

Diff
@@ -721,7 +721,8 @@ theorem measure_inter_eq_of_measure_eq {s t u : Set α} (hs : MeasurableSet s) (
 /-- The measurable superset `toMeasurable μ t` of `t` (which has the same measure as `t`)
 satisfies, for any measurable set `s`, the equality `μ (toMeasurable μ t ∩ s) = μ (u ∩ s)`.
 Here, we require that the measure of `t` is finite. The conclusion holds without this assumption
-when the measure is sigma_finite, see `measure_toMeasurable_inter_of_sigmaFinite`. -/
+when the measure is s-finite (for example when it is σ-finite),
+see `measure_toMeasurable_inter_of_sFinite`. -/
 theorem measure_toMeasurable_inter {s t : Set α} (hs : MeasurableSet s) (ht : μ t ≠ ∞) :
     μ (toMeasurable μ t ∩ s) = μ (t ∩ s) :=
   (measure_inter_eq_of_measure_eq hs (measure_toMeasurable t).symm (subset_toMeasurable μ t)
@@ -1406,6 +1407,15 @@ theorem sum_apply (f : ι → Measure α) {s : Set α} (hs : MeasurableSet s) :
   toMeasure_apply _ _ hs
 #align measure_theory.measure.sum_apply MeasureTheory.Measure.sum_apply
 
+theorem sum_apply₀ (f : ι → Measure α) {s : Set α} (hs : NullMeasurableSet s (sum f)) :
+    sum f s = ∑' i, f i s := by
+  apply le_antisymm ?_ (le_sum_apply _ _)
+  rcases hs.exists_measurable_subset_ae_eq  with ⟨t, ts, t_meas, ht⟩
+  calc
+  sum f s = sum f t := measure_congr ht.symm
+  _ = ∑' i, f i t := sum_apply _ t_meas
+  _ ≤ ∑' i, f i s := ENNReal.tsum_le_tsum (fun i ↦ measure_mono ts)
+
 theorem le_sum (μ : ι → Measure α) (i : ι) : μ i ≤ sum μ := fun s hs => by
   simpa only [sum_apply μ hs] using ENNReal.le_tsum i
 #align measure_theory.measure.le_sum MeasureTheory.Measure.le_sum
@@ -1593,6 +1603,15 @@ theorem AbsolutelyContinuous.ae_eq (h : μ ≪ ν) {f g : α → δ} (h' : f =
   h.ae_le h'
 #align measure_theory.measure.absolutely_continuous.ae_eq MeasureTheory.Measure.AbsolutelyContinuous.ae_eq
 
+protected theorem _root_.MeasureTheory.AEDisjoint.of_absolutelyContinuous
+    (h : AEDisjoint μ s t) {ν : Measure α} (h' : ν ≪ μ) :
+    AEDisjoint ν s t := h' h
+
+protected theorem _root_.MeasureTheory.AEDisjoint.of_le
+    (h : AEDisjoint μ s t) {ν : Measure α} (h' : ν ≤ μ) :
+    AEDisjoint ν s t :=
+  h.of_absolutelyContinuous (Measure.absolutelyContinuous_of_le h')
+
 /-! ### Quasi measure preserving maps (a.k.a. non-singular maps) -/
 
 
feat: polar coords integral in a normed space (#7693)
Diff
@@ -746,10 +746,13 @@ theorem coe_zero {_m : MeasurableSpace α} : ⇑(0 : Measure α) = 0 :=
   rfl
 #align measure_theory.measure.coe_zero MeasureTheory.Measure.coe_zero
 
+@[nontriviality]
+lemma apply_eq_zero_of_isEmpty [IsEmpty α] {_ : MeasurableSpace α} (μ : Measure α) (s : Set α) :
+    μ s = 0 := by
+  rw [eq_empty_of_isEmpty s, measure_empty]
+
 instance instSubsingleton [IsEmpty α] {m : MeasurableSpace α} : Subsingleton (Measure α) :=
-  ⟨fun μ ν => by
-    ext1 s _
-    rw [eq_empty_of_isEmpty s]; simp only [measure_empty]⟩
+  ⟨fun μ ν => by ext1 s _; rw [apply_eq_zero_of_isEmpty, apply_eq_zero_of_isEmpty]⟩
 #align measure_theory.measure.subsingleton MeasureTheory.Measure.instSubsingleton
 
 theorem eq_zero_of_isEmpty [IsEmpty α] {_m : MeasurableSpace α} (μ : Measure α) : μ = 0 :=
chore: split MeasureSpace.lean into 3 files (#8389)

The original file MeasureSpace.lean is a mess of 4580 lines, with a lot of changes of namespaces, active variables, and so on. We split it into three files:

  • MeasureSpace, with 2095 lines left (some stuff could still be moved to other files, but it already makes much more sense)
  • Restrict, with everything on restriction of measures (1100 lines)
  • Typeclasses, defining finite measures, sigma-finite measures, and so on (1443 lines)

The new files are still large, but less so. This is 99% moving around and ensuring that variables and namespaces remain the same (#align statements have been very useful for this), and 1% adding classical in proofs and [Decidable ...] assumptions in statements, as I haven't opened Classical in the new files.

Diff
@@ -32,16 +32,6 @@ extension of the restricted measure.
 
 Measures on `α` form a complete lattice, and are closed under scalar multiplication with `ℝ≥0∞`.
 
-We introduce the following typeclasses for measures:
-
-* `IsProbabilityMeasure μ`: `μ univ = 1`;
-* `IsFiniteMeasure μ`: `μ univ < ∞`;
-* `SigmaFinite μ`: there exists a countable collection of sets that cover `univ`
-  where `μ` is finite;
-* `IsLocallyFiniteMeasure μ` : `∀ x, ∃ s ∈ 𝓝 x, μ s < ∞`;
-* `NoAtoms μ` : `∀ x, μ {x} = 0`; possibly should be redefined as
-  `∀ s, 0 < μ s → ∃ t ⊆ s, 0 < μ t ∧ μ t < μ s`.
-
 Given a measure, the null sets are the sets where `μ s = 0`, where `μ` denotes the corresponding
 outer measure (so `s` might not be measurable). We can then define the completion of `μ` as the
 measure on the least `σ`-algebra that also contains all null sets, by defining the measure to be `0`
@@ -1395,598 +1385,10 @@ theorem comap_preimage {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f :
   rw [comap_apply₀ _ _ hf h (hf' hs).nullMeasurableSet, image_preimage_eq_inter_range]
 #align measure_theory.measure.comap_preimage MeasureTheory.Measure.comap_preimage
 
-section Subtype
-
-/-! ### Subtype of a measure space -/
-
-section ComapAnyMeasure
-
-theorem MeasurableSet.nullMeasurableSet_subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
-    (ht : MeasurableSet t) : NullMeasurableSet ((↑) '' t) μ := by
-  rw [Subtype.instMeasurableSpace, comap_eq_generateFrom] at ht
-  refine'
-    generateFrom_induction (p := fun t : Set s => NullMeasurableSet ((↑) '' t) μ)
-      { t : Set s | ∃ s' : Set α, MeasurableSet s' ∧ (↑) ⁻¹' s' = t } _ _ _ _ ht
-  · rintro t' ⟨s', hs', rfl⟩
-    rw [Subtype.image_preimage_coe]
-    exact hs'.nullMeasurableSet.inter hs
-  · simp only [image_empty, nullMeasurableSet_empty]
-  · intro t'
-    simp only [← range_diff_image Subtype.coe_injective, Subtype.range_coe_subtype, setOf_mem_eq]
-    exact hs.diff
-  · intro f
-    dsimp only []
-    rw [image_iUnion]
-    exact NullMeasurableSet.iUnion
-#align measure_theory.measure.measurable_set.null_measurable_set_subtype_coe MeasureTheory.Measure.MeasurableSet.nullMeasurableSet_subtype_coe
-
-theorem NullMeasurableSet.subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
-    (ht : NullMeasurableSet t (μ.comap Subtype.val)) : NullMeasurableSet (((↑) : s → α) '' t) μ :=
-  NullMeasurableSet.image (↑) μ Subtype.coe_injective
-    (fun _ => MeasurableSet.nullMeasurableSet_subtype_coe hs) ht
-#align measure_theory.measure.null_measurable_set.subtype_coe MeasureTheory.Measure.NullMeasurableSet.subtype_coe
-
-theorem measure_subtype_coe_le_comap (hs : NullMeasurableSet s μ) (t : Set s) :
-    μ (((↑) : s → α) '' t) ≤ μ.comap Subtype.val t :=
-  le_comap_apply _ _ Subtype.coe_injective (fun _ =>
-    MeasurableSet.nullMeasurableSet_subtype_coe hs) _
-#align measure_theory.measure.measure_subtype_coe_le_comap MeasureTheory.Measure.measure_subtype_coe_le_comap
-
-theorem measure_subtype_coe_eq_zero_of_comap_eq_zero (hs : NullMeasurableSet s μ) {t : Set s}
-    (ht : μ.comap Subtype.val t = 0) : μ (((↑) : s → α) '' t) = 0 :=
-  eq_bot_iff.mpr <| (measure_subtype_coe_le_comap hs t).trans ht.le
-#align measure_theory.measure.measure_subtype_coe_eq_zero_of_comap_eq_zero MeasureTheory.Measure.measure_subtype_coe_eq_zero_of_comap_eq_zero
-
-end ComapAnyMeasure
-
-end Subtype
-
-end Measure
-
-end
-
-namespace Measure
-
-section Subtype
-
-section MeasureSpace
-
-variable {s : Set α} [MeasureSpace α] {p : α → Prop}
-
-/-- In a measure space, one can restrict the measure to a subtype to get a new measure space.
-
-Not registered as an instance, as there are other natural choices such as the normalized restriction
-for a probability measure, or the subspace measure when restricting to a vector subspace. Enable
-locally if needed with `attribute [local instance] Measure.Subtype.measureSpace`. -/
-def Subtype.measureSpace : MeasureSpace (Subtype p) where
-  volume := Measure.comap Subtype.val volume
-#align measure_theory.measure.subtype.measure_space MeasureTheory.Measure.Subtype.measureSpace
-
-attribute [local instance] Subtype.measureSpace
-
-theorem Subtype.volume_def : (volume : Measure s) = volume.comap Subtype.val :=
-  rfl
-#align measure_theory.measure.subtype.volume_def MeasureTheory.Measure.Subtype.volume_def
-
-theorem Subtype.volume_univ (hs : NullMeasurableSet s) : volume (univ : Set s) = volume s := by
-  rw [Subtype.volume_def, comap_apply₀ _ _ _ _ MeasurableSet.univ.nullMeasurableSet]
-  · congr
-    simp only [image_univ, Subtype.range_coe_subtype, setOf_mem_eq]
-  · exact Subtype.coe_injective
-  · exact fun t => MeasurableSet.nullMeasurableSet_subtype_coe hs
-#align measure_theory.measure.subtype.volume_univ MeasureTheory.Measure.Subtype.volume_univ
-
-theorem volume_subtype_coe_le_volume (hs : NullMeasurableSet s) (t : Set s) :
-    volume (((↑) : s → α) '' t) ≤ volume t :=
-  measure_subtype_coe_le_comap hs t
-#align measure_theory.measure.volume_subtype_coe_le_volume MeasureTheory.Measure.volume_subtype_coe_le_volume
-
-theorem volume_subtype_coe_eq_zero_of_volume_eq_zero (hs : NullMeasurableSet s) {t : Set s}
-    (ht : volume t = 0) : volume (((↑) : s → α) '' t) = 0 :=
-  measure_subtype_coe_eq_zero_of_comap_eq_zero hs ht
-#align measure_theory.measure.volume_subtype_coe_eq_zero_of_volume_eq_zero MeasureTheory.Measure.volume_subtype_coe_eq_zero_of_volume_eq_zero
-
-end MeasureSpace
-
-end Subtype
-
-end Measure
-
-section
-
-variable {m0 : MeasurableSpace α} [MeasurableSpace β] [MeasurableSpace γ]
-
-variable {μ μ₁ μ₂ μ₃ ν ν' ν₁ ν₂ : Measure α} {s s' t : Set α}
-
-namespace Measure
-
-/-! ### Restricting a measure -/
-
-
-/-- Restrict a measure `μ` to a set `s` as an `ℝ≥0∞`-linear map. -/
-def restrictₗ {m0 : MeasurableSpace α} (s : Set α) : Measure α →ₗ[ℝ≥0∞] Measure α :=
-  liftLinear (OuterMeasure.restrict s) fun μ s' hs' t => by
-    suffices μ (s ∩ t) = μ (s ∩ t ∩ s') + μ ((s ∩ t) \ s') by
-      simpa [← Set.inter_assoc, Set.inter_comm _ s, ← inter_diff_assoc]
-    exact le_toOuterMeasure_caratheodory _ _ hs' _
-#align measure_theory.measure.restrictₗ MeasureTheory.Measure.restrictₗ
-
-/-- Restrict a measure `μ` to a set `s`. -/
-def restrict {_m0 : MeasurableSpace α} (μ : Measure α) (s : Set α) : Measure α :=
-  restrictₗ s μ
-#align measure_theory.measure.restrict MeasureTheory.Measure.restrict
-
-@[simp]
-theorem restrictₗ_apply {_m0 : MeasurableSpace α} (s : Set α) (μ : Measure α) :
-    restrictₗ s μ = μ.restrict s :=
-  rfl
-#align measure_theory.measure.restrictₗ_apply MeasureTheory.Measure.restrictₗ_apply
-
-/-- This lemma shows that `restrict` and `toOuterMeasure` commute. Note that the LHS has a
-restrict on measures and the RHS has a restrict on outer measures. -/
-theorem restrict_toOuterMeasure_eq_toOuterMeasure_restrict (h : MeasurableSet s) :
-    (μ.restrict s).toOuterMeasure = OuterMeasure.restrict s μ.toOuterMeasure := by
-  simp_rw [restrict, restrictₗ, liftLinear, LinearMap.coe_mk, AddHom.coe_mk,
-    toMeasure_toOuterMeasure, OuterMeasure.restrict_trim h, μ.trimmed]
-#align measure_theory.measure.restrict_to_outer_measure_eq_to_outer_measure_restrict MeasureTheory.Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrict
-
-theorem restrict_apply₀ (ht : NullMeasurableSet t (μ.restrict s)) : μ.restrict s t = μ (t ∩ s) :=
-  (toMeasure_apply₀ _ (fun s' hs' t => by
-    suffices μ (s ∩ t) = μ (s ∩ t ∩ s') + μ ((s ∩ t) \ s') by
-      simpa [← Set.inter_assoc, Set.inter_comm _ s, ← inter_diff_assoc]
-    exact le_toOuterMeasure_caratheodory _ _ hs' _) ht).trans <| by
-    simp only [OuterMeasure.restrict_apply]
-#align measure_theory.measure.restrict_apply₀ MeasureTheory.Measure.restrict_apply₀
-
-/-- If `t` is a measurable set, then the measure of `t` with respect to the restriction of
-  the measure to `s` equals the outer measure of `t ∩ s`. An alternate version requiring that `s`
-  be measurable instead of `t` exists as `Measure.restrict_apply'`. -/
-@[simp]
-theorem restrict_apply (ht : MeasurableSet t) : μ.restrict s t = μ (t ∩ s) :=
-  restrict_apply₀ ht.nullMeasurableSet
-#align measure_theory.measure.restrict_apply MeasureTheory.Measure.restrict_apply
-
-/-- Restriction of a measure to a subset is monotone both in set and in measure. -/
-theorem restrict_mono' {_m0 : MeasurableSpace α} ⦃s s' : Set α⦄ ⦃μ ν : Measure α⦄ (hs : s ≤ᵐ[μ] s')
-    (hμν : μ ≤ ν) : μ.restrict s ≤ ν.restrict s' := fun t ht =>
-  calc
-    μ.restrict s t = μ (t ∩ s) := restrict_apply ht
-    _ ≤ μ (t ∩ s') := (measure_mono_ae <| hs.mono fun _x hx ⟨hxt, hxs⟩ => ⟨hxt, hx hxs⟩)
-    _ ≤ ν (t ∩ s') := (le_iff'.1 hμν (t ∩ s'))
-    _ = ν.restrict s' t := (restrict_apply ht).symm
-
-#align measure_theory.measure.restrict_mono' MeasureTheory.Measure.restrict_mono'
-
-/-- Restriction of a measure to a subset is monotone both in set and in measure. -/
-@[mono]
-theorem restrict_mono {_m0 : MeasurableSpace α} ⦃s s' : Set α⦄ (hs : s ⊆ s') ⦃μ ν : Measure α⦄
-    (hμν : μ ≤ ν) : μ.restrict s ≤ ν.restrict s' :=
-  restrict_mono' (ae_of_all _ hs) hμν
-#align measure_theory.measure.restrict_mono MeasureTheory.Measure.restrict_mono
-
-theorem restrict_mono_ae (h : s ≤ᵐ[μ] t) : μ.restrict s ≤ μ.restrict t :=
-  restrict_mono' h (le_refl μ)
-#align measure_theory.measure.restrict_mono_ae MeasureTheory.Measure.restrict_mono_ae
-
-theorem restrict_congr_set (h : s =ᵐ[μ] t) : μ.restrict s = μ.restrict t :=
-  le_antisymm (restrict_mono_ae h.le) (restrict_mono_ae h.symm.le)
-#align measure_theory.measure.restrict_congr_set MeasureTheory.Measure.restrict_congr_set
-
-/-- If `s` is a measurable set, then the outer measure of `t` with respect to the restriction of
-the measure to `s` equals the outer measure of `t ∩ s`. This is an alternate version of
-`Measure.restrict_apply`, requiring that `s` is measurable instead of `t`. -/
-@[simp]
-theorem restrict_apply' (hs : MeasurableSet s) : μ.restrict s t = μ (t ∩ s) := by
-  rw [Measure.restrict_toOuterMeasure_eq_toOuterMeasure_restrict hs,
-    OuterMeasure.restrict_apply s t _]
-#align measure_theory.measure.restrict_apply' MeasureTheory.Measure.restrict_apply'
-
-theorem restrict_apply₀' (hs : NullMeasurableSet s μ) : μ.restrict s t = μ (t ∩ s) := by
-  rw [← restrict_congr_set hs.toMeasurable_ae_eq,
-    restrict_apply' (measurableSet_toMeasurable _ _),
-    measure_congr ((ae_eq_refl t).inter hs.toMeasurable_ae_eq)]
-#align measure_theory.measure.restrict_apply₀' MeasureTheory.Measure.restrict_apply₀'
-
-theorem restrict_le_self : μ.restrict s ≤ μ := fun t ht =>
-  calc
-    μ.restrict s t = μ (t ∩ s) := restrict_apply ht
-    _ ≤ μ t := measure_mono <| inter_subset_left t s
-#align measure_theory.measure.restrict_le_self MeasureTheory.Measure.restrict_le_self
-
-variable (μ)
-
-theorem restrict_eq_self (h : s ⊆ t) : μ.restrict t s = μ s :=
-  (le_iff'.1 restrict_le_self s).antisymm <|
-    calc
-      μ s ≤ μ (toMeasurable (μ.restrict t) s ∩ t) :=
-        measure_mono (subset_inter (subset_toMeasurable _ _) h)
-      _ = μ.restrict t s := by
-        rw [← restrict_apply (measurableSet_toMeasurable _ _), measure_toMeasurable]
-#align measure_theory.measure.restrict_eq_self MeasureTheory.Measure.restrict_eq_self
-
-@[simp]
-theorem restrict_apply_self (s : Set α) : (μ.restrict s) s = μ s :=
-  restrict_eq_self μ Subset.rfl
-#align measure_theory.measure.restrict_apply_self MeasureTheory.Measure.restrict_apply_self
-
-variable {μ}
-
-theorem restrict_apply_univ (s : Set α) : μ.restrict s univ = μ s := by
-  rw [restrict_apply MeasurableSet.univ, Set.univ_inter]
-#align measure_theory.measure.restrict_apply_univ MeasureTheory.Measure.restrict_apply_univ
-
-theorem le_restrict_apply (s t : Set α) : μ (t ∩ s) ≤ μ.restrict s t :=
-  calc
-    μ (t ∩ s) = μ.restrict s (t ∩ s) := (restrict_eq_self μ (inter_subset_right _ _)).symm
-    _ ≤ μ.restrict s t := measure_mono (inter_subset_left _ _)
-#align measure_theory.measure.le_restrict_apply MeasureTheory.Measure.le_restrict_apply
-
-theorem restrict_apply_le (s t : Set α) : μ.restrict s t ≤ μ t :=
-  Measure.le_iff'.1 restrict_le_self _
-
-theorem restrict_apply_superset (h : s ⊆ t) : μ.restrict s t = μ s :=
-  ((measure_mono (subset_univ _)).trans_eq <| restrict_apply_univ _).antisymm
-    ((restrict_apply_self μ s).symm.trans_le <| measure_mono h)
-#align measure_theory.measure.restrict_apply_superset MeasureTheory.Measure.restrict_apply_superset
-
-@[simp]
-theorem restrict_add {_m0 : MeasurableSpace α} (μ ν : Measure α) (s : Set α) :
-    (μ + ν).restrict s = μ.restrict s + ν.restrict s :=
-  (restrictₗ s).map_add μ ν
-#align measure_theory.measure.restrict_add MeasureTheory.Measure.restrict_add
-
-@[simp]
-theorem restrict_zero {_m0 : MeasurableSpace α} (s : Set α) : (0 : Measure α).restrict s = 0 :=
-  (restrictₗ s).map_zero
-#align measure_theory.measure.restrict_zero MeasureTheory.Measure.restrict_zero
-
-@[simp]
-theorem restrict_smul {_m0 : MeasurableSpace α} (c : ℝ≥0∞) (μ : Measure α) (s : Set α) :
-    (c • μ).restrict s = c • μ.restrict s :=
-  (restrictₗ s).map_smul c μ
-#align measure_theory.measure.restrict_smul MeasureTheory.Measure.restrict_smul
-
-theorem restrict_restrict₀ (hs : NullMeasurableSet s (μ.restrict t)) :
-    (μ.restrict t).restrict s = μ.restrict (s ∩ t) :=
-  ext fun u hu => by
-    simp only [Set.inter_assoc, restrict_apply hu,
-      restrict_apply₀ (hu.nullMeasurableSet.inter hs)]
-#align measure_theory.measure.restrict_restrict₀ MeasureTheory.Measure.restrict_restrict₀
-
-@[simp]
-theorem restrict_restrict (hs : MeasurableSet s) : (μ.restrict t).restrict s = μ.restrict (s ∩ t) :=
-  restrict_restrict₀ hs.nullMeasurableSet
-#align measure_theory.measure.restrict_restrict MeasureTheory.Measure.restrict_restrict
-
-theorem restrict_restrict_of_subset (h : s ⊆ t) : (μ.restrict t).restrict s = μ.restrict s := by
-  ext1 u hu
-  rw [restrict_apply hu, restrict_apply hu, restrict_eq_self]
-  exact (inter_subset_right _ _).trans h
-#align measure_theory.measure.restrict_restrict_of_subset MeasureTheory.Measure.restrict_restrict_of_subset
-
-theorem restrict_restrict₀' (ht : NullMeasurableSet t μ) :
-    (μ.restrict t).restrict s = μ.restrict (s ∩ t) :=
-  ext fun u hu => by simp only [restrict_apply hu, restrict_apply₀' ht, inter_assoc]
-#align measure_theory.measure.restrict_restrict₀' MeasureTheory.Measure.restrict_restrict₀'
-
-theorem restrict_restrict' (ht : MeasurableSet t) :
-    (μ.restrict t).restrict s = μ.restrict (s ∩ t) :=
-  restrict_restrict₀' ht.nullMeasurableSet
-#align measure_theory.measure.restrict_restrict' MeasureTheory.Measure.restrict_restrict'
-
-theorem restrict_comm (hs : MeasurableSet s) :
-    (μ.restrict t).restrict s = (μ.restrict s).restrict t := by
-  rw [restrict_restrict hs, restrict_restrict' hs, inter_comm]
-#align measure_theory.measure.restrict_comm MeasureTheory.Measure.restrict_comm
-
-theorem restrict_apply_eq_zero (ht : MeasurableSet t) : μ.restrict s t = 0 ↔ μ (t ∩ s) = 0 := by
-  rw [restrict_apply ht]
-#align measure_theory.measure.restrict_apply_eq_zero MeasureTheory.Measure.restrict_apply_eq_zero
-
-theorem measure_inter_eq_zero_of_restrict (h : μ.restrict s t = 0) : μ (t ∩ s) = 0 :=
-  nonpos_iff_eq_zero.1 (h ▸ le_restrict_apply _ _)
-#align measure_theory.measure.measure_inter_eq_zero_of_restrict MeasureTheory.Measure.measure_inter_eq_zero_of_restrict
-
-theorem restrict_apply_eq_zero' (hs : MeasurableSet s) : μ.restrict s t = 0 ↔ μ (t ∩ s) = 0 := by
-  rw [restrict_apply' hs]
-#align measure_theory.measure.restrict_apply_eq_zero' MeasureTheory.Measure.restrict_apply_eq_zero'
-
-@[simp]
-theorem restrict_eq_zero : μ.restrict s = 0 ↔ μ s = 0 := by
-  rw [← measure_univ_eq_zero, restrict_apply_univ]
-#align measure_theory.measure.restrict_eq_zero MeasureTheory.Measure.restrict_eq_zero
-
-/-- If `μ s ≠ 0`, then `μ.restrict s ≠ 0`, in terms of `NeZero` instances. -/
-instance restrict.neZero [NeZero (μ s)] : NeZero (μ.restrict s) :=
-  ⟨mt restrict_eq_zero.mp <| NeZero.ne _⟩
-
-theorem restrict_zero_set {s : Set α} (h : μ s = 0) : μ.restrict s = 0 :=
-  restrict_eq_zero.2 h
-#align measure_theory.measure.restrict_zero_set MeasureTheory.Measure.restrict_zero_set
-
-@[simp]
-theorem restrict_empty : μ.restrict ∅ = 0 :=
-  restrict_zero_set measure_empty
-#align measure_theory.measure.restrict_empty MeasureTheory.Measure.restrict_empty
-
-@[simp]
-theorem restrict_univ : μ.restrict univ = μ :=
-  ext fun s hs => by simp [hs]
-#align measure_theory.measure.restrict_univ MeasureTheory.Measure.restrict_univ
-
-theorem restrict_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
-    μ.restrict (s ∩ t) + μ.restrict (s \ t) = μ.restrict s := by
-  ext1 u hu
-  simp only [add_apply, restrict_apply hu, ← inter_assoc, diff_eq]
-  exact measure_inter_add_diff₀ (u ∩ s) ht
-#align measure_theory.measure.restrict_inter_add_diff₀ MeasureTheory.Measure.restrict_inter_add_diff₀
-
-theorem restrict_inter_add_diff (s : Set α) (ht : MeasurableSet t) :
-    μ.restrict (s ∩ t) + μ.restrict (s \ t) = μ.restrict s :=
-  restrict_inter_add_diff₀ s ht.nullMeasurableSet
-#align measure_theory.measure.restrict_inter_add_diff MeasureTheory.Measure.restrict_inter_add_diff
-
-theorem restrict_union_add_inter₀ (s : Set α) (ht : NullMeasurableSet t μ) :
-    μ.restrict (s ∪ t) + μ.restrict (s ∩ t) = μ.restrict s + μ.restrict t := by
-  rw [← restrict_inter_add_diff₀ (s ∪ t) ht, union_inter_cancel_right, union_diff_right, ←
-    restrict_inter_add_diff₀ s ht, add_comm, ← add_assoc, add_right_comm]
-#align measure_theory.measure.restrict_union_add_inter₀ MeasureTheory.Measure.restrict_union_add_inter₀
-
-theorem restrict_union_add_inter (s : Set α) (ht : MeasurableSet t) :
-    μ.restrict (s ∪ t) + μ.restrict (s ∩ t) = μ.restrict s + μ.restrict t :=
-  restrict_union_add_inter₀ s ht.nullMeasurableSet
-#align measure_theory.measure.restrict_union_add_inter MeasureTheory.Measure.restrict_union_add_inter
-
-theorem restrict_union_add_inter' (hs : MeasurableSet s) (t : Set α) :
-    μ.restrict (s ∪ t) + μ.restrict (s ∩ t) = μ.restrict s + μ.restrict t := by
-  simpa only [union_comm, inter_comm, add_comm] using restrict_union_add_inter t hs
-#align measure_theory.measure.restrict_union_add_inter' MeasureTheory.Measure.restrict_union_add_inter'
-
-theorem restrict_union₀ (h : AEDisjoint μ s t) (ht : NullMeasurableSet t μ) :
-    μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t := by
-  simp [← restrict_union_add_inter₀ s ht, restrict_zero_set h]
-#align measure_theory.measure.restrict_union₀ MeasureTheory.Measure.restrict_union₀
-
-theorem restrict_union (h : Disjoint s t) (ht : MeasurableSet t) :
-    μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t :=
-  restrict_union₀ h.aedisjoint ht.nullMeasurableSet
-#align measure_theory.measure.restrict_union MeasureTheory.Measure.restrict_union
-
-theorem restrict_union' (h : Disjoint s t) (hs : MeasurableSet s) :
-    μ.restrict (s ∪ t) = μ.restrict s + μ.restrict t := by
-  rw [union_comm, restrict_union h.symm hs, add_comm]
-#align measure_theory.measure.restrict_union' MeasureTheory.Measure.restrict_union'
-
-@[simp]
-theorem restrict_add_restrict_compl (hs : MeasurableSet s) :
-    μ.restrict s + μ.restrict sᶜ = μ := by
-  rw [← restrict_union (@disjoint_compl_right (Set α) _ _) hs.compl, union_compl_self,
-    restrict_univ]
-#align measure_theory.measure.restrict_add_restrict_compl MeasureTheory.Measure.restrict_add_restrict_compl
-
-@[simp]
-theorem restrict_compl_add_restrict (hs : MeasurableSet s) : μ.restrict sᶜ + μ.restrict s = μ :=
-  by rw [add_comm, restrict_add_restrict_compl hs]
-#align measure_theory.measure.restrict_compl_add_restrict MeasureTheory.Measure.restrict_compl_add_restrict
-
-theorem restrict_union_le (s s' : Set α) : μ.restrict (s ∪ s') ≤ μ.restrict s + μ.restrict s' := by
-  intro t ht
-  suffices μ (t ∩ s ∪ t ∩ s') ≤ μ (t ∩ s) + μ (t ∩ s') by simpa [ht, inter_union_distrib_left]
-  apply measure_union_le
-#align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_le
-
-theorem restrict_iUnion_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
-    (hm : ∀ i, NullMeasurableSet (s i) μ) {t : Set α} (ht : MeasurableSet t) :
-    μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t := by
-  simp only [restrict_apply, ht, inter_iUnion]
-  exact
-    measure_iUnion₀ (hd.mono fun i j h => h.mono (inter_subset_right _ _) (inter_subset_right _ _))
-      fun i => ht.nullMeasurableSet.inter (hm i)
-#align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_iUnion_apply_ae
-
-theorem restrict_iUnion_apply [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
-    (hm : ∀ i, MeasurableSet (s i)) {t : Set α} (ht : MeasurableSet t) :
-    μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
-  restrict_iUnion_apply_ae hd.aedisjoint (fun i => (hm i).nullMeasurableSet) ht
-#align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_iUnion_apply
-
-theorem restrict_iUnion_apply_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s)
-    {t : Set α} (ht : MeasurableSet t) : μ.restrict (⋃ i, s i) t = ⨆ i, μ.restrict (s i) t := by
-  simp only [restrict_apply ht, inter_iUnion]
-  rw [measure_iUnion_eq_iSup]
-  exacts [hd.mono_comp _ fun s₁ s₂ => inter_subset_inter_right _]
-#align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup
-
-/-- The restriction of the pushforward measure is the pushforward of the restriction. For a version
-assuming only `AEMeasurable`, see `restrict_map_of_aemeasurable`. -/
-theorem restrict_map {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
-    (μ.map f).restrict s = (μ.restrict <| f ⁻¹' s).map f :=
-  ext fun t ht => by simp [*, hf ht]
-#align measure_theory.measure.restrict_map MeasureTheory.Measure.restrict_map
-
-theorem restrict_toMeasurable (h : μ s ≠ ∞) : μ.restrict (toMeasurable μ s) = μ.restrict s :=
-  ext fun t ht => by
-    rw [restrict_apply ht, restrict_apply ht, inter_comm, measure_toMeasurable_inter ht h,
-      inter_comm]
-#align measure_theory.measure.restrict_to_measurable MeasureTheory.Measure.restrict_toMeasurable
-
-theorem restrict_eq_self_of_ae_mem {_m0 : MeasurableSpace α} ⦃s : Set α⦄ ⦃μ : Measure α⦄
-    (hs : ∀ᵐ x ∂μ, x ∈ s) : μ.restrict s = μ :=
-  calc
-    μ.restrict s = μ.restrict univ := restrict_congr_set (eventuallyEq_univ.mpr hs)
-    _ = μ := restrict_univ
-#align measure_theory.measure.restrict_eq_self_of_ae_mem MeasureTheory.Measure.restrict_eq_self_of_ae_mem
-
-theorem restrict_congr_meas (hs : MeasurableSet s) :
-    μ.restrict s = ν.restrict s ↔ ∀ (t) (_ : t ⊆ s), MeasurableSet t → μ t = ν t :=
-  ⟨fun H t hts ht => by
-    rw [← inter_eq_self_of_subset_left hts, ← restrict_apply ht, H, restrict_apply ht], fun H =>
-    ext fun t ht => by
-      rw [restrict_apply ht, restrict_apply ht, H _ (inter_subset_right _ _) (ht.inter hs)]⟩
-#align measure_theory.measure.restrict_congr_meas MeasureTheory.Measure.restrict_congr_meas
-
-theorem restrict_congr_mono (hs : s ⊆ t) (h : μ.restrict t = ν.restrict t) :
-    μ.restrict s = ν.restrict s := by
-  rw [← restrict_restrict_of_subset hs, h, restrict_restrict_of_subset hs]
-#align measure_theory.measure.restrict_congr_mono MeasureTheory.Measure.restrict_congr_mono
-
-/-- If two measures agree on all measurable subsets of `s` and `t`, then they agree on all
-measurable subsets of `s ∪ t`. -/
-theorem restrict_union_congr :
-    μ.restrict (s ∪ t) = ν.restrict (s ∪ t) ↔
-      μ.restrict s = ν.restrict s ∧ μ.restrict t = ν.restrict t := by
-  refine'
-    ⟨fun h =>
-      ⟨restrict_congr_mono (subset_union_left _ _) h,
-        restrict_congr_mono (subset_union_right _ _) h⟩,
-      _⟩
-  rintro ⟨hs, ht⟩
-  ext1 u hu
-  simp only [restrict_apply hu, inter_union_distrib_left]
-  rcases exists_measurable_superset₂ μ ν (u ∩ s) with ⟨US, hsub, hm, hμ, hν⟩
-  calc
-    μ (u ∩ s ∪ u ∩ t) = μ (US ∪ u ∩ t) :=
-      measure_union_congr_of_subset hsub hμ.le Subset.rfl le_rfl
-    _ = μ US + μ ((u ∩ t) \ US) := (measure_add_diff hm _).symm
-    _ = restrict μ s u + restrict μ t (u \ US) := by
-      simp only [restrict_apply, hu, hu.diff hm, hμ, ← inter_comm t, inter_diff_assoc]
-    _ = restrict ν s u + restrict ν t (u \ US) := by rw [hs, ht]
-    _ = ν US + ν ((u ∩ t) \ US) := by
-      simp only [restrict_apply, hu, hu.diff hm, hν, ← inter_comm t, inter_diff_assoc]
-    _ = ν (US ∪ u ∩ t) := (measure_add_diff hm _)
-    _ = ν (u ∩ s ∪ u ∩ t) := Eq.symm <| measure_union_congr_of_subset hsub hν.le Subset.rfl le_rfl
-
-#align measure_theory.measure.restrict_union_congr MeasureTheory.Measure.restrict_union_congr
-
-theorem restrict_finset_biUnion_congr {s : Finset ι} {t : ι → Set α} :
-    μ.restrict (⋃ i ∈ s, t i) = ν.restrict (⋃ i ∈ s, t i) ↔
-      ∀ i ∈ s, μ.restrict (t i) = ν.restrict (t i) := by
-  induction' s using Finset.induction_on with i s _ hs; · simp
-  simp only [forall_eq_or_imp, iUnion_iUnion_eq_or_left, Finset.mem_insert]
-  rw [restrict_union_congr, ← hs]
-#align measure_theory.measure.restrict_finset_bUnion_congr MeasureTheory.Measure.restrict_finset_biUnion_congr
-
-theorem restrict_iUnion_congr [Countable ι] {s : ι → Set α} :
-    μ.restrict (⋃ i, s i) = ν.restrict (⋃ i, s i) ↔ ∀ i, μ.restrict (s i) = ν.restrict (s i) := by
-  refine' ⟨fun h i => restrict_congr_mono (subset_iUnion _ _) h, fun h => _⟩
-  ext1 t ht
-  have D : Directed (· ⊆ ·) fun t : Finset ι => ⋃ i ∈ t, s i :=
-    Monotone.directed_le fun t₁ t₂ ht => biUnion_subset_biUnion_left ht
-  rw [iUnion_eq_iUnion_finset]
-  simp only [restrict_iUnion_apply_eq_iSup D ht, restrict_finset_biUnion_congr.2 fun i _ => h i]
-#align measure_theory.measure.restrict_Union_congr MeasureTheory.Measure.restrict_iUnion_congr
-
-theorem restrict_biUnion_congr {s : Set ι} {t : ι → Set α} (hc : s.Countable) :
-    μ.restrict (⋃ i ∈ s, t i) = ν.restrict (⋃ i ∈ s, t i) ↔
-      ∀ i ∈ s, μ.restrict (t i) = ν.restrict (t i) := by
-  haveI := hc.toEncodable
-  simp only [biUnion_eq_iUnion, SetCoe.forall', restrict_iUnion_congr]
-#align measure_theory.measure.restrict_bUnion_congr MeasureTheory.Measure.restrict_biUnion_congr
-
-theorem restrict_sUnion_congr {S : Set (Set α)} (hc : S.Countable) :
-    μ.restrict (⋃₀ S) = ν.restrict (⋃₀ S) ↔ ∀ s ∈ S, μ.restrict s = ν.restrict s := by
-  rw [sUnion_eq_biUnion, restrict_biUnion_congr hc]
-#align measure_theory.measure.restrict_sUnion_congr MeasureTheory.Measure.restrict_sUnion_congr
-
-/-- This lemma shows that `Inf` and `restrict` commute for measures. -/
-theorem restrict_sInf_eq_sInf_restrict {m0 : MeasurableSpace α} {m : Set (Measure α)}
-    (hm : m.Nonempty) (ht : MeasurableSet t) :
-    (sInf m).restrict t = sInf ((fun μ : Measure α => μ.restrict t) '' m) := by
-  ext1 s hs
-  simp_rw [sInf_apply hs, restrict_apply hs, sInf_apply (MeasurableSet.inter hs ht),
-    Set.image_image, restrict_toOuterMeasure_eq_toOuterMeasure_restrict ht, ←
-    Set.image_image _ toOuterMeasure, ← OuterMeasure.restrict_sInf_eq_sInf_restrict _ (hm.image _),
-    OuterMeasure.restrict_apply]
-#align measure_theory.measure.restrict_Inf_eq_Inf_restrict MeasureTheory.Measure.restrict_sInf_eq_sInf_restrict
-
-theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
-    (hp : ∀ᵐ x ∂μ.restrict s, p x) : ∃ x, x ∈ s ∧ p x := by
-  rw [← μ.restrict_apply_self, ← frequently_ae_mem_iff] at hs
-  exact (hs.and_eventually hp).exists
-#align measure_theory.measure.exists_mem_of_measure_ne_zero_of_ae MeasureTheory.Measure.exists_mem_of_measure_ne_zero_of_ae
-
-/-! ### Extensionality results -/
-
-
-/-- Two measures are equal if they have equal restrictions on a spanning collection of sets
-  (formulated using `Union`). -/
-theorem ext_iff_of_iUnion_eq_univ [Countable ι] {s : ι → Set α} (hs : ⋃ i, s i = univ) :
-    μ = ν ↔ ∀ i, μ.restrict (s i) = ν.restrict (s i) := by
-  rw [← restrict_iUnion_congr, hs, restrict_univ, restrict_univ]
-#align measure_theory.measure.ext_iff_of_Union_eq_univ MeasureTheory.Measure.ext_iff_of_iUnion_eq_univ
-
-alias ⟨_, ext_of_iUnion_eq_univ⟩ := ext_iff_of_iUnion_eq_univ
-#align measure_theory.measure.ext_of_Union_eq_univ MeasureTheory.Measure.ext_of_iUnion_eq_univ
-
-/-- Two measures are equal if they have equal restrictions on a spanning collection of sets
-  (formulated using `biUnion`). -/
-theorem ext_iff_of_biUnion_eq_univ {S : Set ι} {s : ι → Set α} (hc : S.Countable)
-    (hs : ⋃ i ∈ S, s i = univ) : μ = ν ↔ ∀ i ∈ S, μ.restrict (s i) = ν.restrict (s i) := by
-  rw [← restrict_biUnion_congr hc, hs, restrict_univ, restrict_univ]
-#align measure_theory.measure.ext_iff_of_bUnion_eq_univ MeasureTheory.Measure.ext_iff_of_biUnion_eq_univ
-
-alias ⟨_, ext_of_biUnion_eq_univ⟩ := ext_iff_of_biUnion_eq_univ
-#align measure_theory.measure.ext_of_bUnion_eq_univ MeasureTheory.Measure.ext_of_biUnion_eq_univ
-
-/-- Two measures are equal if they have equal restrictions on a spanning collection of sets
-  (formulated using `sUnion`). -/
-theorem ext_iff_of_sUnion_eq_univ {S : Set (Set α)} (hc : S.Countable) (hs : ⋃₀ S = univ) :
-    μ = ν ↔ ∀ s ∈ S, μ.restrict s = ν.restrict s :=
-  ext_iff_of_biUnion_eq_univ hc <| by rwa [← sUnion_eq_biUnion]
-#align measure_theory.measure.ext_iff_of_sUnion_eq_univ MeasureTheory.Measure.ext_iff_of_sUnion_eq_univ
-
-alias ⟨_, ext_of_sUnion_eq_univ⟩ := ext_iff_of_sUnion_eq_univ
-#align measure_theory.measure.ext_of_sUnion_eq_univ MeasureTheory.Measure.ext_of_sUnion_eq_univ
-
-theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = generateFrom S)
-    (hc : T.Countable) (h_inter : IsPiSystem S) (hU : ⋃₀ T = univ) (htop : ∀ t ∈ T, μ t ≠ ∞)
-    (ST_eq : ∀ t ∈ T, ∀ s ∈ S, μ (s ∩ t) = ν (s ∩ t)) (T_eq : ∀ t ∈ T, μ t = ν t) : μ = ν := by
-  refine' ext_of_sUnion_eq_univ hc hU fun t ht => _
-  ext1 u hu
-  simp only [restrict_apply hu]
-  refine' induction_on_inter h_gen h_inter _ (ST_eq t ht) _ _ hu
-  · simp only [Set.empty_inter, measure_empty]
-  · intro v hv hvt
-    have := T_eq t ht
-    rw [Set.inter_comm] at hvt ⊢
-    rwa [← measure_inter_add_diff t hv, ← measure_inter_add_diff t hv, ← hvt,
-      ENNReal.add_right_inj] at this
-    exact ne_top_of_le_ne_top (htop t ht) (measure_mono <| Set.inter_subset_left _ _)
-  · intro f hfd hfm h_eq
-    simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.iUnion hfm)] at h_eq ⊢
-    simp only [measure_iUnion hfd hfm, h_eq]
-#align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_cover
-
-/-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
-  and they are both finite on an increasing spanning sequence of sets in the π-system.
-  This lemma is formulated using `sUnion`. -/
-theorem ext_of_generateFrom_of_cover_subset {S T : Set (Set α)} (h_gen : ‹_› = generateFrom S)
-    (h_inter : IsPiSystem S) (h_sub : T ⊆ S) (hc : T.Countable) (hU : ⋃₀ T = univ)
-    (htop : ∀ s ∈ T, μ s ≠ ∞) (h_eq : ∀ s ∈ S, μ s = ν s) : μ = ν := by
-  refine' ext_of_generateFrom_of_cover h_gen hc h_inter hU htop _ fun t ht => h_eq t (h_sub ht)
-  intro t ht s hs; cases' (s ∩ t).eq_empty_or_nonempty with H H
-  · simp only [H, measure_empty]
-  · exact h_eq _ (h_inter _ hs _ (h_sub ht) H)
-#align measure_theory.measure.ext_of_generate_from_of_cover_subset MeasureTheory.Measure.ext_of_generateFrom_of_cover_subset
-
-/-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
-  and they are both finite on an increasing spanning sequence of sets in the π-system.
-  This lemma is formulated using `iUnion`.
-  `FiniteSpanningSetsIn.ext` is a reformulation of this lemma. -/
-theorem ext_of_generateFrom_of_iUnion (C : Set (Set α)) (B : ℕ → Set α) (hA : ‹_› = generateFrom C)
-    (hC : IsPiSystem C) (h1B : ⋃ i, B i = univ) (h2B : ∀ i, B i ∈ C) (hμB : ∀ i, μ (B i) ≠ ∞)
-    (h_eq : ∀ s ∈ C, μ s = ν s) : μ = ν := by
-  refine' ext_of_generateFrom_of_cover_subset hA hC _ (countable_range B) h1B _ h_eq
-  · rintro _ ⟨i, rfl⟩
-    apply h2B
-  · rintro _ ⟨i, rfl⟩
-    apply hμB
-#align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_iUnion
-
 section Sum
 
 /-- Sum of an indexed family of measures. -/
-def sum (f : ι → Measure α) : Measure α :=
+noncomputable def sum (f : ι → Measure α) : Measure α :=
   (OuterMeasure.sum fun i => (f i).toOuterMeasure).toMeasure <|
     le_trans (le_iInf fun _ => le_toOuterMeasure_caratheodory _)
       (OuterMeasure.le_sum_caratheodory _)
@@ -2067,12 +1469,6 @@ theorem sum_cond (μ ν : Measure α) : (sum fun b => cond b μ ν) = μ + ν :=
   sum_bool _
 #align measure_theory.measure.sum_cond MeasureTheory.Measure.sum_cond
 
-@[simp]
-theorem restrict_sum (μ : ι → Measure α) {s : Set α} (hs : MeasurableSet s) :
-    (sum μ).restrict s = sum fun i => (μ i).restrict s :=
-  ext fun t ht => by simp only [sum_apply, restrict_apply, ht, ht.inter hs]
-#align measure_theory.measure.restrict_sum MeasureTheory.Measure.restrict_sum
-
 -- @[simp] -- Porting note: simp can prove this
 theorem sum_of_empty [IsEmpty ι] (μ : ι → Measure α) : sum μ = 0 := by
   rw [← measure_univ_eq_zero, sum_apply _ MeasurableSet.univ, tsum_empty]
@@ -2097,26 +1493,8 @@ theorem sum_add_sum (μ ν : ℕ → Measure α) : sum μ + sum ν = sum fun n =
 
 end Sum
 
-theorem restrict_iUnion_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
-    (hm : ∀ i, NullMeasurableSet (s i) μ) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
-  ext fun t ht => by simp only [sum_apply _ ht, restrict_iUnion_apply_ae hd hm ht]
-#align measure_theory.measure.restrict_Union_ae MeasureTheory.Measure.restrict_iUnion_ae
-
-theorem restrict_iUnion [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
-    (hm : ∀ i, MeasurableSet (s i)) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
-  restrict_iUnion_ae hd.aedisjoint fun i => (hm i).nullMeasurableSet
-#align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_iUnion
-
-theorem restrict_iUnion_le [Countable ι] {s : ι → Set α} :
-    μ.restrict (⋃ i, s i) ≤ sum fun i => μ.restrict (s i) := by
-  intro t ht
-  suffices μ (⋃ i, t ∩ s i) ≤ ∑' i, μ (t ∩ s i) by simpa [ht, inter_iUnion]
-  apply measure_iUnion_le
-#align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_iUnion_le
-
 /-! ### Absolute continuity -/
 
-
 /-- We say that `μ` is absolutely continuous with respect to `ν`, or that `μ` is dominated by `ν`,
   if `ν(A) = 0` implies that `μ(A) = 0`. -/
 def AbsolutelyContinuous {_m0 : MeasurableSpace α} (μ ν : Measure α) : Prop :=
@@ -2187,11 +1565,6 @@ lemma add_right (h1 : μ ≪ ν) (ν' : Measure α) : μ ≪ ν + ν' := by
   simp only [add_toOuterMeasure, OuterMeasure.coe_add, Pi.add_apply, add_eq_zero] at hs ⊢
   exact h1 hs.1
 
-lemma restrict (h : μ ≪ ν) (s : Set α) : μ.restrict s ≪ ν.restrict s := by
-  refine Measure.AbsolutelyContinuous.mk (fun t ht htν ↦ ?_)
-  rw [restrict_apply ht] at htν ⊢
-  exact h htν
-
 end AbsolutelyContinuous
 
 theorem absolutelyContinuous_of_le_smul {μ' : Measure α} {c : ℝ≥0∞} (hμ'_le : μ' ≤ c • μ) :
@@ -2515,252 +1888,6 @@ theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : Measura
   · simp [map_of_not_aemeasurable h]
 #align measure_theory.ae_map_mem_range MeasureTheory.ae_map_mem_range
 
-@[simp]
-theorem ae_restrict_iUnion_eq [Countable ι] (s : ι → Set α) :
-    (μ.restrict (⋃ i, s i)).ae = ⨆ i, (μ.restrict (s i)).ae :=
-  le_antisymm ((ae_sum_eq fun i => μ.restrict (s i)) ▸ ae_mono restrict_iUnion_le) <|
-    iSup_le fun i => ae_mono <| restrict_mono (subset_iUnion s i) le_rfl
-#align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_iUnion_eq
-
-@[simp]
-theorem ae_restrict_union_eq (s t : Set α) :
-    (μ.restrict (s ∪ t)).ae = (μ.restrict s).ae ⊔ (μ.restrict t).ae := by
-  simp [union_eq_iUnion, iSup_bool_eq]
-#align measure_theory.ae_restrict_union_eq MeasureTheory.ae_restrict_union_eq
-
-theorem ae_restrict_biUnion_eq (s : ι → Set α) {t : Set ι} (ht : t.Countable) :
-    (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae := by
-  haveI := ht.to_subtype
-  rw [biUnion_eq_iUnion, ae_restrict_iUnion_eq, ← iSup_subtype'']
-#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_biUnion_eq
-
-theorem ae_restrict_biUnion_finset_eq (s : ι → Set α) (t : Finset ι) :
-    (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae :=
-  ae_restrict_biUnion_eq s t.countable_toSet
-#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_biUnion_finset_eq
-
-theorem ae_restrict_iUnion_iff [Countable ι] (s : ι → Set α) (p : α → Prop) :
-    (∀ᵐ x ∂μ.restrict (⋃ i, s i), p x) ↔ ∀ i, ∀ᵐ x ∂μ.restrict (s i), p x := by simp
-#align measure_theory.ae_restrict_Union_iff MeasureTheory.ae_restrict_iUnion_iff
-
-theorem ae_restrict_union_iff (s t : Set α) (p : α → Prop) :
-    (∀ᵐ x ∂μ.restrict (s ∪ t), p x) ↔ (∀ᵐ x ∂μ.restrict s, p x) ∧ ∀ᵐ x ∂μ.restrict t, p x := by simp
-#align measure_theory.ae_restrict_union_iff MeasureTheory.ae_restrict_union_iff
-
-theorem ae_restrict_biUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (p : α → Prop) :
-    (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
-  simp_rw [Filter.Eventually, ae_restrict_biUnion_eq s ht, mem_iSup]
-#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_biUnion_iff
-
-@[simp]
-theorem ae_restrict_biUnion_finset_iff (s : ι → Set α) (t : Finset ι) (p : α → Prop) :
-    (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
-  simp_rw [Filter.Eventually, ae_restrict_biUnion_finset_eq s, mem_iSup]
-#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_biUnion_finset_iff
-
-theorem ae_eq_restrict_iUnion_iff [Countable ι] (s : ι → Set α) (f g : α → δ) :
-    f =ᵐ[μ.restrict (⋃ i, s i)] g ↔ ∀ i, f =ᵐ[μ.restrict (s i)] g := by
-  simp_rw [EventuallyEq, ae_restrict_iUnion_eq, eventually_iSup]
-#align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_iUnion_iff
-
-theorem ae_eq_restrict_biUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (f g : α → δ) :
-    f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g := by
-  simp_rw [ae_restrict_biUnion_eq s ht, EventuallyEq, eventually_iSup]
-#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_biUnion_iff
-
-theorem ae_eq_restrict_biUnion_finset_iff (s : ι → Set α) (t : Finset ι) (f g : α → δ) :
-    f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g :=
-  ae_eq_restrict_biUnion_iff s t.countable_toSet f g
-#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_biUnion_finset_iff
-
-theorem ae_restrict_uIoc_eq [LinearOrder α] (a b : α) :
-    (μ.restrict (Ι a b)).ae = (μ.restrict (Ioc a b)).ae ⊔ (μ.restrict (Ioc b a)).ae := by
-  simp only [uIoc_eq_union, ae_restrict_union_eq]
-#align measure_theory.ae_restrict_uIoc_eq MeasureTheory.ae_restrict_uIoc_eq
-
-/-- See also `MeasureTheory.ae_uIoc_iff`. -/
-theorem ae_restrict_uIoc_iff [LinearOrder α] {a b : α} {P : α → Prop} :
-    (∀ᵐ x ∂μ.restrict (Ι a b), P x) ↔
-      (∀ᵐ x ∂μ.restrict (Ioc a b), P x) ∧ ∀ᵐ x ∂μ.restrict (Ioc b a), P x :=
-  by rw [ae_restrict_uIoc_eq, eventually_sup]
-#align measure_theory.ae_restrict_uIoc_iff MeasureTheory.ae_restrict_uIoc_iff
-
-theorem ae_restrict_iff {p : α → Prop} (hp : MeasurableSet { x | p x }) :
-    (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x := by
-  simp only [ae_iff, ← compl_setOf, Measure.restrict_apply hp.compl]
-  rw [iff_iff_eq]; congr with x; simp [and_comm]
-#align measure_theory.ae_restrict_iff MeasureTheory.ae_restrict_iff
-
-theorem ae_imp_of_ae_restrict {s : Set α} {p : α → Prop} (h : ∀ᵐ x ∂μ.restrict s, p x) :
-    ∀ᵐ x ∂μ, x ∈ s → p x := by
-  simp only [ae_iff] at h ⊢
-  simpa [setOf_and, inter_comm] using measure_inter_eq_zero_of_restrict h
-#align measure_theory.ae_imp_of_ae_restrict MeasureTheory.ae_imp_of_ae_restrict
-
-theorem ae_restrict_iff' {p : α → Prop} (hs : MeasurableSet s) :
-    (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x := by
-  simp only [ae_iff, ← compl_setOf, restrict_apply_eq_zero' hs]
-  rw [iff_iff_eq]; congr with x; simp [and_comm]
-#align measure_theory.ae_restrict_iff' MeasureTheory.ae_restrict_iff'
-
-theorem _root_.Filter.EventuallyEq.restrict {f g : α → δ} {s : Set α} (hfg : f =ᵐ[μ] g) :
-    f =ᵐ[μ.restrict s] g := by
-  -- note that we cannot use `ae_restrict_iff` since we do not require measurability
-  refine' hfg.filter_mono _
-  rw [Measure.ae_le_iff_absolutelyContinuous]
-  exact Measure.absolutelyContinuous_of_le Measure.restrict_le_self
-#align filter.eventually_eq.restrict Filter.EventuallyEq.restrict
-
-theorem ae_restrict_mem (hs : MeasurableSet s) : ∀ᵐ x ∂μ.restrict s, x ∈ s :=
-  (ae_restrict_iff' hs).2 (Filter.eventually_of_forall fun _ => id)
-#align measure_theory.ae_restrict_mem MeasureTheory.ae_restrict_mem
-
-theorem ae_restrict_mem₀ (hs : NullMeasurableSet s μ) : ∀ᵐ x ∂μ.restrict s, x ∈ s := by
-  rcases hs.exists_measurable_subset_ae_eq with ⟨t, hts, htm, ht_eq⟩
-  rw [← restrict_congr_set ht_eq]
-  exact (ae_restrict_mem htm).mono hts
-#align measure_theory.ae_restrict_mem₀ MeasureTheory.ae_restrict_mem₀
-
-theorem ae_restrict_of_ae {s : Set α} {p : α → Prop} (h : ∀ᵐ x ∂μ, p x) : ∀ᵐ x ∂μ.restrict s, p x :=
-  Eventually.filter_mono (ae_mono Measure.restrict_le_self) h
-#align measure_theory.ae_restrict_of_ae MeasureTheory.ae_restrict_of_ae
-
-theorem ae_restrict_iff'₀ {p : α → Prop} (hs : NullMeasurableSet s μ) :
-    (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x := by
-  refine' ⟨fun h => ae_imp_of_ae_restrict h, fun h => _⟩
-  filter_upwards [ae_restrict_mem₀ hs, ae_restrict_of_ae h] with x hx h'x using h'x hx
-#align measure_theory.ae_restrict_iff'₀ MeasureTheory.ae_restrict_iff'₀
-
-theorem ae_restrict_of_ae_restrict_of_subset {s t : Set α} {p : α → Prop} (hst : s ⊆ t)
-    (h : ∀ᵐ x ∂μ.restrict t, p x) : ∀ᵐ x ∂μ.restrict s, p x :=
-  h.filter_mono (ae_mono <| Measure.restrict_mono hst (le_refl μ))
-#align measure_theory.ae_restrict_of_ae_restrict_of_subset MeasureTheory.ae_restrict_of_ae_restrict_of_subset
-
-theorem ae_of_ae_restrict_of_ae_restrict_compl (t : Set α) {p : α → Prop}
-    (ht : ∀ᵐ x ∂μ.restrict t, p x) (htc : ∀ᵐ x ∂μ.restrict tᶜ, p x) : ∀ᵐ x ∂μ, p x :=
-  nonpos_iff_eq_zero.1 <|
-    calc
-      μ { x | ¬p x } = μ ({ x | ¬p x } ∩ t ∪ { x | ¬p x } ∩ tᶜ) := by
-        rw [← inter_union_distrib_left, union_compl_self, inter_univ]
-      _ ≤ μ ({ x | ¬p x } ∩ t) + μ ({ x | ¬p x } ∩ tᶜ) := (measure_union_le _ _)
-      _ ≤ μ.restrict t { x | ¬p x } + μ.restrict tᶜ { x | ¬p x } :=
-        (add_le_add (le_restrict_apply _ _) (le_restrict_apply _ _))
-      _ = 0 := by rw [ae_iff.1 ht, ae_iff.1 htc, zero_add]
-
-#align measure_theory.ae_of_ae_restrict_of_ae_restrict_compl MeasureTheory.ae_of_ae_restrict_of_ae_restrict_compl
-
-theorem mem_map_restrict_ae_iff {β} {s : Set α} {t : Set β} {f : α → β} (hs : MeasurableSet s) :
-    t ∈ Filter.map f (μ.restrict s).ae ↔ μ ((f ⁻¹' t)ᶜ ∩ s) = 0 := by
-  rw [mem_map, mem_ae_iff, Measure.restrict_apply' hs]
-#align measure_theory.mem_map_restrict_ae_iff MeasureTheory.mem_map_restrict_ae_iff
-
-theorem ae_smul_measure {p : α → Prop} [Monoid R] [DistribMulAction R ℝ≥0∞]
-    [IsScalarTower R ℝ≥0∞ ℝ≥0∞] (h : ∀ᵐ x ∂μ, p x) (c : R) : ∀ᵐ x ∂c • μ, p x :=
-  ae_iff.2 <| by rw [smul_apply, ae_iff.1 h, smul_zero]
-#align measure_theory.ae_smul_measure MeasureTheory.ae_smul_measure
-
-theorem ae_add_measure_iff {p : α → Prop} {ν} :
-    (∀ᵐ x ∂μ + ν, p x) ↔ (∀ᵐ x ∂μ, p x) ∧ ∀ᵐ x ∂ν, p x :=
-  add_eq_zero_iff
-#align measure_theory.ae_add_measure_iff MeasureTheory.ae_add_measure_iff
-
-theorem ae_eq_comp' {ν : Measure β} {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ)
-    (h : g =ᵐ[ν] g') (h2 : μ.map f ≪ ν) : g ∘ f =ᵐ[μ] g' ∘ f :=
-  (tendsto_ae_map hf).mono_right h2.ae_le h
-#align measure_theory.ae_eq_comp' MeasureTheory.ae_eq_comp'
-
-theorem Measure.QuasiMeasurePreserving.ae_eq_comp {ν : Measure β} {f : α → β} {g g' : β → δ}
-    (hf : QuasiMeasurePreserving f μ ν) (h : g =ᵐ[ν] g') : g ∘ f =ᵐ[μ] g' ∘ f :=
-  ae_eq_comp' hf.aemeasurable h hf.absolutelyContinuous
-#align measure_theory.measure.quasi_measure_preserving.ae_eq_comp MeasureTheory.Measure.QuasiMeasurePreserving.ae_eq_comp
-
-theorem ae_eq_comp {f : α → β} {g g' : β → δ} (hf : AEMeasurable f μ) (h : g =ᵐ[μ.map f] g') :
-    g ∘ f =ᵐ[μ] g' ∘ f :=
-  ae_eq_comp' hf h AbsolutelyContinuous.rfl
-#align measure_theory.ae_eq_comp MeasureTheory.ae_eq_comp
-
-theorem sub_ae_eq_zero {β} [AddGroup β] (f g : α → β) : f - g =ᵐ[μ] 0 ↔ f =ᵐ[μ] g := by
-  refine' ⟨fun h => h.mono fun x hx => _, fun h => h.mono fun x hx => _⟩
-  · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero] at hx
-  · rwa [Pi.sub_apply, Pi.zero_apply, sub_eq_zero]
-#align measure_theory.sub_ae_eq_zero MeasureTheory.sub_ae_eq_zero
-
-theorem le_ae_restrict : μ.ae ⊓ 𝓟 s ≤ (μ.restrict s).ae := fun _s hs =>
-  eventually_inf_principal.2 (ae_imp_of_ae_restrict hs)
-#align measure_theory.le_ae_restrict MeasureTheory.le_ae_restrict
-
-@[simp]
-theorem ae_restrict_eq (hs : MeasurableSet s) : (μ.restrict s).ae = μ.ae ⊓ 𝓟 s := by
-  ext t
-  simp only [mem_inf_principal, mem_ae_iff, restrict_apply_eq_zero' hs, compl_setOf, not_imp,
-    fun a => and_comm (a := a ∈ s) (b := ¬a ∈ t)]
-  rfl
-#align measure_theory.ae_restrict_eq MeasureTheory.ae_restrict_eq
-
--- @[simp] -- Porting note: simp can prove this
-theorem ae_restrict_eq_bot {s} : (μ.restrict s).ae = ⊥ ↔ μ s = 0 :=
-  ae_eq_bot.trans restrict_eq_zero
-#align measure_theory.ae_restrict_eq_bot MeasureTheory.ae_restrict_eq_bot
-
-theorem ae_restrict_neBot {s} : (μ.restrict s).ae.NeBot ↔ μ s ≠ 0 :=
-  neBot_iff.trans ae_restrict_eq_bot.not
-#align measure_theory.ae_restrict_ne_bot MeasureTheory.ae_restrict_neBot
-
-theorem self_mem_ae_restrict {s} (hs : MeasurableSet s) : s ∈ (μ.restrict s).ae := by
-  simp only [ae_restrict_eq hs, exists_prop, mem_principal, mem_inf_iff]
-  exact ⟨_, univ_mem, s, Subset.rfl, (univ_inter s).symm⟩
-#align measure_theory.self_mem_ae_restrict MeasureTheory.self_mem_ae_restrict
-
-/-- If two measurable sets are ae_eq then any proposition that is almost everywhere true on one
-is almost everywhere true on the other -/
-theorem ae_restrict_of_ae_eq_of_ae_restrict {s t} (hst : s =ᵐ[μ] t) {p : α → Prop} :
-    (∀ᵐ x ∂μ.restrict s, p x) → ∀ᵐ x ∂μ.restrict t, p x := by simp [Measure.restrict_congr_set hst]
-#align measure_theory.ae_restrict_of_ae_eq_of_ae_restrict MeasureTheory.ae_restrict_of_ae_eq_of_ae_restrict
-
-/-- If two measurable sets are ae_eq then any proposition that is almost everywhere true on one
-is almost everywhere true on the other -/
-theorem ae_restrict_congr_set {s t} (hst : s =ᵐ[μ] t) {p : α → Prop} :
-    (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ.restrict t, p x :=
-  ⟨ae_restrict_of_ae_eq_of_ae_restrict hst, ae_restrict_of_ae_eq_of_ae_restrict hst.symm⟩
-#align measure_theory.ae_restrict_congr_set MeasureTheory.ae_restrict_congr_set
-
-/-- A version of the **Borel-Cantelli lemma**: if `pᵢ` is a sequence of predicates such that
-`∑ μ {x | pᵢ x}` is finite, then the measure of `x` such that `pᵢ x` holds frequently as `i → ∞` (or
-equivalently, `pᵢ x` holds for infinitely many `i`) is equal to zero. -/
-theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : ∑' i, μ { x | p i x } ≠ ∞) :
-    μ { x | ∃ᶠ n in atTop, p n x } = 0 := by
-  simpa only [limsup_eq_iInf_iSup_of_nat, frequently_atTop, ← bex_def, setOf_forall,
-    setOf_exists] using measure_limsup_eq_zero hp
-#align measure_theory.measure_set_of_frequently_eq_zero MeasureTheory.measure_setOf_frequently_eq_zero
-
-/-- A version of the **Borel-Cantelli lemma**: if `sᵢ` is a sequence of sets such that
-`∑ μ sᵢ` exists, then for almost all `x`, `x` does not belong to almost all `sᵢ`. -/
-theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠ ∞) :
-    ∀ᵐ x ∂μ, ∀ᶠ n in atTop, x ∉ s n :=
-  measure_setOf_frequently_eq_zero hs
-#align measure_theory.ae_eventually_not_mem MeasureTheory.ae_eventually_not_mem
-
-lemma NullMeasurable.measure_preimage_eq_measure_restrict_preimage_of_ae_compl_eq_const
-    {β : Type*} [MeasurableSpace β] {b : β} {f : α → β} {s : Set α}
-    (f_mble : NullMeasurable f (μ.restrict s)) (hs : f =ᵐ[Measure.restrict μ sᶜ] (fun _ ↦ b))
-    {t : Set β} (t_mble : MeasurableSet t) (ht : b ∉ t) :
-    μ (f ⁻¹' t) = μ.restrict s (f ⁻¹' t) := by
-  rw [Measure.restrict_apply₀ (f_mble t_mble)]
-  simp only [EventuallyEq, Filter.Eventually, Pi.zero_apply, Measure.ae,
-             MeasurableSet.compl_iff, Filter.mem_mk, mem_setOf_eq] at hs
-  rw [Measure.restrict_apply₀] at hs
-  · apply le_antisymm _ (measure_mono (inter_subset_left _ _))
-    apply (measure_mono (Eq.symm (inter_union_compl (f ⁻¹' t) s)).le).trans
-    apply (measure_union_le _ _).trans
-    have obs : μ ((f ⁻¹' t) ∩ sᶜ) = 0 := by
-      apply le_antisymm _ (zero_le _)
-      rw [← hs]
-      apply measure_mono (inter_subset_inter_left _ _)
-      intro x hx hfx
-      simp only [mem_preimage, mem_setOf_eq] at hx hfx
-      exact ht (hfx ▸ hx)
-    simp only [obs, add_zero, le_refl]
-  · exact NullMeasurableSet.of_null hs
 
 section Intervals
 
@@ -2872,1268 +1999,14 @@ theorem Ico_ae_eq_Ioc' (ha : μ {a} = 0) (hb : μ {b} = 0) : Ico a b =ᵐ[μ] Io
 
 end Intervals
 
-section IsFiniteMeasure
-
-/-- A measure `μ` is called finite if `μ univ < ∞`. -/
-class IsFiniteMeasure (μ : Measure α) : Prop where
-  measure_univ_lt_top : μ univ < ∞
-#align measure_theory.is_finite_measure MeasureTheory.IsFiniteMeasure
-#align measure_theory.is_finite_measure.measure_univ_lt_top MeasureTheory.IsFiniteMeasure.measure_univ_lt_top
-
-theorem not_isFiniteMeasure_iff : ¬IsFiniteMeasure μ ↔ μ Set.univ = ∞ := by
-  refine' ⟨fun h => _, fun h => fun h' => h'.measure_univ_lt_top.ne h⟩
-  by_contra h'
-  exact h ⟨lt_top_iff_ne_top.mpr h'⟩
-#align measure_theory.not_is_finite_measure_iff MeasureTheory.not_isFiniteMeasure_iff
-
-instance Restrict.isFiniteMeasure (μ : Measure α) [hs : Fact (μ s < ∞)] :
-    IsFiniteMeasure (μ.restrict s) :=
-  ⟨by simpa using hs.elim⟩
-#align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.isFiniteMeasure
-
-theorem measure_lt_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s < ∞ :=
-  (measure_mono (subset_univ s)).trans_lt IsFiniteMeasure.measure_univ_lt_top
-#align measure_theory.measure_lt_top MeasureTheory.measure_lt_top
-
-instance isFiniteMeasureRestrict (μ : Measure α) (s : Set α) [h : IsFiniteMeasure μ] :
-    IsFiniteMeasure (μ.restrict s) :=
-  ⟨by simpa using measure_lt_top μ s⟩
-#align measure_theory.is_finite_measure_restrict MeasureTheory.isFiniteMeasureRestrict
-
-theorem measure_ne_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s ≠ ∞ :=
-  ne_of_lt (measure_lt_top μ s)
-#align measure_theory.measure_ne_top MeasureTheory.measure_ne_top
-
-theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet s)
-    (ht : MeasurableSet t) {ε : ℝ≥0∞} (h : μ s ≤ μ t + ε) : μ tᶜ ≤ μ sᶜ + ε := by
-  rw [measure_compl ht (measure_ne_top μ _), measure_compl hs (measure_ne_top μ _),
-    tsub_le_iff_right]
-  calc
-    μ univ = μ univ - μ s + μ s := (tsub_add_cancel_of_le <| measure_mono s.subset_univ).symm
-    _ ≤ μ univ - μ s + (μ t + ε) := (add_le_add_left h _)
-    _ = _ := by rw [add_right_comm, add_assoc]
-
-#align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_add
-
-theorem measure_compl_le_add_iff [IsFiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
-    {ε : ℝ≥0∞} : μ sᶜ ≤ μ tᶜ + ε ↔ μ t ≤ μ s + ε :=
-  ⟨fun h => compl_compl s ▸ compl_compl t ▸ measure_compl_le_add_of_le_add hs.compl ht.compl h,
-    measure_compl_le_add_of_le_add ht hs⟩
-#align measure_theory.measure_compl_le_add_iff MeasureTheory.measure_compl_le_add_iff
-
-/-- The measure of the whole space with respect to a finite measure, considered as `ℝ≥0`. -/
-def measureUnivNNReal (μ : Measure α) : ℝ≥0 :=
-  (μ univ).toNNReal
-#align measure_theory.measure_univ_nnreal MeasureTheory.measureUnivNNReal
-
-@[simp]
-theorem coe_measureUnivNNReal (μ : Measure α) [IsFiniteMeasure μ] :
-    ↑(measureUnivNNReal μ) = μ univ :=
-  ENNReal.coe_toNNReal (measure_ne_top μ univ)
-#align measure_theory.coe_measure_univ_nnreal MeasureTheory.coe_measureUnivNNReal
-
-instance isFiniteMeasureZero : IsFiniteMeasure (0 : Measure α) :=
-  ⟨by simp⟩
-#align measure_theory.is_finite_measure_zero MeasureTheory.isFiniteMeasureZero
-
-instance (priority := 50) isFiniteMeasureOfIsEmpty [IsEmpty α] : IsFiniteMeasure μ := by
-  rw [eq_zero_of_isEmpty μ]
-  infer_instance
-#align measure_theory.is_finite_measure_of_is_empty MeasureTheory.isFiniteMeasureOfIsEmpty
-
-@[simp]
-theorem measureUnivNNReal_zero : measureUnivNNReal (0 : Measure α) = 0 :=
-  rfl
-#align measure_theory.measure_univ_nnreal_zero MeasureTheory.measureUnivNNReal_zero
-
-instance isFiniteMeasureAdd [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFiniteMeasure (μ + ν) where
-  measure_univ_lt_top := by
-    rw [Measure.coe_add, Pi.add_apply, ENNReal.add_lt_top]
-    exact ⟨measure_lt_top _ _, measure_lt_top _ _⟩
-#align measure_theory.is_finite_measure_add MeasureTheory.isFiniteMeasureAdd
-
-instance isFiniteMeasureSMulNNReal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFiniteMeasure (r • μ) where
-  measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
-#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.isFiniteMeasureSMulNNReal
-
-instance IsFiniteMeasure.average : IsFiniteMeasure ((μ univ)⁻¹ • μ) where
-  measure_univ_lt_top := by
-    rw [smul_apply, smul_eq_mul, ← ENNReal.div_eq_inv_mul]
-    exact ENNReal.div_self_le_one.trans_lt ENNReal.one_lt_top
-
-instance isFiniteMeasureSMulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
-    [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [IsFiniteMeasure μ] {r : R} : IsFiniteMeasure (r • μ) := by
-  rw [← smul_one_smul ℝ≥0 r μ]
-  infer_instance
-#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.isFiniteMeasureSMulOfNNRealTower
-
-theorem isFiniteMeasure_of_le (μ : Measure α) [IsFiniteMeasure μ] (h : ν ≤ μ) : IsFiniteMeasure ν :=
-  { measure_univ_lt_top := lt_of_le_of_lt (h Set.univ MeasurableSet.univ) (measure_lt_top _ _) }
-#align measure_theory.is_finite_measure_of_le MeasureTheory.isFiniteMeasure_of_le
-
-@[instance]
-theorem Measure.isFiniteMeasure_map {m : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
-    (f : α → β) : IsFiniteMeasure (μ.map f) := by
-  by_cases hf : AEMeasurable f μ
-  · constructor
-    rw [map_apply_of_aemeasurable hf MeasurableSet.univ]
-    exact measure_lt_top μ _
-  · rw [map_of_not_aemeasurable hf]
-    exact MeasureTheory.isFiniteMeasureZero
-#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.isFiniteMeasure_map
-
-@[simp]
-theorem measureUnivNNReal_eq_zero [IsFiniteMeasure μ] : measureUnivNNReal μ = 0 ↔ μ = 0 := by
-  rw [← MeasureTheory.Measure.measure_univ_eq_zero, ← coe_measureUnivNNReal]
-  norm_cast
-#align measure_theory.measure_univ_nnreal_eq_zero MeasureTheory.measureUnivNNReal_eq_zero
-
-theorem measureUnivNNReal_pos [IsFiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureUnivNNReal μ := by
-  contrapose! hμ
-  simpa [measureUnivNNReal_eq_zero, le_zero_iff] using hμ
-#align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNNReal_pos
-
-/-- `le_of_add_le_add_left` is normally applicable to `OrderedCancelAddCommMonoid`,
-but it holds for measures with the additional assumption that μ is finite. -/
-theorem Measure.le_of_add_le_add_left [IsFiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
-  fun S B1 => ENNReal.le_of_add_le_add_left (MeasureTheory.measure_ne_top μ S) (A2 S B1)
-#align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_left
-
-theorem summable_measure_toReal [hμ : IsFiniteMeasure μ] {f : ℕ → Set α}
-    (hf₁ : ∀ i : ℕ, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
-    Summable fun x => (μ (f x)).toReal := by
-  apply ENNReal.summable_toReal
-  rw [← MeasureTheory.measure_iUnion hf₂ hf₁]
-  exact ne_of_lt (measure_lt_top _ _)
-#align measure_theory.summable_measure_to_real MeasureTheory.summable_measure_toReal
-
-theorem ae_eq_univ_iff_measure_eq [IsFiniteMeasure μ] (hs : NullMeasurableSet s μ) :
-    s =ᵐ[μ] univ ↔ μ s = μ univ := by
-  refine' ⟨measure_congr, fun h => _⟩
-  obtain ⟨t, -, ht₁, ht₂⟩ := hs.exists_measurable_subset_ae_eq
-  exact
-    ht₂.symm.trans
-      (ae_eq_of_subset_of_measure_ge (subset_univ t) (Eq.le ((measure_congr ht₂).trans h).symm) ht₁
-        (measure_ne_top μ univ))
-#align measure_theory.ae_eq_univ_iff_measure_eq MeasureTheory.ae_eq_univ_iff_measure_eq
-
-theorem ae_iff_measure_eq [IsFiniteMeasure μ] {p : α → Prop}
-    (hp : NullMeasurableSet { a | p a } μ) : (∀ᵐ a ∂μ, p a) ↔ μ { a | p a } = μ univ := by
-  rw [← ae_eq_univ_iff_measure_eq hp, eventuallyEq_univ, eventually_iff]
-#align measure_theory.ae_iff_measure_eq MeasureTheory.ae_iff_measure_eq
-
-theorem ae_mem_iff_measure_eq [IsFiniteMeasure μ] {s : Set α} (hs : NullMeasurableSet s μ) :
-    (∀ᵐ a ∂μ, a ∈ s) ↔ μ s = μ univ :=
-  ae_iff_measure_eq hs
-#align measure_theory.ae_mem_iff_measure_eq MeasureTheory.ae_mem_iff_measure_eq
-
-theorem abs_toReal_measure_sub_le_measure_symmDiff'
-    (hs : MeasurableSet s) (ht : MeasurableSet t) (hs' : μ s ≠ ∞) (ht' : μ t ≠ ∞) :
-    |(μ s).toReal - (μ t).toReal| ≤ (μ (s ∆ t)).toReal := by
-  have hst : μ (s \ t) ≠ ∞ := (measure_lt_top_of_subset (diff_subset s t) hs').ne
-  have hts : μ (t \ s) ≠ ∞ := (measure_lt_top_of_subset (diff_subset t s) ht').ne
-  suffices : (μ s).toReal - (μ t).toReal = (μ (s \ t)).toReal - (μ (t \ s)).toReal
-  · rw [this, measure_symmDiff_eq hs ht, ENNReal.toReal_add hst hts]
-    convert abs_sub (μ (s \ t)).toReal (μ (t \ s)).toReal <;> simp
-  rw [measure_diff' s ht ht', measure_diff' t hs hs',
-    ENNReal.toReal_sub_of_le measure_le_measure_union_right (measure_union_ne_top hs' ht'),
-    ENNReal.toReal_sub_of_le measure_le_measure_union_right (measure_union_ne_top ht' hs'),
-    union_comm t s]
-  abel
-
-theorem abs_toReal_measure_sub_le_measure_symmDiff [IsFiniteMeasure μ]
-    (hs : MeasurableSet s) (ht : MeasurableSet t) :
-    |(μ s).toReal - (μ t).toReal| ≤ (μ (s ∆ t)).toReal :=
-  abs_toReal_measure_sub_le_measure_symmDiff' hs ht (measure_ne_top μ s) (measure_ne_top μ t)
-
-end IsFiniteMeasure
-
-section IsProbabilityMeasure
-
-/-- A measure `μ` is called a probability measure if `μ univ = 1`. -/
-class IsProbabilityMeasure (μ : Measure α) : Prop where
-  measure_univ : μ univ = 1
-#align measure_theory.is_probability_measure MeasureTheory.IsProbabilityMeasure
-#align measure_theory.is_probability_measure.measure_univ MeasureTheory.IsProbabilityMeasure.measure_univ
-
-export MeasureTheory.IsProbabilityMeasure (measure_univ)
-
-attribute [simp] IsProbabilityMeasure.measure_univ
-
-instance (priority := 100) IsProbabilityMeasure.toIsFiniteMeasure (μ : Measure α)
-    [IsProbabilityMeasure μ] : IsFiniteMeasure μ :=
-  ⟨by simp only [measure_univ, ENNReal.one_lt_top]⟩
-#align measure_theory.is_probability_measure.to_is_finite_measure MeasureTheory.IsProbabilityMeasure.toIsFiniteMeasure
-
-theorem IsProbabilityMeasure.ne_zero (μ : Measure α) [IsProbabilityMeasure μ] : μ ≠ 0 :=
-  mt measure_univ_eq_zero.2 <| by simp [measure_univ]
-#align measure_theory.is_probability_measure.ne_zero MeasureTheory.IsProbabilityMeasure.ne_zero
-
-instance (priority := 100) IsProbabilityMeasure.neZero (μ : Measure α) [IsProbabilityMeasure μ] :
-    NeZero μ := ⟨IsProbabilityMeasure.ne_zero μ⟩
-
--- Porting note: no longer an `instance` because `inferInstance` can find it now
-theorem IsProbabilityMeasure.ae_neBot [IsProbabilityMeasure μ] : NeBot μ.ae := inferInstance
-#align measure_theory.is_probability_measure.ae_ne_bot MeasureTheory.IsProbabilityMeasure.ae_neBot
-
-theorem prob_add_prob_compl [IsProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ sᶜ = 1 :=
-  (measure_add_measure_compl h).trans measure_univ
-#align measure_theory.prob_add_prob_compl MeasureTheory.prob_add_prob_compl
-
-theorem prob_le_one [IsProbabilityMeasure μ] : μ s ≤ 1 :=
-  (measure_mono <| Set.subset_univ _).trans_eq measure_univ
-#align measure_theory.prob_le_one MeasureTheory.prob_le_one
-
--- porting note: made an `instance`, using `NeZero`
-instance isProbabilityMeasureSMul [IsFiniteMeasure μ] [NeZero μ] :
-    IsProbabilityMeasure ((μ univ)⁻¹ • μ) :=
-  ⟨ENNReal.inv_mul_cancel (NeZero.ne (μ univ)) (measure_ne_top _ _)⟩
-#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSMulₓ
-
-theorem isProbabilityMeasure_map [IsProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
-    IsProbabilityMeasure (map f μ) :=
-  ⟨by simp [map_apply_of_aemeasurable, hf]⟩
-#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasure_map
-
-@[simp]
-theorem one_le_prob_iff [IsProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
-  ⟨fun h => le_antisymm prob_le_one h, fun h => h ▸ le_refl _⟩
-#align measure_theory.one_le_prob_iff MeasureTheory.one_le_prob_iff
-
-/-- Note that this is not quite as useful as it looks because the measure takes values in `ℝ≥0∞`.
-Thus the subtraction appearing is the truncated subtraction of `ℝ≥0∞`, rather than the
-better-behaved subtraction of `ℝ`. -/
-theorem prob_compl_eq_one_sub [IsProbabilityMeasure μ] (hs : MeasurableSet s) : μ sᶜ = 1 - μ s :=
-  by simpa only [measure_univ] using measure_compl hs (measure_lt_top μ s).ne
-#align measure_theory.prob_compl_eq_one_sub MeasureTheory.prob_compl_eq_one_sub
-
-@[simp]
-theorem prob_compl_eq_zero_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
-    μ sᶜ = 0 ↔ μ s = 1 := by
-  rw [prob_compl_eq_one_sub hs, tsub_eq_zero_iff_le, one_le_prob_iff]
-#align measure_theory.prob_compl_eq_zero_iff MeasureTheory.prob_compl_eq_zero_iff
-
-@[simp]
-theorem prob_compl_eq_one_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
-    μ sᶜ = 1 ↔ μ s = 0 := by rw [← prob_compl_eq_zero_iff hs.compl, compl_compl]
-#align measure_theory.prob_compl_eq_one_iff MeasureTheory.prob_compl_eq_one_iff
-
-end IsProbabilityMeasure
-
-section NoAtoms
-
-/-- Measure `μ` *has no atoms* if the measure of each singleton is zero.
-
-NB: Wikipedia assumes that for any measurable set `s` with positive `μ`-measure,
-there exists a measurable `t ⊆ s` such that `0 < μ t < μ s`. While this implies `μ {x} = 0`,
-the converse is not true. -/
-class NoAtoms {m0 : MeasurableSpace α} (μ : Measure α) : Prop where
-  measure_singleton : ∀ x, μ {x} = 0
-#align measure_theory.has_no_atoms MeasureTheory.NoAtoms
-#align measure_theory.has_no_atoms.measure_singleton MeasureTheory.NoAtoms.measure_singleton
-
-export MeasureTheory.NoAtoms (measure_singleton)
-
-attribute [simp] measure_singleton
-
-variable [NoAtoms μ]
-
-theorem _root_.Set.Subsingleton.measure_zero (hs : s.Subsingleton) (μ : Measure α) [NoAtoms μ] :
-    μ s = 0 :=
-  hs.induction_on (p := fun s => μ s = 0) measure_empty measure_singleton
-#align set.subsingleton.measure_zero Set.Subsingleton.measure_zero
-
-theorem Measure.restrict_singleton' {a : α} : μ.restrict {a} = 0 := by
-  simp only [measure_singleton, Measure.restrict_eq_zero]
-#align measure_theory.measure.restrict_singleton' MeasureTheory.Measure.restrict_singleton'
-
-instance Measure.restrict.instNoAtoms (s : Set α) : NoAtoms (μ.restrict s) := by
-  refine' ⟨fun x => _⟩
-  obtain ⟨t, hxt, ht1, ht2⟩ := exists_measurable_superset_of_null (measure_singleton x : μ {x} = 0)
-  apply measure_mono_null hxt
-  rw [Measure.restrict_apply ht1]
-  apply measure_mono_null (inter_subset_left t s) ht2
-#align measure_theory.measure.restrict.has_no_atoms MeasureTheory.Measure.restrict.instNoAtoms
-
-theorem _root_.Set.Countable.measure_zero (h : s.Countable) (μ : Measure α) [NoAtoms μ] :
-    μ s = 0 := by
-  rw [← biUnion_of_singleton s, ← nonpos_iff_eq_zero]
-  refine' le_trans (measure_biUnion_le h _) _
-  simp
-#align set.countable.measure_zero Set.Countable.measure_zero
-
-theorem _root_.Set.Countable.ae_not_mem (h : s.Countable) (μ : Measure α) [NoAtoms μ] :
-    ∀ᵐ x ∂μ, x ∉ s := by
-  simpa only [ae_iff, Classical.not_not] using h.measure_zero μ
-#align set.countable.ae_not_mem Set.Countable.ae_not_mem
-
-lemma _root_.Set.Countable.measure_restrict_compl (h : s.Countable) (μ : Measure α) [NoAtoms μ] :
-    μ.restrict sᶜ = μ :=
-  restrict_eq_self_of_ae_mem <| h.ae_not_mem μ
-
-@[simp]
-lemma restrict_compl_singleton (a : α) : μ.restrict ({a}ᶜ) = μ :=
-  (countable_singleton _).measure_restrict_compl μ
-
-theorem _root_.Set.Finite.measure_zero (h : s.Finite) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
-  h.countable.measure_zero μ
-#align set.finite.measure_zero Set.Finite.measure_zero
-
-theorem _root_.Finset.measure_zero (s : Finset α) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
-  s.finite_toSet.measure_zero μ
-#align finset.measure_zero Finset.measure_zero
-
-theorem insert_ae_eq_self (a : α) (s : Set α) : (insert a s : Set α) =ᵐ[μ] s :=
-  union_ae_eq_right.2 <| measure_mono_null (diff_subset _ _) (measure_singleton _)
-#align measure_theory.insert_ae_eq_self MeasureTheory.insert_ae_eq_self
-
-section
-
-variable [PartialOrder α] {a b : α}
-
-theorem Iio_ae_eq_Iic : Iio a =ᵐ[μ] Iic a :=
-  Iio_ae_eq_Iic' (measure_singleton a)
-#align measure_theory.Iio_ae_eq_Iic MeasureTheory.Iio_ae_eq_Iic
-
-theorem Ioi_ae_eq_Ici : Ioi a =ᵐ[μ] Ici a :=
-  Ioi_ae_eq_Ici' (measure_singleton a)
-#align measure_theory.Ioi_ae_eq_Ici MeasureTheory.Ioi_ae_eq_Ici
-
-theorem Ioo_ae_eq_Ioc : Ioo a b =ᵐ[μ] Ioc a b :=
-  Ioo_ae_eq_Ioc' (measure_singleton b)
-#align measure_theory.Ioo_ae_eq_Ioc MeasureTheory.Ioo_ae_eq_Ioc
-
-theorem Ioc_ae_eq_Icc : Ioc a b =ᵐ[μ] Icc a b :=
-  Ioc_ae_eq_Icc' (measure_singleton a)
-#align measure_theory.Ioc_ae_eq_Icc MeasureTheory.Ioc_ae_eq_Icc
-
-theorem Ioo_ae_eq_Ico : Ioo a b =ᵐ[μ] Ico a b :=
-  Ioo_ae_eq_Ico' (measure_singleton a)
-#align measure_theory.Ioo_ae_eq_Ico MeasureTheory.Ioo_ae_eq_Ico
-
-theorem Ioo_ae_eq_Icc : Ioo a b =ᵐ[μ] Icc a b :=
-  Ioo_ae_eq_Icc' (measure_singleton a) (measure_singleton b)
-#align measure_theory.Ioo_ae_eq_Icc MeasureTheory.Ioo_ae_eq_Icc
-
-theorem Ico_ae_eq_Icc : Ico a b =ᵐ[μ] Icc a b :=
-  Ico_ae_eq_Icc' (measure_singleton b)
-#align measure_theory.Ico_ae_eq_Icc MeasureTheory.Ico_ae_eq_Icc
-
-theorem Ico_ae_eq_Ioc : Ico a b =ᵐ[μ] Ioc a b :=
-  Ico_ae_eq_Ioc' (measure_singleton a) (measure_singleton b)
-#align measure_theory.Ico_ae_eq_Ioc MeasureTheory.Ico_ae_eq_Ioc
-
-theorem restrict_Iio_eq_restrict_Iic : μ.restrict (Iio a) = μ.restrict (Iic a) :=
-  restrict_congr_set Iio_ae_eq_Iic
-
-theorem restrict_Ioi_eq_restrict_Ici : μ.restrict (Ioi a) = μ.restrict (Ici a) :=
-  restrict_congr_set Ioi_ae_eq_Ici
-
-theorem restrict_Ioo_eq_restrict_Ioc : μ.restrict (Ioo a b) = μ.restrict (Ioc a b) :=
-  restrict_congr_set Ioo_ae_eq_Ioc
-
-theorem restrict_Ioc_eq_restrict_Icc : μ.restrict (Ioc a b) = μ.restrict (Icc a b) :=
-  restrict_congr_set Ioc_ae_eq_Icc
-
-theorem restrict_Ioo_eq_restrict_Ico : μ.restrict (Ioo a b) = μ.restrict (Ico a b) :=
-  restrict_congr_set Ioo_ae_eq_Ico
-
-theorem restrict_Ioo_eq_restrict_Icc : μ.restrict (Ioo a b) = μ.restrict (Icc a b) :=
-  restrict_congr_set Ioo_ae_eq_Icc
-
-theorem restrict_Ico_eq_restrict_Icc : μ.restrict (Ico a b) = μ.restrict (Icc a b) :=
-  restrict_congr_set Ico_ae_eq_Icc
-
-theorem restrict_Ico_eq_restrict_Ioc : μ.restrict (Ico a b) = μ.restrict (Ioc a b) :=
-  restrict_congr_set Ico_ae_eq_Ioc
-
-end
-
-open Interval
-
-theorem uIoc_ae_eq_interval [LinearOrder α] {a b : α} : Ι a b =ᵐ[μ] [[a, b]] :=
-  Ioc_ae_eq_Icc
-#align measure_theory.uIoc_ae_eq_interval MeasureTheory.uIoc_ae_eq_interval
-
-end NoAtoms
-
-theorem ite_ae_eq_of_measure_zero {γ} (f : α → γ) (g : α → γ) (s : Set α) (hs_zero : μ s = 0) :
-    (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] g := by
-  have h_ss : sᶜ ⊆ { a : α | ite (a ∈ s) (f a) (g a) = g a } := fun x hx => by
-    simp [(Set.mem_compl_iff _ _).mp hx]
-  refine' measure_mono_null _ hs_zero
-  conv_rhs => rw [← compl_compl s]
-  rwa [Set.compl_subset_compl]
-#align measure_theory.ite_ae_eq_of_measure_zero MeasureTheory.ite_ae_eq_of_measure_zero
-
-theorem ite_ae_eq_of_measure_compl_zero {γ} (f : α → γ) (g : α → γ) (s : Set α)
-    (hs_zero : μ sᶜ = 0) : (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] f := by
-  change s ∈ μ.ae at hs_zero
-  filter_upwards [hs_zero]
-  intros
-  split_ifs
-  rfl
-#align measure_theory.ite_ae_eq_of_measure_compl_zero MeasureTheory.ite_ae_eq_of_measure_compl_zero
-
-namespace Measure
-
-/-- A measure is called finite at filter `f` if it is finite at some set `s ∈ f`.
-Equivalently, it is eventually finite at `s` in `f.small_sets`. -/
-def FiniteAtFilter {_m0 : MeasurableSpace α} (μ : Measure α) (f : Filter α) : Prop :=
-  ∃ s ∈ f, μ s < ∞
-#align measure_theory.measure.finite_at_filter MeasureTheory.Measure.FiniteAtFilter
-
-theorem finiteAtFilter_of_finite {_m0 : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
-    (f : Filter α) : μ.FiniteAtFilter f :=
-  ⟨univ, univ_mem, measure_lt_top μ univ⟩
-#align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilter_of_finite
-
-theorem FiniteAtFilter.exists_mem_basis {f : Filter α} (hμ : FiniteAtFilter μ f) {p : ι → Prop}
-    {s : ι → Set α} (hf : f.HasBasis p s) : ∃ i, p i ∧ μ (s i) < ∞ :=
-  (hf.exists_iff fun {_s _t} hst ht => (measure_mono hst).trans_lt ht).1 hμ
-#align measure_theory.measure.finite_at_filter.exists_mem_basis MeasureTheory.Measure.FiniteAtFilter.exists_mem_basis
-
-theorem finiteAtBot {m0 : MeasurableSpace α} (μ : Measure α) : μ.FiniteAtFilter ⊥ :=
-  ⟨∅, mem_bot, by simp only [measure_empty, WithTop.zero_lt_top]⟩
-#align measure_theory.measure.finite_at_bot MeasureTheory.Measure.finiteAtBot
-
-/-- `μ` has finite spanning sets in `C` if there is a countable sequence of sets in `C` that have
-  finite measures. This structure is a type, which is useful if we want to record extra properties
-  about the sets, such as that they are monotone.
-  `SigmaFinite` is defined in terms of this: `μ` is σ-finite if there exists a sequence of
-  finite spanning sets in the collection of all measurable sets. -/
--- @[nolint has_nonempty_instance] -- Porting note: deleted
-structure FiniteSpanningSetsIn {m0 : MeasurableSpace α} (μ : Measure α) (C : Set (Set α)) where
-  protected set : ℕ → Set α
-  protected set_mem : ∀ i, set i ∈ C
-  protected finite : ∀ i, μ (set i) < ∞
-  protected spanning : ⋃ i, set i = univ
-#align measure_theory.measure.finite_spanning_sets_in MeasureTheory.Measure.FiniteSpanningSetsIn
-#align measure_theory.measure.finite_spanning_sets_in.set MeasureTheory.Measure.FiniteSpanningSetsIn.set
-#align measure_theory.measure.finite_spanning_sets_in.set_mem MeasureTheory.Measure.FiniteSpanningSetsIn.set_mem
-#align measure_theory.measure.finite_spanning_sets_in.finite MeasureTheory.Measure.FiniteSpanningSetsIn.finite
-#align measure_theory.measure.finite_spanning_sets_in.spanning MeasureTheory.Measure.FiniteSpanningSetsIn.spanning
-
-end Measure
-
-open Measure
-
-/-- A measure `μ` is called σ-finite if there is a countable collection of sets
- `{ A i | i ∈ ℕ }` such that `μ (A i) < ∞` and `⋃ i, A i = s`. -/
-class SigmaFinite {m0 : MeasurableSpace α} (μ : Measure α) : Prop where
-  out' : Nonempty (μ.FiniteSpanningSetsIn univ)
-#align measure_theory.sigma_finite MeasureTheory.SigmaFinite
-#align measure_theory.sigma_finite.out' MeasureTheory.SigmaFinite.out'
-
-theorem sigmaFinite_iff : SigmaFinite μ ↔ Nonempty (μ.FiniteSpanningSetsIn univ) :=
-  ⟨fun h => h.1, fun h => ⟨h⟩⟩
-#align measure_theory.sigma_finite_iff MeasureTheory.sigmaFinite_iff
-
-theorem SigmaFinite.out (h : SigmaFinite μ) : Nonempty (μ.FiniteSpanningSetsIn univ) :=
-  h.1
-#align measure_theory.sigma_finite.out MeasureTheory.SigmaFinite.out
-
-/-- If `μ` is σ-finite it has finite spanning sets in the collection of all measurable sets. -/
-def Measure.toFiniteSpanningSetsIn (μ : Measure α) [h : SigmaFinite μ] :
-    μ.FiniteSpanningSetsIn { s | MeasurableSet s } where
-  set n := toMeasurable μ (h.out.some.set n)
-  set_mem n := measurableSet_toMeasurable _ _
-  finite n := by
-    rw [measure_toMeasurable]
-    exact h.out.some.finite n
-  spanning := eq_univ_of_subset (iUnion_mono fun n => subset_toMeasurable _ _) h.out.some.spanning
-#align measure_theory.measure.to_finite_spanning_sets_in MeasureTheory.Measure.toFiniteSpanningSetsIn
-
-/-- A noncomputable way to get a monotone collection of sets that span `univ` and have finite
-  measure using `Classical.choose`. This definition satisfies monotonicity in addition to all other
-  properties in `SigmaFinite`. -/
-def spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) : Set α :=
-  Accumulate μ.toFiniteSpanningSetsIn.set i
-#align measure_theory.spanning_sets MeasureTheory.spanningSets
-
-theorem monotone_spanningSets (μ : Measure α) [SigmaFinite μ] : Monotone (spanningSets μ) :=
-  monotone_accumulate
-#align measure_theory.monotone_spanning_sets MeasureTheory.monotone_spanningSets
-
-theorem measurable_spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
-    MeasurableSet (spanningSets μ i) :=
-  MeasurableSet.iUnion fun j => MeasurableSet.iUnion fun _ => μ.toFiniteSpanningSetsIn.set_mem j
-#align measure_theory.measurable_spanning_sets MeasureTheory.measurable_spanningSets
-
-theorem measure_spanningSets_lt_top (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
-    μ (spanningSets μ i) < ∞ :=
-  measure_biUnion_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.finite j).ne
-#align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_top
-
-theorem iUnion_spanningSets (μ : Measure α) [SigmaFinite μ] : ⋃ i : ℕ, spanningSets μ i = univ :=
-  by simp_rw [spanningSets, iUnion_accumulate, μ.toFiniteSpanningSetsIn.spanning]
-#align measure_theory.Union_spanning_sets MeasureTheory.iUnion_spanningSets
-
-theorem isCountablySpanning_spanningSets (μ : Measure α) [SigmaFinite μ] :
-    IsCountablySpanning (range (spanningSets μ)) :=
-  ⟨spanningSets μ, mem_range_self, iUnion_spanningSets μ⟩
-#align measure_theory.is_countably_spanning_spanning_sets MeasureTheory.isCountablySpanning_spanningSets
-
-/-- `spanningSetsIndex μ x` is the least `n : ℕ` such that `x ∈ spanningSets μ n`. -/
-def spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) : ℕ :=
-  Nat.find <| iUnion_eq_univ_iff.1 (iUnion_spanningSets μ) x
-#align measure_theory.spanning_sets_index MeasureTheory.spanningSetsIndex
-
-theorem measurable_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] :
-    Measurable (spanningSetsIndex μ) :=
-  measurable_find _ <| measurable_spanningSets μ
-#align measure_theory.measurable_spanning_sets_index MeasureTheory.measurable_spanningSetsIndex
-
-theorem preimage_spanningSetsIndex_singleton (μ : Measure α) [SigmaFinite μ] (n : ℕ) :
-    spanningSetsIndex μ ⁻¹' {n} = disjointed (spanningSets μ) n :=
-  preimage_find_eq_disjointed _ _ _
-#align measure_theory.preimage_spanning_sets_index_singleton MeasureTheory.preimage_spanningSetsIndex_singleton
-
-theorem spanningSetsIndex_eq_iff (μ : Measure α) [SigmaFinite μ] {x : α} {n : ℕ} :
-    spanningSetsIndex μ x = n ↔ x ∈ disjointed (spanningSets μ) n := by
-  convert Set.ext_iff.1 (preimage_spanningSetsIndex_singleton μ n) x
-#align measure_theory.spanning_sets_index_eq_iff MeasureTheory.spanningSetsIndex_eq_iff
-
-theorem mem_disjointed_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) :
-    x ∈ disjointed (spanningSets μ) (spanningSetsIndex μ x) :=
-  (spanningSetsIndex_eq_iff μ).1 rfl
-#align measure_theory.mem_disjointed_spanning_sets_index MeasureTheory.mem_disjointed_spanningSetsIndex
-
-theorem mem_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) :
-    x ∈ spanningSets μ (spanningSetsIndex μ x) :=
-  disjointed_subset _ _ (mem_disjointed_spanningSetsIndex μ x)
-#align measure_theory.mem_spanning_sets_index MeasureTheory.mem_spanningSetsIndex
-
-theorem mem_spanningSets_of_index_le (μ : Measure α) [SigmaFinite μ] (x : α) {n : ℕ}
-    (hn : spanningSetsIndex μ x ≤ n) : x ∈ spanningSets μ n :=
-  monotone_spanningSets μ hn (mem_spanningSetsIndex μ x)
-#align measure_theory.mem_spanning_sets_of_index_le MeasureTheory.mem_spanningSets_of_index_le
-
-theorem eventually_mem_spanningSets (μ : Measure α) [SigmaFinite μ] (x : α) :
-    ∀ᶠ n in atTop, x ∈ spanningSets μ n :=
-  eventually_atTop.2 ⟨spanningSetsIndex μ x, fun _ => mem_spanningSets_of_index_le μ x⟩
-#align measure_theory.eventually_mem_spanning_sets MeasureTheory.eventually_mem_spanningSets
-
-namespace Measure
-
-theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
-    ⨆ i, μ.restrict (spanningSets μ i) s = μ s :=
-  calc
-    ⨆ i, μ.restrict (spanningSets μ i) s = μ.restrict (⋃ i, spanningSets μ i) s :=
-      (restrict_iUnion_apply_eq_iSup (monotone_spanningSets μ).directed_le hs).symm
-    _ = μ s := by rw [iUnion_spanningSets, restrict_univ]
-#align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.iSup_restrict_spanningSets
-
-/-- In a σ-finite space, any measurable set of measure `> r` contains a measurable subset of
-finite measure `> r`. -/
-theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : MeasurableSet s)
-    (h's : r < μ s) : ∃ t, MeasurableSet t ∧ t ⊆ s ∧ r < μ t ∧ μ t < ∞ := by
-  rw [← iSup_restrict_spanningSets hs,
-    @lt_iSup_iff _ _ _ r fun i : ℕ => μ.restrict (spanningSets μ i) s] at h's
-  rcases h's with ⟨n, hn⟩
-  simp only [restrict_apply hs] at hn
-  refine'
-    ⟨s ∩ spanningSets μ n, hs.inter (measurable_spanningSets _ _), inter_subset_left _ _, hn, _⟩
-  exact (measure_mono (inter_subset_right _ _)).trans_lt (measure_spanningSets_lt_top _ _)
-#align measure_theory.measure.exists_subset_measure_lt_top MeasureTheory.Measure.exists_subset_measure_lt_top
-
-/-- A set in a σ-finite space has zero measure if and only if its intersection with
-all members of the countable family of finite measure spanning sets has zero measure. -/
-theorem forall_measure_inter_spanningSets_eq_zero [MeasurableSpace α] {μ : Measure α}
-    [SigmaFinite μ] (s : Set α) : (∀ n, μ (s ∩ spanningSets μ n) = 0) ↔ μ s = 0 := by
-  nth_rw 2 [show s = ⋃ n, s ∩ spanningSets μ n by
-      rw [← inter_iUnion, iUnion_spanningSets, inter_univ] ]
-  rw [measure_iUnion_null_iff]
-#align measure_theory.measure.forall_measure_inter_spanning_sets_eq_zero MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zero
-
-/-- A set in a σ-finite space has positive measure if and only if its intersection with
-some member of the countable family of finite measure spanning sets has positive measure. -/
-theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure α} [SigmaFinite μ]
-    (s : Set α) : (∃ n, 0 < μ (s ∩ spanningSets μ n)) ↔ 0 < μ s := by
-  rw [← not_iff_not]
-  simp only [not_exists, not_lt, nonpos_iff_eq_zero]
-  exact forall_measure_inter_spanningSets_eq_zero s
-#align measure_theory.measure.exists_measure_inter_spanning_sets_pos MeasureTheory.Measure.exists_measure_inter_spanningSets_pos
-
-/-- If the union of a.e.-disjoint null-measurable sets has finite measure, then there are only
-finitely many members of the union whose measure exceeds any given positive number. -/
-theorem finite_const_le_meas_of_disjoint_iUnion₀ {ι : Type*} [MeasurableSpace α] (μ : Measure α)
-    {ε : ℝ≥0∞} (ε_pos : 0 < ε) {As : ι → Set α} (As_mble : ∀ i : ι, NullMeasurableSet (As i) μ)
-    (As_disj : Pairwise (AEDisjoint μ on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
-    Set.Finite { i : ι | ε ≤ μ (As i) } :=
-  ENNReal.finite_const_le_of_tsum_ne_top
-    (ne_top_of_le_ne_top Union_As_finite (tsum_meas_le_meas_iUnion_of_disjoint₀ μ As_mble As_disj))
-    ε_pos.ne'
-
-/-- If the union of disjoint measurable sets has finite measure, then there are only
-finitely many members of the union whose measure exceeds any given positive number. -/
-theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type*} [MeasurableSpace α] (μ : Measure α)
-    {ε : ℝ≥0∞} (ε_pos : 0 < ε) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
-    (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
-    Set.Finite { i : ι | ε ≤ μ (As i) } :=
-  finite_const_le_meas_of_disjoint_iUnion₀ μ ε_pos (fun i ↦ (As_mble i).nullMeasurableSet)
-    (fun _ _ h ↦ Disjoint.aedisjoint (As_disj h)) Union_As_finite
-#align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion
-
-/-- If all elements of an infinite set have measure uniformly separated from zero,
-then the set has infinite measure. -/
-theorem _root_.Set.Infinite.meas_eq_top [MeasurableSingletonClass α]
-    {s : Set α} (hs : s.Infinite) (h' : ∃ ε, ε ≠ 0 ∧ ∀ x ∈ s, ε ≤ μ {x}) : μ s = ∞ := top_unique <|
-  let ⟨ε, hne, hε⟩ := h'; have := hs.to_subtype
-  calc
-    ∞ = ∑' _ : s, ε := (ENNReal.tsum_const_eq_top_of_ne_zero hne).symm
-    _ ≤ ∑' x : s, μ {x.1} := ENNReal.tsum_le_tsum fun x ↦ hε x x.2
-    _ ≤ μ (⋃ x : s, {x.1}) := tsum_meas_le_meas_iUnion_of_disjoint _
-      (fun _ ↦ MeasurableSet.singleton _) fun x y hne ↦ by simpa [Subtype.val_inj]
-    _ = μ s := by simp
-
-/-- If the union of a.e.-disjoint null-measurable sets has finite measure, then there are only
-countably many members of the union whose measure is positive. -/
-theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top₀ {ι : Type*} [MeasurableSpace α]
-    (μ : Measure α) {As : ι → Set α} (As_mble : ∀ i : ι, NullMeasurableSet (As i) μ)
-    (As_disj : Pairwise (AEDisjoint μ on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
-    Set.Countable { i : ι | 0 < μ (As i) } := by
-  set posmeas := { i : ι | 0 < μ (As i) } with posmeas_def
-  rcases exists_seq_strictAnti_tendsto' (zero_lt_one : (0 : ℝ≥0∞) < 1) with
-    ⟨as, _, as_mem, as_lim⟩
-  set fairmeas := fun n : ℕ => { i : ι | as n ≤ μ (As i) }
-  have countable_union : posmeas = ⋃ n, fairmeas n := by
-    have fairmeas_eq : ∀ n, fairmeas n = (fun i => μ (As i)) ⁻¹' Ici (as n) := fun n => by
-      simp only []
-      rfl
-    simpa only [fairmeas_eq, posmeas_def, ← preimage_iUnion,
-      iUnion_Ici_eq_Ioi_of_lt_of_tendsto (0 : ℝ≥0∞) (fun n => (as_mem n).1) as_lim]
-  rw [countable_union]
-  refine' countable_iUnion fun n => Finite.countable _
-  refine' finite_const_le_meas_of_disjoint_iUnion₀ μ (as_mem n).1 As_mble As_disj Union_As_finite
-
-/-- If the union of disjoint measurable sets has finite measure, then there are only
-countably many members of the union whose measure is positive. -/
-theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type*} [MeasurableSpace α]
-    (μ : Measure α) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
-    (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
-    Set.Countable { i : ι | 0 < μ (As i) } :=
-  countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top₀ μ (fun i ↦ (As_mble i).nullMeasurableSet)
-    ((fun _ _ h ↦ Disjoint.aedisjoint (As_disj h))) Union_As_finite
-#align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top
-
-/-- In a σ-finite space, among disjoint null-measurable sets, only countably many can have positive
-measure. -/
-theorem countable_meas_pos_of_disjoint_iUnion₀ {ι : Type*} [MeasurableSpace α] {μ : Measure α}
-    [SigmaFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, NullMeasurableSet (As i) μ)
-    (As_disj : Pairwise (AEDisjoint μ on As)) :
-    Set.Countable { i : ι | 0 < μ (As i) } := by
-  have obs : { i : ι | 0 < μ (As i) } ⊆ ⋃ n, { i : ι | 0 < μ (As i ∩ spanningSets μ n) } := by
-    intro i i_in_nonzeroes
-    by_contra con
-    simp only [mem_iUnion, mem_setOf_eq, not_exists, not_lt, nonpos_iff_eq_zero] at *
-    simp [(forall_measure_inter_spanningSets_eq_zero _).mp con] at i_in_nonzeroes
-  apply Countable.mono obs
-  refine' countable_iUnion fun n => countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top₀ μ _ _ _
-  · exact fun i ↦ NullMeasurableSet.inter (As_mble i)
-      (measurable_spanningSets μ n).nullMeasurableSet
-  · exact fun i j i_ne_j ↦ (As_disj i_ne_j).mono
-      (inter_subset_left (As i) (spanningSets μ n)) (inter_subset_left (As j) (spanningSets μ n))
-  · refine' (lt_of_le_of_lt (measure_mono _) (measure_spanningSets_lt_top μ n)).ne
-    exact iUnion_subset fun i => inter_subset_right _ _
-
-/-- In a σ-finite space, among disjoint measurable sets, only countably many can have positive
-measure. -/
-theorem countable_meas_pos_of_disjoint_iUnion {ι : Type*} [MeasurableSpace α] {μ : Measure α}
-    [SigmaFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
-    (As_disj : Pairwise (Disjoint on As)) : Set.Countable { i : ι | 0 < μ (As i) } :=
-  countable_meas_pos_of_disjoint_iUnion₀ (fun i ↦ (As_mble i).nullMeasurableSet)
-    ((fun _ _ h ↦ Disjoint.aedisjoint (As_disj h)))
-#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion
-
-theorem countable_meas_level_set_pos₀ {α β : Type*} [MeasurableSpace α] {μ : Measure α}
-    [SigmaFinite μ] [MeasurableSpace β] [MeasurableSingletonClass β] {g : α → β}
-    (g_mble : NullMeasurable g μ) : Set.Countable { t : β | 0 < μ { a : α | g a = t } } := by
-  have level_sets_disjoint : Pairwise (Disjoint on fun t : β => { a : α | g a = t }) :=
-    fun s t hst => Disjoint.preimage g (disjoint_singleton.mpr hst)
-  exact Measure.countable_meas_pos_of_disjoint_iUnion₀
-    (fun b => g_mble (‹MeasurableSingletonClass β›.measurableSet_singleton b))
-    ((fun _ _ h ↦ Disjoint.aedisjoint (level_sets_disjoint h)))
-
-theorem countable_meas_level_set_pos {α β : Type*} [MeasurableSpace α] {μ : Measure α}
-    [SigmaFinite μ] [MeasurableSpace β] [MeasurableSingletonClass β] {g : α → β}
-    (g_mble : Measurable g) : Set.Countable { t : β | 0 < μ { a : α | g a = t } } :=
-  countable_meas_level_set_pos₀ g_mble.nullMeasurable
-#align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
-
-/-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
-superset `toMeasurable μ t` (which has the same measure as `t`) satisfies,
-for any measurable set `s`, the equality `μ (toMeasurable μ t ∩ s) = μ (t ∩ s)`. -/
-theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s) {t : Set α}
-    {v : ℕ → Set α} (hv : t ⊆ ⋃ n, v n) (h'v : ∀ n, μ (t ∩ v n) ≠ ∞) :
-    μ (toMeasurable μ t ∩ s) = μ (t ∩ s) := by
-  -- we show that there is a measurable superset of `t` satisfying the conclusion for any
-  -- measurable set `s`. It is built on each member of a spanning family using `toMeasurable`
-  -- (which is well behaved for finite measure sets thanks to `measure_toMeasurable_inter`), and
-  -- the desired property passes to the union.
-  have A : ∃ t', t' ⊇ t ∧ MeasurableSet t' ∧ ∀ u, MeasurableSet u → μ (t' ∩ u) = μ (t ∩ u) := by
-    let w n := toMeasurable μ (t ∩ v n)
-    have hw : ∀ n, μ (w n) < ∞ := by
-      intro n
-      simp_rw [measure_toMeasurable]
-      exact (h'v n).lt_top
-    set t' := ⋃ n, toMeasurable μ (t ∩ disjointed w n) with ht'
-    have tt' : t ⊆ t' :=
-      calc
-        t ⊆ ⋃ n, t ∩ disjointed w n := by
-          rw [← inter_iUnion, iUnion_disjointed, inter_iUnion]
-          intro x hx
-          rcases mem_iUnion.1 (hv hx) with ⟨n, hn⟩
-          refine' mem_iUnion.2 ⟨n, _⟩
-          have : x ∈ t ∩ v n := ⟨hx, hn⟩
-          exact ⟨hx, subset_toMeasurable μ _ this⟩
-        _ ⊆ ⋃ n, toMeasurable μ (t ∩ disjointed w n) :=
-          iUnion_mono fun n => subset_toMeasurable _ _
-    refine' ⟨t', tt', MeasurableSet.iUnion fun n => measurableSet_toMeasurable μ _, fun u hu => _⟩
-    apply le_antisymm _ (measure_mono (inter_subset_inter tt' Subset.rfl))
-    calc
-      μ (t' ∩ u) ≤ ∑' n, μ (toMeasurable μ (t ∩ disjointed w n) ∩ u) := by
-        rw [ht', iUnion_inter]
-        exact measure_iUnion_le _
-      _ = ∑' n, μ (t ∩ disjointed w n ∩ u) := by
-        congr 1
-        ext1 n
-        apply measure_toMeasurable_inter hu
-        apply ne_of_lt
-        calc
-          μ (t ∩ disjointed w n) ≤ μ (t ∩ w n) :=
-            measure_mono (inter_subset_inter_right _ (disjointed_le w n))
-          _ ≤ μ (w n) := (measure_mono (inter_subset_right _ _))
-          _ < ∞ := hw n
-      _ = ∑' n, μ.restrict (t ∩ u) (disjointed w n) := by
-        congr 1
-        ext1 n
-        rw [restrict_apply, inter_comm t _, inter_assoc]
-        refine MeasurableSet.disjointed (fun n => ?_) n
-        exact measurableSet_toMeasurable _ _
-      _ = μ.restrict (t ∩ u) (⋃ n, disjointed w n) := by
-        rw [measure_iUnion]
-        · exact disjoint_disjointed _
-        · intro i
-          refine MeasurableSet.disjointed (fun n => ?_) i
-          exact measurableSet_toMeasurable _ _
-      _ ≤ μ.restrict (t ∩ u) univ := (measure_mono (subset_univ _))
-      _ = μ (t ∩ u) := by rw [restrict_apply MeasurableSet.univ, univ_inter]
-  -- thanks to the definition of `toMeasurable`, the previous property will also be shared
-  -- by `toMeasurable μ t`, which is enough to conclude the proof.
-  rw [toMeasurable]
-  split_ifs with ht
-  · apply measure_congr
-    exact ae_eq_set_inter ht.choose_spec.2.2 (ae_eq_refl _)
-  · exact A.choose_spec.2.2 s hs
-#align measure_theory.measure.measure_to_measurable_inter_of_cover MeasureTheory.Measure.measure_toMeasurable_inter_of_cover
-
-theorem restrict_toMeasurable_of_cover {s : Set α} {v : ℕ → Set α} (hv : s ⊆ ⋃ n, v n)
-    (h'v : ∀ n, μ (s ∩ v n) ≠ ∞) : μ.restrict (toMeasurable μ s) = μ.restrict s :=
-  ext fun t ht => by
-    simp only [restrict_apply ht, inter_comm t, measure_toMeasurable_inter_of_cover ht hv h'v]
-#align measure_theory.measure.restrict_to_measurable_of_cover MeasureTheory.Measure.restrict_toMeasurable_of_cover
-
-/-- The measurable superset `toMeasurable μ t` of `t` (which has the same measure as `t`)
-satisfies, for any measurable set `s`, the equality `μ (toMeasurable μ t ∩ s) = μ (t ∩ s)`.
-This only holds when `μ` is σ-finite. For a version without this assumption (but requiring
-that `t` has finite measure), see `measure_toMeasurable_inter`. -/
-theorem measure_toMeasurable_inter_of_sigmaFinite [SigmaFinite μ] {s : Set α} (hs : MeasurableSet s)
-    (t : Set α) : μ (toMeasurable μ t ∩ s) = μ (t ∩ s) := by
-  have : t ⊆ ⋃ n, spanningSets μ n := by
-    rw [iUnion_spanningSets]
-    exact subset_univ _
-  refine measure_toMeasurable_inter_of_cover hs this fun n => ne_of_lt ?_
-  calc
-    μ (t ∩ spanningSets μ n) ≤ μ (spanningSets μ n) := measure_mono (inter_subset_right _ _)
-    _ < ∞ := measure_spanningSets_lt_top μ n
-
-#align measure_theory.measure.measure_to_measurable_inter_of_sigma_finite MeasureTheory.Measure.measure_toMeasurable_inter_of_sigmaFinite
-
-@[simp]
-theorem restrict_toMeasurable_of_sigmaFinite [SigmaFinite μ] (s : Set α) :
-    μ.restrict (toMeasurable μ s) = μ.restrict s :=
-  ext fun t ht => by
-    rw [restrict_apply ht, inter_comm t, measure_toMeasurable_inter_of_sigmaFinite ht,
-      restrict_apply ht, inter_comm t]
-#align measure_theory.measure.restrict_to_measurable_of_sigma_finite MeasureTheory.Measure.restrict_toMeasurable_of_sigmaFinite
-
-namespace FiniteSpanningSetsIn
-
-variable {C D : Set (Set α)}
-
-/-- If `μ` has finite spanning sets in `C` and `C ∩ {s | μ s < ∞} ⊆ D` then `μ` has finite spanning
-sets in `D`. -/
-protected def mono' (h : μ.FiniteSpanningSetsIn C) (hC : C ∩ { s | μ s < ∞ } ⊆ D) :
-    μ.FiniteSpanningSetsIn D :=
-  ⟨h.set, fun i => hC ⟨h.set_mem i, h.finite i⟩, h.finite, h.spanning⟩
-#align measure_theory.measure.finite_spanning_sets_in.mono' MeasureTheory.Measure.FiniteSpanningSetsIn.mono'
-
-/-- If `μ` has finite spanning sets in `C` and `C ⊆ D` then `μ` has finite spanning sets in `D`. -/
-protected def mono (h : μ.FiniteSpanningSetsIn C) (hC : C ⊆ D) : μ.FiniteSpanningSetsIn D :=
-  h.mono' fun _s hs => hC hs.1
-#align measure_theory.measure.finite_spanning_sets_in.mono MeasureTheory.Measure.FiniteSpanningSetsIn.mono
-
-/-- If `μ` has finite spanning sets in the collection of measurable sets `C`, then `μ` is σ-finite.
--/
-protected theorem sigmaFinite (h : μ.FiniteSpanningSetsIn C) : SigmaFinite μ :=
-  ⟨⟨h.mono <| subset_univ C⟩⟩
-#align measure_theory.measure.finite_spanning_sets_in.sigma_finite MeasureTheory.Measure.FiniteSpanningSetsIn.sigmaFinite
-
-/-- An extensionality for measures. It is `ext_of_generateFrom_of_iUnion` formulated in terms of
-`FiniteSpanningSetsIn`. -/
-protected theorem ext {ν : Measure α} {C : Set (Set α)} (hA : ‹_› = generateFrom C)
-    (hC : IsPiSystem C) (h : μ.FiniteSpanningSetsIn C) (h_eq : ∀ s ∈ C, μ s = ν s) : μ = ν :=
-  ext_of_generateFrom_of_iUnion C _ hA hC h.spanning h.set_mem (fun i => (h.finite i).ne) h_eq
-#align measure_theory.measure.finite_spanning_sets_in.ext MeasureTheory.Measure.FiniteSpanningSetsIn.ext
-
-protected theorem isCountablySpanning (h : μ.FiniteSpanningSetsIn C) : IsCountablySpanning C :=
-  ⟨h.set, h.set_mem, h.spanning⟩
-#align measure_theory.measure.finite_spanning_sets_in.is_countably_spanning MeasureTheory.Measure.FiniteSpanningSetsIn.isCountablySpanning
-
-end FiniteSpanningSetsIn
-
-theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : ∀ s ∈ S, μ s < ∞)
-    (hU : ⋃₀ S = univ) : SigmaFinite μ := by
-  obtain ⟨s, hμ, hs⟩ : ∃ s : ℕ → Set α, (∀ n, μ (s n) < ∞) ∧ ⋃ n, s n = univ
-  exact (@exists_seq_cover_iff_countable _ (fun x => μ x < ⊤) ⟨∅, by simp⟩).2 ⟨S, hc, hμ, hU⟩
-  exact ⟨⟨⟨fun n => s n, fun _ => trivial, hμ, hs⟩⟩⟩
-#align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countable
-
-/-- Given measures `μ`, `ν` where `ν ≤ μ`, `FiniteSpanningSetsIn.ofLe` provides the induced
-`FiniteSpanningSet` with respect to `ν` from a `FiniteSpanningSet` with respect to `μ`. -/
-def FiniteSpanningSetsIn.ofLE (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteSpanningSetsIn C) :
-    ν.FiniteSpanningSetsIn C where
-  set := S.set
-  set_mem := S.set_mem
-  finite n := lt_of_le_of_lt (le_iff'.1 h _) (S.finite n)
-  spanning := S.spanning
-#align measure_theory.measure.finite_spanning_sets_in.of_le MeasureTheory.Measure.FiniteSpanningSetsIn.ofLE
-
-theorem sigmaFinite_of_le (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ) : SigmaFinite ν :=
-  ⟨hs.out.map <| FiniteSpanningSetsIn.ofLE h⟩
-#align measure_theory.measure.sigma_finite_of_le MeasureTheory.Measure.sigmaFinite_of_le
-
-@[simp] lemma add_right_inj (μ ν₁ ν₂ : Measure α) [SigmaFinite μ] :
-    μ + ν₁ = μ + ν₂ ↔ ν₁ = ν₂ := by
-  refine ⟨fun h ↦ ?_, fun h ↦ by rw [h]⟩
-  rw [ext_iff_of_iUnion_eq_univ (iUnion_spanningSets μ)]
-  intro i
-  ext s hs
-  rw [← ENNReal.add_right_inj (measure_mono (inter_subset_right s _) |>.trans_lt <|
-    measure_spanningSets_lt_top μ i).ne]
-  simp only [ext_iff', add_toOuterMeasure, OuterMeasure.coe_add, Pi.add_apply] at h
-  simp [hs, h]
-
-@[simp] lemma add_left_inj (μ ν₁ ν₂ : Measure α) [SigmaFinite μ] :
-    ν₁ + μ = ν₂ + μ ↔ ν₁ = ν₂ := by rw [add_comm _ μ, add_comm _ μ, μ.add_right_inj]
-
-end Measure
-
-/-- Every finite measure is σ-finite. -/
-instance (priority := 100) IsFiniteMeasure.toSigmaFinite {_m0 : MeasurableSpace α} (μ : Measure α)
-    [IsFiniteMeasure μ] : SigmaFinite μ :=
-  ⟨⟨⟨fun _ => univ, fun _ => trivial, fun _ => measure_lt_top μ _, iUnion_const _⟩⟩⟩
-#align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.IsFiniteMeasure.toSigmaFinite
-
-theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFiniteMeasure μ := by
-  refine'
-    ⟨fun h => ⟨_⟩, fun h => by
-      haveI := h
-      infer_instance⟩
-  haveI : SigmaFinite μ := h
-  let s := spanningSets μ
-  have hs_univ : ⋃ i, s i = Set.univ := iUnion_spanningSets μ
-  have hs_meas : ∀ i, MeasurableSet[⊥] (s i) := measurable_spanningSets μ
-  simp_rw [MeasurableSpace.measurableSet_bot_iff] at hs_meas
-  by_cases h_univ_empty : Set.univ = ∅
-  · rw [h_univ_empty, @measure_empty α ⊥]
-    exact ENNReal.zero_ne_top.lt_top
-  obtain ⟨i, hsi⟩ : ∃ i, s i = Set.univ := by
-    by_contra' h_not_univ
-    have h_empty : ∀ i, s i = ∅ := by simpa [h_not_univ] using hs_meas
-    simp only [h_empty, iUnion_empty] at hs_univ
-    exact h_univ_empty hs_univ.symm
-  rw [← hsi]
-  exact measure_spanningSets_lt_top μ i
-#align measure_theory.sigma_finite_bot_iff MeasureTheory.sigmaFinite_bot_iff
-
-instance Restrict.sigmaFinite (μ : Measure α) [SigmaFinite μ] (s : Set α) :
-    SigmaFinite (μ.restrict s) := by
-  refine' ⟨⟨⟨spanningSets μ, fun _ => trivial, fun i => _, iUnion_spanningSets μ⟩⟩⟩
-  rw [Measure.restrict_apply (measurable_spanningSets μ i)]
-  exact (measure_mono <| inter_subset_left _ _).trans_lt (measure_spanningSets_lt_top μ i)
-#align measure_theory.restrict.sigma_finite MeasureTheory.Restrict.sigmaFinite
-
-instance sum.sigmaFinite {ι} [Finite ι] (μ : ι → Measure α) [∀ i, SigmaFinite (μ i)] :
-    SigmaFinite (sum μ) := by
-  cases nonempty_fintype ι
-  have : ∀ n, MeasurableSet (⋂ i : ι, spanningSets (μ i) n) := fun n =>
-    MeasurableSet.iInter fun i => measurable_spanningSets (μ i) n
-  refine' ⟨⟨⟨fun n => ⋂ i, spanningSets (μ i) n, fun _ => trivial, fun n => _, _⟩⟩⟩
-  · rw [sum_apply _ (this n), tsum_fintype, ENNReal.sum_lt_top_iff]
-    rintro i -
-    exact (measure_mono <| iInter_subset _ i).trans_lt (measure_spanningSets_lt_top (μ i) n)
-  · rw [iUnion_iInter_of_monotone]
-    simp_rw [iUnion_spanningSets, iInter_univ]
-    exact fun i => monotone_spanningSets (μ i)
-#align measure_theory.sum.sigma_finite MeasureTheory.sum.sigmaFinite
-
-instance Add.sigmaFinite (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] :
-    SigmaFinite (μ + ν) := by
-  rw [← sum_cond]
-  refine' @sum.sigmaFinite _ _ _ _ _ (Bool.rec _ _) <;> simpa
-#align measure_theory.add.sigma_finite MeasureTheory.Add.sigmaFinite
-
-instance SMul.sigmaFinite {μ : Measure α} [SigmaFinite μ] (c : ℝ≥0) :
-    MeasureTheory.SigmaFinite (c • μ) where
-  out' :=
-  ⟨{  set := spanningSets μ
-      set_mem := fun _ ↦ trivial
-      finite := by
-        intro i
-        simp only [smul_toOuterMeasure, OuterMeasure.coe_smul, Pi.smul_apply,
-          nnreal_smul_coe_apply]
-        exact ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_spanningSets_lt_top μ i).ne
-      spanning := iUnion_spanningSets μ }⟩
-
-theorem SigmaFinite.of_map (μ : Measure α) {f : α → β} (hf : AEMeasurable f μ)
-    (h : SigmaFinite (μ.map f)) : SigmaFinite μ :=
-  ⟨⟨⟨fun n => f ⁻¹' spanningSets (μ.map f) n, fun _ => trivial, fun n => by
-        simp only [← map_apply_of_aemeasurable hf, measurable_spanningSets,
-          measure_spanningSets_lt_top],
-        by rw [← preimage_iUnion, iUnion_spanningSets, preimage_univ]⟩⟩⟩
-#align measure_theory.sigma_finite.of_map MeasureTheory.SigmaFinite.of_map
-
-theorem _root_.MeasurableEquiv.sigmaFinite_map {μ : Measure α} (f : α ≃ᵐ β) (h : SigmaFinite μ) :
-    SigmaFinite (μ.map f) := by
-  refine' SigmaFinite.of_map _ f.symm.measurable.aemeasurable _
-  rwa [map_map f.symm.measurable f.measurable, f.symm_comp_self, Measure.map_id]
-#align measurable_equiv.sigma_finite_map MeasurableEquiv.sigmaFinite_map
-
-/-- Similar to `ae_of_forall_measure_lt_top_ae_restrict`, but where you additionally get the
-  hypothesis that another σ-finite measure has finite values on `s`. -/
-theorem ae_of_forall_measure_lt_top_ae_restrict' {μ : Measure α} (ν : Measure α) [SigmaFinite μ]
-    [SigmaFinite ν] (P : α → Prop)
-    (h : ∀ s, MeasurableSet s → μ s < ∞ → ν s < ∞ → ∀ᵐ x ∂μ.restrict s, P x) : ∀ᵐ x ∂μ, P x := by
-  have : ∀ n, ∀ᵐ x ∂μ, x ∈ spanningSets (μ + ν) n → P x := by
-    intro n
-    have := h
-      (spanningSets (μ + ν) n) (measurable_spanningSets _ _)
-      ((self_le_add_right _ _).trans_lt (measure_spanningSets_lt_top (μ + ν) _))
-      ((self_le_add_left _ _).trans_lt (measure_spanningSets_lt_top (μ + ν) _))
-    exact (ae_restrict_iff' (measurable_spanningSets _ _)).mp this
-  filter_upwards [ae_all_iff.2 this] with _ hx using hx _ (mem_spanningSetsIndex _ _)
-#align measure_theory.ae_of_forall_measure_lt_top_ae_restrict' MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict'
-
-/-- To prove something for almost all `x` w.r.t. a σ-finite measure, it is sufficient to show that
-  this holds almost everywhere in sets where the measure has finite value. -/
-theorem ae_of_forall_measure_lt_top_ae_restrict {μ : Measure α} [SigmaFinite μ] (P : α → Prop)
-    (h : ∀ s, MeasurableSet s → μ s < ∞ → ∀ᵐ x ∂μ.restrict s, P x) : ∀ᵐ x ∂μ, P x :=
-  ae_of_forall_measure_lt_top_ae_restrict' μ P fun s hs h2s _ => h s hs h2s
-#align measure_theory.ae_of_forall_measure_lt_top_ae_restrict MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict
-
-/-- A measure is called locally finite if it is finite in some neighborhood of each point. -/
-class IsLocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α) : Prop where
-  finiteAtNhds : ∀ x, μ.FiniteAtFilter (𝓝 x)
-#align measure_theory.is_locally_finite_measure MeasureTheory.IsLocallyFiniteMeasure
-#align measure_theory.is_locally_finite_measure.finite_at_nhds MeasureTheory.IsLocallyFiniteMeasure.finiteAtNhds
-
--- see Note [lower instance priority]
-instance (priority := 100) IsFiniteMeasure.toIsLocallyFiniteMeasure [TopologicalSpace α]
-    (μ : Measure α) [IsFiniteMeasure μ] : IsLocallyFiniteMeasure μ :=
-  ⟨fun _ => finiteAtFilter_of_finite _ _⟩
-#align measure_theory.is_finite_measure.to_is_locally_finite_measure MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
-
-theorem Measure.finiteAt_nhds [TopologicalSpace α] (μ : Measure α) [IsLocallyFiniteMeasure μ]
-    (x : α) : μ.FiniteAtFilter (𝓝 x) :=
-  IsLocallyFiniteMeasure.finiteAtNhds x
-#align measure_theory.measure.finite_at_nhds MeasureTheory.Measure.finiteAt_nhds
-
-theorem Measure.smul_finite (μ : Measure α) [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
-    IsFiniteMeasure (c • μ) := by
-  lift c to ℝ≥0 using hc
-  exact MeasureTheory.isFiniteMeasureSMulNNReal
-#align measure_theory.measure.smul_finite MeasureTheory.Measure.smul_finite
-
-theorem Measure.exists_isOpen_measure_lt_top [TopologicalSpace α] (μ : Measure α)
-    [IsLocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
-  simpa only [and_assoc] using (μ.finiteAt_nhds x).exists_mem_basis (nhds_basis_opens x)
-#align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_top
-
-instance isLocallyFiniteMeasureSMulNNReal [TopologicalSpace α] (μ : Measure α)
-    [IsLocallyFiniteMeasure μ] (c : ℝ≥0) : IsLocallyFiniteMeasure (c • μ) := by
-  refine' ⟨fun x => _⟩
-  rcases μ.exists_isOpen_measure_lt_top x with ⟨o, xo, o_open, μo⟩
-  refine' ⟨o, o_open.mem_nhds xo, _⟩
-  apply ENNReal.mul_lt_top _ μo.ne
-  simp
-#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.isLocallyFiniteMeasureSMulNNReal
-
-protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α]
-    (μ : Measure α) [IsLocallyFiniteMeasure μ] :
-    TopologicalSpace.IsTopologicalBasis { s | IsOpen s ∧ μ s < ∞ } := by
-  refine' TopologicalSpace.isTopologicalBasis_of_open_of_nhds (fun s hs => hs.1) _
-  intro x s xs hs
-  rcases μ.exists_isOpen_measure_lt_top x with ⟨v, xv, hv, μv⟩
-  refine' ⟨v ∩ s, ⟨hv.inter hs, lt_of_le_of_lt _ μv⟩, ⟨xv, xs⟩, inter_subset_right _ _⟩
-  exact measure_mono (inter_subset_left _ _)
-#align measure_theory.measure.is_topological_basis_is_open_lt_top MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_top
-
-/-- A measure `μ` is finite on compacts if any compact set `K` satisfies `μ K < ∞`. -/
-class IsFiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop where
-  protected lt_top_of_isCompact : ∀ ⦃K : Set α⦄, IsCompact K → μ K < ∞
-#align measure_theory.is_finite_measure_on_compacts MeasureTheory.IsFiniteMeasureOnCompacts
-#align measure_theory.is_finite_measure_on_compacts.lt_top_of_is_compact MeasureTheory.IsFiniteMeasureOnCompacts.lt_top_of_isCompact
-
-/-- A compact subset has finite measure for a measure which is finite on compacts. -/
-theorem _root_.IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α}
-    [IsFiniteMeasureOnCompacts μ] ⦃K : Set α⦄ (hK : IsCompact K) : μ K < ∞ :=
-  IsFiniteMeasureOnCompacts.lt_top_of_isCompact hK
-#align is_compact.measure_lt_top IsCompact.measure_lt_top
-
-/-- A bounded subset has finite measure for a measure which is finite on compact sets, in a
-proper space. -/
-theorem _root_.Bornology.IsBounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α]
-    {μ : Measure α} [IsFiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Bornology.IsBounded s) :
-    μ s < ∞ :=
-  calc
-    μ s ≤ μ (closure s) := measure_mono subset_closure
-    _ < ∞ := (Metric.isCompact_of_isClosed_isBounded isClosed_closure hs.closure).measure_lt_top
-#align metric.bounded.measure_lt_top Bornology.IsBounded.measure_lt_top
-
-theorem measure_closedBall_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
-  Metric.isBounded_closedBall.measure_lt_top
-#align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_top
-
-theorem measure_ball_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
-  Metric.isBounded_ball.measure_lt_top
-#align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_top
-
-protected theorem IsFiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
-    [IsFiniteMeasureOnCompacts μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : IsFiniteMeasureOnCompacts (c • μ) :=
-  ⟨fun _K hK => ENNReal.mul_lt_top hc hK.measure_lt_top.ne⟩
-#align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.IsFiniteMeasureOnCompacts.smul
-
-instance IsFiniteMeasureOnCompacts.smul_nnreal [TopologicalSpace α] (μ : Measure α)
-    [IsFiniteMeasureOnCompacts μ] (c : ℝ≥0) : IsFiniteMeasureOnCompacts (c • μ) :=
-  IsFiniteMeasureOnCompacts.smul μ coe_ne_top
-
-instance instIsFiniteMeasureOnCompactsRestrict [TopologicalSpace α] {μ : Measure α}
-    [IsFiniteMeasureOnCompacts μ] {s : Set α} : IsFiniteMeasureOnCompacts (μ.restrict s) :=
-  ⟨fun _k hk ↦ (restrict_apply_le _ _).trans_lt hk.measure_lt_top⟩
-
-instance (priority := 100) CompactSpace.isFiniteMeasure [TopologicalSpace α] [CompactSpace α]
-    [IsFiniteMeasureOnCompacts μ] : IsFiniteMeasure μ :=
-  ⟨IsFiniteMeasureOnCompacts.lt_top_of_isCompact isCompact_univ⟩
-#align measure_theory.compact_space.is_finite_measure MeasureTheory.CompactSpace.isFiniteMeasure
-
-instance (priority := 100) SigmaFinite.of_isFiniteMeasureOnCompacts [TopologicalSpace α]
-    [SigmaCompactSpace α] (μ : Measure α) [IsFiniteMeasureOnCompacts μ] : SigmaFinite μ :=
-  ⟨⟨{   set := compactCovering α
-        set_mem := fun _ => trivial
-        finite := fun n => (isCompact_compactCovering α n).measure_lt_top
-        spanning := iUnion_compactCovering α }⟩⟩
-
--- see Note [lower instance priority]
-instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
-    [SecondCountableTopology α] [IsLocallyFiniteMeasure μ] : SigmaFinite μ := by
-  choose s hsx hsμ using μ.finiteAt_nhds
-  rcases TopologicalSpace.countable_cover_nhds hsx with ⟨t, htc, htU⟩
-  refine' Measure.sigmaFinite_of_countable (htc.image s) (ball_image_iff.2 fun x _ => hsμ x) _
-  rwa [sUnion_image]
-#align measure_theory.sigma_finite_of_locally_finite MeasureTheory.sigmaFinite_of_locallyFinite
-
-/-- A measure which is finite on compact sets in a locally compact space is locally finite. -/
-instance (priority := 100) isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α]
-    [WeaklyLocallyCompactSpace α] [IsFiniteMeasureOnCompacts μ] : IsLocallyFiniteMeasure μ :=
-  ⟨fun x ↦
-    let ⟨K, K_compact, K_mem⟩ := exists_compact_mem_nhds x
-    ⟨K, K_mem, K_compact.measure_lt_top⟩⟩
-#align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
-
-theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : ⋃ i, U i = univ)
-    (hμ : μ ≠ 0) : ∃ i, 0 < μ (U i) := by
-  contrapose! hμ with H
-  rw [← measure_univ_eq_zero, ← hU]
-  exact measure_iUnion_null fun i => nonpos_iff_eq_zero.1 (H i)
-#align measure_theory.exists_pos_measure_of_cover MeasureTheory.exists_pos_measure_of_cover
-
-theorem exists_pos_preimage_ball [PseudoMetricSpace δ] (f : α → δ) (x : δ) (hμ : μ ≠ 0) :
-    ∃ n : ℕ, 0 < μ (f ⁻¹' Metric.ball x n) :=
-  exists_pos_measure_of_cover (by rw [← preimage_iUnion, Metric.iUnion_ball_nat, preimage_univ]) hμ
-#align measure_theory.exists_pos_preimage_ball MeasureTheory.exists_pos_preimage_ball
-
-theorem exists_pos_ball [PseudoMetricSpace α] (x : α) (hμ : μ ≠ 0) :
-    ∃ n : ℕ, 0 < μ (Metric.ball x n) :=
-  exists_pos_preimage_ball id x hμ
-#align measure_theory.exists_pos_ball MeasureTheory.exists_pos_ball
-
-/-- If a set has zero measure in a neighborhood of each of its points, then it has zero measure
-in a second-countable space. -/
-theorem null_of_locally_null [TopologicalSpace α] [SecondCountableTopology α] (s : Set α)
-    (hs : ∀ x ∈ s, ∃ u ∈ 𝓝[s] x, μ u = 0) : μ s = 0 :=
-  μ.toOuterMeasure.null_of_locally_null s hs
-#align measure_theory.null_of_locally_null MeasureTheory.null_of_locally_null
-
-theorem exists_mem_forall_mem_nhdsWithin_pos_measure [TopologicalSpace α]
-    [SecondCountableTopology α] {s : Set α} (hs : μ s ≠ 0) : ∃ x ∈ s, ∀ t ∈ 𝓝[s] x, 0 < μ t :=
-  μ.toOuterMeasure.exists_mem_forall_mem_nhds_within_pos hs
-#align measure_theory.exists_mem_forall_mem_nhds_within_pos_measure MeasureTheory.exists_mem_forall_mem_nhdsWithin_pos_measure
-
-theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β] [T1Space β]
-    [SecondCountableTopology β] [Nonempty β] {f : α → β} (h : ∀ b, ∃ᵐ x ∂μ, f x ≠ b) :
-    ∃ a b : β, a ≠ b ∧ (∀ s ∈ 𝓝 a, 0 < μ (f ⁻¹' s)) ∧ ∀ t ∈ 𝓝 b, 0 < μ (f ⁻¹' t) := by
-  -- We use an `OuterMeasure` so that the proof works without `Measurable f`
-  set m : OuterMeasure β := OuterMeasure.map f μ.toOuterMeasure
-  replace h : ∀ b : β, m {b}ᶜ ≠ 0 := fun b => not_eventually.mpr (h b)
-  inhabit β
-  have : m univ ≠ 0 := ne_bot_of_le_ne_bot (h default) (m.mono' <| subset_univ _)
-  rcases m.exists_mem_forall_mem_nhds_within_pos this with ⟨b, -, hb⟩
-  simp only [nhdsWithin_univ] at hb
-  rcases m.exists_mem_forall_mem_nhds_within_pos (h b) with ⟨a, hab : a ≠ b, ha⟩
-  simp only [isOpen_compl_singleton.nhdsWithin_eq hab] at ha
-  exact ⟨a, b, hab, ha, hb⟩
-#align measure_theory.exists_ne_forall_mem_nhds_pos_measure_preimage MeasureTheory.exists_ne_forall_mem_nhds_pos_measure_preimage
-
-/-- If two finite measures give the same mass to the whole space and coincide on a π-system made
-of measurable sets, then they coincide on all sets in the σ-algebra generated by the π-system. -/
-theorem ext_on_measurableSpace_of_generate_finite {α} (m₀ : MeasurableSpace α) {μ ν : Measure α}
-    [IsFiniteMeasure μ] (C : Set (Set α)) (hμν : ∀ s ∈ C, μ s = ν s) {m : MeasurableSpace α}
-    (h : m ≤ m₀) (hA : m = MeasurableSpace.generateFrom C) (hC : IsPiSystem C)
-    (h_univ : μ Set.univ = ν Set.univ) {s : Set α} (hs : MeasurableSet[m] s) : μ s = ν s := by
-  haveI : IsFiniteMeasure ν := by
-    constructor
-    rw [← h_univ]
-    apply IsFiniteMeasure.measure_univ_lt_top
-  refine' induction_on_inter hA hC (by simp) hμν _ _ hs
-  · intro t h1t h2t
-    have h1t_ : @MeasurableSet α m₀ t := h _ h1t
-    rw [@measure_compl α m₀ μ t h1t_ (@measure_ne_top α m₀ μ _ t),
-      @measure_compl α m₀ ν t h1t_ (@measure_ne_top α m₀ ν _ t), h_univ, h2t]
-  · intro f h1f h2f h3f
-    have h2f_ : ∀ i : ℕ, @MeasurableSet α m₀ (f i) := fun i => h _ (h2f i)
-    simp [measure_iUnion, h1f, h3f, h2f_]
-#align measure_theory.ext_on_measurable_space_of_generate_finite MeasureTheory.ext_on_measurableSpace_of_generate_finite
-
-/-- Two finite measures are equal if they are equal on the π-system generating the σ-algebra
-  (and `univ`). -/
-theorem ext_of_generate_finite (C : Set (Set α)) (hA : m0 = generateFrom C) (hC : IsPiSystem C)
-    [IsFiniteMeasure μ] (hμν : ∀ s ∈ C, μ s = ν s) (h_univ : μ univ = ν univ) : μ = ν :=
-  Measure.ext fun _s hs =>
-    ext_on_measurableSpace_of_generate_finite m0 C hμν le_rfl hA hC h_univ hs
-#align measure_theory.ext_of_generate_finite MeasureTheory.ext_of_generate_finite
-
-namespace Measure
-
-section disjointed
-
-/-- Given `S : μ.FiniteSpanningSetsIn {s | MeasurableSet s}`,
-`FiniteSpanningSetsIn.disjointed` provides a `FiniteSpanningSetsIn {s | MeasurableSet s}`
-such that its underlying sets are pairwise disjoint. -/
-protected def FiniteSpanningSetsIn.disjointed {μ : Measure α}
-    (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) :
-    μ.FiniteSpanningSetsIn { s | MeasurableSet s } :=
-  ⟨disjointed S.set, MeasurableSet.disjointed S.set_mem, fun n =>
-    lt_of_le_of_lt (measure_mono (disjointed_subset S.set n)) (S.finite _),
-    S.spanning ▸ iUnion_disjointed⟩
-#align measure_theory.measure.finite_spanning_sets_in.disjointed MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed
-
-theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
-    (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) : S.disjointed.set = disjointed S.set :=
-  rfl
-#align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq
-
-theorem exists_eq_disjoint_finiteSpanningSetsIn (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] :
-    ∃ (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s })
-      (T : ν.FiniteSpanningSetsIn { s | MeasurableSet s }),
-      S.set = T.set ∧ Pairwise (Disjoint on S.set) :=
-  let S := (μ + ν).toFiniteSpanningSetsIn.disjointed
-  ⟨S.ofLE (Measure.le_add_right le_rfl), S.ofLE (Measure.le_add_left le_rfl), rfl,
-    disjoint_disjointed _⟩
-#align measure_theory.measure.exists_eq_disjoint_finite_spanning_sets_in MeasureTheory.Measure.exists_eq_disjoint_finiteSpanningSetsIn
-
-end disjointed
-
-namespace FiniteAtFilter
-
-variable {f g : Filter α}
-
-theorem filter_mono (h : f ≤ g) : μ.FiniteAtFilter g → μ.FiniteAtFilter f := fun ⟨s, hs, hμ⟩ =>
-  ⟨s, h hs, hμ⟩
-#align measure_theory.measure.finite_at_filter.filter_mono MeasureTheory.Measure.FiniteAtFilter.filter_mono
-
-theorem inf_of_left (h : μ.FiniteAtFilter f) : μ.FiniteAtFilter (f ⊓ g) :=
-  h.filter_mono inf_le_left
-#align measure_theory.measure.finite_at_filter.inf_of_left MeasureTheory.Measure.FiniteAtFilter.inf_of_left
-
-theorem inf_of_right (h : μ.FiniteAtFilter g) : μ.FiniteAtFilter (f ⊓ g) :=
-  h.filter_mono inf_le_right
-#align measure_theory.measure.finite_at_filter.inf_of_right MeasureTheory.Measure.FiniteAtFilter.inf_of_right
-
-@[simp]
-theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f := by
-  refine' ⟨_, fun h => h.filter_mono inf_le_left⟩
-  rintro ⟨s, ⟨t, ht, u, hu, rfl⟩, hμ⟩
-  suffices : μ t ≤ μ (t ∩ u); exact ⟨t, ht, this.trans_lt hμ⟩
-  exact measure_mono_ae (mem_of_superset hu fun x hu ht => ⟨ht, hu⟩)
-#align measure_theory.measure.finite_at_filter.inf_ae_iff MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff
-
-alias ⟨of_inf_ae, _⟩ := inf_ae_iff
-#align measure_theory.measure.finite_at_filter.of_inf_ae MeasureTheory.Measure.FiniteAtFilter.of_inf_ae
-
-theorem filter_mono_ae (h : f ⊓ μ.ae ≤ g) (hg : μ.FiniteAtFilter g) : μ.FiniteAtFilter f :=
-  inf_ae_iff.1 (hg.filter_mono h)
-#align measure_theory.measure.finite_at_filter.filter_mono_ae MeasureTheory.Measure.FiniteAtFilter.filter_mono_ae
-
-protected theorem measure_mono (h : μ ≤ ν) : ν.FiniteAtFilter f → μ.FiniteAtFilter f :=
-  fun ⟨s, hs, hν⟩ => ⟨s, hs, (Measure.le_iff'.1 h s).trans_lt hν⟩
-#align measure_theory.measure.finite_at_filter.measure_mono MeasureTheory.Measure.FiniteAtFilter.measure_mono
-
-@[mono]
-protected theorem mono (hf : f ≤ g) (hμ : μ ≤ ν) : ν.FiniteAtFilter g → μ.FiniteAtFilter f :=
-  fun h => (h.filter_mono hf).measure_mono hμ
-#align measure_theory.measure.finite_at_filter.mono MeasureTheory.Measure.FiniteAtFilter.mono
-
-protected theorem eventually (h : μ.FiniteAtFilter f) : ∀ᶠ s in f.smallSets, μ s < ∞ :=
-  (eventually_smallSets' fun _s _t hst ht => (measure_mono hst).trans_lt ht).2 h
-#align measure_theory.measure.finite_at_filter.eventually MeasureTheory.Measure.FiniteAtFilter.eventually
-
-theorem filterSup : μ.FiniteAtFilter f → μ.FiniteAtFilter g → μ.FiniteAtFilter (f ⊔ g) :=
-  fun ⟨s, hsf, hsμ⟩ ⟨t, htg, htμ⟩ =>
-  ⟨s ∪ t, union_mem_sup hsf htg, (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hsμ, htμ⟩)⟩
-#align measure_theory.measure.finite_at_filter.filter_sup MeasureTheory.Measure.FiniteAtFilter.filterSup
-
-end FiniteAtFilter
-
-theorem finiteAt_nhdsWithin [TopologicalSpace α] {_m0 : MeasurableSpace α} (μ : Measure α)
-    [IsLocallyFiniteMeasure μ] (x : α) (s : Set α) : μ.FiniteAtFilter (𝓝[s] x) :=
-  (finiteAt_nhds μ x).inf_of_left
-#align measure_theory.measure.finite_at_nhds_within MeasureTheory.Measure.finiteAt_nhdsWithin
-
-@[simp]
-theorem finiteAt_principal : μ.FiniteAtFilter (𝓟 s) ↔ μ s < ∞ :=
-  ⟨fun ⟨_t, ht, hμ⟩ => (measure_mono ht).trans_lt hμ, fun h => ⟨s, mem_principal_self s, h⟩⟩
-#align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principal
-
-theorem isLocallyFiniteMeasure_of_le [TopologicalSpace α] {_m : MeasurableSpace α} {μ ν : Measure α}
-    [H : IsLocallyFiniteMeasure μ] (h : ν ≤ μ) : IsLocallyFiniteMeasure ν :=
-  let F := H.finiteAtNhds
-  ⟨fun x => (F x).measure_mono h⟩
-#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.isLocallyFiniteMeasure_of_le
-
-end Measure
-
 end
 
 end MeasureTheory
 
-open MeasureTheory MeasureTheory.Measure
-
 namespace MeasurableEmbedding
 
+open MeasureTheory Measure
+
 variable {m0 : MeasurableSpace α} {m1 : MeasurableSpace β} {f : α → β} (hf : MeasurableEmbedding f)
 
 nonrec theorem map_apply (μ : Measure α) (s : Set β) : μ.map f s = μ (f ⁻¹' s) := by
@@ -4153,111 +2026,12 @@ nonrec theorem map_apply (μ : Measure α) (s : Set β) : μ.map f s = μ (f ⁻
     _ = μ (f ⁻¹' s) := by rw [map_apply hf.measurable htm, hft, measure_toMeasurable]
 #align measurable_embedding.map_apply MeasurableEmbedding.map_apply
 
-theorem map_comap (μ : Measure β) : (comap f μ).map f = μ.restrict (range f) := by
-  ext1 t ht
-  rw [hf.map_apply, comap_apply f hf.injective hf.measurableSet_image' _ (hf.measurable ht),
-    image_preimage_eq_inter_range, Measure.restrict_apply ht]
-#align measurable_embedding.map_comap MeasurableEmbedding.map_comap
-
-theorem comap_apply (μ : Measure β) (s : Set α) : comap f μ s = μ (f '' s) :=
-  calc
-    comap f μ s = comap f μ (f ⁻¹' (f '' s)) := by rw [hf.injective.preimage_image]
-    _ = (comap f μ).map f (f '' s) := (hf.map_apply _ _).symm
-    _ = μ (f '' s) := by
-      rw [hf.map_comap, restrict_apply' hf.measurableSet_range,
-        inter_eq_self_of_subset_left (image_subset_range _ _)]
-#align measurable_embedding.comap_apply MeasurableEmbedding.comap_apply
-
-theorem comap_map (μ : Measure α) : (map f μ).comap f = μ := by
-  ext t _
-  rw [hf.comap_apply, hf.map_apply, preimage_image_eq _ hf.injective]
-
-theorem ae_map_iff {p : β → Prop} {μ : Measure α} : (∀ᵐ x ∂μ.map f, p x) ↔ ∀ᵐ x ∂μ, p (f x) := by
-  simp only [ae_iff, hf.map_apply, preimage_setOf_eq]
-#align measurable_embedding.ae_map_iff MeasurableEmbedding.ae_map_iff
-
-theorem restrict_map (μ : Measure α) (s : Set β) :
-    (μ.map f).restrict s = (μ.restrict <| f ⁻¹' s).map f :=
-  Measure.ext fun t ht => by simp [hf.map_apply, ht, hf.measurable ht]
-#align measurable_embedding.restrict_map MeasurableEmbedding.restrict_map
-
-protected theorem comap_preimage (μ : Measure β) (s : Set β) :
-    μ.comap f (f ⁻¹' s) = μ (s ∩ range f) := by
-  rw [← hf.map_apply, hf.map_comap, restrict_apply' hf.measurableSet_range]
-#align measurable_embedding.comap_preimage MeasurableEmbedding.comap_preimage
-
-lemma comap_restrict (μ : Measure β) (s : Set β) :
-    (μ.restrict s).comap f = (μ.comap f).restrict (f ⁻¹' s) := by
-  ext t ht
-  rw [Measure.restrict_apply ht, comap_apply hf, comap_apply hf,
-    Measure.restrict_apply (hf.measurableSet_image.2 ht), image_inter_preimage]
-
-lemma restrict_comap (μ : Measure β) (s : Set α) :
-    (μ.comap f).restrict s = (μ.restrict (f '' s)).comap f := by
-  rw [comap_restrict hf, preimage_image_eq _ hf.injective]
-
 end MeasurableEmbedding
 
-section Subtype
-
-theorem comap_subtype_coe_apply {_m0 : MeasurableSpace α} {s : Set α} (hs : MeasurableSet s)
-    (μ : Measure α) (t : Set s) : comap (↑) μ t = μ ((↑) '' t) :=
-  (MeasurableEmbedding.subtype_coe hs).comap_apply _ _
-#align comap_subtype_coe_apply comap_subtype_coe_apply
-
-theorem map_comap_subtype_coe {m0 : MeasurableSpace α} {s : Set α} (hs : MeasurableSet s)
-    (μ : Measure α) : (comap (↑) μ).map ((↑) : s → α) = μ.restrict s := by
-  rw [(MeasurableEmbedding.subtype_coe hs).map_comap, Subtype.range_coe]
-#align map_comap_subtype_coe map_comap_subtype_coe
-
-theorem ae_restrict_iff_subtype {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α}
-    (hs : MeasurableSet s) {p : α → Prop} :
-    (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ (x : s) ∂comap ((↑) : s → α) μ, p x := by
-  rw [← map_comap_subtype_coe hs, (MeasurableEmbedding.subtype_coe hs).ae_map_iff]
-#align ae_restrict_iff_subtype ae_restrict_iff_subtype
-
-variable [MeasureSpace α] {s t : Set α}
-
-/-!
-### Volume on `s : Set α`
-
-Note the instance is provided earlier as `Subtype.measureSpace`.
--/
-attribute [local instance] Subtype.measureSpace
-
-#align set_coe.measure_space MeasureTheory.Measure.Subtype.measureSpace
-
-theorem volume_set_coe_def (s : Set α) : (volume : Measure s) = comap ((↑) : s → α) volume :=
-  rfl
-#align volume_set_coe_def volume_set_coe_def
-
-theorem MeasurableSet.map_coe_volume {s : Set α} (hs : MeasurableSet s) :
-    volume.map ((↑) : s → α) = restrict volume s := by
-  rw [volume_set_coe_def, (MeasurableEmbedding.subtype_coe hs).map_comap volume, Subtype.range_coe]
-#align measurable_set.map_coe_volume MeasurableSet.map_coe_volume
-
-theorem volume_image_subtype_coe {s : Set α} (hs : MeasurableSet s) (t : Set s) :
-    volume ((↑) '' t : Set α) = volume t :=
-  (comap_subtype_coe_apply hs volume t).symm
-#align volume_image_subtype_coe volume_image_subtype_coe
-
-@[simp]
-theorem volume_preimage_coe (hs : NullMeasurableSet s) (ht : MeasurableSet t) :
-    volume (((↑) : s → α) ⁻¹' t) = volume (t ∩ s) := by
-  rw [volume_set_coe_def,
-    comap_apply₀ _ _ Subtype.coe_injective
-      (fun h => MeasurableSet.nullMeasurableSet_subtype_coe hs)
-      (measurable_subtype_coe ht).nullMeasurableSet,
-    image_preimage_eq_inter_range, Subtype.range_coe]
-#align volume_preimage_coe volume_preimage_coe
-
-end Subtype
-
 namespace MeasurableEquiv
 
 /-! Interactions of measurable equivalences and measures -/
 
-
 open Equiv MeasureTheory.Measure
 
 variable [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α} {ν : Measure β}
@@ -4296,11 +2070,6 @@ theorem map_apply_eq_iff_map_symm_apply_eq (e : α ≃ᵐ β) : μ.map e = ν 
   rw [← (map_measurableEquiv_injective e).eq_iff, map_map_symm, eq_comm]
 #align measurable_equiv.map_apply_eq_iff_map_symm_apply_eq MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eq
 
-theorem restrict_map (e : α ≃ᵐ β) (s : Set β) :
-    (μ.map e).restrict s = (μ.restrict <| e ⁻¹' s).map e :=
-  e.measurableEmbedding.restrict_map _ _
-#align measurable_equiv.restrict_map MeasurableEquiv.restrict_map
-
 theorem map_ae (f : α ≃ᵐ β) (μ : Measure α) : Filter.map f μ.ae = (map f μ).ae := by
   ext s
   simp_rw [mem_map, mem_ae_iff, ← preimage_compl, f.map_apply]
@@ -4323,258 +2092,4 @@ theorem OuterMeasure.toMeasure_zero [MeasurableSpace α] :
 
 end MeasureTheory
 
-namespace IsCompact
-
-variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set α}
-
-/-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
-superset of finite measure. -/
-theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
-    (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝 x)) : ∃ (U : _) (_ : U ⊇ s), IsOpen U ∧ μ U < ∞ := by
-  refine' IsCompact.induction_on h _ _ _ _
-  · use ∅
-    simp [Superset]
-  · rintro s t hst ⟨U, htU, hUo, hU⟩
-    exact ⟨U, hst.trans htU, hUo, hU⟩
-  · rintro s t ⟨U, hsU, hUo, hU⟩ ⟨V, htV, hVo, hV⟩
-    refine'
-      ⟨U ∪ V, union_subset_union hsU htV, hUo.union hVo,
-        (measure_union_le _ _).trans_lt <| ENNReal.add_lt_top.2 ⟨hU, hV⟩⟩
-  · intro x hx
-    rcases (hμ x hx).exists_mem_basis (nhds_basis_opens _) with ⟨U, ⟨hx, hUo⟩, hU⟩
-    exact ⟨U, nhdsWithin_le_nhds (hUo.mem_nhds hx), U, Subset.rfl, hUo, hU⟩
-#align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'
-
-/-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
-finite measure. -/
-theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
-    [IsLocallyFiniteMeasure μ] : ∃ (U : _) (_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
-  h.exists_open_superset_measure_lt_top' fun x _ => μ.finiteAt_nhds x
-#align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_top
-
-theorem measure_lt_top_of_nhdsWithin (h : IsCompact s) (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝[s] x)) :
-    μ s < ∞ :=
-  IsCompact.induction_on h (by simp) (fun s t hst ht => (measure_mono hst).trans_lt ht)
-    (fun s t hs ht => (measure_union_le s t).trans_lt (ENNReal.add_lt_top.2 ⟨hs, ht⟩)) hμ
-#align is_compact.measure_lt_top_of_nhds_within IsCompact.measure_lt_top_of_nhdsWithin
-
-theorem measure_zero_of_nhdsWithin (hs : IsCompact s) :
-    (∀ a ∈ s, ∃ t ∈ 𝓝[s] a, μ t = 0) → μ s = 0 := by
-  simpa only [← compl_mem_ae_iff] using hs.compl_mem_sets_of_nhdsWithin
-#align is_compact.measure_zero_of_nhds_within IsCompact.measure_zero_of_nhdsWithin
-
-end IsCompact
-
--- see Note [lower instance priority]
-instance (priority := 100) isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure [TopologicalSpace α]
-    {_ : MeasurableSpace α} {μ : Measure α} [IsLocallyFiniteMeasure μ] :
-    IsFiniteMeasureOnCompacts μ :=
-  ⟨fun _s hs => hs.measure_lt_top_of_nhdsWithin fun _ _ => μ.finiteAt_nhdsWithin _ _⟩
-#align is_finite_measure_on_compacts_of_is_locally_finite_measure isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure
-
-theorem isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace [TopologicalSpace α]
-    [MeasurableSpace α] {μ : Measure α} [CompactSpace α] :
-    IsFiniteMeasure μ ↔ IsFiniteMeasureOnCompacts μ := by
-  constructor <;> intros
-  · infer_instance
-  · exact CompactSpace.isFiniteMeasure
-#align is_finite_measure_iff_is_finite_measure_on_compacts_of_compact_space isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace
-
-/-- Compact covering of a `σ`-compact topological space as
-`MeasureTheory.Measure.FiniteSpanningSetsIn`. -/
-def MeasureTheory.Measure.finiteSpanningSetsInCompact [TopologicalSpace α] [SigmaCompactSpace α]
-    {_ : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
-    μ.FiniteSpanningSetsIn { K | IsCompact K } where
-  set := compactCovering α
-  set_mem := isCompact_compactCovering α
-  finite n := (isCompact_compactCovering α n).measure_lt_top
-  spanning := iUnion_compactCovering α
-#align measure_theory.measure.finite_spanning_sets_in_compact MeasureTheory.Measure.finiteSpanningSetsInCompact
-
-/-- A locally finite measure on a `σ`-compact topological space admits a finite spanning sequence
-of open sets. -/
-def MeasureTheory.Measure.finiteSpanningSetsInOpen [TopologicalSpace α] [SigmaCompactSpace α]
-    {_ : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
-    μ.FiniteSpanningSetsIn { K | IsOpen K } where
-  set n := ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose
-  set_mem n :=
-    ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose_spec.snd.1
-  finite n :=
-    ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose_spec.snd.2
-  spanning :=
-    eq_univ_of_subset
-      (iUnion_mono fun n =>
-        ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose_spec.fst)
-      (iUnion_compactCovering α)
-#align measure_theory.measure.finite_spanning_sets_in_open MeasureTheory.Measure.finiteSpanningSetsInOpen
-
-open TopologicalSpace
-
-/-- A locally finite measure on a second countable topological space admits a finite spanning
-sequence of open sets. -/
-irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpace α]
-  [SecondCountableTopology α] {m : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
-  μ.FiniteSpanningSetsIn { K | IsOpen K } := by
-  suffices H : Nonempty (μ.FiniteSpanningSetsIn { K | IsOpen K })
-  exact H.some
-  cases isEmpty_or_nonempty α
-  · exact
-      ⟨{  set := fun _ => ∅
-          set_mem := fun _ => by simp
-          finite := fun _ => by simp
-          spanning := by simp [eq_iff_true_of_subsingleton] }⟩
-  inhabit α
-  let S : Set (Set α) := { s | IsOpen s ∧ μ s < ∞ }
-  obtain ⟨T, T_count, TS, hT⟩ : ∃ T : Set (Set α), T.Countable ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S :=
-    isOpen_sUnion_countable S fun s hs => hs.1
-  rw [μ.isTopologicalBasis_isOpen_lt_top.sUnion_eq] at hT
-  have T_ne : T.Nonempty := by
-    by_contra h'T
-    rw [not_nonempty_iff_eq_empty.1 h'T, sUnion_empty] at hT
-    simpa only [← hT] using mem_univ (default : α)
-  obtain ⟨f, hf⟩ : ∃ f : ℕ → Set α, T = range f
-  exact T_count.exists_eq_range T_ne
-  have fS : ∀ n, f n ∈ S := by
-    intro n
-    apply TS
-    rw [hf]
-    exact mem_range_self n
-  refine'
-    ⟨{  set := f
-        set_mem := fun n => (fS n).1
-        finite := fun n => (fS n).2
-        spanning := _ }⟩
-  refine eq_univ_of_forall fun x => ?_
-  obtain ⟨t, tT, xt⟩ : ∃ t : Set α, t ∈ range f ∧ x ∈ t := by
-    have : x ∈ ⋃₀ T := by simp only [hT, mem_univ]
-    simpa only [mem_sUnion, exists_prop, ← hf]
-  obtain ⟨n, rfl⟩ : ∃ n : ℕ, f n = t := by simpa only using tT
-  exact mem_iUnion_of_mem _ xt
-#align measure_theory.measure.finite_spanning_sets_in_open' MeasureTheory.Measure.finiteSpanningSetsInOpen'
-
-section MeasureIxx
-
-variable [Preorder α] [TopologicalSpace α] [CompactIccSpace α] {m : MeasurableSpace α}
-  {μ : Measure α} [IsLocallyFiniteMeasure μ] {a b : α}
-
-theorem measure_Icc_lt_top : μ (Icc a b) < ∞ :=
-  isCompact_Icc.measure_lt_top
-#align measure_Icc_lt_top measure_Icc_lt_top
-
-theorem measure_Ico_lt_top : μ (Ico a b) < ∞ :=
-  (measure_mono Ico_subset_Icc_self).trans_lt measure_Icc_lt_top
-#align measure_Ico_lt_top measure_Ico_lt_top
-
-theorem measure_Ioc_lt_top : μ (Ioc a b) < ∞ :=
-  (measure_mono Ioc_subset_Icc_self).trans_lt measure_Icc_lt_top
-#align measure_Ioc_lt_top measure_Ioc_lt_top
-
-theorem measure_Ioo_lt_top : μ (Ioo a b) < ∞ :=
-  (measure_mono Ioo_subset_Icc_self).trans_lt measure_Icc_lt_top
-#align measure_Ioo_lt_top measure_Ioo_lt_top
-
-end MeasureIxx
-
-section Piecewise
-
-variable [MeasurableSpace α] {μ : Measure α} {s t : Set α} {f g : α → β}
-
-theorem piecewise_ae_eq_restrict (hs : MeasurableSet s) : piecewise s f g =ᵐ[μ.restrict s] f := by
-  rw [ae_restrict_eq hs]
-  exact (piecewise_eqOn s f g).eventuallyEq.filter_mono inf_le_right
-#align piecewise_ae_eq_restrict piecewise_ae_eq_restrict
-
-theorem piecewise_ae_eq_restrict_compl (hs : MeasurableSet s) :
-    piecewise s f g =ᵐ[μ.restrict sᶜ] g := by
-  rw [ae_restrict_eq hs.compl]
-  exact (piecewise_eqOn_compl s f g).eventuallyEq.filter_mono inf_le_right
-#align piecewise_ae_eq_restrict_compl piecewise_ae_eq_restrict_compl
-
-theorem piecewise_ae_eq_of_ae_eq_set (hst : s =ᵐ[μ] t) : s.piecewise f g =ᵐ[μ] t.piecewise f g :=
-  hst.mem_iff.mono fun x hx => by simp [piecewise, hx]
-#align piecewise_ae_eq_of_ae_eq_set piecewise_ae_eq_of_ae_eq_set
-
-end Piecewise
-
-section IndicatorFunction
-
-variable [MeasurableSpace α] {μ : Measure α} {s t : Set α} {f : α → β}
-
-theorem mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem [Zero β] {t : Set β}
-    (ht : (0 : β) ∈ t) (hs : MeasurableSet s) :
-    t ∈ Filter.map (s.indicator f) μ.ae ↔ t ∈ Filter.map f (μ.restrict s).ae := by
-  simp_rw [mem_map, mem_ae_iff]
-  rw [Measure.restrict_apply' hs, Set.indicator_preimage, Set.ite]
-  simp_rw [Set.compl_union, Set.compl_inter]
-  change μ (((f ⁻¹' t)ᶜ ∪ sᶜ) ∩ ((fun _ => (0 : β)) ⁻¹' t \ s)ᶜ) = 0 ↔ μ ((f ⁻¹' t)ᶜ ∩ s) = 0
-  simp only [ht, ← Set.compl_eq_univ_diff, compl_compl, Set.compl_union, if_true,
-    Set.preimage_const]
-  simp_rw [Set.union_inter_distrib_right, Set.compl_inter_self s, Set.union_empty]
-#align mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem
-
-theorem mem_map_indicator_ae_iff_of_zero_nmem [Zero β] {t : Set β} (ht : (0 : β) ∉ t) :
-    t ∈ Filter.map (s.indicator f) μ.ae ↔ μ ((f ⁻¹' t)ᶜ ∪ sᶜ) = 0 := by
-  rw [mem_map, mem_ae_iff, Set.indicator_preimage, Set.ite, Set.compl_union, Set.compl_inter]
-  change μ (((f ⁻¹' t)ᶜ ∪ sᶜ) ∩ ((fun _ => (0 : β)) ⁻¹' t \ s)ᶜ) = 0 ↔ μ ((f ⁻¹' t)ᶜ ∪ sᶜ) = 0
-  simp only [ht, if_false, Set.compl_empty, Set.empty_diff, Set.inter_univ, Set.preimage_const]
-#align mem_map_indicator_ae_iff_of_zero_nmem mem_map_indicator_ae_iff_of_zero_nmem
-
-theorem map_restrict_ae_le_map_indicator_ae [Zero β] (hs : MeasurableSet s) :
-    Filter.map f (μ.restrict s).ae ≤ Filter.map (s.indicator f) μ.ae := by
-  intro t
-  by_cases ht : (0 : β) ∈ t
-  · rw [mem_map_indicator_ae_iff_mem_map_restrict_ae_of_zero_mem ht hs]
-    exact id
-  rw [mem_map_indicator_ae_iff_of_zero_nmem ht, mem_map_restrict_ae_iff hs]
-  exact fun h => measure_mono_null ((Set.inter_subset_left _ _).trans (Set.subset_union_left _ _)) h
-#align map_restrict_ae_le_map_indicator_ae map_restrict_ae_le_map_indicator_ae
-
-variable [Zero β]
-
-theorem indicator_ae_eq_restrict (hs : MeasurableSet s) : indicator s f =ᵐ[μ.restrict s] f :=
-  piecewise_ae_eq_restrict hs
-#align indicator_ae_eq_restrict indicator_ae_eq_restrict
-
-theorem indicator_ae_eq_restrict_compl (hs : MeasurableSet s) :
-    indicator s f =ᵐ[μ.restrict sᶜ] 0 :=
-  piecewise_ae_eq_restrict_compl hs
-#align indicator_ae_eq_restrict_compl indicator_ae_eq_restrict_compl
-
-theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
-    (hf : f =ᵐ[μ.restrict sᶜ] 0) : s.indicator f =ᵐ[μ] f := by
-  rw [Filter.EventuallyEq, ae_restrict_iff' hs.compl] at hf
-  filter_upwards [hf] with x hx
-  by_cases hxs : x ∈ s
-  · simp only [hxs, Set.indicator_of_mem]
-  · simp only [hx hxs, Pi.zero_apply, Set.indicator_apply_eq_zero, eq_self_iff_true, imp_true_iff]
-#align indicator_ae_eq_of_restrict_compl_ae_eq_zero indicator_ae_eq_of_restrict_compl_ae_eq_zero
-
-theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
-    (hf : f =ᵐ[μ.restrict s] 0) : s.indicator f =ᵐ[μ] 0 := by
-  rw [Filter.EventuallyEq, ae_restrict_iff' hs] at hf
-  filter_upwards [hf] with x hx
-  by_cases hxs : x ∈ s
-  · simp only [hxs, hx hxs, Set.indicator_of_mem]
-  · simp [hx, hxs]
-#align indicator_ae_eq_zero_of_restrict_ae_eq_zero indicator_ae_eq_zero_of_restrict_ae_eq_zero
-
-theorem indicator_ae_eq_of_ae_eq_set (hst : s =ᵐ[μ] t) : s.indicator f =ᵐ[μ] t.indicator f :=
-  piecewise_ae_eq_of_ae_eq_set hst
-#align indicator_ae_eq_of_ae_eq_set indicator_ae_eq_of_ae_eq_set
-
-theorem indicator_meas_zero (hs : μ s = 0) : indicator s f =ᵐ[μ] 0 :=
-  indicator_empty' f ▸ indicator_ae_eq_of_ae_eq_set (ae_eq_empty.2 hs)
-#align indicator_meas_zero indicator_meas_zero
-
-theorem ae_eq_restrict_iff_indicator_ae_eq {g : α → β} (hs : MeasurableSet s) :
-    f =ᵐ[μ.restrict s] g ↔ s.indicator f =ᵐ[μ] s.indicator g := by
-  rw [Filter.EventuallyEq, ae_restrict_iff' hs]
-  refine' ⟨fun h => _, fun h => _⟩ <;> filter_upwards [h] with x hx
-  · by_cases hxs : x ∈ s
-    · simp [hxs, hx hxs]
-    · simp [hxs]
-  · intro hxs
-    simpa [hxs] using hx
-#align ae_eq_restrict_iff_indicator_ae_eq ae_eq_restrict_iff_indicator_ae_eq
-
-end IndicatorFunction
+end
chore: disable global instance Subtype.measureSpace (#8381)

Currently, a subtype of a MeasureSpace has a MeasureSpace instance, obtained by restricting the initial measure. There are however other reasonable constructions, like the normalized restriction for a probability measure, or the subspace measure when restricting to a vector subspace. We disable the global instance Subtype.measureSpace to make these other choices possible, as discussed on Zulip.

It turns out that this instance was duplicated in SetCoe.measureSpace, so we delete the other one.

Diff
@@ -1453,11 +1453,17 @@ section MeasureSpace
 
 variable {s : Set α} [MeasureSpace α] {p : α → Prop}
 
-instance Subtype.measureSpace : MeasureSpace (Subtype p) :=
-  { Subtype.instMeasurableSpace with
-    volume := Measure.comap Subtype.val volume }
+/-- In a measure space, one can restrict the measure to a subtype to get a new measure space.
+
+Not registered as an instance, as there are other natural choices such as the normalized restriction
+for a probability measure, or the subspace measure when restricting to a vector subspace. Enable
+locally if needed with `attribute [local instance] Measure.Subtype.measureSpace`. -/
+def Subtype.measureSpace : MeasureSpace (Subtype p) where
+  volume := Measure.comap Subtype.val volume
 #align measure_theory.measure.subtype.measure_space MeasureTheory.Measure.Subtype.measureSpace
 
+attribute [local instance] Subtype.measureSpace
+
 theorem Subtype.volume_def : (volume : Measure s) = volume.comap Subtype.val :=
   rfl
 #align measure_theory.measure.subtype.volume_def MeasureTheory.Measure.Subtype.volume_def
@@ -4214,12 +4220,12 @@ variable [MeasureSpace α] {s t : Set α}
 
 /-!
 ### Volume on `s : Set α`
--/
 
+Note the instance is provided earlier as `Subtype.measureSpace`.
+-/
+attribute [local instance] Subtype.measureSpace
 
-instance SetCoe.measureSpace (s : Set α) : MeasureSpace s :=
-  ⟨comap ((↑) : s → α) volume⟩
-#align set_coe.measure_space SetCoe.measureSpace
+#align set_coe.measure_space MeasureTheory.Measure.Subtype.measureSpace
 
 theorem volume_set_coe_def (s : Set α) : (volume : Measure s) = comap ((↑) : s → α) volume :=
   rfl
feat(MeasureTheory): remove an AbsolutelyContinuous hypothesis from inv_rnDeriv (#8351)

In order to remove that hypothesis, we also:

  • add some basic lemmas about absolute continuity and mutually singular measures.
  • add HaveLebesgueDecomposition instances
  • rewrite the proof of withDensity_rnDeriv_eq to use the new API instead of unfolding the definitions
  • generalize rnDeriv_restrict and rnDeriv_withDensity to possibly different measures
Diff
@@ -2155,6 +2155,8 @@ instance instIsRefl [MeasurableSpace α] : IsRefl (Measure α) (· ≪ ·) :=
   ⟨fun _ => AbsolutelyContinuous.rfl⟩
 #align measure_theory.measure.absolutely_continuous.is_refl MeasureTheory.Measure.AbsolutelyContinuous.instIsRefl
 
+protected lemma zero (μ : Measure α) : 0 ≪ μ := fun s _ ↦ by simp
+
 @[trans]
 protected theorem trans (h1 : μ₁ ≪ μ₂) (h2 : μ₂ ≪ μ₃) : μ₁ ≪ μ₃ := fun _s hs => h1 <| h2 hs
 #align measure_theory.measure.absolutely_continuous.trans MeasureTheory.Measure.AbsolutelyContinuous.trans
@@ -2169,6 +2171,21 @@ protected theorem smul [Monoid R] [DistribMulAction R ℝ≥0∞] [IsScalarTower
   simp only [h hνs, smul_eq_mul, smul_apply, smul_zero]
 #align measure_theory.measure.absolutely_continuous.smul MeasureTheory.Measure.AbsolutelyContinuous.smul
 
+protected lemma add (h1 : μ₁ ≪ ν) (h2 : μ₂ ≪ ν') : μ₁ + μ₂ ≪ ν + ν' := by
+  intro s hs
+  simp only [add_toOuterMeasure, OuterMeasure.coe_add, Pi.add_apply, add_eq_zero] at hs ⊢
+  exact ⟨h1 hs.1, h2 hs.2⟩
+
+lemma add_right (h1 : μ ≪ ν) (ν' : Measure α) : μ ≪ ν + ν' := by
+  intro s hs
+  simp only [add_toOuterMeasure, OuterMeasure.coe_add, Pi.add_apply, add_eq_zero] at hs ⊢
+  exact h1 hs.1
+
+lemma restrict (h : μ ≪ ν) (s : Set α) : μ.restrict s ≪ ν.restrict s := by
+  refine Measure.AbsolutelyContinuous.mk (fun t ht htν ↦ ?_)
+  rw [restrict_apply ht] at htν ⊢
+  exact h htν
+
 end AbsolutelyContinuous
 
 theorem absolutelyContinuous_of_le_smul {μ' : Measure α} {c : ℝ≥0∞} (hμ'_le : μ' ≤ c • μ) :
fix: attribute [simp] ... in -> attribute [local simp] ... in (#7678)

Mathlib.Logic.Unique contains the line attribute [simp] eq_iff_true_of_subsingleton in ...:

https://github.com/leanprover-community/mathlib4/blob/96a11c7aac574c00370c2b3dab483cb676405c5d/Mathlib/Logic/Unique.lean#L255-L256

Despite what the in part may imply, this adds the lemma to the simp set "globally", including for downstream files; it is likely that attribute [local simp] eq_iff_true_of_subsingleton in ... was meant instead (or maybe scoped simp, but I think "scoped" refers to the current namespace). Indeed, the relevant lemma is not marked with @[simp] for possible slowness: https://github.com/leanprover/std4/blob/846e9e1d6bb534774d1acd2dc430e70987da3c18/Std/Logic.lean#L749. Adding it to the simp set causes the example at https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Regression.20in.20simp to slow down.

This PR changes this and fixes the relevant downstream simps. There was also one ocurrence of attribute [simp] FullSubcategory.comp_def FullSubcategory.id_def in in Mathlib.CategoryTheory.Monoidal.Subcategory but that was much easier to fix.

https://github.com/leanprover-community/mathlib4/blob/bc49eb9ba756a233370b4b68bcdedd60402f71ed/Mathlib/CategoryTheory/Monoidal/Subcategory.lean#L118-L119

Diff
@@ -4399,7 +4399,7 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
       ⟨{  set := fun _ => ∅
           set_mem := fun _ => by simp
           finite := fun _ => by simp
-          spanning := by simp }⟩
+          spanning := by simp [eq_iff_true_of_subsingleton] }⟩
   inhabit α
   let S : Set (Set α) := { s | IsOpen s ∧ μ s < ∞ }
   obtain ⟨T, T_count, TS, hT⟩ : ∃ T : Set (Set α), T.Countable ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S :=
feat(MeasureSpace): add Measure.map_apply₀ (#8283)

Add a version of map_apply for NullMeasurableSets. Also remove some empty lines and golf the proof of ae_le_of_ae_lt.

Diff
@@ -1126,6 +1126,10 @@ def liftLinear {m0 : MeasurableSpace α} (f : OuterMeasure α →ₗ[ℝ≥0∞]
       smul_apply, hs]
 #align measure_theory.measure.lift_linear MeasureTheory.Measure.liftLinear
 
+lemma liftLinear_apply₀ {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) {s : Set β}
+    (hs : NullMeasurableSet s (liftLinear f hf μ)) : liftLinear f hf μ s = f μ.toOuterMeasure s :=
+  toMeasure_apply₀ _ (hf μ) hs
+
 @[simp]
 theorem liftLinear_apply {f : OuterMeasure α →ₗ[ℝ≥0∞] OuterMeasure β} (hf) {s : Set β}
     (hs : MeasurableSet s) : liftLinear f hf μ s = f μ.toOuterMeasure s :=
@@ -1218,14 +1222,18 @@ protected theorem map_smul_nnreal (c : ℝ≥0) (μ : Measure α) (f : α → β
   μ.map_smul (c : ℝ≥0∞) f
 #align measure_theory.measure.map_smul_nnreal MeasureTheory.Measure.map_smul_nnreal
 
+lemma map_apply₀ {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
+    (hs : NullMeasurableSet s (map f μ)) : μ.map f s = μ (f ⁻¹' s) := by
+  rw [map, dif_pos hf, mapₗ, dif_pos hf.measurable_mk] at hs ⊢
+  rw [liftLinear_apply₀ _ hs, measure_congr (hf.ae_eq_mk.preimage s)]
+  rfl
+
 /-- We can evaluate the pushforward on measurable sets. For non-measurable sets, see
   `MeasureTheory.Measure.le_map_apply` and `MeasurableEquiv.map_apply`. -/
 @[simp]
 theorem map_apply_of_aemeasurable {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
-    (hs : MeasurableSet s) : μ.map f s = μ (f ⁻¹' s) := by
-  simpa only [mapₗ, hf.measurable_mk, hs, dif_pos, liftLinear_apply, OuterMeasure.map_apply,
-    ← mapₗ_mk_apply_of_aemeasurable hf] using
-    measure_congr (hf.ae_eq_mk.symm.preimage s)
+    (hs : MeasurableSet s) : μ.map f s = μ (f ⁻¹' s) :=
+  map_apply₀ hf hs.nullMeasurableSet
 #align measure_theory.measure.map_apply_of_ae_measurable MeasureTheory.Measure.map_apply_of_aemeasurable
 
 @[simp]
@@ -1391,7 +1399,6 @@ section Subtype
 
 /-! ### Subtype of a measure space -/
 
-
 section ComapAnyMeasure
 
 theorem MeasurableSet.nullMeasurableSet_subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
feat: new class InnerRegular of measures (#8251)

Towards general uniqueness results for the Haar measure, we introduce a new class of regular measures called InnerRegular, for measures which are inner regular with respect to compact sets. We also introduce InnerRegularWRT for more general classes of inner regular measures with properties to be prescribed, and InnerRegularCompactLTTop for measures which are regular for finite measure sets with respect to compact sets -- the latter property is the common denominator to the two main classes of Haar measures, the regular ones and the inner regular ones.

Diff
@@ -1270,9 +1270,12 @@ theorem le_map_apply {f : α → β} (hf : AEMeasurable f μ) (s : Set β) : μ
     _ = μ.map f (toMeasurable (μ.map f) s) :=
       (map_apply_of_aemeasurable hf <| measurableSet_toMeasurable _ _).symm
     _ = μ.map f s := measure_toMeasurable _
-
 #align measure_theory.measure.le_map_apply MeasureTheory.Measure.le_map_apply
 
+theorem le_map_apply_image {f : α → β} (hf : AEMeasurable f μ) (s : Set α) :
+    μ s ≤ μ.map f (f '' s) :=
+  (measure_mono (subset_preimage_image f s)).trans (le_map_apply hf _)
+
 /-- Even if `s` is not measurable, `map f μ s = 0` implies that `μ (f ⁻¹' s) = 0`. -/
 theorem preimage_null_of_map_null {f : α → β} (hf : AEMeasurable f μ) {s : Set β}
     (hs : μ.map f s = 0) : μ (f ⁻¹' s) = 0 :=
@@ -1605,6 +1608,9 @@ theorem le_restrict_apply (s t : Set α) : μ (t ∩ s) ≤ μ.restrict s t :=
     _ ≤ μ.restrict s t := measure_mono (inter_subset_left _ _)
 #align measure_theory.measure.le_restrict_apply MeasureTheory.Measure.le_restrict_apply
 
+theorem restrict_apply_le (s t : Set α) : μ.restrict s t ≤ μ t :=
+  Measure.le_iff'.1 restrict_le_self _
+
 theorem restrict_apply_superset (h : s ⊆ t) : μ.restrict s t = μ s :=
   ((measure_mono (subset_univ _)).trans_eq <| restrict_apply_univ _).antisymm
     ((restrict_apply_self μ s).symm.trans_le <| measure_mono h)
@@ -2900,7 +2906,7 @@ instance isFiniteMeasureZero : IsFiniteMeasure (0 : Measure α) :=
   ⟨by simp⟩
 #align measure_theory.is_finite_measure_zero MeasureTheory.isFiniteMeasureZero
 
-instance (priority := 100) isFiniteMeasureOfIsEmpty [IsEmpty α] : IsFiniteMeasure μ := by
+instance (priority := 50) isFiniteMeasureOfIsEmpty [IsEmpty α] : IsFiniteMeasure μ := by
   rw [eq_zero_of_isEmpty μ]
   infer_instance
 #align measure_theory.is_finite_measure_of_is_empty MeasureTheory.isFiniteMeasureOfIsEmpty
@@ -3881,9 +3887,15 @@ protected theorem IsFiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Mea
   ⟨fun _K hK => ENNReal.mul_lt_top hc hK.measure_lt_top.ne⟩
 #align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.IsFiniteMeasureOnCompacts.smul
 
-/-- Note this cannot be an instance because it would form a typeclass loop with
-`isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure`. -/
-theorem CompactSpace.isFiniteMeasure [TopologicalSpace α] [CompactSpace α]
+instance IsFiniteMeasureOnCompacts.smul_nnreal [TopologicalSpace α] (μ : Measure α)
+    [IsFiniteMeasureOnCompacts μ] (c : ℝ≥0) : IsFiniteMeasureOnCompacts (c • μ) :=
+  IsFiniteMeasureOnCompacts.smul μ coe_ne_top
+
+instance instIsFiniteMeasureOnCompactsRestrict [TopologicalSpace α] {μ : Measure α}
+    [IsFiniteMeasureOnCompacts μ] {s : Set α} : IsFiniteMeasureOnCompacts (μ.restrict s) :=
+  ⟨fun _k hk ↦ (restrict_apply_le _ _).trans_lt hk.measure_lt_top⟩
+
+instance (priority := 100) CompactSpace.isFiniteMeasure [TopologicalSpace α] [CompactSpace α]
     [IsFiniteMeasureOnCompacts μ] : IsFiniteMeasure μ :=
   ⟨IsFiniteMeasureOnCompacts.lt_top_of_isCompact isCompact_univ⟩
 #align measure_theory.compact_space.is_finite_measure MeasureTheory.CompactSpace.isFiniteMeasure
@@ -3904,9 +3916,8 @@ instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
   rwa [sUnion_image]
 #align measure_theory.sigma_finite_of_locally_finite MeasureTheory.sigmaFinite_of_locallyFinite
 
-/-- A measure which is finite on compact sets in a locally compact space is locally finite.
-Not registered as an instance to avoid a loop with the other direction. -/
-theorem isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α]
+/-- A measure which is finite on compact sets in a locally compact space is locally finite. -/
+instance (priority := 100) isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α]
     [WeaklyLocallyCompactSpace α] [IsFiniteMeasureOnCompacts μ] : IsLocallyFiniteMeasure μ :=
   ⟨fun x ↦
     let ⟨K, K_compact, K_mem⟩ := exists_compact_mem_nhds x
chore: tidy various files (#8175)
Diff
@@ -3686,7 +3686,7 @@ theorem sigmaFinite_of_le (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ
   ext s hs
   rw [← ENNReal.add_right_inj (measure_mono (inter_subset_right s _) |>.trans_lt <|
     measure_spanningSets_lt_top μ i).ne]
-  simp [Measure.ext_iff'] at h
+  simp only [ext_iff', add_toOuterMeasure, OuterMeasure.coe_add, Pi.add_apply] at h
   simp [hs, h]
 
 @[simp] lemma add_left_inj (μ ν₁ ν₂ : Measure α) [SigmaFinite μ] :
chore: move TopologicalSpace.SecondCountableTopology into the root namespace (#8186)

All the other properties of topological spaces like T0Space or RegularSpace are in the root namespace. Many files were opening TopologicalSpace just for the sake of shortening TopologicalSpace.SecondCountableTopology...

Diff
@@ -96,9 +96,6 @@ open Set
 open Filter hiding map
 
 open Function MeasurableSpace
-
-open TopologicalSpace (SecondCountableTopology)
-
 open Classical Topology BigOperators Filter ENNReal NNReal Interval MeasureTheory
 
 variable {α β γ δ ι R R' : Type*}
@@ -543,7 +540,7 @@ theorem tendsto_measure_iInter [Countable ι] [Preorder ι] [IsDirected ι (· 
 /-- The measure of the intersection of a decreasing sequence of measurable
 sets indexed by a linear order with first countable topology is the limit of the measures. -/
 theorem tendsto_measure_biInter_gt {ι : Type*} [LinearOrder ι] [TopologicalSpace ι]
-    [OrderTopology ι] [DenselyOrdered ι] [TopologicalSpace.FirstCountableTopology ι] {s : ι → Set α}
+    [OrderTopology ι] [DenselyOrdered ι] [FirstCountableTopology ι] {s : ι → Set α}
     {a : ι} (hs : ∀ r > a, MeasurableSet (s r)) (hm : ∀ i j, a < i → i ≤ j → s i ⊆ s j)
     (hf : ∃ r > a, μ (s r) ≠ ∞) : Tendsto (μ ∘ s) (𝓝[Ioi a] a) (𝓝 (μ (⋂ r > a, s r))) := by
   refine' tendsto_order.2 ⟨fun l hl => _, fun L hL => _⟩
feat: restriction to {a}ᶜ is equal to the original measure (#8073)

Also reuse variables from variable here and there.

Diff
@@ -3105,8 +3105,8 @@ attribute [simp] measure_singleton
 
 variable [NoAtoms μ]
 
-theorem _root_.Set.Subsingleton.measure_zero {α : Type*} {_m : MeasurableSpace α} {s : Set α}
-    (hs : s.Subsingleton) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
+theorem _root_.Set.Subsingleton.measure_zero (hs : s.Subsingleton) (μ : Measure α) [NoAtoms μ] :
+    μ s = 0 :=
   hs.induction_on (p := fun s => μ s = 0) measure_empty measure_singleton
 #align set.subsingleton.measure_zero Set.Subsingleton.measure_zero
 
@@ -3122,25 +3122,31 @@ instance Measure.restrict.instNoAtoms (s : Set α) : NoAtoms (μ.restrict s) :=
   apply measure_mono_null (inter_subset_left t s) ht2
 #align measure_theory.measure.restrict.has_no_atoms MeasureTheory.Measure.restrict.instNoAtoms
 
-theorem _root_.Set.Countable.measure_zero {α : Type*} {m : MeasurableSpace α} {s : Set α}
-    (h : s.Countable) (μ : Measure α) [NoAtoms μ] : μ s = 0 := by
+theorem _root_.Set.Countable.measure_zero (h : s.Countable) (μ : Measure α) [NoAtoms μ] :
+    μ s = 0 := by
   rw [← biUnion_of_singleton s, ← nonpos_iff_eq_zero]
   refine' le_trans (measure_biUnion_le h _) _
   simp
 #align set.countable.measure_zero Set.Countable.measure_zero
 
-theorem _root_.Set.Countable.ae_not_mem {α : Type*} {m : MeasurableSpace α} {s : Set α}
-    (h : s.Countable) (μ : Measure α) [NoAtoms μ] : ∀ᵐ x ∂μ, x ∉ s := by
+theorem _root_.Set.Countable.ae_not_mem (h : s.Countable) (μ : Measure α) [NoAtoms μ] :
+    ∀ᵐ x ∂μ, x ∉ s := by
   simpa only [ae_iff, Classical.not_not] using h.measure_zero μ
 #align set.countable.ae_not_mem Set.Countable.ae_not_mem
 
-theorem _root_.Set.Finite.measure_zero {α : Type*} {_m : MeasurableSpace α} {s : Set α}
-    (h : s.Finite) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
+lemma _root_.Set.Countable.measure_restrict_compl (h : s.Countable) (μ : Measure α) [NoAtoms μ] :
+    μ.restrict sᶜ = μ :=
+  restrict_eq_self_of_ae_mem <| h.ae_not_mem μ
+
+@[simp]
+lemma restrict_compl_singleton (a : α) : μ.restrict ({a}ᶜ) = μ :=
+  (countable_singleton _).measure_restrict_compl μ
+
+theorem _root_.Set.Finite.measure_zero (h : s.Finite) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   h.countable.measure_zero μ
 #align set.finite.measure_zero Set.Finite.measure_zero
 
-theorem _root_.Finset.measure_zero {α : Type*} {_m : MeasurableSpace α} (s : Finset α)
-    (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
+theorem _root_.Finset.measure_zero (s : Finset α) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   s.finite_toSet.measure_zero μ
 #align finset.measure_zero Finset.measure_zero
 
@@ -3819,8 +3825,7 @@ theorem Measure.smul_finite (μ : Measure α) [IsFiniteMeasure μ] {c : ℝ≥0
 
 theorem Measure.exists_isOpen_measure_lt_top [TopologicalSpace α] (μ : Measure α)
     [IsLocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
-  simpa only [exists_prop, and_assoc] using
-    (μ.finiteAt_nhds x).exists_mem_basis (nhds_basis_opens x)
+  simpa only [and_assoc] using (μ.finiteAt_nhds x).exists_mem_basis (nhds_basis_opens x)
 #align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_top
 
 instance isLocallyFiniteMeasureSMulNNReal [TopologicalSpace α] (μ : Measure α)
feat: let push_neg replace not (Set.Nonempty s) with s = emptyset (#8000)

Co-authored-by: Kyle Miller <kmill31415@gmail.com>

Diff
@@ -418,8 +418,7 @@ theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpa
   contrapose! H
   apply tsum_measure_le_measure_univ hs
   intro i j hij
-  rw [Function.onFun, disjoint_iff_inf_le]
-  exact fun x hx => H i j hij ⟨x, hx⟩
+  exact disjoint_iff_inter_eq_empty.mpr (H i j hij)
 #align measure_theory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_tsum_measure
 
 /-- Pigeonhole principle for measure spaces: if `s` is a `Finset` and
@@ -431,8 +430,7 @@ theorem exists_nonempty_inter_of_measure_univ_lt_sum_measure {m : MeasurableSpac
   contrapose! H
   apply sum_measure_le_measure_univ h
   intro i hi j hj hij
-  rw [Function.onFun, disjoint_iff_inf_le]
-  exact fun x hx => H i hi j hj hij ⟨x, hx⟩
+  exact disjoint_iff_inter_eq_empty.mpr (H i hi j hj hij)
 #align measure_theory.exists_nonempty_inter_of_measure_univ_lt_sum_measure MeasureTheory.exists_nonempty_inter_of_measure_univ_lt_sum_measure
 
 /-- If two sets `s` and `t` are included in a set `u`, and `μ s + μ t > μ u`,
feat: if X is Gaussian, then X+y and c*X are Gaussian (#7674)

Co-authored-by: Alexander Bentkamp

Co-authored-by: RemyDegenne <remydegenne@gmail.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -1184,6 +1184,7 @@ theorem map_zero (f : α → β) : (0 : Measure α).map f = 0 := by
   by_cases hf : AEMeasurable f (0 : Measure α) <;> simp [map, hf]
 #align measure_theory.measure.map_zero MeasureTheory.Measure.map_zero
 
+@[simp]
 theorem map_of_not_aemeasurable {f : α → β} {μ : Measure α} (hf : ¬AEMeasurable f μ) :
     μ.map f = 0 := by simp [map, hf]
 #align measure_theory.measure.map_of_not_ae_measurable MeasureTheory.Measure.map_of_not_aemeasurable
feat(MeasureTheory/Integral/Lebesgue): add set_lintegral_subtype (#7679)
  • Add MeasureTheory.set_lintegral_eq_subtype and MeasureTheory.set_lintegral_subtype.
  • Add MeasurableEmbedding.comap_map, MeasurableEmbedding.comap_restrict, and MeasurableEmbedding.restrict_comap.
  • Drop measurability assumption in MeasurableEmbedding.comap_preimage.
  • Remove some empty lines.
Diff
@@ -1579,7 +1579,6 @@ theorem restrict_le_self : μ.restrict s ≤ μ := fun t ht =>
   calc
     μ.restrict s t = μ (t ∩ s) := restrict_apply ht
     _ ≤ μ t := measure_mono <| inter_subset_left t s
-
 #align measure_theory.measure.restrict_le_self MeasureTheory.Measure.restrict_le_self
 
 variable (μ)
@@ -1591,7 +1590,6 @@ theorem restrict_eq_self (h : s ⊆ t) : μ.restrict t s = μ s :=
         measure_mono (subset_inter (subset_toMeasurable _ _) h)
       _ = μ.restrict t s := by
         rw [← restrict_apply (measurableSet_toMeasurable _ _), measure_toMeasurable]
-
 #align measure_theory.measure.restrict_eq_self MeasureTheory.Measure.restrict_eq_self
 
 @[simp]
@@ -1609,7 +1607,6 @@ theorem le_restrict_apply (s t : Set α) : μ (t ∩ s) ≤ μ.restrict s t :=
   calc
     μ (t ∩ s) = μ.restrict s (t ∩ s) := (restrict_eq_self μ (inter_subset_right _ _)).symm
     _ ≤ μ.restrict s t := measure_mono (inter_subset_left _ _)
-
 #align measure_theory.measure.le_restrict_apply MeasureTheory.Measure.le_restrict_apply
 
 theorem restrict_apply_superset (h : s ⊆ t) : μ.restrict s t = μ s :=
@@ -1803,7 +1800,6 @@ theorem restrict_eq_self_of_ae_mem {_m0 : MeasurableSpace α} ⦃s : Set α⦄ 
   calc
     μ.restrict s = μ.restrict univ := restrict_congr_set (eventuallyEq_univ.mpr hs)
     _ = μ := restrict_univ
-
 #align measure_theory.measure.restrict_eq_self_of_ae_mem MeasureTheory.Measure.restrict_eq_self_of_ae_mem
 
 theorem restrict_congr_meas (hs : MeasurableSet s) :
@@ -4128,9 +4124,12 @@ theorem comap_apply (μ : Measure β) (s : Set α) : comap f μ s = μ (f '' s)
     _ = μ (f '' s) := by
       rw [hf.map_comap, restrict_apply' hf.measurableSet_range,
         inter_eq_self_of_subset_left (image_subset_range _ _)]
-
 #align measurable_embedding.comap_apply MeasurableEmbedding.comap_apply
 
+theorem comap_map (μ : Measure α) : (map f μ).comap f = μ := by
+  ext t _
+  rw [hf.comap_apply, hf.map_apply, preimage_image_eq _ hf.injective]
+
 theorem ae_map_iff {p : β → Prop} {μ : Measure α} : (∀ᵐ x ∂μ.map f, p x) ↔ ∀ᵐ x ∂μ, p (f x) := by
   simp only [ae_iff, hf.map_apply, preimage_setOf_eq]
 #align measurable_embedding.ae_map_iff MeasurableEmbedding.ae_map_iff
@@ -4140,12 +4139,21 @@ theorem restrict_map (μ : Measure α) (s : Set β) :
   Measure.ext fun t ht => by simp [hf.map_apply, ht, hf.measurable ht]
 #align measurable_embedding.restrict_map MeasurableEmbedding.restrict_map
 
-protected theorem comap_preimage (μ : Measure β) {s : Set β} (hs : MeasurableSet s) :
-    μ.comap f (f ⁻¹' s) = μ (s ∩ range f) :=
-  comap_preimage _ _ hf.injective hf.measurable
-    (fun _t ht => (hf.measurableSet_image' ht).nullMeasurableSet) hs
+protected theorem comap_preimage (μ : Measure β) (s : Set β) :
+    μ.comap f (f ⁻¹' s) = μ (s ∩ range f) := by
+  rw [← hf.map_apply, hf.map_comap, restrict_apply' hf.measurableSet_range]
 #align measurable_embedding.comap_preimage MeasurableEmbedding.comap_preimage
 
+lemma comap_restrict (μ : Measure β) (s : Set β) :
+    (μ.restrict s).comap f = (μ.comap f).restrict (f ⁻¹' s) := by
+  ext t ht
+  rw [Measure.restrict_apply ht, comap_apply hf, comap_apply hf,
+    Measure.restrict_apply (hf.measurableSet_image.2 ht), image_inter_preimage]
+
+lemma restrict_comap (μ : Measure β) (s : Set α) :
+    (μ.comap f).restrict s = (μ.restrict (f '' s)).comap f := by
+  rw [comap_restrict hf, preimage_image_eq _ hf.injective]
+
 end MeasurableEmbedding
 
 section Subtype
feat: generalize some lemmas to directed types (#7852)

New lemmas / instances

  • An archimedean ordered semiring is directed upwards.
  • Filter.hasAntitoneBasis_atTop;
  • Filter.HasAntitoneBasis.iInf_principal;

Fix typos

  • Docstrings: "if the agree" -> "if they agree".
  • ProbabilityTheory.measure_eq_zero_or_one_of_indepSetCat_self -> ProbabilityTheory.measure_eq_zero_or_one_of_indepSet_self.

Weaken typeclass assumptions

From a semilattice to a directed type

  • MeasureTheory.tendsto_measure_iUnion;
  • MeasureTheory.tendsto_measure_iInter;
  • Monotone.directed_le, Monotone.directed_ge;
  • Antitone.directed_le, Antitone.directed_ge;
  • directed_of_sup, renamed to directed_of_isDirected_le;
  • directed_of_inf, renamed to directed_of_isDirected_ge;

From a strict ordered semiring to an ordered semiring

  • tendsto_nat_cast_atTop_atTop;
  • Filter.Eventually.nat_cast_atTop;
  • atTop_hasAntitoneBasis_of_archimedean;
Diff
@@ -527,18 +527,18 @@ theorem measure_iInter_eq_iInf [Countable ι] {s : ι → Set α} (h : ∀ i, Me
 
 /-- Continuity from below: the measure of the union of an increasing sequence of measurable sets
 is the limit of the measures. -/
-theorem tendsto_measure_iUnion [SemilatticeSup ι] [Countable ι] {s : ι → Set α} (hm : Monotone s) :
-    Tendsto (μ ∘ s) atTop (𝓝 (μ (⋃ n, s n))) := by
-  rw [measure_iUnion_eq_iSup (directed_of_sup hm)]
+theorem tendsto_measure_iUnion [Preorder ι] [IsDirected ι (· ≤ ·)] [Countable ι]
+    {s : ι → Set α} (hm : Monotone s) : Tendsto (μ ∘ s) atTop (𝓝 (μ (⋃ n, s n))) := by
+  rw [measure_iUnion_eq_iSup hm.directed_le]
   exact tendsto_atTop_iSup fun n m hnm => measure_mono <| hm hnm
 #align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_iUnion
 
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the limit of the measures. -/
-theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Set α}
+theorem tendsto_measure_iInter [Countable ι] [Preorder ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α}
     (hs : ∀ n, MeasurableSet (s n)) (hm : Antitone s) (hf : ∃ i, μ (s i) ≠ ∞) :
     Tendsto (μ ∘ s) atTop (𝓝 (μ (⋂ n, s n))) := by
-  rw [measure_iInter_eq_iInf hs (directed_of_sup hm) hf]
+  rw [measure_iInter_eq_iInf hs hm.directed_ge hf]
   exact tendsto_atTop_iInf fun n m hnm => measure_mono <| hm hnm
 #align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_iInter
 
@@ -1860,7 +1860,7 @@ theorem restrict_iUnion_congr [Countable ι] {s : ι → Set α} :
   refine' ⟨fun h i => restrict_congr_mono (subset_iUnion _ _) h, fun h => _⟩
   ext1 t ht
   have D : Directed (· ⊆ ·) fun t : Finset ι => ⋃ i ∈ t, s i :=
-    directed_of_sup fun t₁ t₂ ht => biUnion_subset_biUnion_left ht
+    Monotone.directed_le fun t₁ t₂ ht => biUnion_subset_biUnion_left ht
   rw [iUnion_eq_iUnion_finset]
   simp only [restrict_iUnion_apply_eq_iSup D ht, restrict_finset_biUnion_congr.2 fun i _ => h i]
 #align measure_theory.measure.restrict_Union_congr MeasureTheory.Measure.restrict_iUnion_congr
@@ -3386,9 +3386,8 @@ theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
     ⨆ i, μ.restrict (spanningSets μ i) s = μ s :=
   calc
     ⨆ i, μ.restrict (spanningSets μ i) s = μ.restrict (⋃ i, spanningSets μ i) s :=
-      (restrict_iUnion_apply_eq_iSup (directed_of_sup (monotone_spanningSets μ)) hs).symm
+      (restrict_iUnion_apply_eq_iSup (monotone_spanningSets μ).directed_le hs).symm
     _ = μ s := by rw [iUnion_spanningSets, restrict_univ]
-
 #align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.iSup_restrict_spanningSets
 
 /-- In a σ-finite space, any measurable set of measure `> r` contains a measurable subset of
chore: remove nonterminal simp (#7580)

Removes nonterminal simps on lines looking like simp [...]

Diff
@@ -205,7 +205,7 @@ theorem tsum_meas_le_meas_iUnion_of_disjoint₀ {ι : Type*} [MeasurableSpace α
   rw [hS.tsum_eq]
   refine' tendsto_le_of_eventuallyLE hS tendsto_const_nhds (eventually_of_forall _)
   intro s
-  simp [← measure_biUnion_finset₀ (fun _i _hi _j _hj hij => As_disj hij) fun i _ => As_mble i]
+  simp only [← measure_biUnion_finset₀ (fun _i _hi _j _hj hij => As_disj hij) fun i _ => As_mble i]
   exact measure_mono (iUnion₂_subset_iUnion (fun i : ι => i ∈ s) fun i : ι => As i)
 
 /-- The measure of a disjoint union (even uncountable) of measurable sets is at least the sum of
feat: Prove Measure.add_right_inj for sigma-finite measures (#7727)
  • Generalizes a lemma from #7713.
Diff
@@ -3681,6 +3681,20 @@ theorem sigmaFinite_of_le (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ
   ⟨hs.out.map <| FiniteSpanningSetsIn.ofLE h⟩
 #align measure_theory.measure.sigma_finite_of_le MeasureTheory.Measure.sigmaFinite_of_le
 
+@[simp] lemma add_right_inj (μ ν₁ ν₂ : Measure α) [SigmaFinite μ] :
+    μ + ν₁ = μ + ν₂ ↔ ν₁ = ν₂ := by
+  refine ⟨fun h ↦ ?_, fun h ↦ by rw [h]⟩
+  rw [ext_iff_of_iUnion_eq_univ (iUnion_spanningSets μ)]
+  intro i
+  ext s hs
+  rw [← ENNReal.add_right_inj (measure_mono (inter_subset_right s _) |>.trans_lt <|
+    measure_spanningSets_lt_top μ i).ne]
+  simp [Measure.ext_iff'] at h
+  simp [hs, h]
+
+@[simp] lemma add_left_inj (μ ν₁ ν₂ : Measure α) [SigmaFinite μ] :
+    ν₁ + μ = ν₂ + μ ↔ ν₁ = ν₂ := by rw [add_comm _ μ, add_comm _ μ, μ.add_right_inj]
+
 end Measure
 
 /-- Every finite measure is σ-finite. -/
chore: missing spaces after rcases, convert and congrm (#7725)

Replace rcases( with rcases (. Same thing for convert( and congrm(. No other change.

Diff
@@ -4278,7 +4278,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
       ⟨U ∪ V, union_subset_union hsU htV, hUo.union hVo,
         (measure_union_le _ _).trans_lt <| ENNReal.add_lt_top.2 ⟨hU, hV⟩⟩
   · intro x hx
-    rcases(hμ x hx).exists_mem_basis (nhds_basis_opens _) with ⟨U, ⟨hx, hUo⟩, hU⟩
+    rcases (hμ x hx).exists_mem_basis (nhds_basis_opens _) with ⟨U, ⟨hx, hUo⟩, hU⟩
     exact ⟨U, nhdsWithin_le_nhds (hUo.mem_nhds hx), U, Subset.rfl, hUo, hU⟩
 #align is_compact.exists_open_superset_measure_lt_top' IsCompact.exists_open_superset_measure_lt_top'
 
chore: cleanup typo in filter_upwards (#7719)

mathport was forgetting a space in filter_upwards [...]with instead of filter_upwards [...] with.

Diff
@@ -577,7 +577,7 @@ theorem tendsto_measure_biInter_gt {ι : Type*} [LinearOrder ι] [TopologicalSpa
   rw [B] at A
   obtain ⟨n, hn⟩ : ∃ n, μ (s (u n)) < L := ((tendsto_order.1 A).2 _ hL).exists
   have : Ioc a (u n) ∈ 𝓝[>] a := Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, u_pos n⟩
-  filter_upwards [this]with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
+  filter_upwards [this] with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
 #align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gt
 
 /-- One direction of the **Borel-Cantelli lemma**: if (sᵢ) is a sequence of sets such
@@ -2600,7 +2600,7 @@ theorem ae_restrict_of_ae {s : Set α} {p : α → Prop} (h : ∀ᵐ x ∂μ, p
 theorem ae_restrict_iff'₀ {p : α → Prop} (hs : NullMeasurableSet s μ) :
     (∀ᵐ x ∂μ.restrict s, p x) ↔ ∀ᵐ x ∂μ, x ∈ s → p x := by
   refine' ⟨fun h => ae_imp_of_ae_restrict h, fun h => _⟩
-  filter_upwards [ae_restrict_mem₀ hs, ae_restrict_of_ae h]with x hx h'x using h'x hx
+  filter_upwards [ae_restrict_mem₀ hs, ae_restrict_of_ae h] with x hx h'x using h'x hx
 #align measure_theory.ae_restrict_iff'₀ MeasureTheory.ae_restrict_iff'₀
 
 theorem ae_restrict_of_ae_restrict_of_subset {s t : Set α} {p : α → Prop} (hst : s ⊆ t)
@@ -4480,7 +4480,7 @@ theorem indicator_ae_eq_restrict_compl (hs : MeasurableSet s) :
 theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict sᶜ] 0) : s.indicator f =ᵐ[μ] f := by
   rw [Filter.EventuallyEq, ae_restrict_iff' hs.compl] at hf
-  filter_upwards [hf]with x hx
+  filter_upwards [hf] with x hx
   by_cases hxs : x ∈ s
   · simp only [hxs, Set.indicator_of_mem]
   · simp only [hx hxs, Pi.zero_apply, Set.indicator_apply_eq_zero, eq_self_iff_true, imp_true_iff]
@@ -4489,7 +4489,7 @@ theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
 theorem indicator_ae_eq_zero_of_restrict_ae_eq_zero (hs : MeasurableSet s)
     (hf : f =ᵐ[μ.restrict s] 0) : s.indicator f =ᵐ[μ] 0 := by
   rw [Filter.EventuallyEq, ae_restrict_iff' hs] at hf
-  filter_upwards [hf]with x hx
+  filter_upwards [hf] with x hx
   by_cases hxs : x ∈ s
   · simp only [hxs, hx hxs, Set.indicator_of_mem]
   · simp [hx, hxs]
@@ -4506,7 +4506,7 @@ theorem indicator_meas_zero (hs : μ s = 0) : indicator s f =ᵐ[μ] 0 :=
 theorem ae_eq_restrict_iff_indicator_ae_eq {g : α → β} (hs : MeasurableSet s) :
     f =ᵐ[μ.restrict s] g ↔ s.indicator f =ᵐ[μ] s.indicator g := by
   rw [Filter.EventuallyEq, ae_restrict_iff' hs]
-  refine' ⟨fun h => _, fun h => _⟩ <;> filter_upwards [h]with x hx
+  refine' ⟨fun h => _, fun h => _⟩ <;> filter_upwards [h] with x hx
   · by_cases hxs : x ∈ s
     · simp [hxs, hx hxs]
     · simp [hxs]
feat: remove sigma-finiteness assumption in layercake formula (#7454)

Currently, the layercake formula for the Lebesgue integral assumes sigma-finiteness of the measure, while the layercake formula for the Bochner integral (and integrable functions) doesn't. At the cost of a more complicated proof, we remove the sigma-finiteness also from the Lebesgue measure case.

Co-authored-by: Kalle <kalle.kytola@aalto.fi>

Diff
@@ -3189,6 +3189,30 @@ theorem Ico_ae_eq_Ioc : Ico a b =ᵐ[μ] Ioc a b :=
   Ico_ae_eq_Ioc' (measure_singleton a) (measure_singleton b)
 #align measure_theory.Ico_ae_eq_Ioc MeasureTheory.Ico_ae_eq_Ioc
 
+theorem restrict_Iio_eq_restrict_Iic : μ.restrict (Iio a) = μ.restrict (Iic a) :=
+  restrict_congr_set Iio_ae_eq_Iic
+
+theorem restrict_Ioi_eq_restrict_Ici : μ.restrict (Ioi a) = μ.restrict (Ici a) :=
+  restrict_congr_set Ioi_ae_eq_Ici
+
+theorem restrict_Ioo_eq_restrict_Ioc : μ.restrict (Ioo a b) = μ.restrict (Ioc a b) :=
+  restrict_congr_set Ioo_ae_eq_Ioc
+
+theorem restrict_Ioc_eq_restrict_Icc : μ.restrict (Ioc a b) = μ.restrict (Icc a b) :=
+  restrict_congr_set Ioc_ae_eq_Icc
+
+theorem restrict_Ioo_eq_restrict_Ico : μ.restrict (Ioo a b) = μ.restrict (Ico a b) :=
+  restrict_congr_set Ioo_ae_eq_Ico
+
+theorem restrict_Ioo_eq_restrict_Icc : μ.restrict (Ioo a b) = μ.restrict (Icc a b) :=
+  restrict_congr_set Ioo_ae_eq_Icc
+
+theorem restrict_Ico_eq_restrict_Icc : μ.restrict (Ico a b) = μ.restrict (Icc a b) :=
+  restrict_congr_set Ico_ae_eq_Icc
+
+theorem restrict_Ico_eq_restrict_Ioc : μ.restrict (Ico a b) = μ.restrict (Ioc a b) :=
+  restrict_congr_set Ico_ae_eq_Ioc
+
 end
 
 open Interval
feat: generalize MeasureTheory.Measure.Regular.sigmaFinite (#7690)

Generalize MeasureTheory.Measure.Regular.sigmaFinite from a regular measure to a measure finite on compacts, rename it to MeasureTheory.SigmaFinite.of_isFiniteMeasureOnCompacts.

Diff
@@ -3854,6 +3854,13 @@ theorem CompactSpace.isFiniteMeasure [TopologicalSpace α] [CompactSpace α]
   ⟨IsFiniteMeasureOnCompacts.lt_top_of_isCompact isCompact_univ⟩
 #align measure_theory.compact_space.is_finite_measure MeasureTheory.CompactSpace.isFiniteMeasure
 
+instance (priority := 100) SigmaFinite.of_isFiniteMeasureOnCompacts [TopologicalSpace α]
+    [SigmaCompactSpace α] (μ : Measure α) [IsFiniteMeasureOnCompacts μ] : SigmaFinite μ :=
+  ⟨⟨{   set := compactCovering α
+        set_mem := fun _ => trivial
+        finite := fun n => (isCompact_compactCovering α n).measure_lt_top
+        spanning := iUnion_compactCovering α }⟩⟩
+
 -- see Note [lower instance priority]
 instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
     [SecondCountableTopology α] [IsLocallyFiniteMeasure μ] : SigmaFinite μ := by
chore(MeasureTheory/Measure): use instead of (#7603)

Use ∃ t', t' ⊆ t ∧ _ instead of ∃ t' (_ : t' ⊆ t), _ and similarly with in MeasureTheory.toMeasurable and related lemmas.

Also reflow linebreaks in an unrelated proof.

Diff
@@ -3514,8 +3514,7 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
   -- measurable set `s`. It is built on each member of a spanning family using `toMeasurable`
   -- (which is well behaved for finite measure sets thanks to `measure_toMeasurable_inter`), and
   -- the desired property passes to the union.
-  have A :
-    ∃ (t' : _) (_ : t' ⊇ t), MeasurableSet t' ∧ ∀ u, MeasurableSet u → μ (t' ∩ u) = μ (t ∩ u) := by
+  have A : ∃ t', t' ⊇ t ∧ MeasurableSet t' ∧ ∀ u, MeasurableSet u → μ (t' ∩ u) = μ (t ∩ u) := by
     let w n := toMeasurable μ (t ∩ v n)
     have hw : ∀ n, μ (w n) < ∞ := by
       intro n
@@ -3568,8 +3567,8 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
   rw [toMeasurable]
   split_ifs with ht
   · apply measure_congr
-    exact ae_eq_set_inter ht.choose_spec.snd.2 (ae_eq_refl _)
-  · exact A.choose_spec.snd.2 s hs
+    exact ae_eq_set_inter ht.choose_spec.2.2 (ae_eq_refl _)
+  · exact A.choose_spec.2.2 s hs
 #align measure_theory.measure.measure_to_measurable_inter_of_cover MeasureTheory.Measure.measure_toMeasurable_inter_of_cover
 
 theorem restrict_toMeasurable_of_cover {s : Set α} {v : ℕ → Set α} (hv : s ⊆ ⋃ n, v n)
feat: add simple lemmas about MeasurableEquiv (#7509)
Diff
@@ -4175,6 +4175,14 @@ protected theorem map_apply (f : α ≃ᵐ β) (s : Set β) : μ.map f s = μ (f
   f.measurableEmbedding.map_apply _ _
 #align measurable_equiv.map_apply MeasurableEquiv.map_apply
 
+lemma comap_symm (e : α ≃ᵐ β) : μ.comap e.symm = μ.map e := by
+  ext s hs
+  rw [e.map_apply, Measure.comap_apply _ e.symm.injective _ _ hs, image_symm]
+  exact fun t ht ↦ e.symm.measurableSet_image.mpr ht
+
+lemma map_symm (e : β ≃ᵐ α) : μ.map e.symm = μ.comap e := by
+  rw [← comap_symm, symm_symm]
+
 @[simp]
 theorem map_symm_map (e : α ≃ᵐ β) : (μ.map e).map e.symm = μ := by
   simp [map_map e.symm.measurable e.measurable]
feat: Add a basic layercake formula for Bochner integral. (#7167)

Layer cake formulas currently exist for ENNReal-valued functions and Lebesgue integrals. This PR adds the most common version of the layer cake formula for integrable a.e.-nonnegative real-valued functions and Bochner integrals.

Co-authored-by: kkytola <“kalle.kytola@aalto.fi”> Co-authored-by: kkytola <39528102+kkytola@users.noreply.github.com>

Diff
@@ -2712,6 +2712,28 @@ theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
   measure_setOf_frequently_eq_zero hs
 #align measure_theory.ae_eventually_not_mem MeasureTheory.ae_eventually_not_mem
 
+lemma NullMeasurable.measure_preimage_eq_measure_restrict_preimage_of_ae_compl_eq_const
+    {β : Type*} [MeasurableSpace β] {b : β} {f : α → β} {s : Set α}
+    (f_mble : NullMeasurable f (μ.restrict s)) (hs : f =ᵐ[Measure.restrict μ sᶜ] (fun _ ↦ b))
+    {t : Set β} (t_mble : MeasurableSet t) (ht : b ∉ t) :
+    μ (f ⁻¹' t) = μ.restrict s (f ⁻¹' t) := by
+  rw [Measure.restrict_apply₀ (f_mble t_mble)]
+  simp only [EventuallyEq, Filter.Eventually, Pi.zero_apply, Measure.ae,
+             MeasurableSet.compl_iff, Filter.mem_mk, mem_setOf_eq] at hs
+  rw [Measure.restrict_apply₀] at hs
+  · apply le_antisymm _ (measure_mono (inter_subset_left _ _))
+    apply (measure_mono (Eq.symm (inter_union_compl (f ⁻¹' t) s)).le).trans
+    apply (measure_union_le _ _).trans
+    have obs : μ ((f ⁻¹' t) ∩ sᶜ) = 0 := by
+      apply le_antisymm _ (zero_le _)
+      rw [← hs]
+      apply measure_mono (inter_subset_inter_left _ _)
+      intro x hx hfx
+      simp only [mem_preimage, mem_setOf_eq] at hx hfx
+      exact ht (hfx ▸ hx)
+    simp only [obs, add_zero, le_refl]
+  · exact NullMeasurableSet.of_null hs
+
 section Intervals
 
 theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
chore: split Measure.Trim definition from MeasureSpace.lean (#7385)

The file MeasureSpace has more than 4000 lines: let's move some results out of it.

Co-authored-by: Rémy Degenne <remydegenne@gmail.com>

Diff
@@ -4198,118 +4198,6 @@ theorem OuterMeasure.toMeasure_zero [MeasurableSpace α] :
     OuterMeasure.coe_zero, Pi.zero_apply]
 #align measure_theory.outer_measure.to_measure_zero MeasureTheory.OuterMeasure.toMeasure_zero
 
-section Trim
-
-/-- Restriction of a measure to a sub-sigma algebra.
-It is common to see a measure `μ` on a measurable space structure `m0` as being also a measure on
-any `m ≤ m0`. Since measures in mathlib have to be trimmed to the measurable space, `μ` itself
-cannot be a measure on `m`, hence the definition of `μ.trim hm`.
-
-This notion is related to `OuterMeasure.trim`, see the lemma
-`toOuterMeasure_trim_eq_trim_toOuterMeasure`. -/
-def Measure.trim {m m0 : MeasurableSpace α} (μ : @Measure α m0) (hm : m ≤ m0) : @Measure α m :=
-  @OuterMeasure.toMeasure α m μ.toOuterMeasure (hm.trans (le_toOuterMeasure_caratheodory μ))
-#align measure_theory.measure.trim MeasureTheory.Measure.trim
-
-@[simp]
-theorem trim_eq_self [MeasurableSpace α] {μ : Measure α} : μ.trim le_rfl = μ := by
-  simp [Measure.trim]
-#align measure_theory.trim_eq_self MeasureTheory.trim_eq_self
-
-variable {m m0 : MeasurableSpace α} {μ : Measure α} {s : Set α}
-
-theorem toOuterMeasure_trim_eq_trim_toOuterMeasure (μ : Measure α) (hm : m ≤ m0) :
-    @Measure.toOuterMeasure _ m (μ.trim hm) = @OuterMeasure.trim _ m μ.toOuterMeasure := by
-  rw [Measure.trim, toMeasure_toOuterMeasure (ms := m)]
-#align measure_theory.to_outer_measure_trim_eq_trim_to_outer_measure MeasureTheory.toOuterMeasure_trim_eq_trim_toOuterMeasure
-
-@[simp]
-theorem zero_trim (hm : m ≤ m0) : (0 : Measure α).trim hm = (0 : @Measure α m) := by
-  simp [Measure.trim, @OuterMeasure.toMeasure_zero _ m]
-#align measure_theory.zero_trim MeasureTheory.zero_trim
-
-theorem trim_measurableSet_eq (hm : m ≤ m0) (hs : @MeasurableSet α m s) : μ.trim hm s = μ s := by
-  rw [Measure.trim, toMeasure_apply (ms := m) _ _ hs]
-#align measure_theory.trim_measurable_set_eq MeasureTheory.trim_measurableSet_eq
-
-theorem le_trim (hm : m ≤ m0) : μ s ≤ μ.trim hm s := by
-  simp_rw [Measure.trim]
-  exact @le_toMeasure_apply _ m _ _ _
-#align measure_theory.le_trim MeasureTheory.le_trim
-
-theorem measure_eq_zero_of_trim_eq_zero (hm : m ≤ m0) (h : μ.trim hm s = 0) : μ s = 0 :=
-  le_antisymm ((le_trim hm).trans (le_of_eq h)) (zero_le _)
-#align measure_theory.measure_eq_zero_of_trim_eq_zero MeasureTheory.measure_eq_zero_of_trim_eq_zero
-
-theorem measure_trim_toMeasurable_eq_zero {hm : m ≤ m0} (hs : μ.trim hm s = 0) :
-    μ (@toMeasurable α m (μ.trim hm) s) = 0 :=
-  measure_eq_zero_of_trim_eq_zero hm (by rwa [@measure_toMeasurable _ m])
-#align measure_theory.measure_trim_to_measurable_eq_zero MeasureTheory.measure_trim_toMeasurable_eq_zero
-
-theorem ae_of_ae_trim (hm : m ≤ m0) {μ : Measure α} {P : α → Prop} (h : ∀ᵐ x ∂μ.trim hm, P x) :
-    ∀ᵐ x ∂μ, P x :=
-  measure_eq_zero_of_trim_eq_zero hm h
-#align measure_theory.ae_of_ae_trim MeasureTheory.ae_of_ae_trim
-
-theorem ae_eq_of_ae_eq_trim {E} {hm : m ≤ m0} {f₁ f₂ : α → E}
-    (h12 : f₁ =ᶠ[@Measure.ae α m (μ.trim hm)] f₂) : f₁ =ᵐ[μ] f₂ :=
-  measure_eq_zero_of_trim_eq_zero hm h12
-#align measure_theory.ae_eq_of_ae_eq_trim MeasureTheory.ae_eq_of_ae_eq_trim
-
-theorem ae_le_of_ae_le_trim {E} [LE E] {hm : m ≤ m0} {f₁ f₂ : α → E}
-    (h12 : f₁ ≤ᶠ[@Measure.ae α m (μ.trim hm)] f₂) : f₁ ≤ᵐ[μ] f₂ :=
-  measure_eq_zero_of_trim_eq_zero hm h12
-#align measure_theory.ae_le_of_ae_le_trim MeasureTheory.ae_le_of_ae_le_trim
-
-theorem trim_trim {m₁ m₂ : MeasurableSpace α} {hm₁₂ : m₁ ≤ m₂} {hm₂ : m₂ ≤ m0} :
-    (μ.trim hm₂).trim hm₁₂ = μ.trim (hm₁₂.trans hm₂) := by
-  refine @Measure.ext _ m₁ _ _ (fun t ht => ?_)
-  rw [trim_measurableSet_eq hm₁₂ ht, trim_measurableSet_eq (hm₁₂.trans hm₂) ht,
-    trim_measurableSet_eq hm₂ (hm₁₂ t ht)]
-#align measure_theory.trim_trim MeasureTheory.trim_trim
-
-theorem restrict_trim (hm : m ≤ m0) (μ : Measure α) (hs : @MeasurableSet α m s) :
-    @Measure.restrict α m (μ.trim hm) s = (μ.restrict s).trim hm := by
-  refine @Measure.ext _ m _ _ (fun t ht => ?_)
-  rw [@Measure.restrict_apply α m _ _ _ ht, trim_measurableSet_eq hm ht,
-    Measure.restrict_apply (hm t ht),
-    trim_measurableSet_eq hm (@MeasurableSet.inter α m t s ht hs)]
-#align measure_theory.restrict_trim MeasureTheory.restrict_trim
-
-instance isFiniteMeasure_trim (hm : m ≤ m0) [IsFiniteMeasure μ] : IsFiniteMeasure (μ.trim hm) where
-  measure_univ_lt_top := by
-    rw [trim_measurableSet_eq hm (@MeasurableSet.univ _ m)]
-    exact measure_lt_top _ _
-#align measure_theory.is_finite_measure_trim MeasureTheory.isFiniteMeasure_trim
-
-theorem sigmaFiniteTrim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm : m ≤ m0)
-    (hm₂ : m₂ ≤ m) [SigmaFinite (μ.trim (hm₂.trans hm))] : SigmaFinite (μ.trim hm) := by
-  have _ := Measure.FiniteSpanningSetsIn (μ.trim (hm₂.trans hm)) Set.univ
-  refine' Measure.FiniteSpanningSetsIn.sigmaFinite _
-  · exact Set.univ
-  · refine'
-      { set := spanningSets (μ.trim (hm₂.trans hm))
-        set_mem := fun _ => Set.mem_univ _
-        finite := fun i => _ -- This is the only one left to prove
-        spanning := iUnion_spanningSets _ }
-    calc
-      (μ.trim hm) (spanningSets (μ.trim (hm₂.trans hm)) i) =
-          ((μ.trim hm).trim hm₂) (spanningSets (μ.trim (hm₂.trans hm)) i) :=
-        by rw [@trim_measurableSet_eq α m₂ m (μ.trim hm) _ hm₂ (measurable_spanningSets _ _)]
-      _ = (μ.trim (hm₂.trans hm)) (spanningSets (μ.trim (hm₂.trans hm)) i) := by
-        rw [@trim_trim _ _ μ _ _ hm₂ hm]
-      _ < ∞ := measure_spanningSets_lt_top _ _
-#align measure_theory.sigma_finite_trim_mono MeasureTheory.sigmaFiniteTrim_mono
-
-theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ IsFiniteMeasure μ := by
-  rw [sigmaFinite_bot_iff]
-  refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ <;> have h_univ := h.measure_univ_lt_top
-  · rwa [trim_measurableSet_eq bot_le MeasurableSet.univ] at h_univ
-  · rwa [trim_measurableSet_eq bot_le MeasurableSet.univ]
-#align measure_theory.sigma_finite_trim_bot_iff MeasureTheory.sigmaFinite_trim_bot_iff
-
-end Trim
-
 end MeasureTheory
 
 namespace IsCompact
refactor(Topology/MetricSpace): remove Metric.Bounded (#7240)

Use Bornology.IsBounded instead.

Diff
@@ -3803,22 +3803,22 @@ theorem _root_.IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α}
 
 /-- A bounded subset has finite measure for a measure which is finite on compact sets, in a
 proper space. -/
-theorem _root_.Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [IsFiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Metric.Bounded s) : μ s < ∞ :=
+theorem _root_.Bornology.IsBounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α]
+    {μ : Measure α} [IsFiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Bornology.IsBounded s) :
+    μ s < ∞ :=
   calc
     μ s ≤ μ (closure s) := measure_mono subset_closure
-    _ < ∞ := (Metric.isCompact_of_isClosed_bounded isClosed_closure hs.closure).measure_lt_top
-
-#align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_top
+    _ < ∞ := (Metric.isCompact_of_isClosed_isBounded isClosed_closure hs.closure).measure_lt_top
+#align metric.bounded.measure_lt_top Bornology.IsBounded.measure_lt_top
 
 theorem measure_closedBall_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
     [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
-  Metric.bounded_closedBall.measure_lt_top
+  Metric.isBounded_closedBall.measure_lt_top
 #align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_top
 
 theorem measure_ball_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
     [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
-  Metric.bounded_ball.measure_lt_top
+  Metric.isBounded_ball.measure_lt_top
 #align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_top
 
 protected theorem IsFiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
perf: remove overspecified fields (#6965)

This removes redundant field values of the form add := add for smaller terms and less unfolding during unification.

A list of all files containing a structure instance of the form { a1, ... with x1 := val, ... } where some xi is a field of some aj was generated by modifying the structure instance elaboration algorithm to print such overlaps to stdout in a custom toolchain.

Using that toolchain, I went through each file on the list and attempted to remove algebraic fields that overlapped and were redundant, eg add := add and not toFun (though some other ones did creep in). If things broke (which was the case in a couple of cases), I did not push further and reverted.

It is possible that pushing harder and trying to remove all redundant overlaps will yield further improvements.

Diff
@@ -3776,8 +3776,7 @@ instance isLocallyFiniteMeasureSMulNNReal [TopologicalSpace α] (μ : Measure α
   rcases μ.exists_isOpen_measure_lt_top x with ⟨o, xo, o_open, μo⟩
   refine' ⟨o, o_open.mem_nhds xo, _⟩
   apply ENNReal.mul_lt_top _ μo.ne
-  simp only [RingHom.id_apply, RingHom.toMonoidHom_eq_coe, ENNReal.coe_ne_top,
-    ENNReal.coe_ofNNRealHom, Ne.def, not_false_iff]
+  simp
 #align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.isLocallyFiniteMeasureSMulNNReal
 
 protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α]
style: fix wrapping of where (#7149)
Diff
@@ -2902,8 +2902,8 @@ instance isFiniteMeasureAdd [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFinite
     exact ⟨measure_lt_top _ _, measure_lt_top _ _⟩
 #align measure_theory.is_finite_measure_add MeasureTheory.isFiniteMeasureAdd
 
-instance isFiniteMeasureSMulNNReal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFiniteMeasure (r • μ)
-    where measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
+instance isFiniteMeasureSMulNNReal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFiniteMeasure (r • μ) where
+  measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
 #align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.isFiniteMeasureSMulNNReal
 
 instance IsFiniteMeasure.average : IsFiniteMeasure ((μ univ)⁻¹ • μ) where
chore: generalize layercake formulas to null-measurable and a.e.-nonnegative functions (#6936)

The layercake formulas (a typical example of which is ∫⁻ f^p ∂μ = p * ∫⁻ t in 0..∞, t^(p-1) * μ {ω | f(ω) > t}) had been originally proven assuming measurability and nonnegativity of f. This PR generalizes them to null-measurable and a.e.-nonnegative f.

Co-authored-by: kkytola <“kalle.kytola@aalto.fi”> Co-authored-by: kkytola <39528102+kkytola@users.noreply.github.com>

Diff
@@ -196,17 +196,25 @@ theorem measure_biUnion_finset {s : Finset ι} {f : ι → Set α} (hd : Pairwis
   measure_biUnion_finset₀ hd.aedisjoint fun b hb => (hm b hb).nullMeasurableSet
 #align measure_theory.measure_bUnion_finset MeasureTheory.measure_biUnion_finset
 
-/-- The measure of a disjoint union (even uncountable) of measurable sets is at least the sum of
-the measures of the sets. -/
-theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type*} [MeasurableSpace α] (μ : Measure α)
-    {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
-    (As_disj : Pairwise (Disjoint on As)) : (∑' i, μ (As i)) ≤ μ (⋃ i, As i) := by
+/-- The measure of an a.e. disjoint union (even uncountable) of null-measurable sets is at least
+the sum of the measures of the sets. -/
+theorem tsum_meas_le_meas_iUnion_of_disjoint₀ {ι : Type*} [MeasurableSpace α] (μ : Measure α)
+    {As : ι → Set α} (As_mble : ∀ i : ι, NullMeasurableSet (As i) μ)
+    (As_disj : Pairwise (AEDisjoint μ on As)) : (∑' i, μ (As i)) ≤ μ (⋃ i, As i) := by
   rcases show Summable fun i => μ (As i) from ENNReal.summable with ⟨S, hS⟩
   rw [hS.tsum_eq]
   refine' tendsto_le_of_eventuallyLE hS tendsto_const_nhds (eventually_of_forall _)
   intro s
-  simp [← measure_biUnion_finset (fun _i _hi _j _hj hij => As_disj hij) fun i _ => As_mble i]
+  simp [← measure_biUnion_finset₀ (fun _i _hi _j _hj hij => As_disj hij) fun i _ => As_mble i]
   exact measure_mono (iUnion₂_subset_iUnion (fun i : ι => i ∈ s) fun i : ι => As i)
+
+/-- The measure of a disjoint union (even uncountable) of measurable sets is at least the sum of
+the measures of the sets. -/
+theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type*} [MeasurableSpace α] (μ : Measure α)
+    {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
+    (As_disj : Pairwise (Disjoint on As)) : (∑' i, μ (As i)) ≤ μ (⋃ i, As i) :=
+  tsum_meas_le_meas_iUnion_of_disjoint₀ μ (fun i ↦ (As_mble i).nullMeasurableSet)
+    (fun _ _ h ↦ Disjoint.aedisjoint (As_disj h))
 #align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_iUnion_of_disjoint
 
 /-- If `s` is a countable set, then the measure of its preimage can be found as the sum of measures
@@ -3368,15 +3376,24 @@ theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure
   exact forall_measure_inter_spanningSets_eq_zero s
 #align measure_theory.measure.exists_measure_inter_spanning_sets_pos MeasureTheory.Measure.exists_measure_inter_spanningSets_pos
 
+/-- If the union of a.e.-disjoint null-measurable sets has finite measure, then there are only
+finitely many members of the union whose measure exceeds any given positive number. -/
+theorem finite_const_le_meas_of_disjoint_iUnion₀ {ι : Type*} [MeasurableSpace α] (μ : Measure α)
+    {ε : ℝ≥0∞} (ε_pos : 0 < ε) {As : ι → Set α} (As_mble : ∀ i : ι, NullMeasurableSet (As i) μ)
+    (As_disj : Pairwise (AEDisjoint μ on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
+    Set.Finite { i : ι | ε ≤ μ (As i) } :=
+  ENNReal.finite_const_le_of_tsum_ne_top
+    (ne_top_of_le_ne_top Union_As_finite (tsum_meas_le_meas_iUnion_of_disjoint₀ μ As_mble As_disj))
+    ε_pos.ne'
+
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 finitely many members of the union whose measure exceeds any given positive number. -/
 theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type*} [MeasurableSpace α] (μ : Measure α)
     {ε : ℝ≥0∞} (ε_pos : 0 < ε) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
     Set.Finite { i : ι | ε ≤ μ (As i) } :=
-  ENNReal.finite_const_le_of_tsum_ne_top
-    (ne_top_of_le_ne_top Union_As_finite (tsum_meas_le_meas_iUnion_of_disjoint μ As_mble As_disj))
-    ε_pos.ne'
+  finite_const_le_meas_of_disjoint_iUnion₀ μ ε_pos (fun i ↦ (As_mble i).nullMeasurableSet)
+    (fun _ _ h ↦ Disjoint.aedisjoint (As_disj h)) Union_As_finite
 #align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion
 
 /-- If all elements of an infinite set have measure uniformly separated from zero,
@@ -3391,11 +3408,11 @@ theorem _root_.Set.Infinite.meas_eq_top [MeasurableSingletonClass α]
       (fun _ ↦ MeasurableSet.singleton _) fun x y hne ↦ by simpa [Subtype.val_inj]
     _ = μ s := by simp
 
-/-- If the union of disjoint measurable sets has finite measure, then there are only
+/-- If the union of a.e.-disjoint null-measurable sets has finite measure, then there are only
 countably many members of the union whose measure is positive. -/
-theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type*} [MeasurableSpace α]
-    (μ : Measure α) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
-    (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
+theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top₀ {ι : Type*} [MeasurableSpace α]
+    (μ : Measure α) {As : ι → Set α} (As_mble : ∀ i : ι, NullMeasurableSet (As i) μ)
+    (As_disj : Pairwise (AEDisjoint μ on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
     Set.Countable { i : ι | 0 < μ (As i) } := by
   set posmeas := { i : ι | 0 < μ (As i) } with posmeas_def
   rcases exists_seq_strictAnti_tendsto' (zero_lt_one : (0 : ℝ≥0∞) < 1) with
@@ -3409,35 +3426,60 @@ theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type*} [Measu
       iUnion_Ici_eq_Ioi_of_lt_of_tendsto (0 : ℝ≥0∞) (fun n => (as_mem n).1) as_lim]
   rw [countable_union]
   refine' countable_iUnion fun n => Finite.countable _
-  refine' finite_const_le_meas_of_disjoint_iUnion μ (as_mem n).1 As_mble As_disj Union_As_finite
+  refine' finite_const_le_meas_of_disjoint_iUnion₀ μ (as_mem n).1 As_mble As_disj Union_As_finite
+
+/-- If the union of disjoint measurable sets has finite measure, then there are only
+countably many members of the union whose measure is positive. -/
+theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type*} [MeasurableSpace α]
+    (μ : Measure α) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
+    (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
+    Set.Countable { i : ι | 0 < μ (As i) } :=
+  countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top₀ μ (fun i ↦ (As_mble i).nullMeasurableSet)
+    ((fun _ _ h ↦ Disjoint.aedisjoint (As_disj h))) Union_As_finite
 #align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top
 
-/-- In a σ-finite space, among disjoint measurable sets, only countably many can have positive
+/-- In a σ-finite space, among disjoint null-measurable sets, only countably many can have positive
 measure. -/
-theorem countable_meas_pos_of_disjoint_iUnion {ι : Type*} [MeasurableSpace α] {μ : Measure α}
-    [SigmaFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
-    (As_disj : Pairwise (Disjoint on As)) : Set.Countable { i : ι | 0 < μ (As i) } := by
+theorem countable_meas_pos_of_disjoint_iUnion₀ {ι : Type*} [MeasurableSpace α] {μ : Measure α}
+    [SigmaFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, NullMeasurableSet (As i) μ)
+    (As_disj : Pairwise (AEDisjoint μ on As)) :
+    Set.Countable { i : ι | 0 < μ (As i) } := by
   have obs : { i : ι | 0 < μ (As i) } ⊆ ⋃ n, { i : ι | 0 < μ (As i ∩ spanningSets μ n) } := by
     intro i i_in_nonzeroes
     by_contra con
     simp only [mem_iUnion, mem_setOf_eq, not_exists, not_lt, nonpos_iff_eq_zero] at *
     simp [(forall_measure_inter_spanningSets_eq_zero _).mp con] at i_in_nonzeroes
   apply Countable.mono obs
-  refine' countable_iUnion fun n => countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top μ _ _ _
-  · exact fun i => MeasurableSet.inter (As_mble i) (measurable_spanningSets μ n)
-  · exact fun i j i_ne_j b hbi hbj =>
-      As_disj i_ne_j (hbi.trans (inter_subset_left _ _)) (hbj.trans (inter_subset_left _ _))
+  refine' countable_iUnion fun n => countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top₀ μ _ _ _
+  · exact fun i ↦ NullMeasurableSet.inter (As_mble i)
+      (measurable_spanningSets μ n).nullMeasurableSet
+  · exact fun i j i_ne_j ↦ (As_disj i_ne_j).mono
+      (inter_subset_left (As i) (spanningSets μ n)) (inter_subset_left (As j) (spanningSets μ n))
   · refine' (lt_of_le_of_lt (measure_mono _) (measure_spanningSets_lt_top μ n)).ne
     exact iUnion_subset fun i => inter_subset_right _ _
+
+/-- In a σ-finite space, among disjoint measurable sets, only countably many can have positive
+measure. -/
+theorem countable_meas_pos_of_disjoint_iUnion {ι : Type*} [MeasurableSpace α] {μ : Measure α}
+    [SigmaFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
+    (As_disj : Pairwise (Disjoint on As)) : Set.Countable { i : ι | 0 < μ (As i) } :=
+  countable_meas_pos_of_disjoint_iUnion₀ (fun i ↦ (As_mble i).nullMeasurableSet)
+    ((fun _ _ h ↦ Disjoint.aedisjoint (As_disj h)))
 #align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion
 
+theorem countable_meas_level_set_pos₀ {α β : Type*} [MeasurableSpace α] {μ : Measure α}
+    [SigmaFinite μ] [MeasurableSpace β] [MeasurableSingletonClass β] {g : α → β}
+    (g_mble : NullMeasurable g μ) : Set.Countable { t : β | 0 < μ { a : α | g a = t } } := by
+  have level_sets_disjoint : Pairwise (Disjoint on fun t : β => { a : α | g a = t }) :=
+    fun s t hst => Disjoint.preimage g (disjoint_singleton.mpr hst)
+  exact Measure.countable_meas_pos_of_disjoint_iUnion₀
+    (fun b => g_mble (‹MeasurableSingletonClass β›.measurableSet_singleton b))
+    ((fun _ _ h ↦ Disjoint.aedisjoint (level_sets_disjoint h)))
+
 theorem countable_meas_level_set_pos {α β : Type*} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] [MeasurableSpace β] [MeasurableSingletonClass β] {g : α → β}
     (g_mble : Measurable g) : Set.Countable { t : β | 0 < μ { a : α | g a = t } } :=
-  haveI level_sets_disjoint : Pairwise (Disjoint on fun t : β => { a : α | g a = t }) :=
-    fun s t hst => Disjoint.preimage g (disjoint_singleton.mpr hst)
-  Measure.countable_meas_pos_of_disjoint_iUnion
-    (fun b => g_mble (‹MeasurableSingletonClass β›.measurableSet_singleton b)) level_sets_disjoint
+  countable_meas_level_set_pos₀ g_mble.nullMeasurable
 #align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
 
 /-- If a set `t` is covered by a countable family of finite measure sets, then its measurable
chore: move some files to MeasureTheory/MeasurableSpace/ (#7045)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
 -/
 import Mathlib.MeasureTheory.Measure.NullMeasurable
-import Mathlib.MeasureTheory.MeasurableSpace
+import Mathlib.MeasureTheory.MeasurableSpace.Basic
 import Mathlib.Topology.Algebra.Order.LiminfLimsup
 
 #align_import measure_theory.measure.measure_space from "leanprover-community/mathlib"@"343e80208d29d2d15f8050b929aa50fe4ce71b55"
feat: define weakly locally compact spaces (#6770)
Diff
@@ -3804,7 +3804,7 @@ instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
 /-- A measure which is finite on compact sets in a locally compact space is locally finite.
 Not registered as an instance to avoid a loop with the other direction. -/
 theorem isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α]
-    [LocallyCompactSpace α] [IsFiniteMeasureOnCompacts μ] : IsLocallyFiniteMeasure μ :=
+    [WeaklyLocallyCompactSpace α] [IsFiniteMeasureOnCompacts μ] : IsLocallyFiniteMeasure μ :=
   ⟨fun x ↦
     let ⟨K, K_compact, K_mem⟩ := exists_compact_mem_nhds x
     ⟨K, K_mem, K_compact.measure_lt_top⟩⟩
chore: golf some proofs, add helper lemmas (#6769)
Diff
@@ -3373,14 +3373,24 @@ finitely many members of the union whose measure exceeds any given positive numb
 theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type*} [MeasurableSpace α] (μ : Measure α)
     {ε : ℝ≥0∞} (ε_pos : 0 < ε) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
-    Set.Finite { i : ι | ε ≤ μ (As i) } := by
-  by_contra con
-  have aux :=
-    lt_of_le_of_lt (tsum_meas_le_meas_iUnion_of_disjoint μ As_mble As_disj)
-      (lt_top_iff_ne_top.mpr Union_As_finite)
-  exact con (ENNReal.finite_const_le_of_tsum_ne_top aux.ne ε_pos.ne.symm)
+    Set.Finite { i : ι | ε ≤ μ (As i) } :=
+  ENNReal.finite_const_le_of_tsum_ne_top
+    (ne_top_of_le_ne_top Union_As_finite (tsum_meas_le_meas_iUnion_of_disjoint μ As_mble As_disj))
+    ε_pos.ne'
 #align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion
 
+/-- If all elements of an infinite set have measure uniformly separated from zero,
+then the set has infinite measure. -/
+theorem _root_.Set.Infinite.meas_eq_top [MeasurableSingletonClass α]
+    {s : Set α} (hs : s.Infinite) (h' : ∃ ε, ε ≠ 0 ∧ ∀ x ∈ s, ε ≤ μ {x}) : μ s = ∞ := top_unique <|
+  let ⟨ε, hne, hε⟩ := h'; have := hs.to_subtype
+  calc
+    ∞ = ∑' _ : s, ε := (ENNReal.tsum_const_eq_top_of_ne_zero hne).symm
+    _ ≤ ∑' x : s, μ {x.1} := ENNReal.tsum_le_tsum fun x ↦ hε x x.2
+    _ ≤ μ (⋃ x : s, {x.1}) := tsum_meas_le_meas_iUnion_of_disjoint _
+      (fun _ ↦ MeasurableSet.singleton _) fun x y hne ↦ by simpa [Subtype.val_inj]
+    _ = μ s := by simp
+
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 countably many members of the union whose measure is positive. -/
 theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type*} [MeasurableSpace α]
@@ -3795,10 +3805,9 @@ instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
 Not registered as an instance to avoid a loop with the other direction. -/
 theorem isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α]
     [LocallyCompactSpace α] [IsFiniteMeasureOnCompacts μ] : IsLocallyFiniteMeasure μ :=
-  ⟨by
-    intro x
-    rcases exists_compact_mem_nhds x with ⟨K, K_compact, K_mem⟩
-    exact ⟨K, K_mem, K_compact.measure_lt_top⟩⟩
+  ⟨fun x ↦
+    let ⟨K, K_compact, K_mem⟩ := exists_compact_mem_nhds x
+    ⟨K, K_mem, K_compact.measure_lt_top⟩⟩
 #align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
 
 theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : ⋃ i, U i = univ)
feat: patch for new alias command (#6172)
Diff
@@ -1896,7 +1896,7 @@ theorem ext_iff_of_iUnion_eq_univ [Countable ι] {s : ι → Set α} (hs : ⋃ i
   rw [← restrict_iUnion_congr, hs, restrict_univ, restrict_univ]
 #align measure_theory.measure.ext_iff_of_Union_eq_univ MeasureTheory.Measure.ext_iff_of_iUnion_eq_univ
 
-alias ext_iff_of_iUnion_eq_univ ↔ _ ext_of_iUnion_eq_univ
+alias ⟨_, ext_of_iUnion_eq_univ⟩ := ext_iff_of_iUnion_eq_univ
 #align measure_theory.measure.ext_of_Union_eq_univ MeasureTheory.Measure.ext_of_iUnion_eq_univ
 
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
@@ -1906,7 +1906,7 @@ theorem ext_iff_of_biUnion_eq_univ {S : Set ι} {s : ι → Set α} (hc : S.Coun
   rw [← restrict_biUnion_congr hc, hs, restrict_univ, restrict_univ]
 #align measure_theory.measure.ext_iff_of_bUnion_eq_univ MeasureTheory.Measure.ext_iff_of_biUnion_eq_univ
 
-alias ext_iff_of_biUnion_eq_univ ↔ _ ext_of_biUnion_eq_univ
+alias ⟨_, ext_of_biUnion_eq_univ⟩ := ext_iff_of_biUnion_eq_univ
 #align measure_theory.measure.ext_of_bUnion_eq_univ MeasureTheory.Measure.ext_of_biUnion_eq_univ
 
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
@@ -1916,7 +1916,7 @@ theorem ext_iff_of_sUnion_eq_univ {S : Set (Set α)} (hc : S.Countable) (hs : 
   ext_iff_of_biUnion_eq_univ hc <| by rwa [← sUnion_eq_biUnion]
 #align measure_theory.measure.ext_iff_of_sUnion_eq_univ MeasureTheory.Measure.ext_iff_of_sUnion_eq_univ
 
-alias ext_iff_of_sUnion_eq_univ ↔ _ ext_of_sUnion_eq_univ
+alias ⟨_, ext_of_sUnion_eq_univ⟩ := ext_iff_of_sUnion_eq_univ
 #align measure_theory.measure.ext_of_sUnion_eq_univ MeasureTheory.Measure.ext_of_sUnion_eq_univ
 
 theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = generateFrom S)
@@ -2112,14 +2112,14 @@ theorem absolutelyContinuous_of_le (h : μ ≤ ν) : μ ≪ ν := fun s hs =>
   nonpos_iff_eq_zero.1 <| hs ▸ le_iff'.1 h s
 #align measure_theory.measure.absolutely_continuous_of_le MeasureTheory.Measure.absolutelyContinuous_of_le
 
-alias absolutelyContinuous_of_le ← _root_.LE.le.absolutelyContinuous
+alias _root_.LE.le.absolutelyContinuous := absolutelyContinuous_of_le
 #align has_le.le.absolutely_continuous LE.le.absolutelyContinuous
 
 theorem absolutelyContinuous_of_eq (h : μ = ν) : μ ≪ ν :=
   h.le.absolutelyContinuous
 #align measure_theory.measure.absolutely_continuous_of_eq MeasureTheory.Measure.absolutelyContinuous_of_eq
 
-alias absolutelyContinuous_of_eq ← _root_.Eq.absolutelyContinuous
+alias _root_.Eq.absolutelyContinuous := absolutelyContinuous_of_eq
 #align eq.absolutely_continuous Eq.absolutelyContinuous
 
 namespace AbsolutelyContinuous
@@ -2169,12 +2169,12 @@ theorem ae_le_iff_absolutelyContinuous : μ.ae ≤ ν.ae ↔ μ ≪ ν :=
     exact fun hs => h hs, fun h s hs => h hs⟩
 #align measure_theory.measure.ae_le_iff_absolutely_continuous MeasureTheory.Measure.ae_le_iff_absolutelyContinuous
 
-alias ae_le_iff_absolutelyContinuous ↔
-  _root_.LE.le.absolutelyContinuous_of_ae AbsolutelyContinuous.ae_le
+alias ⟨_root_.LE.le.absolutelyContinuous_of_ae, AbsolutelyContinuous.ae_le⟩ :=
+  ae_le_iff_absolutelyContinuous
 #align has_le.le.absolutely_continuous_of_ae LE.le.absolutelyContinuous_of_ae
 #align measure_theory.measure.absolutely_continuous.ae_le MeasureTheory.Measure.AbsolutelyContinuous.ae_le
 
-alias AbsolutelyContinuous.ae_le ← ae_mono'
+alias ae_mono' := AbsolutelyContinuous.ae_le
 #align measure_theory.measure.ae_mono' MeasureTheory.Measure.ae_mono'
 
 theorem AbsolutelyContinuous.ae_eq (h : μ ≪ ν) {f g : α → δ} (h' : f =ᵐ[ν] g) : f =ᵐ[μ] g :=
@@ -3928,7 +3928,7 @@ theorem inf_ae_iff : μ.FiniteAtFilter (f ⊓ μ.ae) ↔ μ.FiniteAtFilter f :=
   exact measure_mono_ae (mem_of_superset hu fun x hu ht => ⟨ht, hu⟩)
 #align measure_theory.measure.finite_at_filter.inf_ae_iff MeasureTheory.Measure.FiniteAtFilter.inf_ae_iff
 
-alias inf_ae_iff ↔ of_inf_ae _
+alias ⟨of_inf_ae, _⟩ := inf_ae_iff
 #align measure_theory.measure.finite_at_filter.of_inf_ae MeasureTheory.Measure.FiniteAtFilter.of_inf_ae
 
 theorem filter_mono_ae (h : f ⊓ μ.ae ≤ g) (hg : μ.FiniteAtFilter g) : μ.FiniteAtFilter f :=
chore: move lemmas from Stietljes.lean to their proper afterport places (#6554)
Diff
@@ -2716,6 +2716,68 @@ theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
   · exact directedOn_iff_directed.2 (hdir.directed_val.mono_comp _ fun x y => Iic_subset_Iic.2)
 #align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iic
 
+theorem tendsto_measure_Ico_atTop [SemilatticeSup α] [NoMaxOrder α]
+    [(atTop : Filter α).IsCountablyGenerated] (μ : Measure α) (a : α) :
+    Tendsto (fun x => μ (Ico a x)) atTop (𝓝 (μ (Ici a))) := by
+  haveI : Nonempty α := ⟨a⟩
+  have h_mono : Monotone fun x => μ (Ico a x) := fun i j hij =>
+    measure_mono (Ico_subset_Ico_right hij)
+  convert tendsto_atTop_iSup h_mono
+  obtain ⟨xs, hxs_mono, hxs_tendsto⟩ := exists_seq_monotone_tendsto_atTop_atTop α
+  have h_Ici : Ici a = ⋃ n, Ico a (xs n) := by
+    ext1 x
+    simp only [mem_Ici, mem_iUnion, mem_Ico, exists_and_left, iff_self_and]
+    intro
+    obtain ⟨y, hxy⟩ := NoMaxOrder.exists_gt x
+    obtain ⟨n, hn⟩ := tendsto_atTop_atTop.mp hxs_tendsto y
+    exact ⟨n, hxy.trans_le (hn n le_rfl)⟩
+  rw [h_Ici, measure_iUnion_eq_iSup, iSup_eq_iSup_subseq_of_monotone h_mono hxs_tendsto]
+  exact Monotone.directed_le fun i j hij => Ico_subset_Ico_right (hxs_mono hij)
+#align measure_theory.tendsto_measure_Ico_at_top MeasureTheory.tendsto_measure_Ico_atTop
+
+theorem tendsto_measure_Ioc_atBot [SemilatticeInf α] [NoMinOrder α]
+    [(atBot : Filter α).IsCountablyGenerated] (μ : Measure α) (a : α) :
+    Tendsto (fun x => μ (Ioc x a)) atBot (𝓝 (μ (Iic a))) := by
+  haveI : Nonempty α := ⟨a⟩
+  have h_mono : Antitone fun x => μ (Ioc x a) := fun i j hij =>
+    measure_mono (Ioc_subset_Ioc_left hij)
+  convert tendsto_atBot_iSup h_mono
+  obtain ⟨xs, hxs_mono, hxs_tendsto⟩ := exists_seq_antitone_tendsto_atTop_atBot α
+  have h_Iic : Iic a = ⋃ n, Ioc (xs n) a := by
+    ext1 x
+    simp only [mem_Iic, mem_iUnion, mem_Ioc, exists_and_right, iff_and_self]
+    intro
+    obtain ⟨y, hxy⟩ := NoMinOrder.exists_lt x
+    obtain ⟨n, hn⟩ := tendsto_atTop_atBot.mp hxs_tendsto y
+    exact ⟨n, (hn n le_rfl).trans_lt hxy⟩
+  rw [h_Iic, measure_iUnion_eq_iSup, iSup_eq_iSup_subseq_of_antitone h_mono hxs_tendsto]
+  exact Monotone.directed_le fun i j hij => Ioc_subset_Ioc_left (hxs_mono hij)
+#align measure_theory.tendsto_measure_Ioc_at_bot MeasureTheory.tendsto_measure_Ioc_atBot
+
+theorem tendsto_measure_Iic_atTop [SemilatticeSup α] [(atTop : Filter α).IsCountablyGenerated]
+    (μ : Measure α) : Tendsto (fun x => μ (Iic x)) atTop (𝓝 (μ univ)) := by
+  cases isEmpty_or_nonempty α
+  · have h1 : ∀ x : α, Iic x = ∅ := fun x => Subsingleton.elim _ _
+    have h2 : (univ : Set α) = ∅ := Subsingleton.elim _ _
+    simp_rw [h1, h2]
+    exact tendsto_const_nhds
+  have h_mono : Monotone fun x => μ (Iic x) := fun i j hij => measure_mono (Iic_subset_Iic.mpr hij)
+  convert tendsto_atTop_iSup h_mono
+  obtain ⟨xs, hxs_mono, hxs_tendsto⟩ := exists_seq_monotone_tendsto_atTop_atTop α
+  have h_univ : (univ : Set α) = ⋃ n, Iic (xs n) := by
+    ext1 x
+    simp only [mem_univ, mem_iUnion, mem_Iic, true_iff_iff]
+    obtain ⟨n, hn⟩ := tendsto_atTop_atTop.mp hxs_tendsto x
+    exact ⟨n, hn n le_rfl⟩
+  rw [h_univ, measure_iUnion_eq_iSup, iSup_eq_iSup_subseq_of_monotone h_mono hxs_tendsto]
+  exact Monotone.directed_le fun i j hij => Iic_subset_Iic.mpr (hxs_mono hij)
+#align measure_theory.tendsto_measure_Iic_at_top MeasureTheory.tendsto_measure_Iic_atTop
+
+theorem tendsto_measure_Ici_atBot [SemilatticeInf α] [h : (atBot : Filter α).IsCountablyGenerated]
+    (μ : Measure α) : Tendsto (fun x => μ (Ici x)) atBot (𝓝 (μ univ)) :=
+  @tendsto_measure_Iic_atTop αᵒᵈ _ _ h μ
+#align measure_theory.tendsto_measure_Ici_at_bot MeasureTheory.tendsto_measure_Ici_atBot
+
 variable [PartialOrder α] {a b : α}
 
 theorem Iio_ae_eq_Iic' (ha : μ {a} = 0) : Iio a =ᵐ[μ] Iic a := by
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -101,7 +101,7 @@ open TopologicalSpace (SecondCountableTopology)
 
 open Classical Topology BigOperators Filter ENNReal NNReal Interval MeasureTheory
 
-variable {α β γ δ ι R R' : Type _}
+variable {α β γ δ ι R R' : Type*}
 
 namespace MeasureTheory
 
@@ -198,7 +198,7 @@ theorem measure_biUnion_finset {s : Finset ι} {f : ι → Set α} (hd : Pairwis
 
 /-- The measure of a disjoint union (even uncountable) of measurable sets is at least the sum of
 the measures of the sets. -/
-theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type _} [MeasurableSpace α] (μ : Measure α)
+theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type*} [MeasurableSpace α] (μ : Measure α)
     {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) : (∑' i, μ (As i)) ≤ μ (⋃ i, As i) := by
   rcases show Summable fun i => μ (As i) from ENNReal.summable with ⟨S, hS⟩
@@ -536,7 +536,7 @@ theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Se
 
 /-- The measure of the intersection of a decreasing sequence of measurable
 sets indexed by a linear order with first countable topology is the limit of the measures. -/
-theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSpace ι]
+theorem tendsto_measure_biInter_gt {ι : Type*} [LinearOrder ι] [TopologicalSpace ι]
     [OrderTopology ι] [DenselyOrdered ι] [TopologicalSpace.FirstCountableTopology ι] {s : ι → Set α}
     {a : ι} (hs : ∀ r > a, MeasurableSet (s r)) (hm : ∀ i j, a < i → i ≤ j → s i ⊆ s j)
     (hf : ∃ r > a, μ (s r) ≠ ∞) : Tendsto (μ ∘ s) (𝓝[Ioi a] a) (𝓝 (μ (⋂ r > a, s r))) := by
@@ -2003,7 +2003,7 @@ theorem sum_apply_eq_zero' {μ : ι → Measure α} {s : Set α} (hs : Measurabl
     sum μ s = 0 ↔ ∀ i, μ i s = 0 := by simp [hs]
 #align measure_theory.measure.sum_apply_eq_zero' MeasureTheory.Measure.sum_apply_eq_zero'
 
-theorem sum_comm {ι' : Type _} (μ : ι → ι' → Measure α) :
+theorem sum_comm {ι' : Type*} (μ : ι → ι' → Measure α) :
     (sum fun n => sum (μ n)) = sum fun m => sum fun n => μ n m := by
   ext1 s hs
   simp_rw [sum_apply _ hs]
@@ -2338,7 +2338,7 @@ theorem exists_preimage_eq_of_preimage_ae {f : α → α} (h : QuasiMeasurePrese
 open Pointwise
 
 @[to_additive]
-theorem smul_ae_eq_of_ae_eq {G α : Type _} [Group G] [MulAction G α] [MeasurableSpace α]
+theorem smul_ae_eq_of_ae_eq {G α : Type*} [Group G] [MulAction G α] [MeasurableSpace α]
     {s t : Set α} {μ : Measure α} (g : G)
     (h_qmp : QuasiMeasurePreserving ((· • ·) g⁻¹ : α → α) μ μ)
     (h_ae_eq : s =ᵐ[μ] t) : (g • s : Set α) =ᵐ[μ] (g • t : Set α) := by
@@ -2353,7 +2353,7 @@ section Pointwise
 open Pointwise
 
 @[to_additive]
-theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type _} [Group G] [MulAction G α]
+theorem pairwise_aedisjoint_of_aedisjoint_forall_ne_one {G α : Type*} [Group G] [MulAction G α]
     [MeasurableSpace α] {μ : Measure α} {s : Set α}
     (h_ae_disjoint : ∀ (g) (_ : g ≠ (1 : G)), AEDisjoint μ (g • s) s)
     (h_qmp : ∀ g : G, QuasiMeasurePreserving ((· • ·) g : α → α) μ μ) :
@@ -3018,7 +3018,7 @@ attribute [simp] measure_singleton
 
 variable [NoAtoms μ]
 
-theorem _root_.Set.Subsingleton.measure_zero {α : Type _} {_m : MeasurableSpace α} {s : Set α}
+theorem _root_.Set.Subsingleton.measure_zero {α : Type*} {_m : MeasurableSpace α} {s : Set α}
     (hs : s.Subsingleton) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   hs.induction_on (p := fun s => μ s = 0) measure_empty measure_singleton
 #align set.subsingleton.measure_zero Set.Subsingleton.measure_zero
@@ -3035,24 +3035,24 @@ instance Measure.restrict.instNoAtoms (s : Set α) : NoAtoms (μ.restrict s) :=
   apply measure_mono_null (inter_subset_left t s) ht2
 #align measure_theory.measure.restrict.has_no_atoms MeasureTheory.Measure.restrict.instNoAtoms
 
-theorem _root_.Set.Countable.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α}
+theorem _root_.Set.Countable.measure_zero {α : Type*} {m : MeasurableSpace α} {s : Set α}
     (h : s.Countable) (μ : Measure α) [NoAtoms μ] : μ s = 0 := by
   rw [← biUnion_of_singleton s, ← nonpos_iff_eq_zero]
   refine' le_trans (measure_biUnion_le h _) _
   simp
 #align set.countable.measure_zero Set.Countable.measure_zero
 
-theorem _root_.Set.Countable.ae_not_mem {α : Type _} {m : MeasurableSpace α} {s : Set α}
+theorem _root_.Set.Countable.ae_not_mem {α : Type*} {m : MeasurableSpace α} {s : Set α}
     (h : s.Countable) (μ : Measure α) [NoAtoms μ] : ∀ᵐ x ∂μ, x ∉ s := by
   simpa only [ae_iff, Classical.not_not] using h.measure_zero μ
 #align set.countable.ae_not_mem Set.Countable.ae_not_mem
 
-theorem _root_.Set.Finite.measure_zero {α : Type _} {_m : MeasurableSpace α} {s : Set α}
+theorem _root_.Set.Finite.measure_zero {α : Type*} {_m : MeasurableSpace α} {s : Set α}
     (h : s.Finite) (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   h.countable.measure_zero μ
 #align set.finite.measure_zero Set.Finite.measure_zero
 
-theorem _root_.Finset.measure_zero {α : Type _} {_m : MeasurableSpace α} (s : Finset α)
+theorem _root_.Finset.measure_zero {α : Type*} {_m : MeasurableSpace α} (s : Finset α)
     (μ : Measure α) [NoAtoms μ] : μ s = 0 :=
   s.finite_toSet.measure_zero μ
 #align finset.measure_zero Finset.measure_zero
@@ -3308,7 +3308,7 @@ theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure
 
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 finitely many members of the union whose measure exceeds any given positive number. -/
-theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] (μ : Measure α)
+theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type*} [MeasurableSpace α] (μ : Measure α)
     {ε : ℝ≥0∞} (ε_pos : 0 < ε) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
     Set.Finite { i : ι | ε ≤ μ (As i) } := by
@@ -3321,7 +3321,7 @@ theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type _} [MeasurableSpace 
 
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 countably many members of the union whose measure is positive. -/
-theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [MeasurableSpace α]
+theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type*} [MeasurableSpace α]
     (μ : Measure α) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
     Set.Countable { i : ι | 0 < μ (As i) } := by
@@ -3342,7 +3342,7 @@ theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [Meas
 
 /-- In a σ-finite space, among disjoint measurable sets, only countably many can have positive
 measure. -/
-theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] {μ : Measure α}
+theorem countable_meas_pos_of_disjoint_iUnion {ι : Type*} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) : Set.Countable { i : ι | 0 < μ (As i) } := by
   have obs : { i : ι | 0 < μ (As i) } ⊆ ⋃ n, { i : ι | 0 < μ (As i ∩ spanningSets μ n) } := by
@@ -3359,7 +3359,7 @@ theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α]
     exact iUnion_subset fun i => inter_subset_right _ _
 #align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion
 
-theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ : Measure α}
+theorem countable_meas_level_set_pos {α β : Type*} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] [MeasurableSpace β] [MeasurableSingletonClass β] {g : α → β}
     (g_mble : Measurable g) : Set.Countable { t : β | 0 < μ { a : α | g a = t } } :=
   haveI level_sets_disjoint : Pairwise (Disjoint on fun t : β => { a : α | g a = t }) :=
chore: let Lean auto apply isBoundedDefault tactic (#6485)
Diff
@@ -583,11 +583,7 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
   suffices μ (limsup t atTop) = 0 by
     have A : s ≤ t := fun n => subset_toMeasurable μ (s n)
     -- TODO default args fail
-    exact
-      measure_mono_null
-        (limsup_le_limsup (eventually_of_forall (Pi.le_def.mp A)) isCobounded_le_of_bot
-          isBounded_le_of_top)
-        this
+    exact measure_mono_null (limsup_le_limsup (eventually_of_forall (Pi.le_def.mp A))) this
   -- Next we unfold `limsup` for sets and replace equality with an inequality
   simp only [limsup_eq_iInf_iSup_of_nat', Set.iInf_eq_iInter, Set.iSup_eq_iUnion, ←
     nonpos_iff_eq_zero]
@@ -606,10 +602,7 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
 theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠ ⊤) :
     μ (liminf s atTop) = 0 := by
   rw [← le_zero_iff]
-  have : liminf s atTop ≤ limsup s atTop :=
-    liminf_le_limsup
-      (by isBoundedDefault)
-      (by isBoundedDefault)
+  have : liminf s atTop ≤ limsup s atTop := liminf_le_limsup
   exact (μ.mono this).trans (by simp [measure_limsup_eq_zero h])
 #align measure_theory.measure_liminf_eq_zero MeasureTheory.measure_liminf_eq_zero
 
feat: add MeasureTheory.MeasurePreserving.measure_symmDiff_preimage_iterate_le (#6175)

Also some minor loosely-related other changes.

Diff
@@ -149,6 +149,14 @@ theorem measure_union_add_inter' (hs : MeasurableSet s) (t : Set α) :
   rw [union_comm, inter_comm, measure_union_add_inter t hs, add_comm]
 #align measure_theory.measure_union_add_inter' MeasureTheory.measure_union_add_inter'
 
+lemma measure_symmDiff_eq (hs : MeasurableSet s) (ht : MeasurableSet t) :
+    μ (s ∆ t) = μ (s \ t) + μ (t \ s) := by
+  simpa only [symmDiff_def, sup_eq_union] using measure_union disjoint_sdiff_sdiff (ht.diff hs)
+
+lemma measure_symmDiff_le (s t u : Set α) :
+    μ (s ∆ u) ≤ μ (s ∆ t) + μ (t ∆ u) :=
+  le_trans (μ.mono $ symmDiff_triangle s t u) (measure_union_le (s ∆ t) (t ∆ u))
+
 theorem measure_add_measure_compl (h : MeasurableSet s) : μ s + μ sᶜ = μ univ :=
   measure_add_measure_compl₀ h.nullMeasurableSet
 #align measure_theory.measure_add_measure_compl MeasureTheory.measure_add_measure_compl
@@ -2906,6 +2914,25 @@ theorem ae_mem_iff_measure_eq [IsFiniteMeasure μ] {s : Set α} (hs : NullMeasur
   ae_iff_measure_eq hs
 #align measure_theory.ae_mem_iff_measure_eq MeasureTheory.ae_mem_iff_measure_eq
 
+theorem abs_toReal_measure_sub_le_measure_symmDiff'
+    (hs : MeasurableSet s) (ht : MeasurableSet t) (hs' : μ s ≠ ∞) (ht' : μ t ≠ ∞) :
+    |(μ s).toReal - (μ t).toReal| ≤ (μ (s ∆ t)).toReal := by
+  have hst : μ (s \ t) ≠ ∞ := (measure_lt_top_of_subset (diff_subset s t) hs').ne
+  have hts : μ (t \ s) ≠ ∞ := (measure_lt_top_of_subset (diff_subset t s) ht').ne
+  suffices : (μ s).toReal - (μ t).toReal = (μ (s \ t)).toReal - (μ (t \ s)).toReal
+  · rw [this, measure_symmDiff_eq hs ht, ENNReal.toReal_add hst hts]
+    convert abs_sub (μ (s \ t)).toReal (μ (t \ s)).toReal <;> simp
+  rw [measure_diff' s ht ht', measure_diff' t hs hs',
+    ENNReal.toReal_sub_of_le measure_le_measure_union_right (measure_union_ne_top hs' ht'),
+    ENNReal.toReal_sub_of_le measure_le_measure_union_right (measure_union_ne_top ht' hs'),
+    union_comm t s]
+  abel
+
+theorem abs_toReal_measure_sub_le_measure_symmDiff [IsFiniteMeasure μ]
+    (hs : MeasurableSet s) (ht : MeasurableSet t) :
+    |(μ s).toReal - (μ t).toReal| ≤ (μ (s ∆ t)).toReal :=
+  abs_toReal_measure_sub_le_measure_symmDiff' hs ht (measure_ne_top μ s) (measure_ne_top μ t)
+
 end IsFiniteMeasure
 
 section IsProbabilityMeasure
chore: tidy various files (#6158)
Diff
@@ -3863,7 +3863,7 @@ protected theorem mono (hf : f ≤ g) (hμ : μ ≤ ν) : ν.FiniteAtFilter g 
 #align measure_theory.measure.finite_at_filter.mono MeasureTheory.Measure.FiniteAtFilter.mono
 
 protected theorem eventually (h : μ.FiniteAtFilter f) : ∀ᶠ s in f.smallSets, μ s < ∞ :=
-  (eventually_small_sets' fun _s _t hst ht => (measure_mono hst).trans_lt ht).2 h
+  (eventually_smallSets' fun _s _t hst ht => (measure_mono hst).trans_lt ht).2 h
 #align measure_theory.measure.finite_at_filter.eventually MeasureTheory.Measure.FiniteAtFilter.eventually
 
 theorem filterSup : μ.FiniteAtFilter f → μ.FiniteAtFilter g → μ.FiniteAtFilter (f ⊔ g) :=
feat: a multiple of a SigmaFinite measure is SigmaFinite (#6137)

Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com>

Diff
@@ -3559,6 +3559,18 @@ instance Add.sigmaFinite (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν]
   refine' @sum.sigmaFinite _ _ _ _ _ (Bool.rec _ _) <;> simpa
 #align measure_theory.add.sigma_finite MeasureTheory.Add.sigmaFinite
 
+instance SMul.sigmaFinite {μ : Measure α} [SigmaFinite μ] (c : ℝ≥0) :
+    MeasureTheory.SigmaFinite (c • μ) where
+  out' :=
+  ⟨{  set := spanningSets μ
+      set_mem := fun _ ↦ trivial
+      finite := by
+        intro i
+        simp only [smul_toOuterMeasure, OuterMeasure.coe_smul, Pi.smul_apply,
+          nnreal_smul_coe_apply]
+        exact ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_spanningSets_lt_top μ i).ne
+      spanning := iUnion_spanningSets μ }⟩
+
 theorem SigmaFinite.of_map (μ : Measure α) {f : α → β} (hf : AEMeasurable f μ)
     (h : SigmaFinite (μ.map f)) : SigmaFinite μ :=
   ⟨⟨⟨fun n => f ⁻¹' spanningSets (μ.map f) n, fun _ => trivial, fun n => by
chore(MeasureSpace): move dirac and count to new files (#6116)
Diff
@@ -1963,62 +1963,6 @@ theorem ext_of_generateFrom_of_iUnion (C : Set (Set α)) (B : ℕ → Set α) (h
     apply hμB
 #align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_iUnion
 
-section Dirac
-
-variable [MeasurableSpace α]
-
-/-- The dirac measure. -/
-def dirac (a : α) : Measure α :=
-  (OuterMeasure.dirac a).toMeasure (by simp)
-#align measure_theory.measure.dirac MeasureTheory.Measure.dirac
-
-instance : MeasureSpace PUnit :=
-  ⟨dirac PUnit.unit⟩
-
-theorem le_dirac_apply {a} : s.indicator 1 a ≤ dirac a s :=
-  OuterMeasure.dirac_apply a s ▸ le_toMeasure_apply _ _ _
-#align measure_theory.measure.le_dirac_apply MeasureTheory.Measure.le_dirac_apply
-
-@[simp]
-theorem dirac_apply' (a : α) (hs : MeasurableSet s) : dirac a s = s.indicator 1 a :=
-  toMeasure_apply _ _ hs
-#align measure_theory.measure.dirac_apply' MeasureTheory.Measure.dirac_apply'
-
-@[simp]
-theorem dirac_apply_of_mem {a : α} (h : a ∈ s) : dirac a s = 1 := by
-  have : ∀ t : Set α, a ∈ t → t.indicator (1 : α → ℝ≥0∞) a = 1 := fun t ht => indicator_of_mem ht 1
-  refine' le_antisymm (this univ trivial ▸ _) (this s h ▸ le_dirac_apply)
-  rw [← dirac_apply' a MeasurableSet.univ]
-  exact measure_mono (subset_univ s)
-#align measure_theory.measure.dirac_apply_of_mem MeasureTheory.Measure.dirac_apply_of_mem
-
-@[simp]
-theorem dirac_apply [MeasurableSingletonClass α] (a : α) (s : Set α) :
-    dirac a s = s.indicator 1 a := by
-  by_cases h : a ∈ s; · rw [dirac_apply_of_mem h, indicator_of_mem h, Pi.one_apply]
-  rw [indicator_of_not_mem h, ← nonpos_iff_eq_zero]
-  calc
-    dirac a s ≤ dirac a {a}ᶜ := measure_mono (subset_compl_comm.1 <| singleton_subset_iff.2 h)
-    _ = 0 := by simp [dirac_apply' _ (measurableSet_singleton _).compl]
-
-#align measure_theory.measure.dirac_apply MeasureTheory.Measure.dirac_apply
-
-theorem map_dirac {f : α → β} (hf : Measurable f) (a : α) : (dirac a).map f = dirac (f a) :=
-  ext fun s hs => by simp [hs, map_apply hf hs, hf hs, indicator_apply]
-#align measure_theory.measure.map_dirac MeasureTheory.Measure.map_dirac
-
-@[simp]
-theorem restrict_singleton (μ : Measure α) (a : α) : μ.restrict {a} = μ {a} • dirac a := by
-  ext1 s hs
-  by_cases ha : a ∈ s
-  · have : s ∩ {a} = {a} := by simpa
-    simp [*]
-  · have : s ∩ {a} = ∅ := inter_singleton_eq_empty.2 ha
-    simp [*]
-#align measure_theory.measure.restrict_singleton MeasureTheory.Measure.restrict_singleton
-
-end Dirac
-
 section Sum
 
 /-- Sum of an indexed family of measures. -/
@@ -2131,34 +2075,6 @@ theorem sum_add_sum (μ ν : ℕ → Measure α) : sum μ + sum ν = sum fun n =
     tsum_add ENNReal.summable ENNReal.summable]
 #align measure_theory.measure.sum_add_sum MeasureTheory.Measure.sum_add_sum
 
-/-- If `f` is a map with countable codomain, then `μ.map f` is a sum of Dirac measures. -/
-theorem map_eq_sum [Countable β] [MeasurableSingletonClass β] (μ : Measure α) (f : α → β)
-    (hf : Measurable f) : μ.map f = sum fun b : β => μ (f ⁻¹' {b}) • dirac b := by
-  ext1 s hs
-  have : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y}) := fun y _ => hf (measurableSet_singleton _)
-  simp [← tsum_measure_preimage_singleton (to_countable s) this, *,
-    tsum_subtype s fun b => μ (f ⁻¹' {b}), ← indicator_mul_right s fun b => μ (f ⁻¹' {b})]
-#align measure_theory.measure.map_eq_sum MeasureTheory.Measure.map_eq_sum
-
-/-- A measure on a countable type is a sum of Dirac measures. -/
-@[simp]
-theorem sum_smul_dirac [Countable α] [MeasurableSingletonClass α] (μ : Measure α) :
-    (sum fun a => μ {a} • dirac a) = μ := by simpa using (map_eq_sum μ id measurable_id).symm
-#align measure_theory.measure.sum_smul_dirac MeasureTheory.Measure.sum_smul_dirac
-
-/-- Given that `α` is a countable, measurable space with all singleton sets measurable,
-write the measure of a set `s` as the sum of the measure of `{x}` for all `x ∈ s`. -/
-theorem tsum_indicator_apply_singleton [Countable α] [MeasurableSingletonClass α] (μ : Measure α)
-    (s : Set α) (hs : MeasurableSet s) : (∑' x : α, s.indicator (fun x => μ {x}) x) = μ s :=
-  calc
-    (∑' x : α, s.indicator (fun x => μ {x}) x) =
-      Measure.sum (fun a => μ {a} • Measure.dirac a) s := by
-      simp only [Measure.sum_apply _ hs, Measure.smul_apply, smul_eq_mul, Measure.dirac_apply,
-        Set.indicator_apply, mul_ite, Pi.one_apply, mul_one, MulZeroClass.mul_zero]
-    _ = μ s := by rw [μ.sum_smul_dirac]
-
-#align measure_theory.measure.tsum_indicator_apply_singleton MeasureTheory.Measure.tsum_indicator_apply_singleton
-
 end Sum
 
 theorem restrict_iUnion_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
@@ -2178,171 +2094,6 @@ theorem restrict_iUnion_le [Countable ι] {s : ι → Set α} :
   apply measure_iUnion_le
 #align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_iUnion_le
 
-section Count
-
-variable [MeasurableSpace α]
-
-/-- Counting measure on any measurable space. -/
-def count : Measure α :=
-  sum dirac
-#align measure_theory.measure.count MeasureTheory.Measure.count
-
-theorem le_count_apply : ∑' _ : s, (1 : ℝ≥0∞) ≤ count s :=
-  calc
-    (∑' _ : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i := tsum_subtype s 1
-    _ ≤ ∑' i, dirac i s := (ENNReal.tsum_le_tsum fun _ => le_dirac_apply)
-    _ ≤ count s := le_sum_apply _ _
-#align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_apply
-
-theorem count_apply (hs : MeasurableSet s) : count s = ∑' i : s, 1 := by
-  simp only [count, sum_apply, hs, dirac_apply', ← tsum_subtype s (1 : α → ℝ≥0∞), Pi.one_apply]
-#align measure_theory.measure.count_apply MeasureTheory.Measure.count_apply
-
--- @[simp] -- Porting note: simp can prove this
-theorem count_empty : count (∅ : Set α) = 0 := by rw [count_apply MeasurableSet.empty, tsum_empty]
-#align measure_theory.measure.count_empty MeasureTheory.Measure.count_empty
-
-@[simp]
-theorem count_apply_finset' {s : Finset α} (s_mble : MeasurableSet (s : Set α)) :
-    count (↑s : Set α) = s.card :=
-  calc
-    count (↑s : Set α) = ∑' i : (↑s : Set α), 1 := count_apply s_mble
-    _ = ∑ i in s, 1 := (s.tsum_subtype 1)
-    _ = s.card := by simp
-
-#align measure_theory.measure.count_apply_finset' MeasureTheory.Measure.count_apply_finset'
-
-@[simp]
-theorem count_apply_finset [MeasurableSingletonClass α] (s : Finset α) :
-    count (↑s : Set α) = s.card :=
-  count_apply_finset' s.measurableSet
-#align measure_theory.measure.count_apply_finset MeasureTheory.Measure.count_apply_finset
-
-theorem count_apply_finite' {s : Set α} (s_fin : s.Finite) (s_mble : MeasurableSet s) :
-    count s = s_fin.toFinset.card := by
-  simp [←
-    @count_apply_finset' _ _ s_fin.toFinset (by simpa only [Finite.coe_toFinset] using s_mble)]
-#align measure_theory.measure.count_apply_finite' MeasureTheory.Measure.count_apply_finite'
-
-theorem count_apply_finite [MeasurableSingletonClass α] (s : Set α) (hs : s.Finite) :
-    count s = hs.toFinset.card := by rw [← count_apply_finset, Finite.coe_toFinset]
-#align measure_theory.measure.count_apply_finite MeasureTheory.Measure.count_apply_finite
-
-/-- `count` measure evaluates to infinity at infinite sets. -/
-theorem count_apply_infinite (hs : s.Infinite) : count s = ∞ := by
-  refine' top_unique (le_of_tendsto' ENNReal.tendsto_nat_nhds_top fun n => _)
-  rcases hs.exists_subset_card_eq n with ⟨t, ht, rfl⟩
-  calc
-    (t.card : ℝ≥0∞) = ∑ i in t, 1 := by simp
-    _ = ∑' i : (t : Set α), 1 := (t.tsum_subtype 1).symm
-    _ ≤ count (t : Set α) := le_count_apply
-    _ ≤ count s := measure_mono ht
-
-#align measure_theory.measure.count_apply_infinite MeasureTheory.Measure.count_apply_infinite
-
-@[simp]
-theorem count_apply_eq_top' (s_mble : MeasurableSet s) : count s = ∞ ↔ s.Infinite := by
-  by_cases hs : s.Finite
-  · simp [Set.Infinite, hs, count_apply_finite' hs s_mble]
-  · change s.Infinite at hs
-    simp [hs, count_apply_infinite]
-#align measure_theory.measure.count_apply_eq_top' MeasureTheory.Measure.count_apply_eq_top'
-
-@[simp]
-theorem count_apply_eq_top [MeasurableSingletonClass α] : count s = ∞ ↔ s.Infinite := by
-  by_cases hs : s.Finite
-  · exact count_apply_eq_top' hs.measurableSet
-  · change s.Infinite at hs
-    simp [hs, count_apply_infinite]
-#align measure_theory.measure.count_apply_eq_top MeasureTheory.Measure.count_apply_eq_top
-
-@[simp]
-theorem count_apply_lt_top' (s_mble : MeasurableSet s) : count s < ∞ ↔ s.Finite :=
-  calc
-    count s < ∞ ↔ count s ≠ ∞ := lt_top_iff_ne_top
-    _ ↔ ¬s.Infinite := (not_congr (count_apply_eq_top' s_mble))
-    _ ↔ s.Finite := Classical.not_not
-
-#align measure_theory.measure.count_apply_lt_top' MeasureTheory.Measure.count_apply_lt_top'
-
-@[simp]
-theorem count_apply_lt_top [MeasurableSingletonClass α] : count s < ∞ ↔ s.Finite :=
-  calc
-    count s < ∞ ↔ count s ≠ ∞ := lt_top_iff_ne_top
-    _ ↔ ¬s.Infinite := (not_congr count_apply_eq_top)
-    _ ↔ s.Finite := Classical.not_not
-
-#align measure_theory.measure.count_apply_lt_top MeasureTheory.Measure.count_apply_lt_top
-
-theorem empty_of_count_eq_zero' (s_mble : MeasurableSet s) (hsc : count s = 0) : s = ∅ := by
-  have hs : s.Finite := by
-    rw [← count_apply_lt_top' s_mble, hsc]
-    exact WithTop.zero_lt_top
-  simpa [count_apply_finite' hs s_mble] using hsc
-#align measure_theory.measure.empty_of_count_eq_zero' MeasureTheory.Measure.empty_of_count_eq_zero'
-
-theorem empty_of_count_eq_zero [MeasurableSingletonClass α] (hsc : count s = 0) : s = ∅ := by
-  have hs : s.Finite := by
-    rw [← count_apply_lt_top, hsc]
-    exact WithTop.zero_lt_top
-  simpa [count_apply_finite _ hs] using hsc
-#align measure_theory.measure.empty_of_count_eq_zero MeasureTheory.Measure.empty_of_count_eq_zero
-
-@[simp]
-theorem count_eq_zero_iff' (s_mble : MeasurableSet s) : count s = 0 ↔ s = ∅ :=
-  ⟨empty_of_count_eq_zero' s_mble, fun h => h.symm ▸ count_empty⟩
-#align measure_theory.measure.count_eq_zero_iff' MeasureTheory.Measure.count_eq_zero_iff'
-
-@[simp]
-theorem count_eq_zero_iff [MeasurableSingletonClass α] : count s = 0 ↔ s = ∅ :=
-  ⟨empty_of_count_eq_zero, fun h => h.symm ▸ count_empty⟩
-#align measure_theory.measure.count_eq_zero_iff MeasureTheory.Measure.count_eq_zero_iff
-
-theorem count_ne_zero' (hs' : s.Nonempty) (s_mble : MeasurableSet s) : count s ≠ 0 := by
-  rw [Ne.def, count_eq_zero_iff' s_mble]
-  exact hs'.ne_empty
-#align measure_theory.measure.count_ne_zero' MeasureTheory.Measure.count_ne_zero'
-
-theorem count_ne_zero [MeasurableSingletonClass α] (hs' : s.Nonempty) : count s ≠ 0 := by
-  rw [Ne.def, count_eq_zero_iff]
-  exact hs'.ne_empty
-#align measure_theory.measure.count_ne_zero MeasureTheory.Measure.count_ne_zero
-
-@[simp]
-theorem count_singleton' {a : α} (ha : MeasurableSet ({a} : Set α)) : count ({a} : Set α) = 1 := by
-  rw [count_apply_finite' (Set.finite_singleton a) ha, Set.Finite.toFinset]
-  simp [@toFinset_card _ _ (Set.finite_singleton a).fintype,
-    @Fintype.card_unique _ _ (Set.finite_singleton a).fintype]
-#align measure_theory.measure.count_singleton' MeasureTheory.Measure.count_singleton'
-
--- @[simp] -- Porting note: simp can prove this
-theorem count_singleton [MeasurableSingletonClass α] (a : α) : count ({a} : Set α) = 1 :=
-  count_singleton' (measurableSet_singleton a)
-#align measure_theory.measure.count_singleton MeasureTheory.Measure.count_singleton
-
-theorem count_injective_image' {f : β → α} (hf : Function.Injective f) {s : Set β}
-    (s_mble : MeasurableSet s) (fs_mble : MeasurableSet (f '' s)) : count (f '' s) = count s := by
-  by_cases hs : s.Finite
-  · lift s to Finset β using hs
-    rw [← Finset.coe_image, count_apply_finset' _, count_apply_finset' s_mble,
-      s.card_image_of_injective hf]
-    simpa only [Finset.coe_image] using fs_mble
-  · rw [count_apply_infinite hs]
-    rw [← finite_image_iff <| hf.injOn _] at hs
-    rw [count_apply_infinite hs]
-#align measure_theory.measure.count_injective_image' MeasureTheory.Measure.count_injective_image'
-
-theorem count_injective_image [MeasurableSingletonClass α] [MeasurableSingletonClass β] {f : β → α}
-    (hf : Function.Injective f) (s : Set β) : count (f '' s) = count s := by
-  by_cases hs : s.Finite
-  · exact count_injective_image' hf hs.measurableSet (Finite.image f hs).measurableSet
-  rw [count_apply_infinite hs]
-  rw [← finite_image_iff <| hf.injOn _] at hs
-  rw [count_apply_infinite hs]
-#align measure_theory.measure.count_injective_image MeasureTheory.Measure.count_injective_image
-
-end Count
-
 /-! ### Absolute continuity -/
 
 
@@ -2623,7 +2374,6 @@ end Pointwise
 
 /-! ### The `cofinite` filter -/
 
-
 /-- The filter of sets `s` such that `sᶜ` has finite measure. -/
 def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α where
   sets := { s | μ sᶜ < ∞ }
@@ -3001,36 +2751,6 @@ theorem Ico_ae_eq_Ioc' (ha : μ {a} = 0) (hb : μ {b} = 0) : Ico a b =ᵐ[μ] Io
 
 end Intervals
 
-section Dirac
-
-variable [MeasurableSpace α]
-
-theorem mem_ae_dirac_iff {a : α} (hs : MeasurableSet s) : s ∈ (dirac a).ae ↔ a ∈ s := by
-  by_cases a ∈ s <;> simp [mem_ae_iff, dirac_apply', hs.compl, indicator_apply, *]
-#align measure_theory.mem_ae_dirac_iff MeasureTheory.mem_ae_dirac_iff
-
-theorem ae_dirac_iff {a : α} {p : α → Prop} (hp : MeasurableSet { x | p x }) :
-    (∀ᵐ x ∂dirac a, p x) ↔ p a :=
-  mem_ae_dirac_iff hp
-#align measure_theory.ae_dirac_iff MeasureTheory.ae_dirac_iff
-
-@[simp]
-theorem ae_dirac_eq [MeasurableSingletonClass α] (a : α) : (dirac a).ae = pure a := by
-  ext s
-  simp [mem_ae_iff, imp_false]
-#align measure_theory.ae_dirac_eq MeasureTheory.ae_dirac_eq
-
-theorem ae_eq_dirac' [MeasurableSingletonClass β] {a : α} {f : α → β} (hf : Measurable f) :
-    f =ᵐ[dirac a] const α (f a) :=
-  (ae_dirac_iff <| show MeasurableSet (f ⁻¹' {f a}) from hf <| measurableSet_singleton _).2 rfl
-#align measure_theory.ae_eq_dirac' MeasureTheory.ae_eq_dirac'
-
-theorem ae_eq_dirac [MeasurableSingletonClass α] {a : α} (f : α → δ) :
-    f =ᵐ[dirac a] const α (f a) := by simp [Filter.EventuallyEq]
-#align measure_theory.ae_eq_dirac MeasureTheory.ae_eq_dirac
-
-end Dirac
-
 section IsFiniteMeasure
 
 /-- A measure `μ` is called finite if `μ univ < ∞`. -/
@@ -3186,13 +2906,6 @@ theorem ae_mem_iff_measure_eq [IsFiniteMeasure μ] {s : Set α} (hs : NullMeasur
   ae_iff_measure_eq hs
 #align measure_theory.ae_mem_iff_measure_eq MeasureTheory.ae_mem_iff_measure_eq
 
-instance Measure.count.isFiniteMeasure [Finite α] [MeasurableSpace α] :
-    IsFiniteMeasure (Measure.count : Measure α) :=
-  ⟨by
-    cases nonempty_fintype α
-    simpa [Measure.count_apply, tsum_fintype] using (ENNReal.nat_ne_top _).lt_top⟩
-#align measure_theory.measure.count.is_finite_measure MeasureTheory.Measure.count.isFiniteMeasure
-
 end IsFiniteMeasure
 
 section IsProbabilityMeasure
@@ -3223,11 +2936,6 @@ instance (priority := 100) IsProbabilityMeasure.neZero (μ : Measure α) [IsProb
 theorem IsProbabilityMeasure.ae_neBot [IsProbabilityMeasure μ] : NeBot μ.ae := inferInstance
 #align measure_theory.is_probability_measure.ae_ne_bot MeasureTheory.IsProbabilityMeasure.ae_neBot
 
-instance Measure.dirac.isProbabilityMeasure [MeasurableSpace α] {x : α} :
-    IsProbabilityMeasure (dirac x) :=
-  ⟨dirac_apply_of_mem <| mem_univ x⟩
-#align measure_theory.measure.dirac.is_probability_measure MeasureTheory.Measure.dirac.isProbabilityMeasure
-
 theorem prob_add_prob_compl [IsProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ sᶜ = 1 :=
   (measure_add_measure_compl h).trans measure_univ
 #align measure_theory.prob_add_prob_compl MeasureTheory.prob_add_prob_compl
refactor: use NeZero for measures (#6048)

Assume NeZero μ instead of μ.ae.NeBot everywhere, and sometimes instead of μ ≠ 0.

API changes

  • Convex.average_mem, Convex.set_average_mem, ConvexOn.average_mem_epigraph, ConcaveOn.average_mem_hypograph, ConvexOn.map_average_le, ConcaveOn.le_map_average: assume [NeZero μ] instead of μ ≠ 0;
  • MeasureTheory.condexp_bot', essSup_const', essInf_const', MeasureTheory.laverage_const, MeasureTheory.laverage_one, MeasureTheory.average_const: assume [NeZero μ] instead of [μ.ae.NeBot]
  • MeasureTheory.Measure.measure_ne_zero: replace with an instance;
  • remove @[simp] from MeasureTheory.ae_restrict_neBot, use ≠ 0 in the RHS;
  • turn MeasureTheory.IsProbabilityMeasure.ae_neBot into a theorem because inferInstance can find it now;
  • add instances:
    • [NeZero μ] : NeZero (μ univ);
    • [NeZero (μ s)] : NeZero (μ.restrict s);
    • [NeZero μ] : μ.ae.NeBot;
    • [IsProbabilityMeasure μ] : NeZero μ;
    • [IsFiniteMeasure μ] [NeZero μ] : IsProbabilityMeasure ((μ univ)⁻¹ • μ) this was a theorem MeasureTheory.isProbabilityMeasureSmul assuming μ ≠ 0;
Diff
@@ -89,7 +89,6 @@ The measure is denoted `volume`.
 measure, almost everywhere, measure space, completion, null set, null measurable set
 -/
 
-
 noncomputable section
 
 open Set
@@ -1098,6 +1097,8 @@ theorem measure_univ_ne_zero : μ univ ≠ 0 ↔ μ ≠ 0 :=
   measure_univ_eq_zero.not
 #align measure_theory.measure.measure_univ_ne_zero MeasureTheory.Measure.measure_univ_ne_zero
 
+instance [NeZero μ] : NeZero (μ univ) := ⟨measure_univ_ne_zero.2 <| NeZero.ne μ⟩
+
 @[simp]
 theorem measure_univ_pos : 0 < μ univ ↔ μ ≠ 0 :=
   pos_iff_ne_zero.trans measure_univ_ne_zero
@@ -1674,6 +1675,10 @@ theorem restrict_eq_zero : μ.restrict s = 0 ↔ μ s = 0 := by
   rw [← measure_univ_eq_zero, restrict_apply_univ]
 #align measure_theory.measure.restrict_eq_zero MeasureTheory.Measure.restrict_eq_zero
 
+/-- If `μ s ≠ 0`, then `μ.restrict s ≠ 0`, in terms of `NeZero` instances. -/
+instance restrict.neZero [NeZero (μ s)] : NeZero (μ.restrict s) :=
+  ⟨mt restrict_eq_zero.mp <| NeZero.ne _⟩
+
 theorem restrict_zero_set {s : Set α} (h : μ s = 0) : μ.restrict s = 0 :=
   restrict_eq_zero.2 h
 #align measure_theory.measure.restrict_zero_set MeasureTheory.Measure.restrict_zero_set
@@ -2681,6 +2686,8 @@ theorem ae_neBot : μ.ae.NeBot ↔ μ ≠ 0 :=
   neBot_iff.trans (not_congr ae_eq_bot)
 #align measure_theory.ae_ne_bot MeasureTheory.ae_neBot
 
+instance Measure.ae.neBot [NeZero μ] : μ.ae.NeBot := ae_neBot.2 <| NeZero.ne μ
+
 @[simp]
 theorem ae_zero {_m0 : MeasurableSpace α} : (0 : Measure α).ae = ⊥ :=
   ae_eq_bot.2 rfl
@@ -2908,9 +2915,8 @@ theorem ae_restrict_eq_bot {s} : (μ.restrict s).ae = ⊥ ↔ μ s = 0 :=
   ae_eq_bot.trans restrict_eq_zero
 #align measure_theory.ae_restrict_eq_bot MeasureTheory.ae_restrict_eq_bot
 
-@[simp default+1] -- Porting note: The priority should be higher than `ae_neBot`.
-theorem ae_restrict_neBot {s} : (μ.restrict s).ae.NeBot ↔ 0 < μ s :=
-  neBot_iff.trans <| (not_congr ae_restrict_eq_bot).trans pos_iff_ne_zero.symm
+theorem ae_restrict_neBot {s} : (μ.restrict s).ae.NeBot ↔ μ s ≠ 0 :=
+  neBot_iff.trans ae_restrict_eq_bot.not
 #align measure_theory.ae_restrict_ne_bot MeasureTheory.ae_restrict_neBot
 
 theorem self_mem_ae_restrict {s} (hs : MeasurableSet s) : s ∈ (μ.restrict s).ae := by
@@ -3210,8 +3216,11 @@ theorem IsProbabilityMeasure.ne_zero (μ : Measure α) [IsProbabilityMeasure μ]
   mt measure_univ_eq_zero.2 <| by simp [measure_univ]
 #align measure_theory.is_probability_measure.ne_zero MeasureTheory.IsProbabilityMeasure.ne_zero
 
-instance (priority := 200) IsProbabilityMeasure.ae_neBot [IsProbabilityMeasure μ] : NeBot μ.ae :=
-  MeasureTheory.ae_neBot.2 (IsProbabilityMeasure.ne_zero μ)
+instance (priority := 100) IsProbabilityMeasure.neZero (μ : Measure α) [IsProbabilityMeasure μ] :
+    NeZero μ := ⟨IsProbabilityMeasure.ne_zero μ⟩
+
+-- Porting note: no longer an `instance` because `inferInstance` can find it now
+theorem IsProbabilityMeasure.ae_neBot [IsProbabilityMeasure μ] : NeBot μ.ae := inferInstance
 #align measure_theory.is_probability_measure.ae_ne_bot MeasureTheory.IsProbabilityMeasure.ae_neBot
 
 instance Measure.dirac.isProbabilityMeasure [MeasurableSpace α] {x : α} :
@@ -3227,13 +3236,11 @@ theorem prob_le_one [IsProbabilityMeasure μ] : μ s ≤ 1 :=
   (measure_mono <| Set.subset_univ _).trans_eq measure_univ
 #align measure_theory.prob_le_one MeasureTheory.prob_le_one
 
-theorem isProbabilityMeasureSmul [IsFiniteMeasure μ] (h : μ ≠ 0) :
-    IsProbabilityMeasure ((μ univ)⁻¹ • μ) := by
-  constructor
-  rw [smul_apply, smul_eq_mul, ENNReal.inv_mul_cancel]
-  · rwa [Ne, measure_univ_eq_zero]
-  · exact measure_ne_top _ _
-#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmul
+-- porting note: made an `instance`, using `NeZero`
+instance isProbabilityMeasureSMul [IsFiniteMeasure μ] [NeZero μ] :
+    IsProbabilityMeasure ((μ univ)⁻¹ • μ) :=
+  ⟨ENNReal.inv_mul_cancel (NeZero.ne (μ univ)) (measure_ne_top _ _)⟩
+#align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSMulₓ
 
 theorem isProbabilityMeasure_map [IsProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
     IsProbabilityMeasure (map f μ) :=
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
-
-! This file was ported from Lean 3 source module measure_theory.measure.measure_space
-! leanprover-community/mathlib commit 343e80208d29d2d15f8050b929aa50fe4ce71b55
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Measure.NullMeasurable
 import Mathlib.MeasureTheory.MeasurableSpace
 import Mathlib.Topology.Algebra.Order.LiminfLimsup
 
+#align_import measure_theory.measure.measure_space from "leanprover-community/mathlib"@"343e80208d29d2d15f8050b929aa50fe4ce71b55"
+
 /-!
 # Measure spaces
 
feat(Topology.Algebra.InfiniteSum): make sure that tsum and sum coincide on fintypes (#5914)

Currently, when s is a fintype, it is possible that ∑' x, f x ≠ ∑ x, f x (if the topology of the target space is not separated), as the infinite sum ∑' picks some limit if it exists, but not necessarily the one we prefer.

This PR tweaks the definition of infinite sums to make sure that, when a function is finitely supported, the chosen limit for its infinite sum is the (finite) sum of its values. This makes it possible to remove a few separation assumption here and there.

Diff
@@ -2116,7 +2116,7 @@ theorem sum_add_sum_compl (s : Set ι) (μ : ι → Measure α) :
     ((sum fun i : s => μ i) + sum fun i : ↥sᶜ => μ i) = sum μ := by
   ext1 t ht
   simp only [add_apply, sum_apply _ ht]
-  exact @tsum_add_tsum_compl ℝ≥0∞ ι _ _ _ (fun i => μ i t) _ s ENNReal.summable ENNReal.summable
+  exact tsum_add_tsum_compl (f := fun i => μ i t) ENNReal.summable ENNReal.summable
 #align measure_theory.measure.sum_add_sum_compl MeasureTheory.Measure.sum_add_sum_compl
 
 theorem sum_congr {μ ν : ℕ → Measure α} (h : ∀ n, μ n = ν n) : sum μ = sum ν :=
fix: ∑' precedence (#5615)
  • Also remove most superfluous parentheses around big operators (, and variants).
  • roughly the used regex: ([^a-zA-Zα-ωΑ-Ω'𝓝ℳ₀𝕂ₛ)]) \(([∑∏][^()∑∏]*,[^()∑∏:]*)\) ([⊂⊆=<≤]) replaced by $1 $2 $3
Diff
@@ -774,7 +774,7 @@ instance instAdd [MeasurableSpace α] : Add (Measure α) :=
   ⟨fun μ₁ μ₂ =>
     { toOuterMeasure := μ₁.toOuterMeasure + μ₂.toOuterMeasure
       m_iUnion := fun s hs hd =>
-        show μ₁ (⋃ i, s i) + μ₂ (⋃ i, s i) = ∑' i, μ₁ (s i) + μ₂ (s i) by
+        show μ₁ (⋃ i, s i) + μ₂ (⋃ i, s i) = ∑' i, (μ₁ (s i) + μ₂ (s i)) by
           rw [ENNReal.tsum_add, measure_iUnion hd hs, measure_iUnion hd hs]
       trimmed := by rw [OuterMeasure.trim_add, μ₁.trimmed, μ₂.trimmed] }⟩
 #align measure_theory.measure.has_add MeasureTheory.Measure.instAdd
@@ -2026,7 +2026,7 @@ def sum (f : ι → Measure α) : Measure α :=
       (OuterMeasure.le_sum_caratheodory _)
 #align measure_theory.measure.sum MeasureTheory.Measure.sum
 
-theorem le_sum_apply (f : ι → Measure α) (s : Set α) : (∑' i, f i s) ≤ sum f s :=
+theorem le_sum_apply (f : ι → Measure α) (s : Set α) : ∑' i, f i s ≤ sum f s :=
   le_toMeasure_apply _ _ _
 #align measure_theory.measure.le_sum_apply MeasureTheory.Measure.le_sum_apply
 
@@ -2185,7 +2185,7 @@ def count : Measure α :=
   sum dirac
 #align measure_theory.measure.count MeasureTheory.Measure.count
 
-theorem le_count_apply : (∑' _ : s, 1 : ℝ≥0∞) ≤ count s :=
+theorem le_count_apply : ∑' _ : s, (1 : ℝ≥0∞) ≤ count s :=
   calc
     (∑' _ : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i := tsum_subtype s 1
     _ ≤ ∑' i, dirac i s := (ENNReal.tsum_le_tsum fun _ => le_dirac_apply)
@@ -2937,7 +2937,7 @@ theorem ae_restrict_congr_set {s t} (hst : s =ᵐ[μ] t) {p : α → Prop} :
 /-- A version of the **Borel-Cantelli lemma**: if `pᵢ` is a sequence of predicates such that
 `∑ μ {x | pᵢ x}` is finite, then the measure of `x` such that `pᵢ x` holds frequently as `i → ∞` (or
 equivalently, `pᵢ x` holds for infinitely many `i`) is equal to zero. -/
-theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : (∑' i, μ { x | p i x }) ≠ ∞) :
+theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : ∑' i, μ { x | p i x } ≠ ∞) :
     μ { x | ∃ᶠ n in atTop, p n x } = 0 := by
   simpa only [limsup_eq_iInf_iSup_of_nat, frequently_atTop, ← bex_def, setOf_forall,
     setOf_exists] using measure_limsup_eq_zero hp
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -552,7 +552,7 @@ theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSp
       obtain ⟨n, hn⟩ : ∃ n : ℕ, u n < r := ((tendsto_order.1 u_lim).2 r rpos).exists
       refine' ⟨n, ne_of_lt (lt_of_le_of_lt _ hr.lt_top)⟩
       exact measure_mono (hm _ _ (u_pos n) hn.le)
-  have B : (⋂ n, s (u n)) = ⋂ r > a, s r := by
+  have B : ⋂ n, s (u n) = ⋂ r > a, s r := by
     apply Subset.antisymm
     · simp only [subset_iInter_iff, gt_iff_lt]
       intro r rpos
@@ -1888,7 +1888,7 @@ theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
 
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
   (formulated using `Union`). -/
-theorem ext_iff_of_iUnion_eq_univ [Countable ι] {s : ι → Set α} (hs : (⋃ i, s i) = univ) :
+theorem ext_iff_of_iUnion_eq_univ [Countable ι] {s : ι → Set α} (hs : ⋃ i, s i = univ) :
     μ = ν ↔ ∀ i, μ.restrict (s i) = ν.restrict (s i) := by
   rw [← restrict_iUnion_congr, hs, restrict_univ, restrict_univ]
 #align measure_theory.measure.ext_iff_of_Union_eq_univ MeasureTheory.Measure.ext_iff_of_iUnion_eq_univ
@@ -1899,7 +1899,7 @@ alias ext_iff_of_iUnion_eq_univ ↔ _ ext_of_iUnion_eq_univ
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
   (formulated using `biUnion`). -/
 theorem ext_iff_of_biUnion_eq_univ {S : Set ι} {s : ι → Set α} (hc : S.Countable)
-    (hs : (⋃ i ∈ S, s i) = univ) : μ = ν ↔ ∀ i ∈ S, μ.restrict (s i) = ν.restrict (s i) := by
+    (hs : ⋃ i ∈ S, s i = univ) : μ = ν ↔ ∀ i ∈ S, μ.restrict (s i) = ν.restrict (s i) := by
   rw [← restrict_biUnion_congr hc, hs, restrict_univ, restrict_univ]
 #align measure_theory.measure.ext_iff_of_bUnion_eq_univ MeasureTheory.Measure.ext_iff_of_biUnion_eq_univ
 
@@ -1952,7 +1952,7 @@ theorem ext_of_generateFrom_of_cover_subset {S T : Set (Set α)} (h_gen : ‹_
   This lemma is formulated using `iUnion`.
   `FiniteSpanningSetsIn.ext` is a reformulation of this lemma. -/
 theorem ext_of_generateFrom_of_iUnion (C : Set (Set α)) (B : ℕ → Set α) (hA : ‹_› = generateFrom C)
-    (hC : IsPiSystem C) (h1B : (⋃ i, B i) = univ) (h2B : ∀ i, B i ∈ C) (hμB : ∀ i, μ (B i) ≠ ∞)
+    (hC : IsPiSystem C) (h1B : ⋃ i, B i = univ) (h2B : ∀ i, B i ∈ C) (hμB : ∀ i, μ (B i) ≠ ∞)
     (h_eq : ∀ s ∈ C, μ s = ν s) : μ = ν := by
   refine' ext_of_generateFrom_of_cover_subset hA hC _ (countable_range B) h1B _ h_eq
   · rintro _ ⟨i, rfl⟩
@@ -2954,7 +2954,7 @@ section Intervals
 
 theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
     (hst : ∀ x : α, ∃ y ∈ s, x ≤ y) (hdir : DirectedOn (· ≤ ·) s) :
-    (⨆ x ∈ s, μ (Iic x)) = μ univ := by
+    ⨆ x ∈ s, μ (Iic x) = μ univ := by
   rw [← measure_biUnion_eq_iSup hsc]
   · congr
     simp only [← bex_def] at hst
@@ -3425,7 +3425,7 @@ structure FiniteSpanningSetsIn {m0 : MeasurableSpace α} (μ : Measure α) (C :
   protected set : ℕ → Set α
   protected set_mem : ∀ i, set i ∈ C
   protected finite : ∀ i, μ (set i) < ∞
-  protected spanning : (⋃ i, set i) = univ
+  protected spanning : ⋃ i, set i = univ
 #align measure_theory.measure.finite_spanning_sets_in MeasureTheory.Measure.FiniteSpanningSetsIn
 #align measure_theory.measure.finite_spanning_sets_in.set MeasureTheory.Measure.FiniteSpanningSetsIn.set
 #align measure_theory.measure.finite_spanning_sets_in.set_mem MeasureTheory.Measure.FiniteSpanningSetsIn.set_mem
@@ -3483,7 +3483,7 @@ theorem measure_spanningSets_lt_top (μ : Measure α) [SigmaFinite μ] (i : ℕ)
   measure_biUnion_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.finite j).ne
 #align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_top
 
-theorem iUnion_spanningSets (μ : Measure α) [SigmaFinite μ] : (⋃ i : ℕ, spanningSets μ i) = univ :=
+theorem iUnion_spanningSets (μ : Measure α) [SigmaFinite μ] : ⋃ i : ℕ, spanningSets μ i = univ :=
   by simp_rw [spanningSets, iUnion_accumulate, μ.toFiniteSpanningSetsIn.spanning]
 #align measure_theory.Union_spanning_sets MeasureTheory.iUnion_spanningSets
 
@@ -3535,9 +3535,9 @@ theorem eventually_mem_spanningSets (μ : Measure α) [SigmaFinite μ] (x : α)
 namespace Measure
 
 theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
-    (⨆ i, μ.restrict (spanningSets μ i) s) = μ s :=
+    ⨆ i, μ.restrict (spanningSets μ i) s = μ s :=
   calc
-    (⨆ i, μ.restrict (spanningSets μ i) s) = μ.restrict (⋃ i, spanningSets μ i) s :=
+    ⨆ i, μ.restrict (spanningSets μ i) s = μ.restrict (⋃ i, spanningSets μ i) s :=
       (restrict_iUnion_apply_eq_iSup (directed_of_sup (monotone_spanningSets μ)) hs).symm
     _ = μ s := by rw [iUnion_spanningSets, restrict_univ]
 
@@ -3771,7 +3771,7 @@ end FiniteSpanningSetsIn
 
 theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : ∀ s ∈ S, μ s < ∞)
     (hU : ⋃₀ S = univ) : SigmaFinite μ := by
-  obtain ⟨s, hμ, hs⟩ : ∃ s : ℕ → Set α, (∀ n, μ (s n) < ∞) ∧ (⋃ n, s n) = univ
+  obtain ⟨s, hμ, hs⟩ : ∃ s : ℕ → Set α, (∀ n, μ (s n) < ∞) ∧ ⋃ n, s n = univ
   exact (@exists_seq_cover_iff_countable _ (fun x => μ x < ⊤) ⟨∅, by simp⟩).2 ⟨S, hc, hμ, hU⟩
   exact ⟨⟨⟨fun n => s n, fun _ => trivial, hμ, hs⟩⟩⟩
 #align measure_theory.measure.sigma_finite_of_countable MeasureTheory.Measure.sigmaFinite_of_countable
@@ -3805,7 +3805,7 @@ theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFinite
       infer_instance⟩
   haveI : SigmaFinite μ := h
   let s := spanningSets μ
-  have hs_univ : (⋃ i, s i) = Set.univ := iUnion_spanningSets μ
+  have hs_univ : ⋃ i, s i = Set.univ := iUnion_spanningSets μ
   have hs_meas : ∀ i, MeasurableSet[⊥] (s i) := measurable_spanningSets μ
   simp_rw [MeasurableSpace.measurableSet_bot_iff] at hs_meas
   by_cases h_univ_empty : Set.univ = ∅
@@ -3995,7 +3995,7 @@ theorem isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α
     exact ⟨K, K_mem, K_compact.measure_lt_top⟩⟩
 #align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
 
-theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (⋃ i, U i) = univ)
+theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : ⋃ i, U i = univ)
     (hμ : μ ≠ 0) : ∃ i, 0 < μ (U i) := by
   contrapose! hμ with H
   rw [← measure_univ_eq_zero, ← hU]
fix: change compl precedence (#5586)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -153,7 +153,7 @@ theorem measure_union_add_inter' (hs : MeasurableSet s) (t : Set α) :
   rw [union_comm, inter_comm, measure_union_add_inter t hs, add_comm]
 #align measure_theory.measure_union_add_inter' MeasureTheory.measure_union_add_inter'
 
-theorem measure_add_measure_compl (h : MeasurableSet s) : μ s + μ (sᶜ) = μ univ :=
+theorem measure_add_measure_compl (h : MeasurableSet s) : μ s + μ sᶜ = μ univ :=
   measure_add_measure_compl₀ h.nullMeasurableSet
 #align measure_theory.measure_add_measure_compl MeasureTheory.measure_add_measure_compl
 
@@ -288,7 +288,7 @@ theorem measure_eq_measure_larger_of_between_null_diff {s₁ s₂ s₃ : Set α}
   (measure_eq_measure_of_between_null_diff h12 h23 h_nulldiff).2
 #align measure_theory.measure_eq_measure_larger_of_between_null_diff MeasureTheory.measure_eq_measure_larger_of_between_null_diff
 
-theorem measure_compl (h₁ : MeasurableSet s) (h_fin : μ s ≠ ∞) : μ (sᶜ) = μ univ - μ s := by
+theorem measure_compl (h₁ : MeasurableSet s) (h_fin : μ s ≠ ∞) : μ sᶜ = μ univ - μ s := by
   rw [compl_eq_univ_diff]
   exact measure_diff (subset_univ s) h₁ h_fin
 #align measure_theory.measure_compl MeasureTheory.measure_compl
@@ -1736,13 +1736,13 @@ theorem restrict_union' (h : Disjoint s t) (hs : MeasurableSet s) :
 
 @[simp]
 theorem restrict_add_restrict_compl (hs : MeasurableSet s) :
-    μ.restrict s + μ.restrict (sᶜ) = μ := by
+    μ.restrict s + μ.restrict sᶜ = μ := by
   rw [← restrict_union (@disjoint_compl_right (Set α) _ _) hs.compl, union_compl_self,
     restrict_univ]
 #align measure_theory.measure.restrict_add_restrict_compl MeasureTheory.Measure.restrict_add_restrict_compl
 
 @[simp]
-theorem restrict_compl_add_restrict (hs : MeasurableSet s) : μ.restrict (sᶜ) + μ.restrict s = μ :=
+theorem restrict_compl_add_restrict (hs : MeasurableSet s) : μ.restrict sᶜ + μ.restrict s = μ :=
   by rw [add_comm, restrict_add_restrict_compl hs]
 #align measure_theory.measure.restrict_compl_add_restrict MeasureTheory.Measure.restrict_compl_add_restrict
 
@@ -1996,7 +1996,7 @@ theorem dirac_apply [MeasurableSingletonClass α] (a : α) (s : Set α) :
   by_cases h : a ∈ s; · rw [dirac_apply_of_mem h, indicator_of_mem h, Pi.one_apply]
   rw [indicator_of_not_mem h, ← nonpos_iff_eq_zero]
   calc
-    dirac a s ≤ dirac a ({a}ᶜ) := measure_mono (subset_compl_comm.1 <| singleton_subset_iff.2 h)
+    dirac a s ≤ dirac a {a}ᶜ := measure_mono (subset_compl_comm.1 <| singleton_subset_iff.2 h)
     _ = 0 := by simp [dirac_apply' _ (measurableSet_singleton _).compl]
 
 #align measure_theory.measure.dirac_apply MeasureTheory.Measure.dirac_apply
@@ -2113,7 +2113,7 @@ theorem sum_of_empty [IsEmpty ι] (μ : ι → Measure α) : sum μ = 0 := by
 #align measure_theory.measure.sum_of_empty MeasureTheory.Measure.sum_of_empty
 
 theorem sum_add_sum_compl (s : Set ι) (μ : ι → Measure α) :
-    ((sum fun i : s => μ i) + sum fun i : ↥(sᶜ) => μ i) = sum μ := by
+    ((sum fun i : s => μ i) + sum fun i : ↥sᶜ => μ i) = sum μ := by
   ext1 t ht
   simp only [add_apply, sum_apply _ ht]
   exact @tsum_add_tsum_compl ℝ≥0∞ ι _ _ _ (fun i => μ i t) _ s ENNReal.summable ENNReal.summable
@@ -2624,17 +2624,17 @@ end Pointwise
 
 /-- The filter of sets `s` such that `sᶜ` has finite measure. -/
 def cofinite {m0 : MeasurableSpace α} (μ : Measure α) : Filter α where
-  sets := { s | μ (sᶜ) < ∞ }
+  sets := { s | μ sᶜ < ∞ }
   univ_sets := by simp
   inter_sets {s t} hs ht := by
     simp only [compl_inter, mem_setOf_eq]
     calc
-      μ (sᶜ ∪ tᶜ) ≤ μ (sᶜ) + μ (tᶜ) := measure_union_le _ _
+      μ (sᶜ ∪ tᶜ) ≤ μ sᶜ + μ tᶜ := measure_union_le _ _
       _ < ∞ := ENNReal.add_lt_top.2 ⟨hs, ht⟩
   sets_of_superset {s t} hs hst := lt_of_le_of_lt (measure_mono <| compl_subset_compl.2 hst) hs
 #align measure_theory.measure.cofinite MeasureTheory.Measure.cofinite
 
-theorem mem_cofinite : s ∈ μ.cofinite ↔ μ (sᶜ) < ∞ :=
+theorem mem_cofinite : s ∈ μ.cofinite ↔ μ sᶜ < ∞ :=
   Iff.rfl
 #align measure_theory.measure.mem_cofinite MeasureTheory.Measure.mem_cofinite
 
@@ -2846,13 +2846,13 @@ theorem ae_restrict_of_ae_restrict_of_subset {s t : Set α} {p : α → Prop} (h
 #align measure_theory.ae_restrict_of_ae_restrict_of_subset MeasureTheory.ae_restrict_of_ae_restrict_of_subset
 
 theorem ae_of_ae_restrict_of_ae_restrict_compl (t : Set α) {p : α → Prop}
-    (ht : ∀ᵐ x ∂μ.restrict t, p x) (htc : ∀ᵐ x ∂μ.restrict (tᶜ), p x) : ∀ᵐ x ∂μ, p x :=
+    (ht : ∀ᵐ x ∂μ.restrict t, p x) (htc : ∀ᵐ x ∂μ.restrict tᶜ, p x) : ∀ᵐ x ∂μ, p x :=
   nonpos_iff_eq_zero.1 <|
     calc
       μ { x | ¬p x } = μ ({ x | ¬p x } ∩ t ∪ { x | ¬p x } ∩ tᶜ) := by
         rw [← inter_union_distrib_left, union_compl_self, inter_univ]
       _ ≤ μ ({ x | ¬p x } ∩ t) + μ ({ x | ¬p x } ∩ tᶜ) := (measure_union_le _ _)
-      _ ≤ μ.restrict t { x | ¬p x } + μ.restrict (tᶜ) { x | ¬p x } :=
+      _ ≤ μ.restrict t { x | ¬p x } + μ.restrict tᶜ { x | ¬p x } :=
         (add_le_add (le_restrict_apply _ _) (le_restrict_apply _ _))
       _ = 0 := by rw [ae_iff.1 ht, ae_iff.1 htc, zero_add]
 
@@ -3061,7 +3061,7 @@ theorem measure_ne_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ
 #align measure_theory.measure_ne_top MeasureTheory.measure_ne_top
 
 theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet s)
-    (ht : MeasurableSet t) {ε : ℝ≥0∞} (h : μ s ≤ μ t + ε) : μ (tᶜ) ≤ μ (sᶜ) + ε := by
+    (ht : MeasurableSet t) {ε : ℝ≥0∞} (h : μ s ≤ μ t + ε) : μ tᶜ ≤ μ sᶜ + ε := by
   rw [measure_compl ht (measure_ne_top μ _), measure_compl hs (measure_ne_top μ _),
     tsub_le_iff_right]
   calc
@@ -3072,7 +3072,7 @@ theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet
 #align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_add
 
 theorem measure_compl_le_add_iff [IsFiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
-    {ε : ℝ≥0∞} : μ (sᶜ) ≤ μ (tᶜ) + ε ↔ μ t ≤ μ s + ε :=
+    {ε : ℝ≥0∞} : μ sᶜ ≤ μ tᶜ + ε ↔ μ t ≤ μ s + ε :=
   ⟨fun h => compl_compl s ▸ compl_compl t ▸ measure_compl_le_add_of_le_add hs.compl ht.compl h,
     measure_compl_le_add_of_le_add ht hs⟩
 #align measure_theory.measure_compl_le_add_iff MeasureTheory.measure_compl_le_add_iff
@@ -3222,7 +3222,7 @@ instance Measure.dirac.isProbabilityMeasure [MeasurableSpace α] {x : α} :
   ⟨dirac_apply_of_mem <| mem_univ x⟩
 #align measure_theory.measure.dirac.is_probability_measure MeasureTheory.Measure.dirac.isProbabilityMeasure
 
-theorem prob_add_prob_compl [IsProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ (sᶜ) = 1 :=
+theorem prob_add_prob_compl [IsProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ sᶜ = 1 :=
   (measure_add_measure_compl h).trans measure_univ
 #align measure_theory.prob_add_prob_compl MeasureTheory.prob_add_prob_compl
 
@@ -3251,19 +3251,19 @@ theorem one_le_prob_iff [IsProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
 /-- Note that this is not quite as useful as it looks because the measure takes values in `ℝ≥0∞`.
 Thus the subtraction appearing is the truncated subtraction of `ℝ≥0∞`, rather than the
 better-behaved subtraction of `ℝ`. -/
-theorem prob_compl_eq_one_sub [IsProbabilityMeasure μ] (hs : MeasurableSet s) : μ (sᶜ) = 1 - μ s :=
+theorem prob_compl_eq_one_sub [IsProbabilityMeasure μ] (hs : MeasurableSet s) : μ sᶜ = 1 - μ s :=
   by simpa only [measure_univ] using measure_compl hs (measure_lt_top μ s).ne
 #align measure_theory.prob_compl_eq_one_sub MeasureTheory.prob_compl_eq_one_sub
 
 @[simp]
 theorem prob_compl_eq_zero_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
-    μ (sᶜ) = 0 ↔ μ s = 1 := by
+    μ sᶜ = 0 ↔ μ s = 1 := by
   rw [prob_compl_eq_one_sub hs, tsub_eq_zero_iff_le, one_le_prob_iff]
 #align measure_theory.prob_compl_eq_zero_iff MeasureTheory.prob_compl_eq_zero_iff
 
 @[simp]
 theorem prob_compl_eq_one_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
-    μ (sᶜ) = 1 ↔ μ s = 0 := by rw [← prob_compl_eq_zero_iff hs.compl, compl_compl]
+    μ sᶜ = 1 ↔ μ s = 0 := by rw [← prob_compl_eq_zero_iff hs.compl, compl_compl]
 #align measure_theory.prob_compl_eq_one_iff MeasureTheory.prob_compl_eq_one_iff
 
 end IsProbabilityMeasure
@@ -3385,7 +3385,7 @@ theorem ite_ae_eq_of_measure_zero {γ} (f : α → γ) (g : α → γ) (s : Set
 #align measure_theory.ite_ae_eq_of_measure_zero MeasureTheory.ite_ae_eq_of_measure_zero
 
 theorem ite_ae_eq_of_measure_compl_zero {γ} (f : α → γ) (g : α → γ) (s : Set α)
-    (hs_zero : μ (sᶜ) = 0) : (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] f := by
+    (hs_zero : μ sᶜ = 0) : (fun x => ite (x ∈ s) (f x) (g x)) =ᵐ[μ] f := by
   change s ∈ μ.ae at hs_zero
   filter_upwards [hs_zero]
   intros
@@ -4029,7 +4029,7 @@ theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β
     ∃ a b : β, a ≠ b ∧ (∀ s ∈ 𝓝 a, 0 < μ (f ⁻¹' s)) ∧ ∀ t ∈ 𝓝 b, 0 < μ (f ⁻¹' t) := by
   -- We use an `OuterMeasure` so that the proof works without `Measurable f`
   set m : OuterMeasure β := OuterMeasure.map f μ.toOuterMeasure
-  replace h : ∀ b : β, m ({b}ᶜ) ≠ 0 := fun b => not_eventually.mpr (h b)
+  replace h : ∀ b : β, m {b}ᶜ ≠ 0 := fun b => not_eventually.mpr (h b)
   inhabit β
   have : m univ ≠ 0 := ne_bot_of_le_ne_bot (h default) (m.mono' <| subset_univ _)
   rcases m.exists_mem_forall_mem_nhds_within_pos this with ⟨b, -, hb⟩
@@ -4179,7 +4179,7 @@ variable {m0 : MeasurableSpace α} {m1 : MeasurableSpace β} {f : α → β} (hf
 
 nonrec theorem map_apply (μ : Measure α) (s : Set β) : μ.map f s = μ (f ⁻¹' s) := by
   refine' le_antisymm _ (le_map_apply hf.measurable.aemeasurable s)
-  set t := f '' toMeasurable μ (f ⁻¹' s) ∪ range fᶜ
+  set t := f '' toMeasurable μ (f ⁻¹' s) ∪ (range f)ᶜ
   have htm : MeasurableSet t :=
     (hf.measurableSet_image.2 <| measurableSet_toMeasurable _ _).union
       hf.measurableSet_range.compl
@@ -4618,7 +4618,7 @@ theorem piecewise_ae_eq_restrict (hs : MeasurableSet s) : piecewise s f g =ᵐ[
 #align piecewise_ae_eq_restrict piecewise_ae_eq_restrict
 
 theorem piecewise_ae_eq_restrict_compl (hs : MeasurableSet s) :
-    piecewise s f g =ᵐ[μ.restrict (sᶜ)] g := by
+    piecewise s f g =ᵐ[μ.restrict sᶜ] g := by
   rw [ae_restrict_eq hs.compl]
   exact (piecewise_eqOn_compl s f g).eventuallyEq.filter_mono inf_le_right
 #align piecewise_ae_eq_restrict_compl piecewise_ae_eq_restrict_compl
@@ -4669,12 +4669,12 @@ theorem indicator_ae_eq_restrict (hs : MeasurableSet s) : indicator s f =ᵐ[μ.
 #align indicator_ae_eq_restrict indicator_ae_eq_restrict
 
 theorem indicator_ae_eq_restrict_compl (hs : MeasurableSet s) :
-    indicator s f =ᵐ[μ.restrict (sᶜ)] 0 :=
+    indicator s f =ᵐ[μ.restrict sᶜ] 0 :=
   piecewise_ae_eq_restrict_compl hs
 #align indicator_ae_eq_restrict_compl indicator_ae_eq_restrict_compl
 
 theorem indicator_ae_eq_of_restrict_compl_ae_eq_zero (hs : MeasurableSet s)
-    (hf : f =ᵐ[μ.restrict (sᶜ)] 0) : s.indicator f =ᵐ[μ] f := by
+    (hf : f =ᵐ[μ.restrict sᶜ] 0) : s.indicator f =ᵐ[μ] f := by
   rw [Filter.EventuallyEq, ae_restrict_iff' hs.compl] at hf
   filter_upwards [hf]with x hx
   by_cases hxs : x ∈ s
fix precedence of Nat.iterate (#5589)
Diff
@@ -2479,7 +2479,7 @@ protected theorem comp {g : β → γ} {f : α → β} (hg : QuasiMeasurePreserv
 #align measure_theory.measure.quasi_measure_preserving.comp MeasureTheory.Measure.QuasiMeasurePreserving.comp
 
 protected theorem iterate {f : α → α} (hf : QuasiMeasurePreserving f μa μa) :
-    ∀ n, QuasiMeasurePreserving (f^[n]) μa μa
+    ∀ n, QuasiMeasurePreserving f^[n] μa μa
   | 0 => QuasiMeasurePreserving.id μa
   | n + 1 => (hf.iterate n).comp hf
 #align measure_theory.measure.quasi_measure_preserving.iterate MeasureTheory.Measure.QuasiMeasurePreserving.iterate
@@ -2547,18 +2547,18 @@ theorem image_zpow_ae_eq {s : Set α} {e : α ≃ α} (he : QuasiMeasurePreservi
 #align measure_theory.measure.quasi_measure_preserving.image_zpow_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.image_zpow_ae_eq
 
 theorem limsup_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreserving f μ μ)
-    (hs : f ⁻¹' s =ᵐ[μ] s) : @limsup (Set α) ℕ _ (fun n => (preimage f^[n]) s) atTop =ᵐ[μ] s :=
+    (hs : f ⁻¹' s =ᵐ[μ] s) : @limsup (Set α) ℕ _ (fun n => (preimage f)^[n] s) atTop =ᵐ[μ] s :=
     -- Need `@` below because of diamond; see gh issue #16932
-  haveI : ∀ n, (preimage f^[n]) s =ᵐ[μ] s := by
+  haveI : ∀ n, (preimage f)^[n] s =ᵐ[μ] s := by
     intro n
     induction' n with n ih
     · rfl
     simpa only [iterate_succ', comp_apply] using ae_eq_trans (hf.ae_eq ih) hs
-  (limsup_ae_eq_of_forall_ae_eq (fun n => (preimage f^[n]) s) this).trans (ae_eq_refl _)
+  (limsup_ae_eq_of_forall_ae_eq (fun n => (preimage f)^[n] s) this).trans (ae_eq_refl _)
 #align measure_theory.measure.quasi_measure_preserving.limsup_preimage_iterate_ae_eq MeasureTheory.Measure.QuasiMeasurePreserving.limsup_preimage_iterate_ae_eq
 
 theorem liminf_preimage_iterate_ae_eq {f : α → α} (hf : QuasiMeasurePreserving f μ μ)
-    (hs : f ⁻¹' s =ᵐ[μ] s) : @liminf (Set α) ℕ _ (fun n => (preimage f^[n]) s) atTop =ᵐ[μ] s := by
+    (hs : f ⁻¹' s =ᵐ[μ] s) : @liminf (Set α) ℕ _ (fun n => (preimage f)^[n] s) atTop =ᵐ[μ] s := by
     -- Need `@` below because of diamond; see gh issue #16932
   rw [← ae_eq_set_compl_compl, @Filter.liminf_compl (Set α)]
   rw [← ae_eq_set_compl_compl, ← preimage_compl] at hs
@@ -2574,7 +2574,7 @@ obtain a measurable set that is almost equal and strictly invariant.
 theorem exists_preimage_eq_of_preimage_ae {f : α → α} (h : QuasiMeasurePreserving f μ μ)
     (hs : MeasurableSet s) (hs' : f ⁻¹' s =ᵐ[μ] s) :
     ∃ t : Set α, MeasurableSet t ∧ t =ᵐ[μ] s ∧ f ⁻¹' t = t :=
-  ⟨limsup (fun n => (preimage f^[n]) s) atTop,
+  ⟨limsup (fun n => (preimage f)^[n] s) atTop,
     MeasurableSet.measurableSet_limsup fun n =>
       @preimage_iterate_eq α f n ▸ h.measurable.iterate n hs,
     h.limsup_preimage_iterate_ae_eq hs',
chore: tidy various files (#5449)
Diff
@@ -3812,10 +3812,9 @@ theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFinite
   · rw [h_univ_empty, @measure_empty α ⊥]
     exact ENNReal.zero_ne_top.lt_top
   obtain ⟨i, hsi⟩ : ∃ i, s i = Set.univ := by
-    by_contra h_not_univ
-    push_neg at h_not_univ
+    by_contra' h_not_univ
     have h_empty : ∀ i, s i = ∅ := by simpa [h_not_univ] using hs_meas
-    simp [h_empty] at hs_univ
+    simp only [h_empty, iUnion_empty] at hs_univ
     exact h_univ_empty hs_univ.symm
   rw [← hsi]
   exact measure_spanningSets_lt_top μ i
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -612,7 +612,7 @@ theorem measure_liminf_eq_zero {s : ℕ → Set α} (h : (∑' i, μ (s i)) ≠
 theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     (h : ∀ n, s n =ᵐ[μ] t) : @limsup (Set α) ℕ _ s atTop =ᵐ[μ] t := by
     -- Need `@` below because of diamond; see gh issue #16932
-  simp_rw [ae_eq_set] at h⊢
+  simp_rw [ae_eq_set] at h ⊢
   constructor
   · rw [atTop.limsup_sdiff s t]
     apply measure_limsup_eq_zero
@@ -625,7 +625,7 @@ theorem limsup_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
 theorem liminf_ae_eq_of_forall_ae_eq (s : ℕ → Set α) {t : Set α}
     (h : ∀ n, s n =ᵐ[μ] t) : @liminf (Set α) ℕ _ s atTop =ᵐ[μ] t := by
     -- Need `@` below because of diamond; see gh issue #16932
-  simp_rw [ae_eq_set] at h⊢
+  simp_rw [ae_eq_set] at h ⊢
   constructor
   · rw [atTop.liminf_sdiff s t]
     apply measure_liminf_eq_zero
@@ -944,7 +944,7 @@ theorem measure_toMeasurable_add_inter_left {s t : Set α} (hs : MeasurableSet s
 
 theorem measure_toMeasurable_add_inter_right {s t : Set α} (hs : MeasurableSet s)
     (ht : (μ + ν) t ≠ ∞) : ν (toMeasurable (μ + ν) t ∩ s) = ν (t ∩ s) := by
-  rw [add_comm] at ht⊢
+  rw [add_comm] at ht ⊢
   exact measure_toMeasurable_add_inter_left hs ht
 #align measure_theory.measure.measure_to_measurable_add_inter_right MeasureTheory.Measure.measure_toMeasurable_add_inter_right
 
@@ -1314,7 +1314,7 @@ def comap [MeasurableSpace α] (f : α → β) (μ : Measure β) : Measure α :=
 theorem comap_apply₀ [MeasurableSpace α] (f : α → β) (μ : Measure β) (hfi : Injective f)
     (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ)
     (hs : NullMeasurableSet s (comap f μ)) : comap f μ s = μ (f '' s) := by
-  rw [comap, dif_pos (And.intro hfi hf)] at hs⊢
+  rw [comap, dif_pos (And.intro hfi hf)] at hs ⊢
   rw [toMeasure_apply₀ _ _ hs, OuterMeasure.comap_apply]
 #align measure_theory.measure.comap_apply₀ MeasureTheory.Measure.comap_apply₀
 
@@ -1347,7 +1347,7 @@ theorem measure_image_eq_zero_of_comap_eq_zero {β} [MeasurableSpace α] {_mβ :
 theorem ae_eq_image_of_ae_eq_comap {β} [MeasurableSpace α] {mβ : MeasurableSpace β} (f : α → β)
     (μ : Measure β) (hfi : Injective f) (hf : ∀ s, MeasurableSet s → NullMeasurableSet (f '' s) μ)
     {s t : Set α} (hst : s =ᵐ[comap f μ] t) : f '' s =ᵐ[μ] f '' t := by
-  rw [EventuallyEq, ae_iff] at hst⊢
+  rw [EventuallyEq, ae_iff] at hst ⊢
   have h_eq_α : { a : α | ¬s a = t a } = s \ t ∪ t \ s := by
     ext1 x
     simp only [eq_iff_iff, mem_setOf_eq, mem_union, mem_diff]
@@ -1926,12 +1926,12 @@ theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = gen
   · simp only [Set.empty_inter, measure_empty]
   · intro v hv hvt
     have := T_eq t ht
-    rw [Set.inter_comm] at hvt⊢
+    rw [Set.inter_comm] at hvt ⊢
     rwa [← measure_inter_add_diff t hv, ← measure_inter_add_diff t hv, ← hvt,
       ENNReal.add_right_inj] at this
     exact ne_top_of_le_ne_top (htop t ht) (measure_mono <| Set.inter_subset_left _ _)
   · intro f hfd hfm h_eq
-    simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.iUnion hfm)] at h_eq⊢
+    simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.iUnion hfm)] at h_eq ⊢
     simp only [measure_iUnion hfd hfm, h_eq]
 #align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_cover
 
@@ -2802,7 +2802,7 @@ theorem ae_restrict_iff {p : α → Prop} (hp : MeasurableSet { x | p x }) :
 
 theorem ae_imp_of_ae_restrict {s : Set α} {p : α → Prop} (h : ∀ᵐ x ∂μ.restrict s, p x) :
     ∀ᵐ x ∂μ, x ∈ s → p x := by
-  simp only [ae_iff] at h⊢
+  simp only [ae_iff] at h ⊢
   simpa [setOf_and, inter_comm] using measure_inter_eq_zero_of_restrict h
 #align measure_theory.ae_imp_of_ae_restrict MeasureTheory.ae_imp_of_ae_restrict
 
@@ -3813,7 +3813,7 @@ theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFinite
     exact ENNReal.zero_ne_top.lt_top
   obtain ⟨i, hsi⟩ : ∃ i, s i = Set.univ := by
     by_contra h_not_univ
-    push_neg  at h_not_univ
+    push_neg at h_not_univ
     have h_empty : ∀ i, s i = ∅ := by simpa [h_not_univ] using hs_meas
     simp [h_empty] at hs_univ
     exact h_univ_empty hs_univ.symm
@@ -4310,7 +4310,7 @@ theorem map_map_symm (e : α ≃ᵐ β) : (ν.map e.symm).map e = ν := by
 
 theorem map_measurableEquiv_injective (e : α ≃ᵐ β) : Injective (Measure.map e) := by
   intro μ₁ μ₂ hμ
-  apply_fun Measure.map e.symm  at hμ
+  apply_fun Measure.map e.symm at hμ
   simpa [map_symm_map e] using hμ
 #align measurable_equiv.map_measurable_equiv_injective MeasurableEquiv.map_measurableEquiv_injective
 
feat: the "average" measure is always finite (#5320)

The measure (μ univ)⁻¹ • μ used in the definition of ⨍ x, f x ∂μ is always a finite measure.

Diff
@@ -3112,6 +3112,11 @@ instance isFiniteMeasureSMulNNReal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFinite
     where measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
 #align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.isFiniteMeasureSMulNNReal
 
+instance IsFiniteMeasure.average : IsFiniteMeasure ((μ univ)⁻¹ • μ) where
+  measure_univ_lt_top := by
+    rw [smul_apply, smul_eq_mul, ← ENNReal.div_eq_inv_mul]
+    exact ENNReal.div_self_le_one.trans_lt ENNReal.one_lt_top
+
 instance isFiniteMeasureSMulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
     [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [IsFiniteMeasure μ] {r : R} : IsFiniteMeasure (r • μ) := by
   rw [← smul_one_smul ℝ≥0 r μ]
chore: fix grammar 2/3 (#5002)

Part 2 of #5001

Diff
@@ -1936,7 +1936,7 @@ theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = gen
 #align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_cover
 
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
-  and they are both finite on a increasing spanning sequence of sets in the π-system.
+  and they are both finite on an increasing spanning sequence of sets in the π-system.
   This lemma is formulated using `sUnion`. -/
 theorem ext_of_generateFrom_of_cover_subset {S T : Set (Set α)} (h_gen : ‹_› = generateFrom S)
     (h_inter : IsPiSystem S) (h_sub : T ⊆ S) (hc : T.Countable) (hU : ⋃₀ T = univ)
@@ -1948,7 +1948,7 @@ theorem ext_of_generateFrom_of_cover_subset {S T : Set (Set α)} (h_gen : ‹_
 #align measure_theory.measure.ext_of_generate_from_of_cover_subset MeasureTheory.Measure.ext_of_generateFrom_of_cover_subset
 
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
-  and they are both finite on a increasing spanning sequence of sets in the π-system.
+  and they are both finite on an increasing spanning sequence of sets in the π-system.
   This lemma is formulated using `iUnion`.
   `FiniteSpanningSetsIn.ext` is a reformulation of this lemma. -/
 theorem ext_of_generateFrom_of_iUnion (C : Set (Set α)) (B : ℕ → Set α) (hA : ‹_› = generateFrom C)
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -402,7 +402,7 @@ theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, Measurable
 one of the intersections `s i ∩ s j` is not empty. -/
 theorem exists_nonempty_inter_of_measure_univ_lt_tsum_measure {m : MeasurableSpace α}
     (μ : Measure α) {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i))
-    (H : μ (univ : Set α) < ∑' i, μ (s i)) : ∃ (i j : _)(_h : i ≠ j), (s i ∩ s j).Nonempty := by
+    (H : μ (univ : Set α) < ∑' i, μ (s i)) : ∃ (i j : _) (_h : i ≠ j), (s i ∩ s j).Nonempty := by
   contrapose! H
   apply tsum_measure_le_measure_univ hs
   intro i j hij
@@ -537,7 +537,7 @@ theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSp
     {a : ι} (hs : ∀ r > a, MeasurableSet (s r)) (hm : ∀ i j, a < i → i ≤ j → s i ⊆ s j)
     (hf : ∃ r > a, μ (s r) ≠ ∞) : Tendsto (μ ∘ s) (𝓝[Ioi a] a) (𝓝 (μ (⋂ r > a, s r))) := by
   refine' tendsto_order.2 ⟨fun l hl => _, fun L hL => _⟩
-  · filter_upwards [self_mem_nhdsWithin (s:=Ioi a)] with r hr using hl.trans_le
+  · filter_upwards [self_mem_nhdsWithin (s := Ioi a)] with r hr using hl.trans_le
         (measure_mono (biInter_subset_of_mem hr))
   obtain ⟨u, u_anti, u_pos, u_lim⟩ :
     ∃ u : ℕ → ι, StrictAnti u ∧ (∀ n : ℕ, a < u n) ∧ Tendsto u atTop (𝓝 a) := by
@@ -3642,7 +3642,7 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
   -- (which is well behaved for finite measure sets thanks to `measure_toMeasurable_inter`), and
   -- the desired property passes to the union.
   have A :
-    ∃ (t' : _)(_ : t' ⊇ t), MeasurableSet t' ∧ ∀ u, MeasurableSet u → μ (t' ∩ u) = μ (t ∩ u) := by
+    ∃ (t' : _) (_ : t' ⊇ t), MeasurableSet t' ∧ ∀ u, MeasurableSet u → μ (t' ∩ u) = μ (t ∩ u) := by
     let w n := toMeasurable μ (t ∩ v n)
     have hw : ∀ n, μ (w n) < ∞ := by
       intro n
@@ -4084,8 +4084,8 @@ theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
 #align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq
 
 theorem exists_eq_disjoint_finiteSpanningSetsIn (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] :
-    ∃ (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s })(T :
-      ν.FiniteSpanningSetsIn { s | MeasurableSet s }),
+    ∃ (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s })
+      (T : ν.FiniteSpanningSetsIn { s | MeasurableSet s }),
       S.set = T.set ∧ Pairwise (Disjoint on S.set) :=
   let S := (μ + ν).toFiniteSpanningSetsIn.disjointed
   ⟨S.ofLE (Measure.le_add_right le_rfl), S.ofLE (Measure.le_add_left le_rfl), rfl,
@@ -4459,7 +4459,7 @@ variable [TopologicalSpace α] [MeasurableSpace α] {μ : Measure α} {s : Set 
 /-- If `s` is a compact set and `μ` is finite at `𝓝 x` for every `x ∈ s`, then `s` admits an open
 superset of finite measure. -/
 theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
-    (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝 x)) : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ := by
+    (hμ : ∀ x ∈ s, μ.FiniteAtFilter (𝓝 x)) : ∃ (U : _) (_ : U ⊇ s), IsOpen U ∧ μ U < ∞ := by
   refine' IsCompact.induction_on h _ _ _ _
   · use ∅
     simp [Superset]
@@ -4477,7 +4477,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
 theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
-    [IsLocallyFiniteMeasure μ] : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
+    [IsLocallyFiniteMeasure μ] : ∃ (U : _) (_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
   h.exists_open_superset_measure_lt_top' fun x _ => μ.finiteAt_nhds x
 #align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_top
 
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -1771,7 +1771,7 @@ theorem restrict_iUnion_apply_eq_iSup [Countable ι] {s : ι → Set α} (hd : D
     {t : Set α} (ht : MeasurableSet t) : μ.restrict (⋃ i, s i) t = ⨆ i, μ.restrict (s i) t := by
   simp only [restrict_apply ht, inter_iUnion]
   rw [measure_iUnion_eq_iSup]
-  exacts[hd.mono_comp _ fun s₁ s₂ => inter_subset_inter_right _]
+  exacts [hd.mono_comp _ fun s₁ s₂ => inter_subset_inter_right _]
 #align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup
 
 /-- The restriction of the pushforward measure is the pushforward of the restriction. For a version
feat: port MeasureTheory.Group.FundamentalDomain (#4740)
Diff
@@ -2669,10 +2669,10 @@ theorem NullMeasurableSet.mono (h : NullMeasurableSet s μ) (hle : ν ≤ μ) :
   h.mono_ac hle.absolutelyContinuous
 #align measure_theory.null_measurable_set.mono MeasureTheory.NullMeasurableSet.mono
 
-theorem AeDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AEDisjoint ν s t)
+theorem AEDisjoint.preimage {ν : Measure β} {f : α → β} {s t : Set β} (ht : AEDisjoint ν s t)
     (hf : QuasiMeasurePreserving f μ ν) : AEDisjoint μ (f ⁻¹' s) (f ⁻¹' t) :=
   hf.preimage_null ht
-#align measure_theory.ae_disjoint.preimage MeasureTheory.AeDisjoint.preimage
+#align measure_theory.ae_disjoint.preimage MeasureTheory.AEDisjoint.preimage
 
 @[simp]
 theorem ae_eq_bot : μ.ae = ⊥ ↔ μ = 0 := by
style: allow _ for an argument in notation3 & replace _foo with _ in notation3 (#4652)
Diff
@@ -2185,12 +2185,11 @@ def count : Measure α :=
   sum dirac
 #align measure_theory.measure.count MeasureTheory.Measure.count
 
-theorem le_count_apply : (∑' _i : s, 1 : ℝ≥0∞) ≤ count s :=
+theorem le_count_apply : (∑' _ : s, 1 : ℝ≥0∞) ≤ count s :=
   calc
-    (∑' _i : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i := tsum_subtype s 1
+    (∑' _ : s, 1 : ℝ≥0∞) = ∑' i, indicator s 1 i := tsum_subtype s 1
     _ ≤ ∑' i, dirac i s := (ENNReal.tsum_le_tsum fun _ => le_dirac_apply)
     _ ≤ count s := le_sum_apply _ _
-
 #align measure_theory.measure.le_count_apply MeasureTheory.Measure.le_count_apply
 
 theorem count_apply (hs : MeasurableSet s) : count s = ∑' i : s, 1 := by
style: recover Is of Foo which is ported from is_foo (#4639)

I have misported is_foo to Foo because I misunderstood the rule for IsLawfulFoo. This PR recover Is of Foo which is ported from is_foo. This PR also renames some misported theorems.

Diff
@@ -37,11 +37,11 @@ Measures on `α` form a complete lattice, and are closed under scalar multiplica
 
 We introduce the following typeclasses for measures:
 
-* `ProbabilityMeasure μ`: `μ univ = 1`;
-* `FiniteMeasure μ`: `μ univ < ∞`;
+* `IsProbabilityMeasure μ`: `μ univ = 1`;
+* `IsFiniteMeasure μ`: `μ univ < ∞`;
 * `SigmaFinite μ`: there exists a countable collection of sets that cover `univ`
   where `μ` is finite;
-* `LocallyFiniteMeasure μ` : `∀ x, ∃ s ∈ 𝓝 x, μ s < ∞`;
+* `IsLocallyFiniteMeasure μ` : `∀ x, ∃ s ∈ 𝓝 x, μ s < ∞`;
 * `NoAtoms μ` : `∀ x, μ {x} = 0`; possibly should be redefined as
   `∀ s, 0 < μ s → ∃ t ⊆ s, 0 < μ t ∧ μ t < μ s`.
 
@@ -3029,39 +3029,39 @@ theorem ae_eq_dirac [MeasurableSingletonClass α] {a : α} (f : α → δ) :
 
 end Dirac
 
-section FiniteMeasure
+section IsFiniteMeasure
 
 /-- A measure `μ` is called finite if `μ univ < ∞`. -/
-class FiniteMeasure (μ : Measure α) : Prop where
+class IsFiniteMeasure (μ : Measure α) : Prop where
   measure_univ_lt_top : μ univ < ∞
-#align measure_theory.is_finite_measure MeasureTheory.FiniteMeasure
-#align measure_theory.is_finite_measure.measure_univ_lt_top MeasureTheory.FiniteMeasure.measure_univ_lt_top
+#align measure_theory.is_finite_measure MeasureTheory.IsFiniteMeasure
+#align measure_theory.is_finite_measure.measure_univ_lt_top MeasureTheory.IsFiniteMeasure.measure_univ_lt_top
 
-theorem not_finiteMeasure_iff : ¬FiniteMeasure μ ↔ μ Set.univ = ∞ := by
+theorem not_isFiniteMeasure_iff : ¬IsFiniteMeasure μ ↔ μ Set.univ = ∞ := by
   refine' ⟨fun h => _, fun h => fun h' => h'.measure_univ_lt_top.ne h⟩
   by_contra h'
   exact h ⟨lt_top_iff_ne_top.mpr h'⟩
-#align measure_theory.not_is_finite_measure_iff MeasureTheory.not_finiteMeasure_iff
+#align measure_theory.not_is_finite_measure_iff MeasureTheory.not_isFiniteMeasure_iff
 
-instance Restrict.finiteMeasure (μ : Measure α) [hs : Fact (μ s < ∞)] :
-    FiniteMeasure (μ.restrict s) :=
+instance Restrict.isFiniteMeasure (μ : Measure α) [hs : Fact (μ s < ∞)] :
+    IsFiniteMeasure (μ.restrict s) :=
   ⟨by simpa using hs.elim⟩
-#align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.finiteMeasure
+#align measure_theory.restrict.is_finite_measure MeasureTheory.Restrict.isFiniteMeasure
 
-theorem measure_lt_top (μ : Measure α) [FiniteMeasure μ] (s : Set α) : μ s < ∞ :=
-  (measure_mono (subset_univ s)).trans_lt FiniteMeasure.measure_univ_lt_top
+theorem measure_lt_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s < ∞ :=
+  (measure_mono (subset_univ s)).trans_lt IsFiniteMeasure.measure_univ_lt_top
 #align measure_theory.measure_lt_top MeasureTheory.measure_lt_top
 
-instance finiteMeasureRestrict (μ : Measure α) (s : Set α) [h : FiniteMeasure μ] :
-    FiniteMeasure (μ.restrict s) :=
+instance isFiniteMeasureRestrict (μ : Measure α) (s : Set α) [h : IsFiniteMeasure μ] :
+    IsFiniteMeasure (μ.restrict s) :=
   ⟨by simpa using measure_lt_top μ s⟩
-#align measure_theory.is_finite_measure_restrict MeasureTheory.finiteMeasureRestrict
+#align measure_theory.is_finite_measure_restrict MeasureTheory.isFiniteMeasureRestrict
 
-theorem measure_ne_top (μ : Measure α) [FiniteMeasure μ] (s : Set α) : μ s ≠ ∞ :=
+theorem measure_ne_top (μ : Measure α) [IsFiniteMeasure μ] (s : Set α) : μ s ≠ ∞ :=
   ne_of_lt (measure_lt_top μ s)
 #align measure_theory.measure_ne_top MeasureTheory.measure_ne_top
 
-theorem measure_compl_le_add_of_le_add [FiniteMeasure μ] (hs : MeasurableSet s)
+theorem measure_compl_le_add_of_le_add [IsFiniteMeasure μ] (hs : MeasurableSet s)
     (ht : MeasurableSet t) {ε : ℝ≥0∞} (h : μ s ≤ μ t + ε) : μ (tᶜ) ≤ μ (sᶜ) + ε := by
   rw [measure_compl ht (measure_ne_top μ _), measure_compl hs (measure_ne_top μ _),
     tsub_le_iff_right]
@@ -3072,7 +3072,7 @@ theorem measure_compl_le_add_of_le_add [FiniteMeasure μ] (hs : MeasurableSet s)
 
 #align measure_theory.measure_compl_le_add_of_le_add MeasureTheory.measure_compl_le_add_of_le_add
 
-theorem measure_compl_le_add_iff [FiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
+theorem measure_compl_le_add_iff [IsFiniteMeasure μ] (hs : MeasurableSet s) (ht : MeasurableSet t)
     {ε : ℝ≥0∞} : μ (sᶜ) ≤ μ (tᶜ) + ε ↔ μ t ≤ μ s + ε :=
   ⟨fun h => compl_compl s ▸ compl_compl t ▸ measure_compl_le_add_of_le_add hs.compl ht.compl h,
     measure_compl_le_add_of_le_add ht hs⟩
@@ -3084,74 +3084,74 @@ def measureUnivNNReal (μ : Measure α) : ℝ≥0 :=
 #align measure_theory.measure_univ_nnreal MeasureTheory.measureUnivNNReal
 
 @[simp]
-theorem coe_measureUnivNNReal (μ : Measure α) [FiniteMeasure μ] :
+theorem coe_measureUnivNNReal (μ : Measure α) [IsFiniteMeasure μ] :
     ↑(measureUnivNNReal μ) = μ univ :=
   ENNReal.coe_toNNReal (measure_ne_top μ univ)
 #align measure_theory.coe_measure_univ_nnreal MeasureTheory.coe_measureUnivNNReal
 
-instance finiteMeasureZero : FiniteMeasure (0 : Measure α) :=
+instance isFiniteMeasureZero : IsFiniteMeasure (0 : Measure α) :=
   ⟨by simp⟩
-#align measure_theory.is_finite_measure_zero MeasureTheory.finiteMeasureZero
+#align measure_theory.is_finite_measure_zero MeasureTheory.isFiniteMeasureZero
 
-instance (priority := 100) finiteMeasureOfIsEmpty [IsEmpty α] : FiniteMeasure μ := by
+instance (priority := 100) isFiniteMeasureOfIsEmpty [IsEmpty α] : IsFiniteMeasure μ := by
   rw [eq_zero_of_isEmpty μ]
   infer_instance
-#align measure_theory.is_finite_measure_of_is_empty MeasureTheory.finiteMeasureOfIsEmpty
+#align measure_theory.is_finite_measure_of_is_empty MeasureTheory.isFiniteMeasureOfIsEmpty
 
 @[simp]
 theorem measureUnivNNReal_zero : measureUnivNNReal (0 : Measure α) = 0 :=
   rfl
 #align measure_theory.measure_univ_nnreal_zero MeasureTheory.measureUnivNNReal_zero
 
-instance finiteMeasureAdd [FiniteMeasure μ] [FiniteMeasure ν] : FiniteMeasure (μ + ν) where
+instance isFiniteMeasureAdd [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFiniteMeasure (μ + ν) where
   measure_univ_lt_top := by
     rw [Measure.coe_add, Pi.add_apply, ENNReal.add_lt_top]
     exact ⟨measure_lt_top _ _, measure_lt_top _ _⟩
-#align measure_theory.is_finite_measure_add MeasureTheory.finiteMeasureAdd
+#align measure_theory.is_finite_measure_add MeasureTheory.isFiniteMeasureAdd
 
-instance finiteMeasureSmulNNReal [FiniteMeasure μ] {r : ℝ≥0} : FiniteMeasure (r • μ)
+instance isFiniteMeasureSMulNNReal [IsFiniteMeasure μ] {r : ℝ≥0} : IsFiniteMeasure (r • μ)
     where measure_univ_lt_top := ENNReal.mul_lt_top ENNReal.coe_ne_top (measure_ne_top _ _)
-#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.finiteMeasureSmulNNReal
+#align measure_theory.is_finite_measure_smul_nnreal MeasureTheory.isFiniteMeasureSMulNNReal
 
-instance finiteMeasureSmulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
-    [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [FiniteMeasure μ] {r : R} : FiniteMeasure (r • μ) := by
+instance isFiniteMeasureSMulOfNNRealTower {R} [SMul R ℝ≥0] [SMul R ℝ≥0∞] [IsScalarTower R ℝ≥0 ℝ≥0∞]
+    [IsScalarTower R ℝ≥0∞ ℝ≥0∞] [IsFiniteMeasure μ] {r : R} : IsFiniteMeasure (r • μ) := by
   rw [← smul_one_smul ℝ≥0 r μ]
   infer_instance
-#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.finiteMeasureSmulOfNNRealTower
+#align measure_theory.is_finite_measure_smul_of_nnreal_tower MeasureTheory.isFiniteMeasureSMulOfNNRealTower
 
-theorem finiteMeasureOfLe (μ : Measure α) [FiniteMeasure μ] (h : ν ≤ μ) : FiniteMeasure ν :=
+theorem isFiniteMeasure_of_le (μ : Measure α) [IsFiniteMeasure μ] (h : ν ≤ μ) : IsFiniteMeasure ν :=
   { measure_univ_lt_top := lt_of_le_of_lt (h Set.univ MeasurableSet.univ) (measure_lt_top _ _) }
-#align measure_theory.is_finite_measure_of_le MeasureTheory.finiteMeasureOfLe
+#align measure_theory.is_finite_measure_of_le MeasureTheory.isFiniteMeasure_of_le
 
 @[instance]
-theorem Measure.finiteMeasureMap {m : MeasurableSpace α} (μ : Measure α) [FiniteMeasure μ]
-    (f : α → β) : FiniteMeasure (μ.map f) := by
+theorem Measure.isFiniteMeasure_map {m : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
+    (f : α → β) : IsFiniteMeasure (μ.map f) := by
   by_cases hf : AEMeasurable f μ
   · constructor
     rw [map_apply_of_aemeasurable hf MeasurableSet.univ]
     exact measure_lt_top μ _
   · rw [map_of_not_aemeasurable hf]
-    exact MeasureTheory.finiteMeasureZero
-#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.finiteMeasureMap
+    exact MeasureTheory.isFiniteMeasureZero
+#align measure_theory.measure.is_finite_measure_map MeasureTheory.Measure.isFiniteMeasure_map
 
 @[simp]
-theorem measureUnivNNReal_eq_zero [FiniteMeasure μ] : measureUnivNNReal μ = 0 ↔ μ = 0 := by
+theorem measureUnivNNReal_eq_zero [IsFiniteMeasure μ] : measureUnivNNReal μ = 0 ↔ μ = 0 := by
   rw [← MeasureTheory.Measure.measure_univ_eq_zero, ← coe_measureUnivNNReal]
   norm_cast
 #align measure_theory.measure_univ_nnreal_eq_zero MeasureTheory.measureUnivNNReal_eq_zero
 
-theorem measureUnivNNReal_pos [FiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureUnivNNReal μ := by
+theorem measureUnivNNReal_pos [IsFiniteMeasure μ] (hμ : μ ≠ 0) : 0 < measureUnivNNReal μ := by
   contrapose! hμ
   simpa [measureUnivNNReal_eq_zero, le_zero_iff] using hμ
 #align measure_theory.measure_univ_nnreal_pos MeasureTheory.measureUnivNNReal_pos
 
 /-- `le_of_add_le_add_left` is normally applicable to `OrderedCancelAddCommMonoid`,
 but it holds for measures with the additional assumption that μ is finite. -/
-theorem Measure.le_of_add_le_add_left [FiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
+theorem Measure.le_of_add_le_add_left [IsFiniteMeasure μ] (A2 : μ + ν₁ ≤ μ + ν₂) : ν₁ ≤ ν₂ :=
   fun S B1 => ENNReal.le_of_add_le_add_left (MeasureTheory.measure_ne_top μ S) (A2 S B1)
 #align measure_theory.measure.le_of_add_le_add_left MeasureTheory.Measure.le_of_add_le_add_left
 
-theorem summable_measure_toReal [hμ : FiniteMeasure μ] {f : ℕ → Set α}
+theorem summable_measure_toReal [hμ : IsFiniteMeasure μ] {f : ℕ → Set α}
     (hf₁ : ∀ i : ℕ, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
     Summable fun x => (μ (f x)).toReal := by
   apply ENNReal.summable_toReal
@@ -3159,7 +3159,7 @@ theorem summable_measure_toReal [hμ : FiniteMeasure μ] {f : ℕ → Set α}
   exact ne_of_lt (measure_lt_top _ _)
 #align measure_theory.summable_measure_to_real MeasureTheory.summable_measure_toReal
 
-theorem ae_eq_univ_iff_measure_eq [FiniteMeasure μ] (hs : NullMeasurableSet s μ) :
+theorem ae_eq_univ_iff_measure_eq [IsFiniteMeasure μ] (hs : NullMeasurableSet s μ) :
     s =ᵐ[μ] univ ↔ μ s = μ univ := by
   refine' ⟨measure_congr, fun h => _⟩
   obtain ⟨t, -, ht₁, ht₂⟩ := hs.exists_measurable_subset_ae_eq
@@ -3169,100 +3169,100 @@ theorem ae_eq_univ_iff_measure_eq [FiniteMeasure μ] (hs : NullMeasurableSet s 
         (measure_ne_top μ univ))
 #align measure_theory.ae_eq_univ_iff_measure_eq MeasureTheory.ae_eq_univ_iff_measure_eq
 
-theorem ae_iff_measure_eq [FiniteMeasure μ] {p : α → Prop}
+theorem ae_iff_measure_eq [IsFiniteMeasure μ] {p : α → Prop}
     (hp : NullMeasurableSet { a | p a } μ) : (∀ᵐ a ∂μ, p a) ↔ μ { a | p a } = μ univ := by
   rw [← ae_eq_univ_iff_measure_eq hp, eventuallyEq_univ, eventually_iff]
 #align measure_theory.ae_iff_measure_eq MeasureTheory.ae_iff_measure_eq
 
-theorem ae_mem_iff_measure_eq [FiniteMeasure μ] {s : Set α} (hs : NullMeasurableSet s μ) :
+theorem ae_mem_iff_measure_eq [IsFiniteMeasure μ] {s : Set α} (hs : NullMeasurableSet s μ) :
     (∀ᵐ a ∂μ, a ∈ s) ↔ μ s = μ univ :=
   ae_iff_measure_eq hs
 #align measure_theory.ae_mem_iff_measure_eq MeasureTheory.ae_mem_iff_measure_eq
 
-instance Measure.count.finiteMeasure [Finite α] [MeasurableSpace α] :
-    FiniteMeasure (Measure.count : Measure α) :=
+instance Measure.count.isFiniteMeasure [Finite α] [MeasurableSpace α] :
+    IsFiniteMeasure (Measure.count : Measure α) :=
   ⟨by
     cases nonempty_fintype α
     simpa [Measure.count_apply, tsum_fintype] using (ENNReal.nat_ne_top _).lt_top⟩
-#align measure_theory.measure.count.is_finite_measure MeasureTheory.Measure.count.finiteMeasure
+#align measure_theory.measure.count.is_finite_measure MeasureTheory.Measure.count.isFiniteMeasure
 
-end FiniteMeasure
+end IsFiniteMeasure
 
-section ProbabilityMeasure
+section IsProbabilityMeasure
 
 /-- A measure `μ` is called a probability measure if `μ univ = 1`. -/
-class ProbabilityMeasure (μ : Measure α) : Prop where
+class IsProbabilityMeasure (μ : Measure α) : Prop where
   measure_univ : μ univ = 1
-#align measure_theory.is_probability_measure MeasureTheory.ProbabilityMeasure
-#align measure_theory.is_probability_measure.measure_univ MeasureTheory.ProbabilityMeasure.measure_univ
+#align measure_theory.is_probability_measure MeasureTheory.IsProbabilityMeasure
+#align measure_theory.is_probability_measure.measure_univ MeasureTheory.IsProbabilityMeasure.measure_univ
 
-export MeasureTheory.ProbabilityMeasure (measure_univ)
+export MeasureTheory.IsProbabilityMeasure (measure_univ)
 
-attribute [simp] ProbabilityMeasure.measure_univ
+attribute [simp] IsProbabilityMeasure.measure_univ
 
-instance (priority := 100) ProbabilityMeasure.toIsFiniteMeasure (μ : Measure α)
-    [ProbabilityMeasure μ] : FiniteMeasure μ :=
+instance (priority := 100) IsProbabilityMeasure.toIsFiniteMeasure (μ : Measure α)
+    [IsProbabilityMeasure μ] : IsFiniteMeasure μ :=
   ⟨by simp only [measure_univ, ENNReal.one_lt_top]⟩
-#align measure_theory.is_probability_measure.to_is_finite_measure MeasureTheory.ProbabilityMeasure.toIsFiniteMeasure
+#align measure_theory.is_probability_measure.to_is_finite_measure MeasureTheory.IsProbabilityMeasure.toIsFiniteMeasure
 
-theorem ProbabilityMeasure.ne_zero (μ : Measure α) [ProbabilityMeasure μ] : μ ≠ 0 :=
+theorem IsProbabilityMeasure.ne_zero (μ : Measure α) [IsProbabilityMeasure μ] : μ ≠ 0 :=
   mt measure_univ_eq_zero.2 <| by simp [measure_univ]
-#align measure_theory.is_probability_measure.ne_zero MeasureTheory.ProbabilityMeasure.ne_zero
+#align measure_theory.is_probability_measure.ne_zero MeasureTheory.IsProbabilityMeasure.ne_zero
 
-instance (priority := 200) ProbabilityMeasure.ae_neBot [ProbabilityMeasure μ] : NeBot μ.ae :=
-  MeasureTheory.ae_neBot.2 (ProbabilityMeasure.ne_zero μ)
-#align measure_theory.is_probability_measure.ae_ne_bot MeasureTheory.ProbabilityMeasure.ae_neBot
+instance (priority := 200) IsProbabilityMeasure.ae_neBot [IsProbabilityMeasure μ] : NeBot μ.ae :=
+  MeasureTheory.ae_neBot.2 (IsProbabilityMeasure.ne_zero μ)
+#align measure_theory.is_probability_measure.ae_ne_bot MeasureTheory.IsProbabilityMeasure.ae_neBot
 
 instance Measure.dirac.isProbabilityMeasure [MeasurableSpace α] {x : α} :
-    ProbabilityMeasure (dirac x) :=
+    IsProbabilityMeasure (dirac x) :=
   ⟨dirac_apply_of_mem <| mem_univ x⟩
 #align measure_theory.measure.dirac.is_probability_measure MeasureTheory.Measure.dirac.isProbabilityMeasure
 
-theorem prob_add_prob_compl [ProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ (sᶜ) = 1 :=
+theorem prob_add_prob_compl [IsProbabilityMeasure μ] (h : MeasurableSet s) : μ s + μ (sᶜ) = 1 :=
   (measure_add_measure_compl h).trans measure_univ
 #align measure_theory.prob_add_prob_compl MeasureTheory.prob_add_prob_compl
 
-theorem prob_le_one [ProbabilityMeasure μ] : μ s ≤ 1 :=
+theorem prob_le_one [IsProbabilityMeasure μ] : μ s ≤ 1 :=
   (measure_mono <| Set.subset_univ _).trans_eq measure_univ
 #align measure_theory.prob_le_one MeasureTheory.prob_le_one
 
-theorem isProbabilityMeasureSmul [FiniteMeasure μ] (h : μ ≠ 0) :
-    ProbabilityMeasure ((μ univ)⁻¹ • μ) := by
+theorem isProbabilityMeasureSmul [IsFiniteMeasure μ] (h : μ ≠ 0) :
+    IsProbabilityMeasure ((μ univ)⁻¹ • μ) := by
   constructor
   rw [smul_apply, smul_eq_mul, ENNReal.inv_mul_cancel]
   · rwa [Ne, measure_univ_eq_zero]
   · exact measure_ne_top _ _
 #align measure_theory.is_probability_measure_smul MeasureTheory.isProbabilityMeasureSmul
 
-theorem isProbabilityMeasureMap [ProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
-    ProbabilityMeasure (map f μ) :=
+theorem isProbabilityMeasure_map [IsProbabilityMeasure μ] {f : α → β} (hf : AEMeasurable f μ) :
+    IsProbabilityMeasure (map f μ) :=
   ⟨by simp [map_apply_of_aemeasurable, hf]⟩
-#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasureMap
+#align measure_theory.is_probability_measure_map MeasureTheory.isProbabilityMeasure_map
 
 @[simp]
-theorem one_le_prob_iff [ProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
+theorem one_le_prob_iff [IsProbabilityMeasure μ] : 1 ≤ μ s ↔ μ s = 1 :=
   ⟨fun h => le_antisymm prob_le_one h, fun h => h ▸ le_refl _⟩
 #align measure_theory.one_le_prob_iff MeasureTheory.one_le_prob_iff
 
 /-- Note that this is not quite as useful as it looks because the measure takes values in `ℝ≥0∞`.
 Thus the subtraction appearing is the truncated subtraction of `ℝ≥0∞`, rather than the
 better-behaved subtraction of `ℝ`. -/
-theorem prob_compl_eq_one_sub [ProbabilityMeasure μ] (hs : MeasurableSet s) : μ (sᶜ) = 1 - μ s :=
+theorem prob_compl_eq_one_sub [IsProbabilityMeasure μ] (hs : MeasurableSet s) : μ (sᶜ) = 1 - μ s :=
   by simpa only [measure_univ] using measure_compl hs (measure_lt_top μ s).ne
 #align measure_theory.prob_compl_eq_one_sub MeasureTheory.prob_compl_eq_one_sub
 
 @[simp]
-theorem prob_compl_eq_zero_iff [ProbabilityMeasure μ] (hs : MeasurableSet s) :
+theorem prob_compl_eq_zero_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
     μ (sᶜ) = 0 ↔ μ s = 1 := by
   rw [prob_compl_eq_one_sub hs, tsub_eq_zero_iff_le, one_le_prob_iff]
 #align measure_theory.prob_compl_eq_zero_iff MeasureTheory.prob_compl_eq_zero_iff
 
 @[simp]
-theorem prob_compl_eq_one_iff [ProbabilityMeasure μ] (hs : MeasurableSet s) :
+theorem prob_compl_eq_one_iff [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
     μ (sᶜ) = 1 ↔ μ s = 0 := by rw [← prob_compl_eq_zero_iff hs.compl, compl_compl]
 #align measure_theory.prob_compl_eq_one_iff MeasureTheory.prob_compl_eq_one_iff
 
-end ProbabilityMeasure
+end IsProbabilityMeasure
 
 section NoAtoms
 
@@ -3397,10 +3397,10 @@ def FiniteAtFilter {_m0 : MeasurableSpace α} (μ : Measure α) (f : Filter α)
   ∃ s ∈ f, μ s < ∞
 #align measure_theory.measure.finite_at_filter MeasureTheory.Measure.FiniteAtFilter
 
-theorem finiteAtFilterOfFinite {_m0 : MeasurableSpace α} (μ : Measure α) [FiniteMeasure μ]
+theorem finiteAtFilter_of_finite {_m0 : MeasurableSpace α} (μ : Measure α) [IsFiniteMeasure μ]
     (f : Filter α) : μ.FiniteAtFilter f :=
   ⟨univ, univ_mem, measure_lt_top μ univ⟩
-#align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilterOfFinite
+#align measure_theory.measure.finite_at_filter_of_finite MeasureTheory.Measure.finiteAtFilter_of_finite
 
 theorem FiniteAtFilter.exists_mem_basis {f : Filter α} (hμ : FiniteAtFilter μ f) {p : ι → Prop}
     {s : ι → Set α} (hf : f.HasBasis p s) : ∃ i, p i ∧ μ (s i) < ∞ :=
@@ -3789,12 +3789,12 @@ theorem sigmaFinite_of_le (μ : Measure α) [hs : SigmaFinite μ] (h : ν ≤ μ
 end Measure
 
 /-- Every finite measure is σ-finite. -/
-instance (priority := 100) FiniteMeasure.toSigmaFinite {_m0 : MeasurableSpace α} (μ : Measure α)
-    [FiniteMeasure μ] : SigmaFinite μ :=
+instance (priority := 100) IsFiniteMeasure.toSigmaFinite {_m0 : MeasurableSpace α} (μ : Measure α)
+    [IsFiniteMeasure μ] : SigmaFinite μ :=
   ⟨⟨⟨fun _ => univ, fun _ => trivial, fun _ => measure_lt_top μ _, iUnion_const _⟩⟩⟩
-#align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.FiniteMeasure.toSigmaFinite
+#align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.IsFiniteMeasure.toSigmaFinite
 
-theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ FiniteMeasure μ := by
+theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ IsFiniteMeasure μ := by
   refine'
     ⟨fun h => ⟨_⟩, fun h => by
       haveI := h
@@ -3881,46 +3881,47 @@ theorem ae_of_forall_measure_lt_top_ae_restrict {μ : Measure α} [SigmaFinite 
 #align measure_theory.ae_of_forall_measure_lt_top_ae_restrict MeasureTheory.ae_of_forall_measure_lt_top_ae_restrict
 
 /-- A measure is called locally finite if it is finite in some neighborhood of each point. -/
-class LocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α) : Prop where
+class IsLocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α) : Prop where
   finiteAtNhds : ∀ x, μ.FiniteAtFilter (𝓝 x)
-#align measure_theory.is_locally_finite_measure MeasureTheory.LocallyFiniteMeasure
-#align measure_theory.is_locally_finite_measure.finite_at_nhds MeasureTheory.LocallyFiniteMeasure.finiteAtNhds
+#align measure_theory.is_locally_finite_measure MeasureTheory.IsLocallyFiniteMeasure
+#align measure_theory.is_locally_finite_measure.finite_at_nhds MeasureTheory.IsLocallyFiniteMeasure.finiteAtNhds
 
 -- see Note [lower instance priority]
-instance (priority := 100) FiniteMeasure.toLocallyFiniteMeasure [TopologicalSpace α]
-    (μ : Measure α) [FiniteMeasure μ] : LocallyFiniteMeasure μ :=
-  ⟨fun _ => finiteAtFilterOfFinite _ _⟩
-#align measure_theory.is_finite_measure.to_is_locally_finite_measure MeasureTheory.FiniteMeasure.toLocallyFiniteMeasure
+instance (priority := 100) IsFiniteMeasure.toIsLocallyFiniteMeasure [TopologicalSpace α]
+    (μ : Measure α) [IsFiniteMeasure μ] : IsLocallyFiniteMeasure μ :=
+  ⟨fun _ => finiteAtFilter_of_finite _ _⟩
+#align measure_theory.is_finite_measure.to_is_locally_finite_measure MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
 
-theorem Measure.finiteAt_nhds [TopologicalSpace α] (μ : Measure α) [LocallyFiniteMeasure μ]
+theorem Measure.finiteAt_nhds [TopologicalSpace α] (μ : Measure α) [IsLocallyFiniteMeasure μ]
     (x : α) : μ.FiniteAtFilter (𝓝 x) :=
-  LocallyFiniteMeasure.finiteAtNhds x
+  IsLocallyFiniteMeasure.finiteAtNhds x
 #align measure_theory.measure.finite_at_nhds MeasureTheory.Measure.finiteAt_nhds
 
-theorem Measure.smul_finite (μ : Measure α) [FiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
-    FiniteMeasure (c • μ) := by
+theorem Measure.smul_finite (μ : Measure α) [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) :
+    IsFiniteMeasure (c • μ) := by
   lift c to ℝ≥0 using hc
-  exact MeasureTheory.finiteMeasureSmulNNReal
+  exact MeasureTheory.isFiniteMeasureSMulNNReal
 #align measure_theory.measure.smul_finite MeasureTheory.Measure.smul_finite
 
 theorem Measure.exists_isOpen_measure_lt_top [TopologicalSpace α] (μ : Measure α)
-    [LocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
+    [IsLocallyFiniteMeasure μ] (x : α) : ∃ s : Set α, x ∈ s ∧ IsOpen s ∧ μ s < ∞ := by
   simpa only [exists_prop, and_assoc] using
     (μ.finiteAt_nhds x).exists_mem_basis (nhds_basis_opens x)
 #align measure_theory.measure.exists_is_open_measure_lt_top MeasureTheory.Measure.exists_isOpen_measure_lt_top
 
-instance locallyFiniteMeasureSmulNnreal [TopologicalSpace α] (μ : Measure α)
-    [LocallyFiniteMeasure μ] (c : ℝ≥0) : LocallyFiniteMeasure (c • μ) := by
+instance isLocallyFiniteMeasureSMulNNReal [TopologicalSpace α] (μ : Measure α)
+    [IsLocallyFiniteMeasure μ] (c : ℝ≥0) : IsLocallyFiniteMeasure (c • μ) := by
   refine' ⟨fun x => _⟩
   rcases μ.exists_isOpen_measure_lt_top x with ⟨o, xo, o_open, μo⟩
   refine' ⟨o, o_open.mem_nhds xo, _⟩
   apply ENNReal.mul_lt_top _ μo.ne
   simp only [RingHom.id_apply, RingHom.toMonoidHom_eq_coe, ENNReal.coe_ne_top,
     ENNReal.coe_ofNNRealHom, Ne.def, not_false_iff]
-#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.locallyFiniteMeasureSmulNnreal
+#align measure_theory.is_locally_finite_measure_smul_nnreal MeasureTheory.isLocallyFiniteMeasureSMulNNReal
 
-protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α] (μ : Measure α)
-    [LocallyFiniteMeasure μ] : TopologicalSpace.IsTopologicalBasis { s | IsOpen s ∧ μ s < ∞ } := by
+protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α]
+    (μ : Measure α) [IsLocallyFiniteMeasure μ] :
+    TopologicalSpace.IsTopologicalBasis { s | IsOpen s ∧ μ s < ∞ } := by
   refine' TopologicalSpace.isTopologicalBasis_of_open_of_nhds (fun s hs => hs.1) _
   intro x s xs hs
   rcases μ.exists_isOpen_measure_lt_top x with ⟨v, xv, hv, μv⟩
@@ -3929,21 +3930,21 @@ protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α]
 #align measure_theory.measure.is_topological_basis_is_open_lt_top MeasureTheory.Measure.isTopologicalBasis_isOpen_lt_top
 
 /-- A measure `μ` is finite on compacts if any compact set `K` satisfies `μ K < ∞`. -/
-class FiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop where
+class IsFiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop where
   protected lt_top_of_isCompact : ∀ ⦃K : Set α⦄, IsCompact K → μ K < ∞
-#align measure_theory.is_finite_measure_on_compacts MeasureTheory.FiniteMeasureOnCompacts
-#align measure_theory.is_finite_measure_on_compacts.lt_top_of_is_compact MeasureTheory.FiniteMeasureOnCompacts.lt_top_of_isCompact
+#align measure_theory.is_finite_measure_on_compacts MeasureTheory.IsFiniteMeasureOnCompacts
+#align measure_theory.is_finite_measure_on_compacts.lt_top_of_is_compact MeasureTheory.IsFiniteMeasureOnCompacts.lt_top_of_isCompact
 
 /-- A compact subset has finite measure for a measure which is finite on compacts. -/
 theorem _root_.IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α}
-    [FiniteMeasureOnCompacts μ] ⦃K : Set α⦄ (hK : IsCompact K) : μ K < ∞ :=
-  FiniteMeasureOnCompacts.lt_top_of_isCompact hK
+    [IsFiniteMeasureOnCompacts μ] ⦃K : Set α⦄ (hK : IsCompact K) : μ K < ∞ :=
+  IsFiniteMeasureOnCompacts.lt_top_of_isCompact hK
 #align is_compact.measure_lt_top IsCompact.measure_lt_top
 
 /-- A bounded subset has finite measure for a measure which is finite on compact sets, in a
 proper space. -/
 theorem _root_.Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [FiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Metric.Bounded s) : μ s < ∞ :=
+    [IsFiniteMeasureOnCompacts μ] ⦃s : Set α⦄ (hs : Metric.Bounded s) : μ s < ∞ :=
   calc
     μ s ≤ μ (closure s) := measure_mono subset_closure
     _ < ∞ := (Metric.isCompact_of_isClosed_bounded isClosed_closure hs.closure).measure_lt_top
@@ -3951,30 +3952,30 @@ theorem _root_.Metric.Bounded.measure_lt_top [PseudoMetricSpace α] [ProperSpace
 #align metric.bounded.measure_lt_top Metric.Bounded.measure_lt_top
 
 theorem measure_closedBall_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [FiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
+    [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.closedBall x r) < ∞ :=
   Metric.bounded_closedBall.measure_lt_top
 #align measure_theory.measure_closed_ball_lt_top MeasureTheory.measure_closedBall_lt_top
 
 theorem measure_ball_lt_top [PseudoMetricSpace α] [ProperSpace α] {μ : Measure α}
-    [FiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
+    [IsFiniteMeasureOnCompacts μ] {x : α} {r : ℝ} : μ (Metric.ball x r) < ∞ :=
   Metric.bounded_ball.measure_lt_top
 #align measure_theory.measure_ball_lt_top MeasureTheory.measure_ball_lt_top
 
-protected theorem FiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
-    [FiniteMeasureOnCompacts μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : FiniteMeasureOnCompacts (c • μ) :=
+protected theorem IsFiniteMeasureOnCompacts.smul [TopologicalSpace α] (μ : Measure α)
+    [IsFiniteMeasureOnCompacts μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : IsFiniteMeasureOnCompacts (c • μ) :=
   ⟨fun _K hK => ENNReal.mul_lt_top hc hK.measure_lt_top.ne⟩
-#align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.FiniteMeasureOnCompacts.smul
+#align measure_theory.is_finite_measure_on_compacts.smul MeasureTheory.IsFiniteMeasureOnCompacts.smul
 
 /-- Note this cannot be an instance because it would form a typeclass loop with
-`finiteMeasureOnCompacts_of_locallyFiniteMeasure`. -/
-theorem CompactSpace.finiteMeasure [TopologicalSpace α] [CompactSpace α]
-    [FiniteMeasureOnCompacts μ] : FiniteMeasure μ :=
-  ⟨FiniteMeasureOnCompacts.lt_top_of_isCompact isCompact_univ⟩
-#align measure_theory.compact_space.is_finite_measure MeasureTheory.CompactSpace.finiteMeasure
+`isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure`. -/
+theorem CompactSpace.isFiniteMeasure [TopologicalSpace α] [CompactSpace α]
+    [IsFiniteMeasureOnCompacts μ] : IsFiniteMeasure μ :=
+  ⟨IsFiniteMeasureOnCompacts.lt_top_of_isCompact isCompact_univ⟩
+#align measure_theory.compact_space.is_finite_measure MeasureTheory.CompactSpace.isFiniteMeasure
 
 -- see Note [lower instance priority]
 instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
-    [SecondCountableTopology α] [LocallyFiniteMeasure μ] : SigmaFinite μ := by
+    [SecondCountableTopology α] [IsLocallyFiniteMeasure μ] : SigmaFinite μ := by
   choose s hsx hsμ using μ.finiteAt_nhds
   rcases TopologicalSpace.countable_cover_nhds hsx with ⟨t, htc, htU⟩
   refine' Measure.sigmaFinite_of_countable (htc.image s) (ball_image_iff.2 fun x _ => hsμ x) _
@@ -3983,13 +3984,13 @@ instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
 
 /-- A measure which is finite on compact sets in a locally compact space is locally finite.
 Not registered as an instance to avoid a loop with the other direction. -/
-theorem locallyFiniteMeasure_of_finiteMeasureOnCompacts [TopologicalSpace α]
-    [LocallyCompactSpace α] [FiniteMeasureOnCompacts μ] : LocallyFiniteMeasure μ :=
+theorem isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts [TopologicalSpace α]
+    [LocallyCompactSpace α] [IsFiniteMeasureOnCompacts μ] : IsLocallyFiniteMeasure μ :=
   ⟨by
     intro x
     rcases exists_compact_mem_nhds x with ⟨K, K_compact, K_mem⟩
     exact ⟨K, K_mem, K_compact.measure_lt_top⟩⟩
-#align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.locallyFiniteMeasure_of_finiteMeasureOnCompacts
+#align measure_theory.is_locally_finite_measure_of_is_finite_measure_on_compacts MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
 
 theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (⋃ i, U i) = univ)
     (hμ : μ ≠ 0) : ∃ i, 0 < μ (U i) := by
@@ -4038,13 +4039,13 @@ theorem exists_ne_forall_mem_nhds_pos_measure_preimage {β} [TopologicalSpace β
 /-- If two finite measures give the same mass to the whole space and coincide on a π-system made
 of measurable sets, then they coincide on all sets in the σ-algebra generated by the π-system. -/
 theorem ext_on_measurableSpace_of_generate_finite {α} (m₀ : MeasurableSpace α) {μ ν : Measure α}
-    [FiniteMeasure μ] (C : Set (Set α)) (hμν : ∀ s ∈ C, μ s = ν s) {m : MeasurableSpace α}
+    [IsFiniteMeasure μ] (C : Set (Set α)) (hμν : ∀ s ∈ C, μ s = ν s) {m : MeasurableSpace α}
     (h : m ≤ m₀) (hA : m = MeasurableSpace.generateFrom C) (hC : IsPiSystem C)
     (h_univ : μ Set.univ = ν Set.univ) {s : Set α} (hs : MeasurableSet[m] s) : μ s = ν s := by
-  haveI : FiniteMeasure ν := by
+  haveI : IsFiniteMeasure ν := by
     constructor
     rw [← h_univ]
-    apply FiniteMeasure.measure_univ_lt_top
+    apply IsFiniteMeasure.measure_univ_lt_top
   refine' induction_on_inter hA hC (by simp) hμν _ _ hs
   · intro t h1t h2t
     have h1t_ : @MeasurableSet α m₀ t := h _ h1t
@@ -4058,7 +4059,7 @@ theorem ext_on_measurableSpace_of_generate_finite {α} (m₀ : MeasurableSpace 
 /-- Two finite measures are equal if they are equal on the π-system generating the σ-algebra
   (and `univ`). -/
 theorem ext_of_generate_finite (C : Set (Set α)) (hA : m0 = generateFrom C) (hC : IsPiSystem C)
-    [FiniteMeasure μ] (hμν : ∀ s ∈ C, μ s = ν s) (h_univ : μ univ = ν univ) : μ = ν :=
+    [IsFiniteMeasure μ] (hμν : ∀ s ∈ C, μ s = ν s) (h_univ : μ univ = ν univ) : μ = ν :=
   Measure.ext fun _s hs =>
     ext_on_measurableSpace_of_generate_finite m0 C hμν le_rfl hA hC h_univ hs
 #align measure_theory.ext_of_generate_finite MeasureTheory.ext_of_generate_finite
@@ -4146,7 +4147,7 @@ theorem filterSup : μ.FiniteAtFilter f → μ.FiniteAtFilter g → μ.FiniteAtF
 end FiniteAtFilter
 
 theorem finiteAt_nhdsWithin [TopologicalSpace α] {_m0 : MeasurableSpace α} (μ : Measure α)
-    [LocallyFiniteMeasure μ] (x : α) (s : Set α) : μ.FiniteAtFilter (𝓝[s] x) :=
+    [IsLocallyFiniteMeasure μ] (x : α) (s : Set α) : μ.FiniteAtFilter (𝓝[s] x) :=
   (finiteAt_nhds μ x).inf_of_left
 #align measure_theory.measure.finite_at_nhds_within MeasureTheory.Measure.finiteAt_nhdsWithin
 
@@ -4155,11 +4156,11 @@ theorem finiteAt_principal : μ.FiniteAtFilter (𝓟 s) ↔ μ s < ∞ :=
   ⟨fun ⟨_t, ht, hμ⟩ => (measure_mono ht).trans_lt hμ, fun h => ⟨s, mem_principal_self s, h⟩⟩
 #align measure_theory.measure.finite_at_principal MeasureTheory.Measure.finiteAt_principal
 
-theorem locallyFiniteMeasure_of_le [TopologicalSpace α] {_m : MeasurableSpace α} {μ ν : Measure α}
-    [H : LocallyFiniteMeasure μ] (h : ν ≤ μ) : LocallyFiniteMeasure ν :=
+theorem isLocallyFiniteMeasure_of_le [TopologicalSpace α] {_m : MeasurableSpace α} {μ ν : Measure α}
+    [H : IsLocallyFiniteMeasure μ] (h : ν ≤ μ) : IsLocallyFiniteMeasure ν :=
   let F := H.finiteAtNhds
   ⟨fun x => (F x).measure_mono h⟩
-#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.locallyFiniteMeasure_of_le
+#align measure_theory.measure.is_locally_finite_measure_of_le MeasureTheory.Measure.isLocallyFiniteMeasure_of_le
 
 end Measure
 
@@ -4416,11 +4417,11 @@ theorem restrict_trim (hm : m ≤ m0) (μ : Measure α) (hs : @MeasurableSet α
     trim_measurableSet_eq hm (@MeasurableSet.inter α m t s ht hs)]
 #align measure_theory.restrict_trim MeasureTheory.restrict_trim
 
-instance finiteMeasure_trim (hm : m ≤ m0) [FiniteMeasure μ] : FiniteMeasure (μ.trim hm) where
+instance isFiniteMeasure_trim (hm : m ≤ m0) [IsFiniteMeasure μ] : IsFiniteMeasure (μ.trim hm) where
   measure_univ_lt_top := by
     rw [trim_measurableSet_eq hm (@MeasurableSet.univ _ m)]
     exact measure_lt_top _ _
-#align measure_theory.is_finite_measure_trim MeasureTheory.finiteMeasure_trim
+#align measure_theory.is_finite_measure_trim MeasureTheory.isFiniteMeasure_trim
 
 theorem sigmaFiniteTrim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α} (hm : m ≤ m0)
     (hm₂ : m₂ ≤ m) [SigmaFinite (μ.trim (hm₂.trans hm))] : SigmaFinite (μ.trim hm) := by
@@ -4441,7 +4442,7 @@ theorem sigmaFiniteTrim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α}
       _ < ∞ := measure_spanningSets_lt_top _ _
 #align measure_theory.sigma_finite_trim_mono MeasureTheory.sigmaFiniteTrim_mono
 
-theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ FiniteMeasure μ := by
+theorem sigmaFinite_trim_bot_iff : SigmaFinite (μ.trim bot_le) ↔ IsFiniteMeasure μ := by
   rw [sigmaFinite_bot_iff]
   refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ <;> have h_univ := h.measure_univ_lt_top
   · rwa [trim_measurableSet_eq bot_le MeasurableSet.univ] at h_univ
@@ -4477,7 +4478,7 @@ theorem exists_open_superset_measure_lt_top' (h : IsCompact s)
 /-- If `s` is a compact set and `μ` is a locally finite measure, then `s` admits an open superset of
 finite measure. -/
 theorem exists_open_superset_measure_lt_top (h : IsCompact s) (μ : Measure α)
-    [LocallyFiniteMeasure μ] : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
+    [IsLocallyFiniteMeasure μ] : ∃ (U : _)(_ : U ⊇ s), IsOpen U ∧ μ U < ∞ :=
   h.exists_open_superset_measure_lt_top' fun x _ => μ.finiteAt_nhds x
 #align is_compact.exists_open_superset_measure_lt_top IsCompact.exists_open_superset_measure_lt_top
 
@@ -4495,24 +4496,24 @@ theorem measure_zero_of_nhdsWithin (hs : IsCompact s) :
 end IsCompact
 
 -- see Note [lower instance priority]
-instance (priority := 100) finiteMeasureOnCompacts_of_locallyFiniteMeasure [TopologicalSpace α]
-    {_ : MeasurableSpace α} {μ : Measure α} [LocallyFiniteMeasure μ] :
-    FiniteMeasureOnCompacts μ :=
+instance (priority := 100) isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure [TopologicalSpace α]
+    {_ : MeasurableSpace α} {μ : Measure α} [IsLocallyFiniteMeasure μ] :
+    IsFiniteMeasureOnCompacts μ :=
   ⟨fun _s hs => hs.measure_lt_top_of_nhdsWithin fun _ _ => μ.finiteAt_nhdsWithin _ _⟩
-#align is_finite_measure_on_compacts_of_is_locally_finite_measure finiteMeasureOnCompacts_of_locallyFiniteMeasure
+#align is_finite_measure_on_compacts_of_is_locally_finite_measure isFiniteMeasureOnCompacts_of_isLocallyFiniteMeasure
 
-theorem finiteMeasure_iff_finiteMeasureOnCompacts_of_compactSpace [TopologicalSpace α]
+theorem isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace [TopologicalSpace α]
     [MeasurableSpace α] {μ : Measure α} [CompactSpace α] :
-    FiniteMeasure μ ↔ FiniteMeasureOnCompacts μ := by
+    IsFiniteMeasure μ ↔ IsFiniteMeasureOnCompacts μ := by
   constructor <;> intros
   · infer_instance
-  · exact CompactSpace.finiteMeasure
-#align is_finite_measure_iff_is_finite_measure_on_compacts_of_compact_space finiteMeasure_iff_finiteMeasureOnCompacts_of_compactSpace
+  · exact CompactSpace.isFiniteMeasure
+#align is_finite_measure_iff_is_finite_measure_on_compacts_of_compact_space isFiniteMeasure_iff_isFiniteMeasureOnCompacts_of_compactSpace
 
 /-- Compact covering of a `σ`-compact topological space as
 `MeasureTheory.Measure.FiniteSpanningSetsIn`. -/
 def MeasureTheory.Measure.finiteSpanningSetsInCompact [TopologicalSpace α] [SigmaCompactSpace α]
-    {_ : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
+    {_ : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
     μ.FiniteSpanningSetsIn { K | IsCompact K } where
   set := compactCovering α
   set_mem := isCompact_compactCovering α
@@ -4523,7 +4524,7 @@ def MeasureTheory.Measure.finiteSpanningSetsInCompact [TopologicalSpace α] [Sig
 /-- A locally finite measure on a `σ`-compact topological space admits a finite spanning sequence
 of open sets. -/
 def MeasureTheory.Measure.finiteSpanningSetsInOpen [TopologicalSpace α] [SigmaCompactSpace α]
-    {_ : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
+    {_ : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
     μ.FiniteSpanningSetsIn { K | IsOpen K } where
   set n := ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose
   set_mem n :=
@@ -4542,7 +4543,7 @@ open TopologicalSpace
 /-- A locally finite measure on a second countable topological space admits a finite spanning
 sequence of open sets. -/
 irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpace α]
-  [SecondCountableTopology α] {m : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
+  [SecondCountableTopology α] {m : MeasurableSpace α} (μ : Measure α) [IsLocallyFiniteMeasure μ] :
   μ.FiniteSpanningSetsIn { K | IsOpen K } := by
   suffices H : Nonempty (μ.FiniteSpanningSetsIn { K | IsOpen K })
   exact H.some
@@ -4584,7 +4585,7 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
 section MeasureIxx
 
 variable [Preorder α] [TopologicalSpace α] [CompactIccSpace α] {m : MeasurableSpace α}
-  {μ : Measure α} [LocallyFiniteMeasure μ] {a b : α}
+  {μ : Measure α} [IsLocallyFiniteMeasure μ] {a b : α}
 
 theorem measure_Icc_lt_top : μ (Icc a b) < ∞ :=
   isCompact_Icc.measure_lt_top
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro
 
 ! This file was ported from Lean 3 source module measure_theory.measure.measure_space
-! leanprover-community/mathlib commit 88fcb83fe7996142dfcfe7368d31304a9adc874a
+! leanprover-community/mathlib commit 343e80208d29d2d15f8050b929aa50fe4ce71b55
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1058,6 +1058,21 @@ instance instCompleteLattice [MeasurableSpace α] : CompleteLattice (Measure α)
 
 end sInf
 
+@[simp]
+theorem _root_.MeasureTheory.OuterMeasure.toMeasure_top [MeasurableSpace α] :
+    (⊤ : OuterMeasure α).toMeasure (by rw [OuterMeasure.top_caratheodory]; exact le_top) =
+      (⊤ : Measure α) :=
+  top_unique fun s hs => by
+    cases' s.eq_empty_or_nonempty with h h <;>
+      simp [h, toMeasure_apply ⊤ _ hs, OuterMeasure.top_apply]
+#align measure_theory.outer_measure.to_measure_top MeasureTheory.OuterMeasure.toMeasure_top
+
+@[simp]
+theorem toOuterMeasure_top [MeasurableSpace α] :
+    (⊤ : Measure α).toOuterMeasure = (⊤ : OuterMeasure α) := by
+  rw [← OuterMeasure.toMeasure_top, toMeasure_toOuterMeasure, OuterMeasure.trim_top]
+#align measure_theory.measure.to_outer_measure_top MeasureTheory.Measure.toOuterMeasure_top
+
 @[simp]
 theorem top_add : ⊤ + μ = ⊤ :=
   top_unique <| Measure.le_add_right le_rfl
style(MeasureTheory/Measure/MeasureSpace): rename FiniteSpanningSetsIn.Set to FiniteSpanningSetsIn.set (#4100)

this PR also aligns projections in MeasureTheory/Measure/MeasureSpace.

Diff
@@ -2424,6 +2424,8 @@ structure QuasiMeasurePreserving {m0 : MeasurableSpace α} (f : α → β)
   protected measurable : Measurable f
   protected absolutelyContinuous : μa.map f ≪ μb
 #align measure_theory.measure.quasi_measure_preserving MeasureTheory.Measure.QuasiMeasurePreserving
+#align measure_theory.measure.quasi_measure_preserving.measurable MeasureTheory.Measure.QuasiMeasurePreserving.measurable
+#align measure_theory.measure.quasi_measure_preserving.absolutely_continuous MeasureTheory.Measure.QuasiMeasurePreserving.absolutelyContinuous
 
 namespace QuasiMeasurePreserving
 
@@ -3018,6 +3020,7 @@ section FiniteMeasure
 class FiniteMeasure (μ : Measure α) : Prop where
   measure_univ_lt_top : μ univ < ∞
 #align measure_theory.is_finite_measure MeasureTheory.FiniteMeasure
+#align measure_theory.is_finite_measure.measure_univ_lt_top MeasureTheory.FiniteMeasure.measure_univ_lt_top
 
 theorem not_finiteMeasure_iff : ¬FiniteMeasure μ ↔ μ Set.univ = ∞ := by
   refine' ⟨fun h => _, fun h => fun h' => h'.measure_univ_lt_top.ne h⟩
@@ -3256,6 +3259,7 @@ the converse is not true. -/
 class NoAtoms {m0 : MeasurableSpace α} (μ : Measure α) : Prop where
   measure_singleton : ∀ x, μ {x} = 0
 #align measure_theory.has_no_atoms MeasureTheory.NoAtoms
+#align measure_theory.has_no_atoms.measure_singleton MeasureTheory.NoAtoms.measure_singleton
 
 export MeasureTheory.NoAtoms (measure_singleton)
 
@@ -3399,11 +3403,15 @@ theorem finiteAtBot {m0 : MeasurableSpace α} (μ : Measure α) : μ.FiniteAtFil
   finite spanning sets in the collection of all measurable sets. -/
 -- @[nolint has_nonempty_instance] -- Porting note: deleted
 structure FiniteSpanningSetsIn {m0 : MeasurableSpace α} (μ : Measure α) (C : Set (Set α)) where
-  protected Set : ℕ → Set α
-  protected set_mem : ∀ i, Set i ∈ C
-  protected finite : ∀ i, μ (Set i) < ∞
-  protected spanning : (⋃ i, Set i) = univ
+  protected set : ℕ → Set α
+  protected set_mem : ∀ i, set i ∈ C
+  protected finite : ∀ i, μ (set i) < ∞
+  protected spanning : (⋃ i, set i) = univ
 #align measure_theory.measure.finite_spanning_sets_in MeasureTheory.Measure.FiniteSpanningSetsIn
+#align measure_theory.measure.finite_spanning_sets_in.set MeasureTheory.Measure.FiniteSpanningSetsIn.set
+#align measure_theory.measure.finite_spanning_sets_in.set_mem MeasureTheory.Measure.FiniteSpanningSetsIn.set_mem
+#align measure_theory.measure.finite_spanning_sets_in.finite MeasureTheory.Measure.FiniteSpanningSetsIn.finite
+#align measure_theory.measure.finite_spanning_sets_in.spanning MeasureTheory.Measure.FiniteSpanningSetsIn.spanning
 
 end Measure
 
@@ -3414,6 +3422,7 @@ open Measure
 class SigmaFinite {m0 : MeasurableSpace α} (μ : Measure α) : Prop where
   out' : Nonempty (μ.FiniteSpanningSetsIn univ)
 #align measure_theory.sigma_finite MeasureTheory.SigmaFinite
+#align measure_theory.sigma_finite.out' MeasureTheory.SigmaFinite.out'
 
 theorem sigmaFinite_iff : SigmaFinite μ ↔ Nonempty (μ.FiniteSpanningSetsIn univ) :=
   ⟨fun h => h.1, fun h => ⟨h⟩⟩
@@ -3426,7 +3435,7 @@ theorem SigmaFinite.out (h : SigmaFinite μ) : Nonempty (μ.FiniteSpanningSetsIn
 /-- If `μ` is σ-finite it has finite spanning sets in the collection of all measurable sets. -/
 def Measure.toFiniteSpanningSetsIn (μ : Measure α) [h : SigmaFinite μ] :
     μ.FiniteSpanningSetsIn { s | MeasurableSet s } where
-  Set n := toMeasurable μ (h.out.some.Set n)
+  set n := toMeasurable μ (h.out.some.set n)
   set_mem n := measurableSet_toMeasurable _ _
   finite n := by
     rw [measure_toMeasurable]
@@ -3438,7 +3447,7 @@ def Measure.toFiniteSpanningSetsIn (μ : Measure α) [h : SigmaFinite μ] :
   measure using `Classical.choose`. This definition satisfies monotonicity in addition to all other
   properties in `SigmaFinite`. -/
 def spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) : Set α :=
-  Accumulate μ.toFiniteSpanningSetsIn.Set i
+  Accumulate μ.toFiniteSpanningSetsIn.set i
 #align measure_theory.spanning_sets MeasureTheory.spanningSets
 
 theorem monotone_spanningSets (μ : Measure α) [SigmaFinite μ] : Monotone (spanningSets μ) :=
@@ -3714,7 +3723,7 @@ variable {C D : Set (Set α)}
 sets in `D`. -/
 protected def mono' (h : μ.FiniteSpanningSetsIn C) (hC : C ∩ { s | μ s < ∞ } ⊆ D) :
     μ.FiniteSpanningSetsIn D :=
-  ⟨h.Set, fun i => hC ⟨h.set_mem i, h.finite i⟩, h.finite, h.spanning⟩
+  ⟨h.set, fun i => hC ⟨h.set_mem i, h.finite i⟩, h.finite, h.spanning⟩
 #align measure_theory.measure.finite_spanning_sets_in.mono' MeasureTheory.Measure.FiniteSpanningSetsIn.mono'
 
 /-- If `μ` has finite spanning sets in `C` and `C ⊆ D` then `μ` has finite spanning sets in `D`. -/
@@ -3736,7 +3745,7 @@ protected theorem ext {ν : Measure α} {C : Set (Set α)} (hA : ‹_› = gener
 #align measure_theory.measure.finite_spanning_sets_in.ext MeasureTheory.Measure.FiniteSpanningSetsIn.ext
 
 protected theorem isCountablySpanning (h : μ.FiniteSpanningSetsIn C) : IsCountablySpanning C :=
-  ⟨h.Set, h.set_mem, h.spanning⟩
+  ⟨h.set, h.set_mem, h.spanning⟩
 #align measure_theory.measure.finite_spanning_sets_in.is_countably_spanning MeasureTheory.Measure.FiniteSpanningSetsIn.isCountablySpanning
 
 end FiniteSpanningSetsIn
@@ -3752,7 +3761,7 @@ theorem sigmaFinite_of_countable {S : Set (Set α)} (hc : S.Countable) (hμ : 
 `FiniteSpanningSet` with respect to `ν` from a `FiniteSpanningSet` with respect to `μ`. -/
 def FiniteSpanningSetsIn.ofLE (h : ν ≤ μ) {C : Set (Set α)} (S : μ.FiniteSpanningSetsIn C) :
     ν.FiniteSpanningSetsIn C where
-  Set := S.Set
+  set := S.set
   set_mem := S.set_mem
   finite n := lt_of_le_of_lt (le_iff'.1 h _) (S.finite n)
   spanning := S.spanning
@@ -3860,6 +3869,7 @@ theorem ae_of_forall_measure_lt_top_ae_restrict {μ : Measure α} [SigmaFinite 
 class LocallyFiniteMeasure [TopologicalSpace α] (μ : Measure α) : Prop where
   finiteAtNhds : ∀ x, μ.FiniteAtFilter (𝓝 x)
 #align measure_theory.is_locally_finite_measure MeasureTheory.LocallyFiniteMeasure
+#align measure_theory.is_locally_finite_measure.finite_at_nhds MeasureTheory.LocallyFiniteMeasure.finiteAtNhds
 
 -- see Note [lower instance priority]
 instance (priority := 100) FiniteMeasure.toLocallyFiniteMeasure [TopologicalSpace α]
@@ -3907,6 +3917,7 @@ protected theorem Measure.isTopologicalBasis_isOpen_lt_top [TopologicalSpace α]
 class FiniteMeasureOnCompacts [TopologicalSpace α] (μ : Measure α) : Prop where
   protected lt_top_of_isCompact : ∀ ⦃K : Set α⦄, IsCompact K → μ K < ∞
 #align measure_theory.is_finite_measure_on_compacts MeasureTheory.FiniteMeasureOnCompacts
+#align measure_theory.is_finite_measure_on_compacts.lt_top_of_is_compact MeasureTheory.FiniteMeasureOnCompacts.lt_top_of_isCompact
 
 /-- A compact subset has finite measure for a measure which is finite on compacts. -/
 theorem _root_.IsCompact.measure_lt_top [TopologicalSpace α] {μ : Measure α}
@@ -4047,20 +4058,20 @@ such that its underlying sets are pairwise disjoint. -/
 protected def FiniteSpanningSetsIn.disjointed {μ : Measure α}
     (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) :
     μ.FiniteSpanningSetsIn { s | MeasurableSet s } :=
-  ⟨disjointed S.Set, MeasurableSet.disjointed S.set_mem, fun n =>
-    lt_of_le_of_lt (measure_mono (disjointed_subset S.Set n)) (S.finite _),
+  ⟨disjointed S.set, MeasurableSet.disjointed S.set_mem, fun n =>
+    lt_of_le_of_lt (measure_mono (disjointed_subset S.set n)) (S.finite _),
     S.spanning ▸ iUnion_disjointed⟩
 #align measure_theory.measure.finite_spanning_sets_in.disjointed MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed
 
 theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
-    (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) : S.disjointed.Set = disjointed S.Set :=
+    (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s }) : S.disjointed.set = disjointed S.set :=
   rfl
 #align measure_theory.measure.finite_spanning_sets_in.disjointed_set_eq MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed_set_eq
 
 theorem exists_eq_disjoint_finiteSpanningSetsIn (μ ν : Measure α) [SigmaFinite μ] [SigmaFinite ν] :
     ∃ (S : μ.FiniteSpanningSetsIn { s | MeasurableSet s })(T :
       ν.FiniteSpanningSetsIn { s | MeasurableSet s }),
-      S.Set = T.Set ∧ Pairwise (Disjoint on S.Set) :=
+      S.set = T.set ∧ Pairwise (Disjoint on S.set) :=
   let S := (μ + ν).toFiniteSpanningSetsIn.disjointed
   ⟨S.ofLE (Measure.le_add_right le_rfl), S.ofLE (Measure.le_add_left le_rfl), rfl,
     disjoint_disjointed _⟩
@@ -4402,7 +4413,7 @@ theorem sigmaFiniteTrim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α}
   refine' Measure.FiniteSpanningSetsIn.sigmaFinite _
   · exact Set.univ
   · refine'
-      { Set := spanningSets (μ.trim (hm₂.trans hm))
+      { set := spanningSets (μ.trim (hm₂.trans hm))
         set_mem := fun _ => Set.mem_univ _
         finite := fun i => _ -- This is the only one left to prove
         spanning := iUnion_spanningSets _ }
@@ -4488,7 +4499,7 @@ theorem finiteMeasure_iff_finiteMeasureOnCompacts_of_compactSpace [TopologicalSp
 def MeasureTheory.Measure.finiteSpanningSetsInCompact [TopologicalSpace α] [SigmaCompactSpace α]
     {_ : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
     μ.FiniteSpanningSetsIn { K | IsCompact K } where
-  Set := compactCovering α
+  set := compactCovering α
   set_mem := isCompact_compactCovering α
   finite n := (isCompact_compactCovering α n).measure_lt_top
   spanning := iUnion_compactCovering α
@@ -4499,7 +4510,7 @@ of open sets. -/
 def MeasureTheory.Measure.finiteSpanningSetsInOpen [TopologicalSpace α] [SigmaCompactSpace α]
     {_ : MeasurableSpace α} (μ : Measure α) [LocallyFiniteMeasure μ] :
     μ.FiniteSpanningSetsIn { K | IsOpen K } where
-  Set n := ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose
+  set n := ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose
   set_mem n :=
     ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose_spec.snd.1
   finite n :=
@@ -4522,7 +4533,7 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
   exact H.some
   cases isEmpty_or_nonempty α
   · exact
-      ⟨{  Set := fun _ => ∅
+      ⟨{  set := fun _ => ∅
           set_mem := fun _ => by simp
           finite := fun _ => by simp
           spanning := by simp }⟩
@@ -4543,7 +4554,7 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
     rw [hf]
     exact mem_range_self n
   refine'
-    ⟨{  Set := f
+    ⟨{  set := f
         set_mem := fun n => (fS n).1
         finite := fun n => (fS n).2
         spanning := _ }⟩
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -70,12 +70,12 @@ Two ways that are sometimes more convenient:
 
 To prove that two measures are equal, there are multiple options:
 * `ext`: two measures are equal if they are equal on all measurable sets.
-* `ext_of_generateFrom_of_unionᵢ`: two measures are equal if they are equal on a π-system generating
+* `ext_of_generateFrom_of_iUnion`: two measures are equal if they are equal on a π-system generating
   the measurable sets, if the π-system contains a spanning increasing sequence of sets where the
   measures take finite value (in particular the measures are σ-finite). This is a special case of
   the more general `ext_of_generateFrom_of_cover`
 * `ext_of_generate_finite`: two finite measures are equal if they are equal on a π-system
-  generating the measurable sets. This is a special case of `ext_of_generateFrom_of_unionᵢ` using
+  generating the measurable sets. This is a special case of `ext_of_generateFrom_of_iUnion` using
   `C ∪ {univ}`, but is easier to work with.
 
 A `MeasureSpace` is a class that is a measurable space with a canonical measure.
@@ -157,67 +157,67 @@ theorem measure_add_measure_compl (h : MeasurableSet s) : μ s + μ (sᶜ) = μ
   measure_add_measure_compl₀ h.nullMeasurableSet
 #align measure_theory.measure_add_measure_compl MeasureTheory.measure_add_measure_compl
 
-theorem measure_bunionᵢ₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
+theorem measure_biUnion₀ {s : Set β} {f : β → Set α} (hs : s.Countable)
     (hd : s.Pairwise (AEDisjoint μ on f)) (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) := by
   haveI := hs.toEncodable
-  rw [bunionᵢ_eq_unionᵢ]
-  exact measure_unionᵢ₀ (hd.on_injective Subtype.coe_injective fun x => x.2) fun x => h x x.2
-#align measure_theory.measure_bUnion₀ MeasureTheory.measure_bunionᵢ₀
+  rw [biUnion_eq_iUnion]
+  exact measure_iUnion₀ (hd.on_injective Subtype.coe_injective fun x => x.2) fun x => h x x.2
+#align measure_theory.measure_bUnion₀ MeasureTheory.measure_biUnion₀
 
-theorem measure_bunionᵢ {s : Set β} {f : β → Set α} (hs : s.Countable) (hd : s.PairwiseDisjoint f)
+theorem measure_biUnion {s : Set β} {f : β → Set α} (hs : s.Countable) (hd : s.PairwiseDisjoint f)
     (h : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑' p : s, μ (f p) :=
-  measure_bunionᵢ₀ hs hd.aedisjoint fun b hb => (h b hb).nullMeasurableSet
-#align measure_theory.measure_bUnion MeasureTheory.measure_bunionᵢ
+  measure_biUnion₀ hs hd.aedisjoint fun b hb => (h b hb).nullMeasurableSet
+#align measure_theory.measure_bUnion MeasureTheory.measure_biUnion
 
-theorem measure_unionₛ₀ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise (AEDisjoint μ))
+theorem measure_sUnion₀ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise (AEDisjoint μ))
     (h : ∀ s ∈ S, NullMeasurableSet s μ) : μ (⋃₀ S) = ∑' s : S, μ s := by
-  rw [unionₛ_eq_bunionᵢ, measure_bunionᵢ₀ hs hd h]
-#align measure_theory.measure_sUnion₀ MeasureTheory.measure_unionₛ₀
+  rw [sUnion_eq_biUnion, measure_biUnion₀ hs hd h]
+#align measure_theory.measure_sUnion₀ MeasureTheory.measure_sUnion₀
 
-theorem measure_unionₛ {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise Disjoint)
+theorem measure_sUnion {S : Set (Set α)} (hs : S.Countable) (hd : S.Pairwise Disjoint)
     (h : ∀ s ∈ S, MeasurableSet s) : μ (⋃₀ S) = ∑' s : S, μ s := by
-  rw [unionₛ_eq_bunionᵢ, measure_bunionᵢ hs hd h]
-#align measure_theory.measure_sUnion MeasureTheory.measure_unionₛ
+  rw [sUnion_eq_biUnion, measure_biUnion hs hd h]
+#align measure_theory.measure_sUnion MeasureTheory.measure_sUnion
 
-theorem measure_bunionᵢ_finset₀ {s : Finset ι} {f : ι → Set α}
+theorem measure_biUnion_finset₀ {s : Finset ι} {f : ι → Set α}
     (hd : Set.Pairwise (↑s) (AEDisjoint μ on f)) (hm : ∀ b ∈ s, NullMeasurableSet (f b) μ) :
     μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) := by
   rw [← Finset.sum_attach, Finset.attach_eq_univ, ← tsum_fintype]
-  exact measure_bunionᵢ₀ s.countable_toSet hd hm
-#align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_bunionᵢ_finset₀
+  exact measure_biUnion₀ s.countable_toSet hd hm
+#align measure_theory.measure_bUnion_finset₀ MeasureTheory.measure_biUnion_finset₀
 
-theorem measure_bunionᵢ_finset {s : Finset ι} {f : ι → Set α} (hd : PairwiseDisjoint (↑s) f)
+theorem measure_biUnion_finset {s : Finset ι} {f : ι → Set α} (hd : PairwiseDisjoint (↑s) f)
     (hm : ∀ b ∈ s, MeasurableSet (f b)) : μ (⋃ b ∈ s, f b) = ∑ p in s, μ (f p) :=
-  measure_bunionᵢ_finset₀ hd.aedisjoint fun b hb => (hm b hb).nullMeasurableSet
-#align measure_theory.measure_bUnion_finset MeasureTheory.measure_bunionᵢ_finset
+  measure_biUnion_finset₀ hd.aedisjoint fun b hb => (hm b hb).nullMeasurableSet
+#align measure_theory.measure_bUnion_finset MeasureTheory.measure_biUnion_finset
 
 /-- The measure of a disjoint union (even uncountable) of measurable sets is at least the sum of
 the measures of the sets. -/
-theorem tsum_meas_le_meas_unionᵢ_of_disjoint {ι : Type _} [MeasurableSpace α] (μ : Measure α)
+theorem tsum_meas_le_meas_iUnion_of_disjoint {ι : Type _} [MeasurableSpace α] (μ : Measure α)
     {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) : (∑' i, μ (As i)) ≤ μ (⋃ i, As i) := by
   rcases show Summable fun i => μ (As i) from ENNReal.summable with ⟨S, hS⟩
   rw [hS.tsum_eq]
   refine' tendsto_le_of_eventuallyLE hS tendsto_const_nhds (eventually_of_forall _)
   intro s
-  simp [← measure_bunionᵢ_finset (fun _i _hi _j _hj hij => As_disj hij) fun i _ => As_mble i]
-  exact measure_mono (unionᵢ₂_subset_unionᵢ (fun i : ι => i ∈ s) fun i : ι => As i)
-#align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_unionᵢ_of_disjoint
+  simp [← measure_biUnion_finset (fun _i _hi _j _hj hij => As_disj hij) fun i _ => As_mble i]
+  exact measure_mono (iUnion₂_subset_iUnion (fun i : ι => i ∈ s) fun i : ι => As i)
+#align measure_theory.tsum_meas_le_meas_Union_of_disjoint MeasureTheory.tsum_meas_le_meas_iUnion_of_disjoint
 
 /-- If `s` is a countable set, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem tsum_measure_preimage_singleton {s : Set β} (hs : s.Countable) {f : α → β}
     (hf : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y})) : (∑' b : s, μ (f ⁻¹' {↑b})) = μ (f ⁻¹' s) := by
-  rw [← Set.bunionᵢ_preimage_singleton, measure_bunionᵢ hs (pairwiseDisjoint_fiber f s) hf]
+  rw [← Set.biUnion_preimage_singleton, measure_biUnion hs (pairwiseDisjoint_fiber f s) hf]
 #align measure_theory.tsum_measure_preimage_singleton MeasureTheory.tsum_measure_preimage_singleton
 
 /-- If `s` is a `Finset`, then the measure of its preimage can be found as the sum of measures
 of the fibers `f ⁻¹' {y}`. -/
 theorem sum_measure_preimage_singleton (s : Finset β) {f : α → β}
     (hf : ∀ y ∈ s, MeasurableSet (f ⁻¹' {y})) : (∑ b in s, μ (f ⁻¹' {b})) = μ (f ⁻¹' ↑s) := by
-  simp only [← measure_bunionᵢ_finset (pairwiseDisjoint_fiber f s) hf,
-    Finset.set_bunionᵢ_preimage_singleton]
+  simp only [← measure_biUnion_finset (pairwiseDisjoint_fiber f s) hf,
+    Finset.set_biUnion_preimage_singleton]
 #align measure_theory.sum_measure_preimage_singleton MeasureTheory.sum_measure_preimage_singleton
 
 theorem measure_diff_null' (h : μ (s₁ ∩ s₂) = 0) : μ (s₁ \ s₂) = μ s₁ :=
@@ -322,14 +322,14 @@ theorem ae_eq_of_subset_of_measure_ge (h₁ : s ⊆ t) (h₂ : μ t ≤ μ s) (h
   ae_eq_of_ae_subset_of_measure_ge (HasSubset.Subset.eventuallyLE h₁) h₂ hsm ht
 #align measure_theory.ae_eq_of_subset_of_measure_ge MeasureTheory.ae_eq_of_subset_of_measure_ge
 
-theorem measure_unionᵢ_congr_of_subset [Countable β] {s : β → Set α} {t : β → Set α}
+theorem measure_iUnion_congr_of_subset [Countable β] {s : β → Set α} {t : β → Set α}
     (hsub : ∀ b, s b ⊆ t b) (h_le : ∀ b, μ (t b) ≤ μ (s b)) : μ (⋃ b, s b) = μ (⋃ b, t b) := by
   rcases Classical.em (∃ b, μ (t b) = ∞) with (⟨b, hb⟩ | htop)
   · calc
-      μ (⋃ b, s b) = ∞ := top_unique (hb ▸ (h_le b).trans <| measure_mono <| subset_unionᵢ _ _)
-      _ = μ (⋃ b, t b) := Eq.symm <| top_unique <| hb ▸ measure_mono (subset_unionᵢ _ _)
+      μ (⋃ b, s b) = ∞ := top_unique (hb ▸ (h_le b).trans <| measure_mono <| subset_iUnion _ _)
+      _ = μ (⋃ b, t b) := Eq.symm <| top_unique <| hb ▸ measure_mono (subset_iUnion _ _)
   push_neg at htop
-  refine' le_antisymm (measure_mono (unionᵢ_mono hsub)) _
+  refine' le_antisymm (measure_mono (iUnion_mono hsub)) _
   set M := toMeasurable μ
   have H : ∀ b, (M (t b) ∩ M (⋃ b, s b) : Set α) =ᵐ[μ] M (t b) := by
     refine' fun b => ae_eq_of_subset_of_measure_ge (inter_subset_left _ _) _ _ _
@@ -339,36 +339,36 @@ theorem measure_unionᵢ_congr_of_subset [Countable β] {s : β → Set α} {t :
         _ ≤ μ (M (t b) ∩ M (⋃ b, s b)) :=
           measure_mono <|
             subset_inter ((hsub b).trans <| subset_toMeasurable _ _)
-              ((subset_unionᵢ _ _).trans <| subset_toMeasurable _ _)
+              ((subset_iUnion _ _).trans <| subset_toMeasurable _ _)
     · exact (measurableSet_toMeasurable _ _).inter (measurableSet_toMeasurable _ _)
     · rw [measure_toMeasurable]
       exact htop b
   calc
-    μ (⋃ b, t b) ≤ μ (⋃ b, M (t b)) := measure_mono (unionᵢ_mono fun b => subset_toMeasurable _ _)
-    _ = μ (⋃ b, M (t b) ∩ M (⋃ b, s b)) := (measure_congr (EventuallyEq.countable_unionᵢ H).symm)
-    _ ≤ μ (M (⋃ b, s b)) := (measure_mono (unionᵢ_subset fun b => inter_subset_right _ _))
+    μ (⋃ b, t b) ≤ μ (⋃ b, M (t b)) := measure_mono (iUnion_mono fun b => subset_toMeasurable _ _)
+    _ = μ (⋃ b, M (t b) ∩ M (⋃ b, s b)) := (measure_congr (EventuallyEq.countable_iUnion H).symm)
+    _ ≤ μ (M (⋃ b, s b)) := (measure_mono (iUnion_subset fun b => inter_subset_right _ _))
     _ = μ (⋃ b, s b) := measure_toMeasurable _
-#align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_unionᵢ_congr_of_subset
+#align measure_theory.measure_Union_congr_of_subset MeasureTheory.measure_iUnion_congr_of_subset
 
 theorem measure_union_congr_of_subset {t₁ t₂ : Set α} (hs : s₁ ⊆ s₂) (hsμ : μ s₂ ≤ μ s₁)
     (ht : t₁ ⊆ t₂) (htμ : μ t₂ ≤ μ t₁) : μ (s₁ ∪ t₁) = μ (s₂ ∪ t₂) := by
-  rw [union_eq_unionᵢ, union_eq_unionᵢ]
-  exact measure_unionᵢ_congr_of_subset (Bool.forall_bool.2 ⟨ht, hs⟩) (Bool.forall_bool.2 ⟨htμ, hsμ⟩)
+  rw [union_eq_iUnion, union_eq_iUnion]
+  exact measure_iUnion_congr_of_subset (Bool.forall_bool.2 ⟨ht, hs⟩) (Bool.forall_bool.2 ⟨htμ, hsμ⟩)
 #align measure_theory.measure_union_congr_of_subset MeasureTheory.measure_union_congr_of_subset
 
 @[simp]
-theorem measure_unionᵢ_toMeasurable [Countable β] (s : β → Set α) :
+theorem measure_iUnion_toMeasurable [Countable β] (s : β → Set α) :
     μ (⋃ b, toMeasurable μ (s b)) = μ (⋃ b, s b) :=
   Eq.symm <|
-    measure_unionᵢ_congr_of_subset (fun _b => subset_toMeasurable _ _) fun _b =>
+    measure_iUnion_congr_of_subset (fun _b => subset_toMeasurable _ _) fun _b =>
       (measure_toMeasurable _).le
-#align measure_theory.measure_Union_to_measurable MeasureTheory.measure_unionᵢ_toMeasurable
+#align measure_theory.measure_Union_to_measurable MeasureTheory.measure_iUnion_toMeasurable
 
-theorem measure_bunionᵢ_toMeasurable {I : Set β} (hc : I.Countable) (s : β → Set α) :
+theorem measure_biUnion_toMeasurable {I : Set β} (hc : I.Countable) (s : β → Set α) :
     μ (⋃ b ∈ I, toMeasurable μ (s b)) = μ (⋃ b ∈ I, s b) := by
   haveI := hc.toEncodable
-  simp only [bunionᵢ_eq_unionᵢ, measure_unionᵢ_toMeasurable]
-#align measure_theory.measure_bUnion_to_measurable MeasureTheory.measure_bunionᵢ_toMeasurable
+  simp only [biUnion_eq_iUnion, measure_iUnion_toMeasurable]
+#align measure_theory.measure_bUnion_to_measurable MeasureTheory.measure_biUnion_toMeasurable
 
 @[simp]
 theorem measure_toMeasurable_union : μ (toMeasurable μ s ∪ t) = μ (s ∪ t) :=
@@ -387,14 +387,14 @@ theorem measure_union_toMeasurable : μ (s ∪ toMeasurable μ t) = μ (s ∪ t)
 theorem sum_measure_le_measure_univ {s : Finset ι} {t : ι → Set α}
     (h : ∀ i ∈ s, MeasurableSet (t i)) (H : Set.PairwiseDisjoint (↑s) t) :
     (∑ i in s, μ (t i)) ≤ μ (univ : Set α) := by
-  rw [← measure_bunionᵢ_finset H h]
+  rw [← measure_biUnion_finset H h]
   exact measure_mono (subset_univ _)
 #align measure_theory.sum_measure_le_measure_univ MeasureTheory.sum_measure_le_measure_univ
 
 theorem tsum_measure_le_measure_univ {s : ι → Set α} (hs : ∀ i, MeasurableSet (s i))
     (H : Pairwise (Disjoint on s)) : (∑' i, μ (s i)) ≤ μ (univ : Set α) := by
-  rw [ENNReal.tsum_eq_supᵢ_sum]
-  exact supᵢ_le fun s =>
+  rw [ENNReal.tsum_eq_iSup_sum]
+  exact iSup_le fun s =>
     sum_measure_le_measure_univ (fun i _hi => hs i) fun i _hi j _hj hij => H hij
 #align measure_theory.tsum_measure_le_measure_univ MeasureTheory.tsum_measure_le_measure_univ
 
@@ -448,60 +448,60 @@ theorem nonempty_inter_of_measure_lt_add' {m : MeasurableSpace α} (μ : Measure
 
 /-- Continuity from below: the measure of the union of a directed sequence of (not necessarily
 -measurable) sets is the supremum of the measures. -/
-theorem measure_unionᵢ_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s) :
+theorem measure_iUnion_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s) :
     μ (⋃ i, s i) = ⨆ i, μ (s i) := by
   cases nonempty_encodable ι
   -- WLOG, `ι = ℕ`
   generalize ht : Function.extend Encodable.encode s ⊥ = t
   replace hd : Directed (· ⊆ ·) t := ht ▸ hd.extend_bot Encodable.encode_injective
   suffices μ (⋃ n, t n) = ⨆ n, μ (t n) by
-    simp only [← ht, Encodable.encode_injective.apply_extend μ, ← supᵢ_eq_unionᵢ,
-      supᵢ_extend_bot Encodable.encode_injective, (· ∘ ·), Pi.bot_apply, bot_eq_empty,
+    simp only [← ht, Encodable.encode_injective.apply_extend μ, ← iSup_eq_iUnion,
+      iSup_extend_bot Encodable.encode_injective, (· ∘ ·), Pi.bot_apply, bot_eq_empty,
       measure_empty] at this
-    exact this.trans (supᵢ_extend_bot Encodable.encode_injective _)
+    exact this.trans (iSup_extend_bot Encodable.encode_injective _)
   clear! ι
   -- The `≥` inequality is trivial
-  refine' le_antisymm _ (supᵢ_le fun i => measure_mono <| subset_unionᵢ _ _)
+  refine' le_antisymm _ (iSup_le fun i => measure_mono <| subset_iUnion _ _)
   -- Choose `T n ⊇ t n` of the same measure, put `Td n = disjointed T`
   set T : ℕ → Set α := fun n => toMeasurable μ (t n)
   set Td : ℕ → Set α := disjointed T
   have hm : ∀ n, MeasurableSet (Td n) :=
     MeasurableSet.disjointed fun n => measurableSet_toMeasurable _ _
   calc
-    μ (⋃ n, t n) ≤ μ (⋃ n, T n) := measure_mono (unionᵢ_mono fun i => subset_toMeasurable _ _)
-    _ = μ (⋃ n, Td n) := by rw [unionᵢ_disjointed]
-    _ ≤ ∑' n, μ (Td n) := (measure_unionᵢ_le _)
-    _ = ⨆ I : Finset ℕ, ∑ n in I, μ (Td n) := ENNReal.tsum_eq_supᵢ_sum
-    _ ≤ ⨆ n, μ (t n) := supᵢ_le fun I => by
+    μ (⋃ n, t n) ≤ μ (⋃ n, T n) := measure_mono (iUnion_mono fun i => subset_toMeasurable _ _)
+    _ = μ (⋃ n, Td n) := by rw [iUnion_disjointed]
+    _ ≤ ∑' n, μ (Td n) := (measure_iUnion_le _)
+    _ = ⨆ I : Finset ℕ, ∑ n in I, μ (Td n) := ENNReal.tsum_eq_iSup_sum
+    _ ≤ ⨆ n, μ (t n) := iSup_le fun I => by
       rcases hd.finset_le I with ⟨N, hN⟩
       calc
         (∑ n in I, μ (Td n)) = μ (⋃ n ∈ I, Td n) :=
-          (measure_bunionᵢ_finset ((disjoint_disjointed T).set_pairwise I) fun n _ => hm n).symm
-        _ ≤ μ (⋃ n ∈ I, T n) := (measure_mono (unionᵢ₂_mono fun n _hn => disjointed_subset _ _))
-        _ = μ (⋃ n ∈ I, t n) := (measure_bunionᵢ_toMeasurable I.countable_toSet _)
-        _ ≤ μ (t N) := (measure_mono (unionᵢ₂_subset hN))
-        _ ≤ ⨆ n, μ (t n) := le_supᵢ (μ ∘ t) N
+          (measure_biUnion_finset ((disjoint_disjointed T).set_pairwise I) fun n _ => hm n).symm
+        _ ≤ μ (⋃ n ∈ I, T n) := (measure_mono (iUnion₂_mono fun n _hn => disjointed_subset _ _))
+        _ = μ (⋃ n ∈ I, t n) := (measure_biUnion_toMeasurable I.countable_toSet _)
+        _ ≤ μ (t N) := (measure_mono (iUnion₂_subset hN))
+        _ ≤ ⨆ n, μ (t n) := le_iSup (μ ∘ t) N
 
-#align measure_theory.measure_Union_eq_supr MeasureTheory.measure_unionᵢ_eq_supᵢ
+#align measure_theory.measure_Union_eq_supr MeasureTheory.measure_iUnion_eq_iSup
 
-theorem measure_bunionᵢ_eq_supᵢ {s : ι → Set α} {t : Set ι} (ht : t.Countable)
+theorem measure_biUnion_eq_iSup {s : ι → Set α} {t : Set ι} (ht : t.Countable)
     (hd : DirectedOn ((· ⊆ ·) on s) t) : μ (⋃ i ∈ t, s i) = ⨆ i ∈ t, μ (s i) := by
   haveI := ht.toEncodable
-  rw [bunionᵢ_eq_unionᵢ, measure_unionᵢ_eq_supᵢ hd.directed_val, ← supᵢ_subtype'']
-#align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_bunionᵢ_eq_supᵢ
+  rw [biUnion_eq_iUnion, measure_iUnion_eq_iSup hd.directed_val, ← iSup_subtype'']
+#align measure_theory.measure_bUnion_eq_supr MeasureTheory.measure_biUnion_eq_iSup
 
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the infimum of the measures. -/
-theorem measure_interᵢ_eq_infᵢ [Countable ι] {s : ι → Set α} (h : ∀ i, MeasurableSet (s i))
+theorem measure_iInter_eq_iInf [Countable ι] {s : ι → Set α} (h : ∀ i, MeasurableSet (s i))
     (hd : Directed (· ⊇ ·) s) (hfin : ∃ i, μ (s i) ≠ ∞) : μ (⋂ i, s i) = ⨅ i, μ (s i) := by
   rcases hfin with ⟨k, hk⟩
   have : ∀ (t) (_ : t ⊆ s k), μ t ≠ ∞ := fun t ht => ne_top_of_le_ne_top hk (measure_mono ht)
-  rw [← ENNReal.sub_sub_cancel hk (infᵢ_le _ k), ENNReal.sub_infᵢ, ←
-    ENNReal.sub_sub_cancel hk (measure_mono (interᵢ_subset _ k)), ←
-    measure_diff (interᵢ_subset _ k) (MeasurableSet.interᵢ h) (this _ (interᵢ_subset _ k)),
-    diff_interᵢ, measure_unionᵢ_eq_supᵢ]
+  rw [← ENNReal.sub_sub_cancel hk (iInf_le _ k), ENNReal.sub_iInf, ←
+    ENNReal.sub_sub_cancel hk (measure_mono (iInter_subset _ k)), ←
+    measure_diff (iInter_subset _ k) (MeasurableSet.iInter h) (this _ (iInter_subset _ k)),
+    diff_iInter, measure_iUnion_eq_iSup]
   · congr 1
-    refine' le_antisymm (supᵢ_mono' fun i => _) (supᵢ_mono fun i => _)
+    refine' le_antisymm (iSup_mono' fun i => _) (iSup_mono fun i => _)
     · rcases hd i k with ⟨j, hji, hjk⟩
       use j
       rw [← measure_diff hjk (h _) (this _ hjk)]
@@ -511,41 +511,41 @@ theorem measure_interᵢ_eq_infᵢ [Countable ι] {s : ι → Set α} (h : ∀ i
       apply disjoint_sdiff_left
       apply h i
   · exact hd.mono_comp _ fun _ _ => diff_subset_diff_right
-#align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_interᵢ_eq_infᵢ
+#align measure_theory.measure_Inter_eq_infi MeasureTheory.measure_iInter_eq_iInf
 
 /-- Continuity from below: the measure of the union of an increasing sequence of measurable sets
 is the limit of the measures. -/
-theorem tendsto_measure_unionᵢ [SemilatticeSup ι] [Countable ι] {s : ι → Set α} (hm : Monotone s) :
+theorem tendsto_measure_iUnion [SemilatticeSup ι] [Countable ι] {s : ι → Set α} (hm : Monotone s) :
     Tendsto (μ ∘ s) atTop (𝓝 (μ (⋃ n, s n))) := by
-  rw [measure_unionᵢ_eq_supᵢ (directed_of_sup hm)]
-  exact tendsto_atTop_supᵢ fun n m hnm => measure_mono <| hm hnm
-#align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_unionᵢ
+  rw [measure_iUnion_eq_iSup (directed_of_sup hm)]
+  exact tendsto_atTop_iSup fun n m hnm => measure_mono <| hm hnm
+#align measure_theory.tendsto_measure_Union MeasureTheory.tendsto_measure_iUnion
 
 /-- Continuity from above: the measure of the intersection of a decreasing sequence of measurable
 sets is the limit of the measures. -/
-theorem tendsto_measure_interᵢ [Countable ι] [SemilatticeSup ι] {s : ι → Set α}
+theorem tendsto_measure_iInter [Countable ι] [SemilatticeSup ι] {s : ι → Set α}
     (hs : ∀ n, MeasurableSet (s n)) (hm : Antitone s) (hf : ∃ i, μ (s i) ≠ ∞) :
     Tendsto (μ ∘ s) atTop (𝓝 (μ (⋂ n, s n))) := by
-  rw [measure_interᵢ_eq_infᵢ hs (directed_of_sup hm) hf]
-  exact tendsto_atTop_infᵢ fun n m hnm => measure_mono <| hm hnm
-#align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_interᵢ
+  rw [measure_iInter_eq_iInf hs (directed_of_sup hm) hf]
+  exact tendsto_atTop_iInf fun n m hnm => measure_mono <| hm hnm
+#align measure_theory.tendsto_measure_Inter MeasureTheory.tendsto_measure_iInter
 
 /-- The measure of the intersection of a decreasing sequence of measurable
 sets indexed by a linear order with first countable topology is the limit of the measures. -/
-theorem tendsto_measure_binterᵢ_gt {ι : Type _} [LinearOrder ι] [TopologicalSpace ι]
+theorem tendsto_measure_biInter_gt {ι : Type _} [LinearOrder ι] [TopologicalSpace ι]
     [OrderTopology ι] [DenselyOrdered ι] [TopologicalSpace.FirstCountableTopology ι] {s : ι → Set α}
     {a : ι} (hs : ∀ r > a, MeasurableSet (s r)) (hm : ∀ i j, a < i → i ≤ j → s i ⊆ s j)
     (hf : ∃ r > a, μ (s r) ≠ ∞) : Tendsto (μ ∘ s) (𝓝[Ioi a] a) (𝓝 (μ (⋂ r > a, s r))) := by
   refine' tendsto_order.2 ⟨fun l hl => _, fun L hL => _⟩
   · filter_upwards [self_mem_nhdsWithin (s:=Ioi a)] with r hr using hl.trans_le
-        (measure_mono (binterᵢ_subset_of_mem hr))
+        (measure_mono (biInter_subset_of_mem hr))
   obtain ⟨u, u_anti, u_pos, u_lim⟩ :
     ∃ u : ℕ → ι, StrictAnti u ∧ (∀ n : ℕ, a < u n) ∧ Tendsto u atTop (𝓝 a) := by
     rcases hf with ⟨r, ar, _⟩
     rcases exists_seq_strictAnti_tendsto' ar with ⟨w, w_anti, w_mem, w_lim⟩
     exact ⟨w, w_anti, fun n => (w_mem n).1, w_lim⟩
   have A : Tendsto (μ ∘ s ∘ u) atTop (𝓝 (μ (⋂ n, s (u n)))) := by
-    refine' tendsto_measure_interᵢ (fun n => hs _ (u_pos n)) _ _
+    refine' tendsto_measure_iInter (fun n => hs _ (u_pos n)) _ _
     · intro m n hmn
       exact hm _ _ (u_pos n) (u_anti.antitone hmn)
     · rcases hf with ⟨r, rpos, hr⟩
@@ -554,19 +554,19 @@ theorem tendsto_measure_binterᵢ_gt {ι : Type _} [LinearOrder ι] [Topological
       exact measure_mono (hm _ _ (u_pos n) hn.le)
   have B : (⋂ n, s (u n)) = ⋂ r > a, s r := by
     apply Subset.antisymm
-    · simp only [subset_interᵢ_iff, gt_iff_lt]
+    · simp only [subset_iInter_iff, gt_iff_lt]
       intro r rpos
       obtain ⟨n, hn⟩ : ∃ n, u n < r := ((tendsto_order.1 u_lim).2 _ rpos).exists
-      exact Subset.trans (interᵢ_subset _ n) (hm (u n) r (u_pos n) hn.le)
-    · simp only [subset_interᵢ_iff, gt_iff_lt]
+      exact Subset.trans (iInter_subset _ n) (hm (u n) r (u_pos n) hn.le)
+    · simp only [subset_iInter_iff, gt_iff_lt]
       intro n
-      apply binterᵢ_subset_of_mem
+      apply biInter_subset_of_mem
       exact u_pos n
   rw [B] at A
   obtain ⟨n, hn⟩ : ∃ n, μ (s (u n)) < L := ((tendsto_order.1 A).2 _ hL).exists
   have : Ioc a (u n) ∈ 𝓝[>] a := Ioc_mem_nhdsWithin_Ioi ⟨le_rfl, u_pos n⟩
   filter_upwards [this]with r hr using lt_of_le_of_lt (measure_mono (hm _ _ hr.1 hr.2)) hn
-#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_binterᵢ_gt
+#align measure_theory.tendsto_measure_bInter_gt MeasureTheory.tendsto_measure_biInter_gt
 
 /-- One direction of the **Borel-Cantelli lemma**: if (sᵢ) is a sequence of sets such
 that `∑ μ sᵢ` is finite, then the limit superior of the `sᵢ` is a null set. -/
@@ -585,17 +585,17 @@ theorem measure_limsup_eq_zero {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
           isBounded_le_of_top)
         this
   -- Next we unfold `limsup` for sets and replace equality with an inequality
-  simp only [limsup_eq_infᵢ_supᵢ_of_nat', Set.infᵢ_eq_interᵢ, Set.supᵢ_eq_unionᵢ, ←
+  simp only [limsup_eq_iInf_iSup_of_nat', Set.iInf_eq_iInter, Set.iSup_eq_iUnion, ←
     nonpos_iff_eq_zero]
   -- Finally, we estimate `μ (⋃ i, t (i + n))` by `∑ i', μ (t (i + n))`
   refine'
     le_of_tendsto_of_tendsto'
-      (tendsto_measure_interᵢ
-        (fun i => MeasurableSet.unionᵢ fun b => measurableSet_toMeasurable _ _) _
-        ⟨0, ne_top_of_le_ne_top ht (measure_unionᵢ_le t)⟩)
-      (ENNReal.tendsto_sum_nat_add (μ ∘ t) ht) fun n => measure_unionᵢ_le _
+      (tendsto_measure_iInter
+        (fun i => MeasurableSet.iUnion fun b => measurableSet_toMeasurable _ _) _
+        ⟨0, ne_top_of_le_ne_top ht (measure_iUnion_le t)⟩)
+      (ENNReal.tendsto_sum_nat_add (μ ∘ t) ht) fun n => measure_iUnion_le _
   intro n m hnm x
-  simp only [Set.mem_unionᵢ]
+  simp only [Set.mem_iUnion]
   exact fun ⟨i, hi⟩ => ⟨i + (m - n), by simpa only [add_assoc, tsub_add_cancel_of_le hnm] using hi⟩
 #align measure_theory.measure_limsup_eq_zero MeasureTheory.measure_limsup_eq_zero
 
@@ -649,7 +649,7 @@ variable [ms : MeasurableSpace α] {s t : Set α}
   Carathéodory measurable. -/
 def OuterMeasure.toMeasure (m : OuterMeasure α) (h : ms ≤ m.caratheodory) : Measure α :=
   Measure.ofMeasurable (fun s _ => m s) m.empty fun _f hf hd =>
-    m.unionᵢ_eq_of_caratheodory (fun i => h _ (hf i)) hd
+    m.iUnion_eq_of_caratheodory (fun i => h _ (hf i)) hd
 #align measure_theory.outer_measure.to_measure MeasureTheory.OuterMeasure.toMeasure
 
 theorem le_toOuterMeasure_caratheodory (μ : Measure α) : ms ≤ μ.toOuterMeasure.caratheodory :=
@@ -742,7 +742,7 @@ theorem measure_toMeasurable_inter {s t : Set α} (hs : MeasurableSet s) (ht : 
 
 instance instZero [MeasurableSpace α] : Zero (Measure α) :=
   ⟨{  toOuterMeasure := 0
-      m_unionᵢ := fun _f _hf _hd => tsum_zero.symm
+      m_iUnion := fun _f _hf _hd => tsum_zero.symm
       trimmed := OuterMeasure.trim_zero }⟩
 #align measure_theory.measure.has_zero MeasureTheory.Measure.instZero
 
@@ -773,9 +773,9 @@ instance instInhabited [MeasurableSpace α] : Inhabited (Measure α) :=
 instance instAdd [MeasurableSpace α] : Add (Measure α) :=
   ⟨fun μ₁ μ₂ =>
     { toOuterMeasure := μ₁.toOuterMeasure + μ₂.toOuterMeasure
-      m_unionᵢ := fun s hs hd =>
+      m_iUnion := fun s hs hd =>
         show μ₁ (⋃ i, s i) + μ₂ (⋃ i, s i) = ∑' i, μ₁ (s i) + μ₂ (s i) by
-          rw [ENNReal.tsum_add, measure_unionᵢ hd hs, measure_unionᵢ hd hs]
+          rw [ENNReal.tsum_add, measure_iUnion hd hs, measure_iUnion hd hs]
       trimmed := by rw [OuterMeasure.trim_add, μ₁.trimmed, μ₂.trimmed] }⟩
 #align measure_theory.measure.has_add MeasureTheory.Measure.instAdd
 
@@ -805,7 +805,7 @@ variable [SMul R' ℝ≥0∞] [IsScalarTower R' ℝ≥0∞ ℝ≥0∞]
 instance instSMul [MeasurableSpace α] : SMul R (Measure α) :=
   ⟨fun c μ =>
     { toOuterMeasure := c • μ.toOuterMeasure
-      m_unionᵢ := fun s hs hd => by
+      m_iUnion := fun s hs hd => by
         rw [← smul_one_smul ℝ≥0∞ c (_ : OuterMeasure α)]
         conv_lhs =>
           change OuterMeasure.measureOf
@@ -817,7 +817,7 @@ instance instSMul [MeasurableSpace α] : SMul R (Measure α) :=
             ((c • @OfNat.ofNat _ 1 One.toOfNat1 : ℝ≥0∞) • μ.toOuterMeasure) (s i)
           change ∑' i, (c • @OfNat.ofNat _ 1 One.toOfNat1 : ℝ≥0∞) *
             OuterMeasure.measureOf (μ.toOuterMeasure) (s i)
-        simp_rw [measure_unionᵢ hd hs, ENNReal.tsum_mul_left]
+        simp_rw [measure_iUnion hd hs, ENNReal.tsum_mul_left]
       trimmed := by rw [OuterMeasure.trim_smul, μ.trimmed] }⟩
 #align measure_theory.measure.has_smul MeasureTheory.Measure.instSMul
 
@@ -996,48 +996,48 @@ protected theorem le_add_left (h : μ ≤ ν) : μ ≤ ν' + ν := fun s hs => l
 protected theorem le_add_right (h : μ ≤ ν) : μ ≤ ν + ν' := fun s hs => le_add_right (h s hs)
 #align measure_theory.measure.le_add_right MeasureTheory.Measure.le_add_right
 
-section infₛ
+section sInf
 
 variable {m : Set (Measure α)}
 
-theorem infₛ_caratheodory (s : Set α) (hs : MeasurableSet s) :
-    MeasurableSet[(infₛ (toOuterMeasure '' m)).caratheodory] s := by
-  rw [OuterMeasure.infₛ_eq_boundedBy_infₛGen]
+theorem sInf_caratheodory (s : Set α) (hs : MeasurableSet s) :
+    MeasurableSet[(sInf (toOuterMeasure '' m)).caratheodory] s := by
+  rw [OuterMeasure.sInf_eq_boundedBy_sInfGen]
   refine' OuterMeasure.boundedBy_caratheodory fun t => _
-  simp only [OuterMeasure.infₛGen, le_infᵢ_iff, ball_image_iff,
-    measure_eq_infᵢ t]
+  simp only [OuterMeasure.sInfGen, le_iInf_iff, ball_image_iff,
+    measure_eq_iInf t]
   intro μ hμ u htu _hu
-  have hm : ∀ {s t}, s ⊆ t → OuterMeasure.infₛGen (toOuterMeasure '' m) s ≤ μ t := by
+  have hm : ∀ {s t}, s ⊆ t → OuterMeasure.sInfGen (toOuterMeasure '' m) s ≤ μ t := by
     intro s t hst
-    rw [OuterMeasure.infₛGen_def]
-    refine' infᵢ_le_of_le μ.toOuterMeasure (infᵢ_le_of_le (mem_image_of_mem _ hμ) _)
+    rw [OuterMeasure.sInfGen_def]
+    refine' iInf_le_of_le μ.toOuterMeasure (iInf_le_of_le (mem_image_of_mem _ hμ) _)
     refine' measure_mono hst
   rw [← measure_inter_add_diff u hs]
   refine' add_le_add (hm <| inter_subset_inter_left _ htu) (hm <| diff_subset_diff_left htu)
-#align measure_theory.measure.Inf_caratheodory MeasureTheory.Measure.infₛ_caratheodory
+#align measure_theory.measure.Inf_caratheodory MeasureTheory.Measure.sInf_caratheodory
 
 instance [MeasurableSpace α] : InfSet (Measure α) :=
-  ⟨fun m => (infₛ (toOuterMeasure '' m)).toMeasure <| infₛ_caratheodory⟩
+  ⟨fun m => (sInf (toOuterMeasure '' m)).toMeasure <| sInf_caratheodory⟩
 
-theorem infₛ_apply (hs : MeasurableSet s) : infₛ m s = infₛ (toOuterMeasure '' m) s :=
+theorem sInf_apply (hs : MeasurableSet s) : sInf m s = sInf (toOuterMeasure '' m) s :=
   toMeasure_apply _ _ hs
-#align measure_theory.measure.Inf_apply MeasureTheory.Measure.infₛ_apply
+#align measure_theory.measure.Inf_apply MeasureTheory.Measure.sInf_apply
 
-private theorem measure_infₛ_le (h : μ ∈ m) : infₛ m ≤ μ :=
-  have : infₛ (toOuterMeasure '' m) ≤ μ.toOuterMeasure := infₛ_le (mem_image_of_mem _ h)
-  fun s hs => by rw [infₛ_apply hs]; exact this s
+private theorem measure_sInf_le (h : μ ∈ m) : sInf m ≤ μ :=
+  have : sInf (toOuterMeasure '' m) ≤ μ.toOuterMeasure := sInf_le (mem_image_of_mem _ h)
+  fun s hs => by rw [sInf_apply hs]; exact this s
 
-private theorem measure_le_infₛ (h : ∀ μ' ∈ m, μ ≤ μ') : μ ≤ infₛ m :=
-  have : μ.toOuterMeasure ≤ infₛ (toOuterMeasure '' m) :=
-    le_infₛ <| ball_image_of_ball fun μ hμ => toOuterMeasure_le.2 <| h _ hμ
-  fun s hs => by rw [infₛ_apply hs]; exact this s
+private theorem measure_le_sInf (h : ∀ μ' ∈ m, μ ≤ μ') : μ ≤ sInf m :=
+  have : μ.toOuterMeasure ≤ sInf (toOuterMeasure '' m) :=
+    le_sInf <| ball_image_of_ball fun μ hμ => toOuterMeasure_le.2 <| h _ hμ
+  fun s hs => by rw [sInf_apply hs]; exact this s
 
 instance instCompleteSemilatticeInf [MeasurableSpace α] : CompleteSemilatticeInf (Measure α) :=
   { (by infer_instance : PartialOrder (Measure α)),
     (by infer_instance :
       InfSet (Measure α)) with
-    infₛ_le := fun _s _a => measure_infₛ_le
-    le_infₛ := fun _s _a => measure_le_infₛ }
+    sInf_le := fun _s _a => measure_sInf_le
+    le_sInf := fun _s _a => measure_le_sInf }
 #align measure_theory.measure.complete_semilattice_Inf MeasureTheory.Measure.instCompleteSemilatticeInf
 
 instance instCompleteLattice [MeasurableSpace α] : CompleteLattice (Measure α) :=
@@ -1056,7 +1056,7 @@ instance instCompleteLattice [MeasurableSpace α] : CompleteLattice (Measure α)
     bot_le := fun _a _s _hs => bot_le }
 #align measure_theory.measure.complete_lattice MeasureTheory.Measure.instCompleteLattice
 
-end infₛ
+end sInf
 
 @[simp]
 theorem top_add : ⊤ + μ = ⊤ :=
@@ -1388,8 +1388,8 @@ theorem MeasurableSet.nullMeasurableSet_subtype_coe {t : Set s} (hs : NullMeasur
     exact hs.diff
   · intro f
     dsimp only []
-    rw [image_unionᵢ]
-    exact NullMeasurableSet.unionᵢ
+    rw [image_iUnion]
+    exact NullMeasurableSet.iUnion
 #align measure_theory.measure.measurable_set.null_measurable_set_subtype_coe MeasureTheory.Measure.MeasurableSet.nullMeasurableSet_subtype_coe
 
 theorem NullMeasurableSet.subtype_coe {t : Set s} (hs : NullMeasurableSet s μ)
@@ -1737,27 +1737,27 @@ theorem restrict_union_le (s s' : Set α) : μ.restrict (s ∪ s') ≤ μ.restri
   apply measure_union_le
 #align measure_theory.measure.restrict_union_le MeasureTheory.Measure.restrict_union_le
 
-theorem restrict_unionᵢ_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
+theorem restrict_iUnion_apply_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t := by
-  simp only [restrict_apply, ht, inter_unionᵢ]
+  simp only [restrict_apply, ht, inter_iUnion]
   exact
-    measure_unionᵢ₀ (hd.mono fun i j h => h.mono (inter_subset_right _ _) (inter_subset_right _ _))
+    measure_iUnion₀ (hd.mono fun i j h => h.mono (inter_subset_right _ _) (inter_subset_right _ _))
       fun i => ht.nullMeasurableSet.inter (hm i)
-#align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_unionᵢ_apply_ae
+#align measure_theory.measure.restrict_Union_apply_ae MeasureTheory.Measure.restrict_iUnion_apply_ae
 
-theorem restrict_unionᵢ_apply [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
+theorem restrict_iUnion_apply [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) {t : Set α} (ht : MeasurableSet t) :
     μ.restrict (⋃ i, s i) t = ∑' i, μ.restrict (s i) t :=
-  restrict_unionᵢ_apply_ae hd.aedisjoint (fun i => (hm i).nullMeasurableSet) ht
-#align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_unionᵢ_apply
+  restrict_iUnion_apply_ae hd.aedisjoint (fun i => (hm i).nullMeasurableSet) ht
+#align measure_theory.measure.restrict_Union_apply MeasureTheory.Measure.restrict_iUnion_apply
 
-theorem restrict_unionᵢ_apply_eq_supᵢ [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s)
+theorem restrict_iUnion_apply_eq_iSup [Countable ι] {s : ι → Set α} (hd : Directed (· ⊆ ·) s)
     {t : Set α} (ht : MeasurableSet t) : μ.restrict (⋃ i, s i) t = ⨆ i, μ.restrict (s i) t := by
-  simp only [restrict_apply ht, inter_unionᵢ]
-  rw [measure_unionᵢ_eq_supᵢ]
+  simp only [restrict_apply ht, inter_iUnion]
+  rw [measure_iUnion_eq_iSup]
   exacts[hd.mono_comp _ fun s₁ s₂ => inter_subset_inter_right _]
-#align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_unionᵢ_apply_eq_supᵢ
+#align measure_theory.measure.restrict_Union_apply_eq_supr MeasureTheory.Measure.restrict_iUnion_apply_eq_iSup
 
 /-- The restriction of the pushforward measure is the pushforward of the restriction. For a version
 assuming only `AEMeasurable`, see `restrict_map_of_aemeasurable`. -/
@@ -1821,46 +1821,46 @@ theorem restrict_union_congr :
 
 #align measure_theory.measure.restrict_union_congr MeasureTheory.Measure.restrict_union_congr
 
-theorem restrict_finset_bunionᵢ_congr {s : Finset ι} {t : ι → Set α} :
+theorem restrict_finset_biUnion_congr {s : Finset ι} {t : ι → Set α} :
     μ.restrict (⋃ i ∈ s, t i) = ν.restrict (⋃ i ∈ s, t i) ↔
       ∀ i ∈ s, μ.restrict (t i) = ν.restrict (t i) := by
   induction' s using Finset.induction_on with i s _ hs; · simp
-  simp only [forall_eq_or_imp, unionᵢ_unionᵢ_eq_or_left, Finset.mem_insert]
+  simp only [forall_eq_or_imp, iUnion_iUnion_eq_or_left, Finset.mem_insert]
   rw [restrict_union_congr, ← hs]
-#align measure_theory.measure.restrict_finset_bUnion_congr MeasureTheory.Measure.restrict_finset_bunionᵢ_congr
+#align measure_theory.measure.restrict_finset_bUnion_congr MeasureTheory.Measure.restrict_finset_biUnion_congr
 
-theorem restrict_unionᵢ_congr [Countable ι] {s : ι → Set α} :
+theorem restrict_iUnion_congr [Countable ι] {s : ι → Set α} :
     μ.restrict (⋃ i, s i) = ν.restrict (⋃ i, s i) ↔ ∀ i, μ.restrict (s i) = ν.restrict (s i) := by
-  refine' ⟨fun h i => restrict_congr_mono (subset_unionᵢ _ _) h, fun h => _⟩
+  refine' ⟨fun h i => restrict_congr_mono (subset_iUnion _ _) h, fun h => _⟩
   ext1 t ht
   have D : Directed (· ⊆ ·) fun t : Finset ι => ⋃ i ∈ t, s i :=
-    directed_of_sup fun t₁ t₂ ht => bunionᵢ_subset_bunionᵢ_left ht
-  rw [unionᵢ_eq_unionᵢ_finset]
-  simp only [restrict_unionᵢ_apply_eq_supᵢ D ht, restrict_finset_bunionᵢ_congr.2 fun i _ => h i]
-#align measure_theory.measure.restrict_Union_congr MeasureTheory.Measure.restrict_unionᵢ_congr
+    directed_of_sup fun t₁ t₂ ht => biUnion_subset_biUnion_left ht
+  rw [iUnion_eq_iUnion_finset]
+  simp only [restrict_iUnion_apply_eq_iSup D ht, restrict_finset_biUnion_congr.2 fun i _ => h i]
+#align measure_theory.measure.restrict_Union_congr MeasureTheory.Measure.restrict_iUnion_congr
 
-theorem restrict_bunionᵢ_congr {s : Set ι} {t : ι → Set α} (hc : s.Countable) :
+theorem restrict_biUnion_congr {s : Set ι} {t : ι → Set α} (hc : s.Countable) :
     μ.restrict (⋃ i ∈ s, t i) = ν.restrict (⋃ i ∈ s, t i) ↔
       ∀ i ∈ s, μ.restrict (t i) = ν.restrict (t i) := by
   haveI := hc.toEncodable
-  simp only [bunionᵢ_eq_unionᵢ, SetCoe.forall', restrict_unionᵢ_congr]
-#align measure_theory.measure.restrict_bUnion_congr MeasureTheory.Measure.restrict_bunionᵢ_congr
+  simp only [biUnion_eq_iUnion, SetCoe.forall', restrict_iUnion_congr]
+#align measure_theory.measure.restrict_bUnion_congr MeasureTheory.Measure.restrict_biUnion_congr
 
-theorem restrict_unionₛ_congr {S : Set (Set α)} (hc : S.Countable) :
+theorem restrict_sUnion_congr {S : Set (Set α)} (hc : S.Countable) :
     μ.restrict (⋃₀ S) = ν.restrict (⋃₀ S) ↔ ∀ s ∈ S, μ.restrict s = ν.restrict s := by
-  rw [unionₛ_eq_bunionᵢ, restrict_bunionᵢ_congr hc]
-#align measure_theory.measure.restrict_sUnion_congr MeasureTheory.Measure.restrict_unionₛ_congr
+  rw [sUnion_eq_biUnion, restrict_biUnion_congr hc]
+#align measure_theory.measure.restrict_sUnion_congr MeasureTheory.Measure.restrict_sUnion_congr
 
 /-- This lemma shows that `Inf` and `restrict` commute for measures. -/
-theorem restrict_infₛ_eq_infₛ_restrict {m0 : MeasurableSpace α} {m : Set (Measure α)}
+theorem restrict_sInf_eq_sInf_restrict {m0 : MeasurableSpace α} {m : Set (Measure α)}
     (hm : m.Nonempty) (ht : MeasurableSet t) :
-    (infₛ m).restrict t = infₛ ((fun μ : Measure α => μ.restrict t) '' m) := by
+    (sInf m).restrict t = sInf ((fun μ : Measure α => μ.restrict t) '' m) := by
   ext1 s hs
-  simp_rw [infₛ_apply hs, restrict_apply hs, infₛ_apply (MeasurableSet.inter hs ht),
+  simp_rw [sInf_apply hs, restrict_apply hs, sInf_apply (MeasurableSet.inter hs ht),
     Set.image_image, restrict_toOuterMeasure_eq_toOuterMeasure_restrict ht, ←
-    Set.image_image _ toOuterMeasure, ← OuterMeasure.restrict_infₛ_eq_infₛ_restrict _ (hm.image _),
+    Set.image_image _ toOuterMeasure, ← OuterMeasure.restrict_sInf_eq_sInf_restrict _ (hm.image _),
     OuterMeasure.restrict_apply]
-#align measure_theory.measure.restrict_Inf_eq_Inf_restrict MeasureTheory.Measure.restrict_infₛ_eq_infₛ_restrict
+#align measure_theory.measure.restrict_Inf_eq_Inf_restrict MeasureTheory.Measure.restrict_sInf_eq_sInf_restrict
 
 theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
     (hp : ∀ᵐ x ∂μ.restrict s, p x) : ∃ x, x ∈ s ∧ p x := by
@@ -1873,38 +1873,38 @@ theorem exists_mem_of_measure_ne_zero_of_ae (hs : μ s ≠ 0) {p : α → Prop}
 
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
   (formulated using `Union`). -/
-theorem ext_iff_of_unionᵢ_eq_univ [Countable ι] {s : ι → Set α} (hs : (⋃ i, s i) = univ) :
+theorem ext_iff_of_iUnion_eq_univ [Countable ι] {s : ι → Set α} (hs : (⋃ i, s i) = univ) :
     μ = ν ↔ ∀ i, μ.restrict (s i) = ν.restrict (s i) := by
-  rw [← restrict_unionᵢ_congr, hs, restrict_univ, restrict_univ]
-#align measure_theory.measure.ext_iff_of_Union_eq_univ MeasureTheory.Measure.ext_iff_of_unionᵢ_eq_univ
+  rw [← restrict_iUnion_congr, hs, restrict_univ, restrict_univ]
+#align measure_theory.measure.ext_iff_of_Union_eq_univ MeasureTheory.Measure.ext_iff_of_iUnion_eq_univ
 
-alias ext_iff_of_unionᵢ_eq_univ ↔ _ ext_of_unionᵢ_eq_univ
-#align measure_theory.measure.ext_of_Union_eq_univ MeasureTheory.Measure.ext_of_unionᵢ_eq_univ
+alias ext_iff_of_iUnion_eq_univ ↔ _ ext_of_iUnion_eq_univ
+#align measure_theory.measure.ext_of_Union_eq_univ MeasureTheory.Measure.ext_of_iUnion_eq_univ
 
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
-  (formulated using `bunionᵢ`). -/
-theorem ext_iff_of_bunionᵢ_eq_univ {S : Set ι} {s : ι → Set α} (hc : S.Countable)
+  (formulated using `biUnion`). -/
+theorem ext_iff_of_biUnion_eq_univ {S : Set ι} {s : ι → Set α} (hc : S.Countable)
     (hs : (⋃ i ∈ S, s i) = univ) : μ = ν ↔ ∀ i ∈ S, μ.restrict (s i) = ν.restrict (s i) := by
-  rw [← restrict_bunionᵢ_congr hc, hs, restrict_univ, restrict_univ]
-#align measure_theory.measure.ext_iff_of_bUnion_eq_univ MeasureTheory.Measure.ext_iff_of_bunionᵢ_eq_univ
+  rw [← restrict_biUnion_congr hc, hs, restrict_univ, restrict_univ]
+#align measure_theory.measure.ext_iff_of_bUnion_eq_univ MeasureTheory.Measure.ext_iff_of_biUnion_eq_univ
 
-alias ext_iff_of_bunionᵢ_eq_univ ↔ _ ext_of_bunionᵢ_eq_univ
-#align measure_theory.measure.ext_of_bUnion_eq_univ MeasureTheory.Measure.ext_of_bunionᵢ_eq_univ
+alias ext_iff_of_biUnion_eq_univ ↔ _ ext_of_biUnion_eq_univ
+#align measure_theory.measure.ext_of_bUnion_eq_univ MeasureTheory.Measure.ext_of_biUnion_eq_univ
 
 /-- Two measures are equal if they have equal restrictions on a spanning collection of sets
-  (formulated using `unionₛ`). -/
-theorem ext_iff_of_unionₛ_eq_univ {S : Set (Set α)} (hc : S.Countable) (hs : ⋃₀ S = univ) :
+  (formulated using `sUnion`). -/
+theorem ext_iff_of_sUnion_eq_univ {S : Set (Set α)} (hc : S.Countable) (hs : ⋃₀ S = univ) :
     μ = ν ↔ ∀ s ∈ S, μ.restrict s = ν.restrict s :=
-  ext_iff_of_bunionᵢ_eq_univ hc <| by rwa [← unionₛ_eq_bunionᵢ]
-#align measure_theory.measure.ext_iff_of_sUnion_eq_univ MeasureTheory.Measure.ext_iff_of_unionₛ_eq_univ
+  ext_iff_of_biUnion_eq_univ hc <| by rwa [← sUnion_eq_biUnion]
+#align measure_theory.measure.ext_iff_of_sUnion_eq_univ MeasureTheory.Measure.ext_iff_of_sUnion_eq_univ
 
-alias ext_iff_of_unionₛ_eq_univ ↔ _ ext_of_unionₛ_eq_univ
-#align measure_theory.measure.ext_of_sUnion_eq_univ MeasureTheory.Measure.ext_of_unionₛ_eq_univ
+alias ext_iff_of_sUnion_eq_univ ↔ _ ext_of_sUnion_eq_univ
+#align measure_theory.measure.ext_of_sUnion_eq_univ MeasureTheory.Measure.ext_of_sUnion_eq_univ
 
 theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = generateFrom S)
     (hc : T.Countable) (h_inter : IsPiSystem S) (hU : ⋃₀ T = univ) (htop : ∀ t ∈ T, μ t ≠ ∞)
     (ST_eq : ∀ t ∈ T, ∀ s ∈ S, μ (s ∩ t) = ν (s ∩ t)) (T_eq : ∀ t ∈ T, μ t = ν t) : μ = ν := by
-  refine' ext_of_unionₛ_eq_univ hc hU fun t ht => _
+  refine' ext_of_sUnion_eq_univ hc hU fun t ht => _
   ext1 u hu
   simp only [restrict_apply hu]
   refine' induction_on_inter h_gen h_inter _ (ST_eq t ht) _ _ hu
@@ -1916,13 +1916,13 @@ theorem ext_of_generateFrom_of_cover {S T : Set (Set α)} (h_gen : ‹_› = gen
       ENNReal.add_right_inj] at this
     exact ne_top_of_le_ne_top (htop t ht) (measure_mono <| Set.inter_subset_left _ _)
   · intro f hfd hfm h_eq
-    simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.unionᵢ hfm)] at h_eq⊢
-    simp only [measure_unionᵢ hfd hfm, h_eq]
+    simp only [← restrict_apply (hfm _), ← restrict_apply (MeasurableSet.iUnion hfm)] at h_eq⊢
+    simp only [measure_iUnion hfd hfm, h_eq]
 #align measure_theory.measure.ext_of_generate_from_of_cover MeasureTheory.Measure.ext_of_generateFrom_of_cover
 
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
   and they are both finite on a increasing spanning sequence of sets in the π-system.
-  This lemma is formulated using `unionₛ`. -/
+  This lemma is formulated using `sUnion`. -/
 theorem ext_of_generateFrom_of_cover_subset {S T : Set (Set α)} (h_gen : ‹_› = generateFrom S)
     (h_inter : IsPiSystem S) (h_sub : T ⊆ S) (hc : T.Countable) (hU : ⋃₀ T = univ)
     (htop : ∀ s ∈ T, μ s ≠ ∞) (h_eq : ∀ s ∈ S, μ s = ν s) : μ = ν := by
@@ -1934,9 +1934,9 @@ theorem ext_of_generateFrom_of_cover_subset {S T : Set (Set α)} (h_gen : ‹_
 
 /-- Two measures are equal if they are equal on the π-system generating the σ-algebra,
   and they are both finite on a increasing spanning sequence of sets in the π-system.
-  This lemma is formulated using `unionᵢ`.
+  This lemma is formulated using `iUnion`.
   `FiniteSpanningSetsIn.ext` is a reformulation of this lemma. -/
-theorem ext_of_generateFrom_of_unionᵢ (C : Set (Set α)) (B : ℕ → Set α) (hA : ‹_› = generateFrom C)
+theorem ext_of_generateFrom_of_iUnion (C : Set (Set α)) (B : ℕ → Set α) (hA : ‹_› = generateFrom C)
     (hC : IsPiSystem C) (h1B : (⋃ i, B i) = univ) (h2B : ∀ i, B i ∈ C) (hμB : ∀ i, μ (B i) ≠ ∞)
     (h_eq : ∀ s ∈ C, μ s = ν s) : μ = ν := by
   refine' ext_of_generateFrom_of_cover_subset hA hC _ (countable_range B) h1B _ h_eq
@@ -1944,7 +1944,7 @@ theorem ext_of_generateFrom_of_unionᵢ (C : Set (Set α)) (B : ℕ → Set α)
     apply h2B
   · rintro _ ⟨i, rfl⟩
     apply hμB
-#align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_unionᵢ
+#align measure_theory.measure.ext_of_generate_from_of_Union MeasureTheory.Measure.ext_of_generateFrom_of_iUnion
 
 section Dirac
 
@@ -2007,7 +2007,7 @@ section Sum
 /-- Sum of an indexed family of measures. -/
 def sum (f : ι → Measure α) : Measure α :=
   (OuterMeasure.sum fun i => (f i).toOuterMeasure).toMeasure <|
-    le_trans (le_infᵢ fun _ => le_toOuterMeasure_caratheodory _)
+    le_trans (le_iInf fun _ => le_toOuterMeasure_caratheodory _)
       (OuterMeasure.le_sum_caratheodory _)
 #align measure_theory.measure.sum MeasureTheory.Measure.sum
 
@@ -2073,7 +2073,7 @@ theorem sum_coe_finset (s : Finset ι) (μ : ι → Measure α) :
 
 @[simp]
 theorem ae_sum_eq [Countable ι] (μ : ι → Measure α) : (sum μ).ae = ⨆ i, (μ i).ae :=
-  Filter.ext fun _ => ae_sum_iff.trans mem_supᵢ.symm
+  Filter.ext fun _ => ae_sum_iff.trans mem_iSup.symm
 #align measure_theory.measure.ae_sum_eq MeasureTheory.Measure.ae_sum_eq
 
 -- @[simp] -- Porting note: simp can prove this
@@ -2144,22 +2144,22 @@ theorem tsum_indicator_apply_singleton [Countable α] [MeasurableSingletonClass
 
 end Sum
 
-theorem restrict_unionᵢ_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
+theorem restrict_iUnion_ae [Countable ι] {s : ι → Set α} (hd : Pairwise (AEDisjoint μ on s))
     (hm : ∀ i, NullMeasurableSet (s i) μ) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
-  ext fun t ht => by simp only [sum_apply _ ht, restrict_unionᵢ_apply_ae hd hm ht]
-#align measure_theory.measure.restrict_Union_ae MeasureTheory.Measure.restrict_unionᵢ_ae
+  ext fun t ht => by simp only [sum_apply _ ht, restrict_iUnion_apply_ae hd hm ht]
+#align measure_theory.measure.restrict_Union_ae MeasureTheory.Measure.restrict_iUnion_ae
 
-theorem restrict_unionᵢ [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
+theorem restrict_iUnion [Countable ι] {s : ι → Set α} (hd : Pairwise (Disjoint on s))
     (hm : ∀ i, MeasurableSet (s i)) : μ.restrict (⋃ i, s i) = sum fun i => μ.restrict (s i) :=
-  restrict_unionᵢ_ae hd.aedisjoint fun i => (hm i).nullMeasurableSet
-#align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_unionᵢ
+  restrict_iUnion_ae hd.aedisjoint fun i => (hm i).nullMeasurableSet
+#align measure_theory.measure.restrict_Union MeasureTheory.Measure.restrict_iUnion
 
-theorem restrict_unionᵢ_le [Countable ι] {s : ι → Set α} :
+theorem restrict_iUnion_le [Countable ι] {s : ι → Set α} :
     μ.restrict (⋃ i, s i) ≤ sum fun i => μ.restrict (s i) := by
   intro t ht
-  suffices μ (⋃ i, t ∩ s i) ≤ ∑' i, μ (t ∩ s i) by simpa [ht, inter_unionᵢ]
-  apply measure_unionᵢ_le
-#align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_unionᵢ_le
+  suffices μ (⋃ i, t ∩ s i) ≤ ∑' i, μ (t ∩ s i) by simpa [ht, inter_iUnion]
+  apply measure_iUnion_le
+#align measure_theory.measure.restrict_Union_le MeasureTheory.Measure.restrict_iUnion_le
 
 section Count
 
@@ -2709,62 +2709,62 @@ theorem ae_map_mem_range {m0 : MeasurableSpace α} (f : α → β) (hf : Measura
 #align measure_theory.ae_map_mem_range MeasureTheory.ae_map_mem_range
 
 @[simp]
-theorem ae_restrict_unionᵢ_eq [Countable ι] (s : ι → Set α) :
+theorem ae_restrict_iUnion_eq [Countable ι] (s : ι → Set α) :
     (μ.restrict (⋃ i, s i)).ae = ⨆ i, (μ.restrict (s i)).ae :=
-  le_antisymm ((ae_sum_eq fun i => μ.restrict (s i)) ▸ ae_mono restrict_unionᵢ_le) <|
-    supᵢ_le fun i => ae_mono <| restrict_mono (subset_unionᵢ s i) le_rfl
-#align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_unionᵢ_eq
+  le_antisymm ((ae_sum_eq fun i => μ.restrict (s i)) ▸ ae_mono restrict_iUnion_le) <|
+    iSup_le fun i => ae_mono <| restrict_mono (subset_iUnion s i) le_rfl
+#align measure_theory.ae_restrict_Union_eq MeasureTheory.ae_restrict_iUnion_eq
 
 @[simp]
 theorem ae_restrict_union_eq (s t : Set α) :
     (μ.restrict (s ∪ t)).ae = (μ.restrict s).ae ⊔ (μ.restrict t).ae := by
-  simp [union_eq_unionᵢ, supᵢ_bool_eq]
+  simp [union_eq_iUnion, iSup_bool_eq]
 #align measure_theory.ae_restrict_union_eq MeasureTheory.ae_restrict_union_eq
 
-theorem ae_restrict_bunionᵢ_eq (s : ι → Set α) {t : Set ι} (ht : t.Countable) :
+theorem ae_restrict_biUnion_eq (s : ι → Set α) {t : Set ι} (ht : t.Countable) :
     (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae := by
   haveI := ht.to_subtype
-  rw [bunionᵢ_eq_unionᵢ, ae_restrict_unionᵢ_eq, ← supᵢ_subtype'']
-#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_bunionᵢ_eq
+  rw [biUnion_eq_iUnion, ae_restrict_iUnion_eq, ← iSup_subtype'']
+#align measure_theory.ae_restrict_bUnion_eq MeasureTheory.ae_restrict_biUnion_eq
 
-theorem ae_restrict_bunionᵢ_finset_eq (s : ι → Set α) (t : Finset ι) :
+theorem ae_restrict_biUnion_finset_eq (s : ι → Set α) (t : Finset ι) :
     (μ.restrict (⋃ i ∈ t, s i)).ae = ⨆ i ∈ t, (μ.restrict (s i)).ae :=
-  ae_restrict_bunionᵢ_eq s t.countable_toSet
-#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_bunionᵢ_finset_eq
+  ae_restrict_biUnion_eq s t.countable_toSet
+#align measure_theory.ae_restrict_bUnion_finset_eq MeasureTheory.ae_restrict_biUnion_finset_eq
 
-theorem ae_restrict_unionᵢ_iff [Countable ι] (s : ι → Set α) (p : α → Prop) :
+theorem ae_restrict_iUnion_iff [Countable ι] (s : ι → Set α) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i, s i), p x) ↔ ∀ i, ∀ᵐ x ∂μ.restrict (s i), p x := by simp
-#align measure_theory.ae_restrict_Union_iff MeasureTheory.ae_restrict_unionᵢ_iff
+#align measure_theory.ae_restrict_Union_iff MeasureTheory.ae_restrict_iUnion_iff
 
 theorem ae_restrict_union_iff (s t : Set α) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (s ∪ t), p x) ↔ (∀ᵐ x ∂μ.restrict s, p x) ∧ ∀ᵐ x ∂μ.restrict t, p x := by simp
 #align measure_theory.ae_restrict_union_iff MeasureTheory.ae_restrict_union_iff
 
-theorem ae_restrict_bunionᵢ_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (p : α → Prop) :
+theorem ae_restrict_biUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
-  simp_rw [Filter.Eventually, ae_restrict_bunionᵢ_eq s ht, mem_supᵢ]
-#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_bunionᵢ_iff
+  simp_rw [Filter.Eventually, ae_restrict_biUnion_eq s ht, mem_iSup]
+#align measure_theory.ae_restrict_bUnion_iff MeasureTheory.ae_restrict_biUnion_iff
 
 @[simp]
-theorem ae_restrict_bunionᵢ_finset_iff (s : ι → Set α) (t : Finset ι) (p : α → Prop) :
+theorem ae_restrict_biUnion_finset_iff (s : ι → Set α) (t : Finset ι) (p : α → Prop) :
     (∀ᵐ x ∂μ.restrict (⋃ i ∈ t, s i), p x) ↔ ∀ i ∈ t, ∀ᵐ x ∂μ.restrict (s i), p x := by
-  simp_rw [Filter.Eventually, ae_restrict_bunionᵢ_finset_eq s, mem_supᵢ]
-#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_bunionᵢ_finset_iff
+  simp_rw [Filter.Eventually, ae_restrict_biUnion_finset_eq s, mem_iSup]
+#align measure_theory.ae_restrict_bUnion_finset_iff MeasureTheory.ae_restrict_biUnion_finset_iff
 
-theorem ae_eq_restrict_unionᵢ_iff [Countable ι] (s : ι → Set α) (f g : α → δ) :
+theorem ae_eq_restrict_iUnion_iff [Countable ι] (s : ι → Set α) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i, s i)] g ↔ ∀ i, f =ᵐ[μ.restrict (s i)] g := by
-  simp_rw [EventuallyEq, ae_restrict_unionᵢ_eq, eventually_supᵢ]
-#align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_unionᵢ_iff
+  simp_rw [EventuallyEq, ae_restrict_iUnion_eq, eventually_iSup]
+#align measure_theory.ae_eq_restrict_Union_iff MeasureTheory.ae_eq_restrict_iUnion_iff
 
-theorem ae_eq_restrict_bunionᵢ_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (f g : α → δ) :
+theorem ae_eq_restrict_biUnion_iff (s : ι → Set α) {t : Set ι} (ht : t.Countable) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g := by
-  simp_rw [ae_restrict_bunionᵢ_eq s ht, EventuallyEq, eventually_supᵢ]
-#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_bunionᵢ_iff
+  simp_rw [ae_restrict_biUnion_eq s ht, EventuallyEq, eventually_iSup]
+#align measure_theory.ae_eq_restrict_bUnion_iff MeasureTheory.ae_eq_restrict_biUnion_iff
 
-theorem ae_eq_restrict_bunionᵢ_finset_iff (s : ι → Set α) (t : Finset ι) (f g : α → δ) :
+theorem ae_eq_restrict_biUnion_finset_iff (s : ι → Set α) (t : Finset ι) (f g : α → δ) :
     f =ᵐ[μ.restrict (⋃ i ∈ t, s i)] g ↔ ∀ i ∈ t, f =ᵐ[μ.restrict (s i)] g :=
-  ae_eq_restrict_bunionᵢ_iff s t.countable_toSet f g
-#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_bunionᵢ_finset_iff
+  ae_eq_restrict_biUnion_iff s t.countable_toSet f g
+#align measure_theory.ae_eq_restrict_bUnion_finset_iff MeasureTheory.ae_eq_restrict_biUnion_finset_iff
 
 theorem ae_restrict_uIoc_eq [LinearOrder α] (a b : α) :
     (μ.restrict (Ι a b)).ae = (μ.restrict (Ioc a b)).ae ⊔ (μ.restrict (Ioc b a)).ae := by
@@ -2923,7 +2923,7 @@ theorem ae_restrict_congr_set {s t} (hst : s =ᵐ[μ] t) {p : α → Prop} :
 equivalently, `pᵢ x` holds for infinitely many `i`) is equal to zero. -/
 theorem measure_setOf_frequently_eq_zero {p : ℕ → α → Prop} (hp : (∑' i, μ { x | p i x }) ≠ ∞) :
     μ { x | ∃ᶠ n in atTop, p n x } = 0 := by
-  simpa only [limsup_eq_infᵢ_supᵢ_of_nat, frequently_atTop, ← bex_def, setOf_forall,
+  simpa only [limsup_eq_iInf_iSup_of_nat, frequently_atTop, ← bex_def, setOf_forall,
     setOf_exists] using measure_limsup_eq_zero hp
 #align measure_theory.measure_set_of_frequently_eq_zero MeasureTheory.measure_setOf_frequently_eq_zero
 
@@ -2936,15 +2936,15 @@ theorem ae_eventually_not_mem {s : ℕ → Set α} (hs : (∑' i, μ (s i)) ≠
 
 section Intervals
 
-theorem bsupᵢ_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
+theorem biSup_measure_Iic [Preorder α] {s : Set α} (hsc : s.Countable)
     (hst : ∀ x : α, ∃ y ∈ s, x ≤ y) (hdir : DirectedOn (· ≤ ·) s) :
     (⨆ x ∈ s, μ (Iic x)) = μ univ := by
-  rw [← measure_bunionᵢ_eq_supᵢ hsc]
+  rw [← measure_biUnion_eq_iSup hsc]
   · congr
     simp only [← bex_def] at hst
-    exact unionᵢ₂_eq_univ_iff.2 hst
+    exact iUnion₂_eq_univ_iff.2 hst
   · exact directedOn_iff_directed.2 (hdir.directed_val.mono_comp _ fun x y => Iic_subset_Iic.2)
-#align measure_theory.bsupr_measure_Iic MeasureTheory.bsupᵢ_measure_Iic
+#align measure_theory.bsupr_measure_Iic MeasureTheory.biSup_measure_Iic
 
 variable [PartialOrder α] {a b : α}
 
@@ -3137,7 +3137,7 @@ theorem summable_measure_toReal [hμ : FiniteMeasure μ] {f : ℕ → Set α}
     (hf₁ : ∀ i : ℕ, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
     Summable fun x => (μ (f x)).toReal := by
   apply ENNReal.summable_toReal
-  rw [← MeasureTheory.measure_unionᵢ hf₂ hf₁]
+  rw [← MeasureTheory.measure_iUnion hf₂ hf₁]
   exact ne_of_lt (measure_lt_top _ _)
 #align measure_theory.summable_measure_to_real MeasureTheory.summable_measure_toReal
 
@@ -3282,8 +3282,8 @@ instance Measure.restrict.instNoAtoms (s : Set α) : NoAtoms (μ.restrict s) :=
 
 theorem _root_.Set.Countable.measure_zero {α : Type _} {m : MeasurableSpace α} {s : Set α}
     (h : s.Countable) (μ : Measure α) [NoAtoms μ] : μ s = 0 := by
-  rw [← bunionᵢ_of_singleton s, ← nonpos_iff_eq_zero]
-  refine' le_trans (measure_bunionᵢ_le h _) _
+  rw [← biUnion_of_singleton s, ← nonpos_iff_eq_zero]
+  refine' le_trans (measure_biUnion_le h _) _
   simp
 #align set.countable.measure_zero Set.Countable.measure_zero
 
@@ -3431,7 +3431,7 @@ def Measure.toFiniteSpanningSetsIn (μ : Measure α) [h : SigmaFinite μ] :
   finite n := by
     rw [measure_toMeasurable]
     exact h.out.some.finite n
-  spanning := eq_univ_of_subset (unionᵢ_mono fun n => subset_toMeasurable _ _) h.out.some.spanning
+  spanning := eq_univ_of_subset (iUnion_mono fun n => subset_toMeasurable _ _) h.out.some.spanning
 #align measure_theory.measure.to_finite_spanning_sets_in MeasureTheory.Measure.toFiniteSpanningSetsIn
 
 /-- A noncomputable way to get a monotone collection of sets that span `univ` and have finite
@@ -3447,26 +3447,26 @@ theorem monotone_spanningSets (μ : Measure α) [SigmaFinite μ] : Monotone (spa
 
 theorem measurable_spanningSets (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
     MeasurableSet (spanningSets μ i) :=
-  MeasurableSet.unionᵢ fun j => MeasurableSet.unionᵢ fun _ => μ.toFiniteSpanningSetsIn.set_mem j
+  MeasurableSet.iUnion fun j => MeasurableSet.iUnion fun _ => μ.toFiniteSpanningSetsIn.set_mem j
 #align measure_theory.measurable_spanning_sets MeasureTheory.measurable_spanningSets
 
 theorem measure_spanningSets_lt_top (μ : Measure α) [SigmaFinite μ] (i : ℕ) :
     μ (spanningSets μ i) < ∞ :=
-  measure_bunionᵢ_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.finite j).ne
+  measure_biUnion_lt_top (finite_le_nat i) fun j _ => (μ.toFiniteSpanningSetsIn.finite j).ne
 #align measure_theory.measure_spanning_sets_lt_top MeasureTheory.measure_spanningSets_lt_top
 
-theorem unionᵢ_spanningSets (μ : Measure α) [SigmaFinite μ] : (⋃ i : ℕ, spanningSets μ i) = univ :=
-  by simp_rw [spanningSets, unionᵢ_accumulate, μ.toFiniteSpanningSetsIn.spanning]
-#align measure_theory.Union_spanning_sets MeasureTheory.unionᵢ_spanningSets
+theorem iUnion_spanningSets (μ : Measure α) [SigmaFinite μ] : (⋃ i : ℕ, spanningSets μ i) = univ :=
+  by simp_rw [spanningSets, iUnion_accumulate, μ.toFiniteSpanningSetsIn.spanning]
+#align measure_theory.Union_spanning_sets MeasureTheory.iUnion_spanningSets
 
 theorem isCountablySpanning_spanningSets (μ : Measure α) [SigmaFinite μ] :
     IsCountablySpanning (range (spanningSets μ)) :=
-  ⟨spanningSets μ, mem_range_self, unionᵢ_spanningSets μ⟩
+  ⟨spanningSets μ, mem_range_self, iUnion_spanningSets μ⟩
 #align measure_theory.is_countably_spanning_spanning_sets MeasureTheory.isCountablySpanning_spanningSets
 
 /-- `spanningSetsIndex μ x` is the least `n : ℕ` such that `x ∈ spanningSets μ n`. -/
 def spanningSetsIndex (μ : Measure α) [SigmaFinite μ] (x : α) : ℕ :=
-  Nat.find <| unionᵢ_eq_univ_iff.1 (unionᵢ_spanningSets μ) x
+  Nat.find <| iUnion_eq_univ_iff.1 (iUnion_spanningSets μ) x
 #align measure_theory.spanning_sets_index MeasureTheory.spanningSetsIndex
 
 theorem measurable_spanningSetsIndex (μ : Measure α) [SigmaFinite μ] :
@@ -3506,21 +3506,21 @@ theorem eventually_mem_spanningSets (μ : Measure α) [SigmaFinite μ] (x : α)
 
 namespace Measure
 
-theorem supᵢ_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
+theorem iSup_restrict_spanningSets [SigmaFinite μ] (hs : MeasurableSet s) :
     (⨆ i, μ.restrict (spanningSets μ i) s) = μ s :=
   calc
     (⨆ i, μ.restrict (spanningSets μ i) s) = μ.restrict (⋃ i, spanningSets μ i) s :=
-      (restrict_unionᵢ_apply_eq_supᵢ (directed_of_sup (monotone_spanningSets μ)) hs).symm
-    _ = μ s := by rw [unionᵢ_spanningSets, restrict_univ]
+      (restrict_iUnion_apply_eq_iSup (directed_of_sup (monotone_spanningSets μ)) hs).symm
+    _ = μ s := by rw [iUnion_spanningSets, restrict_univ]
 
-#align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.supᵢ_restrict_spanningSets
+#align measure_theory.measure.supr_restrict_spanning_sets MeasureTheory.Measure.iSup_restrict_spanningSets
 
 /-- In a σ-finite space, any measurable set of measure `> r` contains a measurable subset of
 finite measure `> r`. -/
 theorem exists_subset_measure_lt_top [SigmaFinite μ] {r : ℝ≥0∞} (hs : MeasurableSet s)
     (h's : r < μ s) : ∃ t, MeasurableSet t ∧ t ⊆ s ∧ r < μ t ∧ μ t < ∞ := by
-  rw [← supᵢ_restrict_spanningSets hs,
-    @lt_supᵢ_iff _ _ _ r fun i : ℕ => μ.restrict (spanningSets μ i) s] at h's
+  rw [← iSup_restrict_spanningSets hs,
+    @lt_iSup_iff _ _ _ r fun i : ℕ => μ.restrict (spanningSets μ i) s] at h's
   rcases h's with ⟨n, hn⟩
   simp only [restrict_apply hs] at hn
   refine'
@@ -3533,8 +3533,8 @@ all members of the countable family of finite measure spanning sets has zero mea
 theorem forall_measure_inter_spanningSets_eq_zero [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] (s : Set α) : (∀ n, μ (s ∩ spanningSets μ n) = 0) ↔ μ s = 0 := by
   nth_rw 2 [show s = ⋃ n, s ∩ spanningSets μ n by
-      rw [← inter_unionᵢ, unionᵢ_spanningSets, inter_univ] ]
-  rw [measure_unionᵢ_null_iff]
+      rw [← inter_iUnion, iUnion_spanningSets, inter_univ] ]
+  rw [measure_iUnion_null_iff]
 #align measure_theory.measure.forall_measure_inter_spanning_sets_eq_zero MeasureTheory.Measure.forall_measure_inter_spanningSets_eq_zero
 
 /-- A set in a σ-finite space has positive measure if and only if its intersection with
@@ -3548,20 +3548,20 @@ theorem exists_measure_inter_spanningSets_pos [MeasurableSpace α] {μ : Measure
 
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 finitely many members of the union whose measure exceeds any given positive number. -/
-theorem finite_const_le_meas_of_disjoint_unionᵢ {ι : Type _} [MeasurableSpace α] (μ : Measure α)
+theorem finite_const_le_meas_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] (μ : Measure α)
     {ε : ℝ≥0∞} (ε_pos : 0 < ε) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
     Set.Finite { i : ι | ε ≤ μ (As i) } := by
   by_contra con
   have aux :=
-    lt_of_le_of_lt (tsum_meas_le_meas_unionᵢ_of_disjoint μ As_mble As_disj)
+    lt_of_le_of_lt (tsum_meas_le_meas_iUnion_of_disjoint μ As_mble As_disj)
       (lt_top_iff_ne_top.mpr Union_As_finite)
   exact con (ENNReal.finite_const_le_of_tsum_ne_top aux.ne ε_pos.ne.symm)
-#align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_unionᵢ
+#align measure_theory.measure.finite_const_le_meas_of_disjoint_Union MeasureTheory.Measure.finite_const_le_meas_of_disjoint_iUnion
 
 /-- If the union of disjoint measurable sets has finite measure, then there are only
 countably many members of the union whose measure is positive. -/
-theorem countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top {ι : Type _} [MeasurableSpace α]
+theorem countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top {ι : Type _} [MeasurableSpace α]
     (μ : Measure α) {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) (Union_As_finite : μ (⋃ i, As i) ≠ ∞) :
     Set.Countable { i : ι | 0 < μ (As i) } := by
@@ -3573,38 +3573,38 @@ theorem countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top {ι : Type _} [Me
     have fairmeas_eq : ∀ n, fairmeas n = (fun i => μ (As i)) ⁻¹' Ici (as n) := fun n => by
       simp only []
       rfl
-    simpa only [fairmeas_eq, posmeas_def, ← preimage_unionᵢ,
-      unionᵢ_Ici_eq_Ioi_of_lt_of_tendsto (0 : ℝ≥0∞) (fun n => (as_mem n).1) as_lim]
+    simpa only [fairmeas_eq, posmeas_def, ← preimage_iUnion,
+      iUnion_Ici_eq_Ioi_of_lt_of_tendsto (0 : ℝ≥0∞) (fun n => (as_mem n).1) as_lim]
   rw [countable_union]
-  refine' countable_unionᵢ fun n => Finite.countable _
-  refine' finite_const_le_meas_of_disjoint_unionᵢ μ (as_mem n).1 As_mble As_disj Union_As_finite
-#align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top
+  refine' countable_iUnion fun n => Finite.countable _
+  refine' finite_const_le_meas_of_disjoint_iUnion μ (as_mem n).1 As_mble As_disj Union_As_finite
+#align measure_theory.measure.countable_meas_pos_of_disjoint_of_meas_Union_ne_top MeasureTheory.Measure.countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top
 
 /-- In a σ-finite space, among disjoint measurable sets, only countably many can have positive
 measure. -/
-theorem countable_meas_pos_of_disjoint_unionᵢ {ι : Type _} [MeasurableSpace α] {μ : Measure α}
+theorem countable_meas_pos_of_disjoint_iUnion {ι : Type _} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] {As : ι → Set α} (As_mble : ∀ i : ι, MeasurableSet (As i))
     (As_disj : Pairwise (Disjoint on As)) : Set.Countable { i : ι | 0 < μ (As i) } := by
   have obs : { i : ι | 0 < μ (As i) } ⊆ ⋃ n, { i : ι | 0 < μ (As i ∩ spanningSets μ n) } := by
     intro i i_in_nonzeroes
     by_contra con
-    simp only [mem_unionᵢ, mem_setOf_eq, not_exists, not_lt, nonpos_iff_eq_zero] at *
+    simp only [mem_iUnion, mem_setOf_eq, not_exists, not_lt, nonpos_iff_eq_zero] at *
     simp [(forall_measure_inter_spanningSets_eq_zero _).mp con] at i_in_nonzeroes
   apply Countable.mono obs
-  refine' countable_unionᵢ fun n => countable_meas_pos_of_disjoint_of_meas_unionᵢ_ne_top μ _ _ _
+  refine' countable_iUnion fun n => countable_meas_pos_of_disjoint_of_meas_iUnion_ne_top μ _ _ _
   · exact fun i => MeasurableSet.inter (As_mble i) (measurable_spanningSets μ n)
   · exact fun i j i_ne_j b hbi hbj =>
       As_disj i_ne_j (hbi.trans (inter_subset_left _ _)) (hbj.trans (inter_subset_left _ _))
   · refine' (lt_of_le_of_lt (measure_mono _) (measure_spanningSets_lt_top μ n)).ne
-    exact unionᵢ_subset fun i => inter_subset_right _ _
-#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_unionᵢ
+    exact iUnion_subset fun i => inter_subset_right _ _
+#align measure_theory.measure.countable_meas_pos_of_disjoint_Union MeasureTheory.Measure.countable_meas_pos_of_disjoint_iUnion
 
 theorem countable_meas_level_set_pos {α β : Type _} [MeasurableSpace α] {μ : Measure α}
     [SigmaFinite μ] [MeasurableSpace β] [MeasurableSingletonClass β] {g : α → β}
     (g_mble : Measurable g) : Set.Countable { t : β | 0 < μ { a : α | g a = t } } :=
   haveI level_sets_disjoint : Pairwise (Disjoint on fun t : β => { a : α | g a = t }) :=
     fun s t hst => Disjoint.preimage g (disjoint_singleton.mpr hst)
-  Measure.countable_meas_pos_of_disjoint_unionᵢ
+  Measure.countable_meas_pos_of_disjoint_iUnion
     (fun b => g_mble (‹MeasurableSingletonClass β›.measurableSet_singleton b)) level_sets_disjoint
 #align measure_theory.measure.countable_meas_level_set_pos MeasureTheory.Measure.countable_meas_level_set_pos
 
@@ -3629,20 +3629,20 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
     have tt' : t ⊆ t' :=
       calc
         t ⊆ ⋃ n, t ∩ disjointed w n := by
-          rw [← inter_unionᵢ, unionᵢ_disjointed, inter_unionᵢ]
+          rw [← inter_iUnion, iUnion_disjointed, inter_iUnion]
           intro x hx
-          rcases mem_unionᵢ.1 (hv hx) with ⟨n, hn⟩
-          refine' mem_unionᵢ.2 ⟨n, _⟩
+          rcases mem_iUnion.1 (hv hx) with ⟨n, hn⟩
+          refine' mem_iUnion.2 ⟨n, _⟩
           have : x ∈ t ∩ v n := ⟨hx, hn⟩
           exact ⟨hx, subset_toMeasurable μ _ this⟩
         _ ⊆ ⋃ n, toMeasurable μ (t ∩ disjointed w n) :=
-          unionᵢ_mono fun n => subset_toMeasurable _ _
-    refine' ⟨t', tt', MeasurableSet.unionᵢ fun n => measurableSet_toMeasurable μ _, fun u hu => _⟩
+          iUnion_mono fun n => subset_toMeasurable _ _
+    refine' ⟨t', tt', MeasurableSet.iUnion fun n => measurableSet_toMeasurable μ _, fun u hu => _⟩
     apply le_antisymm _ (measure_mono (inter_subset_inter tt' Subset.rfl))
     calc
       μ (t' ∩ u) ≤ ∑' n, μ (toMeasurable μ (t ∩ disjointed w n) ∩ u) := by
-        rw [ht', unionᵢ_inter]
-        exact measure_unionᵢ_le _
+        rw [ht', iUnion_inter]
+        exact measure_iUnion_le _
       _ = ∑' n, μ (t ∩ disjointed w n ∩ u) := by
         congr 1
         ext1 n
@@ -3660,7 +3660,7 @@ theorem measure_toMeasurable_inter_of_cover {s : Set α} (hs : MeasurableSet s)
         refine MeasurableSet.disjointed (fun n => ?_) n
         exact measurableSet_toMeasurable _ _
       _ = μ.restrict (t ∩ u) (⋃ n, disjointed w n) := by
-        rw [measure_unionᵢ]
+        rw [measure_iUnion]
         · exact disjoint_disjointed _
         · intro i
           refine MeasurableSet.disjointed (fun n => ?_) i
@@ -3689,7 +3689,7 @@ that `t` has finite measure), see `measure_toMeasurable_inter`. -/
 theorem measure_toMeasurable_inter_of_sigmaFinite [SigmaFinite μ] {s : Set α} (hs : MeasurableSet s)
     (t : Set α) : μ (toMeasurable μ t ∩ s) = μ (t ∩ s) := by
   have : t ⊆ ⋃ n, spanningSets μ n := by
-    rw [unionᵢ_spanningSets]
+    rw [iUnion_spanningSets]
     exact subset_univ _
   refine measure_toMeasurable_inter_of_cover hs this fun n => ne_of_lt ?_
   calc
@@ -3728,11 +3728,11 @@ protected theorem sigmaFinite (h : μ.FiniteSpanningSetsIn C) : SigmaFinite μ :
   ⟨⟨h.mono <| subset_univ C⟩⟩
 #align measure_theory.measure.finite_spanning_sets_in.sigma_finite MeasureTheory.Measure.FiniteSpanningSetsIn.sigmaFinite
 
-/-- An extensionality for measures. It is `ext_of_generateFrom_of_unionᵢ` formulated in terms of
+/-- An extensionality for measures. It is `ext_of_generateFrom_of_iUnion` formulated in terms of
 `FiniteSpanningSetsIn`. -/
 protected theorem ext {ν : Measure α} {C : Set (Set α)} (hA : ‹_› = generateFrom C)
     (hC : IsPiSystem C) (h : μ.FiniteSpanningSetsIn C) (h_eq : ∀ s ∈ C, μ s = ν s) : μ = ν :=
-  ext_of_generateFrom_of_unionᵢ C _ hA hC h.spanning h.set_mem (fun i => (h.finite i).ne) h_eq
+  ext_of_generateFrom_of_iUnion C _ hA hC h.spanning h.set_mem (fun i => (h.finite i).ne) h_eq
 #align measure_theory.measure.finite_spanning_sets_in.ext MeasureTheory.Measure.FiniteSpanningSetsIn.ext
 
 protected theorem isCountablySpanning (h : μ.FiniteSpanningSetsIn C) : IsCountablySpanning C :=
@@ -3767,7 +3767,7 @@ end Measure
 /-- Every finite measure is σ-finite. -/
 instance (priority := 100) FiniteMeasure.toSigmaFinite {_m0 : MeasurableSpace α} (μ : Measure α)
     [FiniteMeasure μ] : SigmaFinite μ :=
-  ⟨⟨⟨fun _ => univ, fun _ => trivial, fun _ => measure_lt_top μ _, unionᵢ_const _⟩⟩⟩
+  ⟨⟨⟨fun _ => univ, fun _ => trivial, fun _ => measure_lt_top μ _, iUnion_const _⟩⟩⟩
 #align measure_theory.is_finite_measure.to_sigma_finite MeasureTheory.FiniteMeasure.toSigmaFinite
 
 theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ FiniteMeasure μ := by
@@ -3777,7 +3777,7 @@ theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ FiniteMe
       infer_instance⟩
   haveI : SigmaFinite μ := h
   let s := spanningSets μ
-  have hs_univ : (⋃ i, s i) = Set.univ := unionᵢ_spanningSets μ
+  have hs_univ : (⋃ i, s i) = Set.univ := iUnion_spanningSets μ
   have hs_meas : ∀ i, MeasurableSet[⊥] (s i) := measurable_spanningSets μ
   simp_rw [MeasurableSpace.measurableSet_bot_iff] at hs_meas
   by_cases h_univ_empty : Set.univ = ∅
@@ -3795,7 +3795,7 @@ theorem sigmaFinite_bot_iff (μ : @Measure α ⊥) : SigmaFinite μ ↔ FiniteMe
 
 instance Restrict.sigmaFinite (μ : Measure α) [SigmaFinite μ] (s : Set α) :
     SigmaFinite (μ.restrict s) := by
-  refine' ⟨⟨⟨spanningSets μ, fun _ => trivial, fun i => _, unionᵢ_spanningSets μ⟩⟩⟩
+  refine' ⟨⟨⟨spanningSets μ, fun _ => trivial, fun i => _, iUnion_spanningSets μ⟩⟩⟩
   rw [Measure.restrict_apply (measurable_spanningSets μ i)]
   exact (measure_mono <| inter_subset_left _ _).trans_lt (measure_spanningSets_lt_top μ i)
 #align measure_theory.restrict.sigma_finite MeasureTheory.Restrict.sigmaFinite
@@ -3804,13 +3804,13 @@ instance sum.sigmaFinite {ι} [Finite ι] (μ : ι → Measure α) [∀ i, Sigma
     SigmaFinite (sum μ) := by
   cases nonempty_fintype ι
   have : ∀ n, MeasurableSet (⋂ i : ι, spanningSets (μ i) n) := fun n =>
-    MeasurableSet.interᵢ fun i => measurable_spanningSets (μ i) n
+    MeasurableSet.iInter fun i => measurable_spanningSets (μ i) n
   refine' ⟨⟨⟨fun n => ⋂ i, spanningSets (μ i) n, fun _ => trivial, fun n => _, _⟩⟩⟩
   · rw [sum_apply _ (this n), tsum_fintype, ENNReal.sum_lt_top_iff]
     rintro i -
-    exact (measure_mono <| interᵢ_subset _ i).trans_lt (measure_spanningSets_lt_top (μ i) n)
-  · rw [unionᵢ_interᵢ_of_monotone]
-    simp_rw [unionᵢ_spanningSets, interᵢ_univ]
+    exact (measure_mono <| iInter_subset _ i).trans_lt (measure_spanningSets_lt_top (μ i) n)
+  · rw [iUnion_iInter_of_monotone]
+    simp_rw [iUnion_spanningSets, iInter_univ]
     exact fun i => monotone_spanningSets (μ i)
 #align measure_theory.sum.sigma_finite MeasureTheory.sum.sigmaFinite
 
@@ -3825,7 +3825,7 @@ theorem SigmaFinite.of_map (μ : Measure α) {f : α → β} (hf : AEMeasurable
   ⟨⟨⟨fun n => f ⁻¹' spanningSets (μ.map f) n, fun _ => trivial, fun n => by
         simp only [← map_apply_of_aemeasurable hf, measurable_spanningSets,
           measure_spanningSets_lt_top],
-        by rw [← preimage_unionᵢ, unionᵢ_spanningSets, preimage_univ]⟩⟩⟩
+        by rw [← preimage_iUnion, iUnion_spanningSets, preimage_univ]⟩⟩⟩
 #align measure_theory.sigma_finite.of_map MeasureTheory.SigmaFinite.of_map
 
 theorem _root_.MeasurableEquiv.sigmaFinite_map {μ : Measure α} (f : α ≃ᵐ β) (h : SigmaFinite μ) :
@@ -3952,7 +3952,7 @@ instance (priority := 100) sigmaFinite_of_locallyFinite [TopologicalSpace α]
   choose s hsx hsμ using μ.finiteAt_nhds
   rcases TopologicalSpace.countable_cover_nhds hsx with ⟨t, htc, htU⟩
   refine' Measure.sigmaFinite_of_countable (htc.image s) (ball_image_iff.2 fun x _ => hsμ x) _
-  rwa [unionₛ_image]
+  rwa [sUnion_image]
 #align measure_theory.sigma_finite_of_locally_finite MeasureTheory.sigmaFinite_of_locallyFinite
 
 /-- A measure which is finite on compact sets in a locally compact space is locally finite.
@@ -3969,12 +3969,12 @@ theorem exists_pos_measure_of_cover [Countable ι] {U : ι → Set α} (hU : (
     (hμ : μ ≠ 0) : ∃ i, 0 < μ (U i) := by
   contrapose! hμ with H
   rw [← measure_univ_eq_zero, ← hU]
-  exact measure_unionᵢ_null fun i => nonpos_iff_eq_zero.1 (H i)
+  exact measure_iUnion_null fun i => nonpos_iff_eq_zero.1 (H i)
 #align measure_theory.exists_pos_measure_of_cover MeasureTheory.exists_pos_measure_of_cover
 
 theorem exists_pos_preimage_ball [PseudoMetricSpace δ] (f : α → δ) (x : δ) (hμ : μ ≠ 0) :
     ∃ n : ℕ, 0 < μ (f ⁻¹' Metric.ball x n) :=
-  exists_pos_measure_of_cover (by rw [← preimage_unionᵢ, Metric.unionᵢ_ball_nat, preimage_univ]) hμ
+  exists_pos_measure_of_cover (by rw [← preimage_iUnion, Metric.iUnion_ball_nat, preimage_univ]) hμ
 #align measure_theory.exists_pos_preimage_ball MeasureTheory.exists_pos_preimage_ball
 
 theorem exists_pos_ball [PseudoMetricSpace α] (x : α) (hμ : μ ≠ 0) :
@@ -4026,7 +4026,7 @@ theorem ext_on_measurableSpace_of_generate_finite {α} (m₀ : MeasurableSpace 
       @measure_compl α m₀ ν t h1t_ (@measure_ne_top α m₀ ν _ t), h_univ, h2t]
   · intro f h1f h2f h3f
     have h2f_ : ∀ i : ℕ, @MeasurableSet α m₀ (f i) := fun i => h _ (h2f i)
-    simp [measure_unionᵢ, h1f, h3f, h2f_]
+    simp [measure_iUnion, h1f, h3f, h2f_]
 #align measure_theory.ext_on_measurable_space_of_generate_finite MeasureTheory.ext_on_measurableSpace_of_generate_finite
 
 /-- Two finite measures are equal if they are equal on the π-system generating the σ-algebra
@@ -4049,7 +4049,7 @@ protected def FiniteSpanningSetsIn.disjointed {μ : Measure α}
     μ.FiniteSpanningSetsIn { s | MeasurableSet s } :=
   ⟨disjointed S.Set, MeasurableSet.disjointed S.set_mem, fun n =>
     lt_of_le_of_lt (measure_mono (disjointed_subset S.Set n)) (S.finite _),
-    S.spanning ▸ unionᵢ_disjointed⟩
+    S.spanning ▸ iUnion_disjointed⟩
 #align measure_theory.measure.finite_spanning_sets_in.disjointed MeasureTheory.Measure.FiniteSpanningSetsIn.disjointed
 
 theorem FiniteSpanningSetsIn.disjointed_set_eq {μ : Measure α}
@@ -4405,7 +4405,7 @@ theorem sigmaFiniteTrim_mono {m m₂ m0 : MeasurableSpace α} {μ : Measure α}
       { Set := spanningSets (μ.trim (hm₂.trans hm))
         set_mem := fun _ => Set.mem_univ _
         finite := fun i => _ -- This is the only one left to prove
-        spanning := unionᵢ_spanningSets _ }
+        spanning := iUnion_spanningSets _ }
     calc
       (μ.trim hm) (spanningSets (μ.trim (hm₂.trans hm)) i) =
           ((μ.trim hm).trim hm₂) (spanningSets (μ.trim (hm₂.trans hm)) i) :=
@@ -4491,7 +4491,7 @@ def MeasureTheory.Measure.finiteSpanningSetsInCompact [TopologicalSpace α] [Sig
   Set := compactCovering α
   set_mem := isCompact_compactCovering α
   finite n := (isCompact_compactCovering α n).measure_lt_top
-  spanning := unionᵢ_compactCovering α
+  spanning := iUnion_compactCovering α
 #align measure_theory.measure.finite_spanning_sets_in_compact MeasureTheory.Measure.finiteSpanningSetsInCompact
 
 /-- A locally finite measure on a `σ`-compact topological space admits a finite spanning sequence
@@ -4506,9 +4506,9 @@ def MeasureTheory.Measure.finiteSpanningSetsInOpen [TopologicalSpace α] [SigmaC
     ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose_spec.snd.2
   spanning :=
     eq_univ_of_subset
-      (unionᵢ_mono fun n =>
+      (iUnion_mono fun n =>
         ((isCompact_compactCovering α n).exists_open_superset_measure_lt_top μ).choose_spec.fst)
-      (unionᵢ_compactCovering α)
+      (iUnion_compactCovering α)
 #align measure_theory.measure.finite_spanning_sets_in_open MeasureTheory.Measure.finiteSpanningSetsInOpen
 
 open TopologicalSpace
@@ -4529,11 +4529,11 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
   inhabit α
   let S : Set (Set α) := { s | IsOpen s ∧ μ s < ∞ }
   obtain ⟨T, T_count, TS, hT⟩ : ∃ T : Set (Set α), T.Countable ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S :=
-    isOpen_unionₛ_countable S fun s hs => hs.1
-  rw [μ.isTopologicalBasis_isOpen_lt_top.unionₛ_eq] at hT
+    isOpen_sUnion_countable S fun s hs => hs.1
+  rw [μ.isTopologicalBasis_isOpen_lt_top.sUnion_eq] at hT
   have T_ne : T.Nonempty := by
     by_contra h'T
-    rw [not_nonempty_iff_eq_empty.1 h'T, unionₛ_empty] at hT
+    rw [not_nonempty_iff_eq_empty.1 h'T, sUnion_empty] at hT
     simpa only [← hT] using mem_univ (default : α)
   obtain ⟨f, hf⟩ : ∃ f : ℕ → Set α, T = range f
   exact T_count.exists_eq_range T_ne
@@ -4550,9 +4550,9 @@ irreducible_def MeasureTheory.Measure.finiteSpanningSetsInOpen' [TopologicalSpac
   refine eq_univ_of_forall fun x => ?_
   obtain ⟨t, tT, xt⟩ : ∃ t : Set α, t ∈ range f ∧ x ∈ t := by
     have : x ∈ ⋃₀ T := by simp only [hT, mem_univ]
-    simpa only [mem_unionₛ, exists_prop, ← hf]
+    simpa only [mem_sUnion, exists_prop, ← hf]
   obtain ⟨n, rfl⟩ : ∃ n : ℕ, f n = t := by simpa only using tT
-  exact mem_unionᵢ_of_mem _ xt
+  exact mem_iUnion_of_mem _ xt
 #align measure_theory.measure.finite_spanning_sets_in_open' MeasureTheory.Measure.finiteSpanningSetsInOpen'
 
 section MeasureIxx
feat: port MeasureTheory.Measure.MeasureSpace (#3324)

This PR also renames instances in MeasureTheory.MeasurableSpace.

Co-authored-by: Komyyy <pol_tta@outlook.jp> Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Dependencies 10 + 608

609 files ported (98.4%)
271748 lines ported (98.1%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file