measure_theory.measure.null_measurableMathlib.MeasureTheory.Measure.NullMeasurable

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov
 -/
-import MeasureTheory.Measure.AeDisjoint
+import MeasureTheory.Measure.AEDisjoint
 
 #align_import measure_theory.measure.null_measurable from "leanprover-community/mathlib"@"b5ad141426bb005414324f89719c77c0aa3ec612"
 
@@ -268,7 +268,7 @@ protected theorem insert [MeasurableSingletonClass (NullMeasurableSpace α μ)]
 #align measure_theory.null_measurable_set.insert MeasureTheory.NullMeasurableSet.insert
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (t «expr ⊇ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_superset_ae_eq /-
 theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _) (_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
@@ -295,7 +295,7 @@ theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurab
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq /-
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _) (_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov
 -/
-import Mathbin.MeasureTheory.Measure.AeDisjoint
+import MeasureTheory.Measure.AeDisjoint
 
 #align_import measure_theory.measure.null_measurable from "leanprover-community/mathlib"@"b5ad141426bb005414324f89719c77c0aa3ec612"
 
@@ -268,7 +268,7 @@ protected theorem insert [MeasurableSingletonClass (NullMeasurableSpace α μ)]
 #align measure_theory.null_measurable_set.insert MeasureTheory.NullMeasurableSet.insert
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊇ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_superset_ae_eq /-
 theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _) (_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
@@ -295,7 +295,7 @@ theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurab
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq /-
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _) (_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov
-
-! This file was ported from Lean 3 source module measure_theory.measure.null_measurable
-! leanprover-community/mathlib commit b5ad141426bb005414324f89719c77c0aa3ec612
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Measure.AeDisjoint
 
+#align_import measure_theory.measure.null_measurable from "leanprover-community/mathlib"@"b5ad141426bb005414324f89719c77c0aa3ec612"
+
 /-!
 # Null measurable sets and complete measures
 
@@ -271,7 +268,7 @@ protected theorem insert [MeasurableSingletonClass (NullMeasurableSpace α μ)]
 #align measure_theory.null_measurable_set.insert MeasureTheory.NullMeasurableSet.insert
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊇ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_superset_ae_eq /-
 theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _) (_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
@@ -298,7 +295,7 @@ theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurab
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq /-
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _) (_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
Diff
@@ -128,22 +128,30 @@ theorem nullMeasurableSet_univ : NullMeasurableSet univ μ :=
 
 namespace NullMeasurableSet
 
+#print MeasureTheory.NullMeasurableSet.of_null /-
 theorem of_null (h : μ s = 0) : NullMeasurableSet s μ :=
   ⟨∅, MeasurableSet.empty, ae_eq_empty.2 h⟩
 #align measure_theory.null_measurable_set.of_null MeasureTheory.NullMeasurableSet.of_null
+-/
 
+#print MeasureTheory.NullMeasurableSet.compl /-
 theorem compl (h : NullMeasurableSet s μ) : NullMeasurableSet (sᶜ) μ :=
   h.compl
 #align measure_theory.null_measurable_set.compl MeasureTheory.NullMeasurableSet.compl
+-/
 
+#print MeasureTheory.NullMeasurableSet.of_compl /-
 theorem of_compl (h : NullMeasurableSet (sᶜ) μ) : NullMeasurableSet s μ :=
   h.ofCompl
 #align measure_theory.null_measurable_set.of_compl MeasureTheory.NullMeasurableSet.of_compl
+-/
 
+#print MeasureTheory.NullMeasurableSet.compl_iff /-
 @[simp]
 theorem compl_iff : NullMeasurableSet (sᶜ) μ ↔ NullMeasurableSet s μ :=
   MeasurableSet.compl_iff
 #align measure_theory.null_measurable_set.compl_iff MeasureTheory.NullMeasurableSet.compl_iff
+-/
 
 #print MeasureTheory.NullMeasurableSet.of_subsingleton /-
 @[nontriviality]
@@ -166,10 +174,12 @@ protected theorem iUnion {ι : Sort _} [Countable ι] {s : ι → Set α}
 #align measure_theory.null_measurable_set.Union MeasureTheory.NullMeasurableSet.iUnion
 -/
 
+#print MeasureTheory.NullMeasurableSet.biUnion_decode₂ /-
 protected theorem biUnion_decode₂ [Encodable ι] ⦃f : ι → Set α⦄ (h : ∀ i, NullMeasurableSet (f i) μ)
     (n : ℕ) : NullMeasurableSet (⋃ b ∈ Encodable.decode₂ ι n, f b) μ :=
   MeasurableSet.biUnion_decode₂ h n
 #align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.biUnion_decode₂
+-/
 
 #print MeasureTheory.NullMeasurableSet.biUnion /-
 protected theorem biUnion {f : ι → Set α} {s : Set ι} (hs : s.Countable)
@@ -191,10 +201,12 @@ protected theorem iInter {ι : Sort _} [Countable ι] {f : ι → Set α}
 #align measure_theory.null_measurable_set.Inter MeasureTheory.NullMeasurableSet.iInter
 -/
 
+#print MeasureTheory.NullMeasurableSet.biInter /-
 protected theorem biInter {f : β → Set α} {s : Set β} (hs : s.Countable)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
   MeasurableSet.biInter hs h
 #align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.biInter
+-/
 
 #print MeasureTheory.NullMeasurableSet.sInter /-
 protected theorem sInter {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
@@ -203,34 +215,44 @@ protected theorem sInter {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s,
 #align measure_theory.null_measurable_set.sInter MeasureTheory.NullMeasurableSet.sInter
 -/
 
+#print MeasureTheory.NullMeasurableSet.union /-
 @[simp]
 protected theorem union (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s ∪ t) μ :=
   hs.union ht
 #align measure_theory.null_measurable_set.union MeasureTheory.NullMeasurableSet.union
+-/
 
+#print MeasureTheory.NullMeasurableSet.union_null /-
 protected theorem union_null (hs : NullMeasurableSet s μ) (ht : μ t = 0) :
     NullMeasurableSet (s ∪ t) μ :=
   hs.union (of_null ht)
 #align measure_theory.null_measurable_set.union_null MeasureTheory.NullMeasurableSet.union_null
+-/
 
+#print MeasureTheory.NullMeasurableSet.inter /-
 @[simp]
 protected theorem inter (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s ∩ t) μ :=
   hs.inter ht
 #align measure_theory.null_measurable_set.inter MeasureTheory.NullMeasurableSet.inter
+-/
 
+#print MeasureTheory.NullMeasurableSet.diff /-
 @[simp]
 protected theorem diff (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s \ t) μ :=
   hs.diffₓ ht
 #align measure_theory.null_measurable_set.diff MeasureTheory.NullMeasurableSet.diff
+-/
 
+#print MeasureTheory.NullMeasurableSet.disjointed /-
 @[simp]
 protected theorem disjointed {f : ℕ → Set α} (h : ∀ i, NullMeasurableSet (f i) μ) (n) :
     NullMeasurableSet (disjointed f n) μ :=
   MeasurableSet.disjointed h n
 #align measure_theory.null_measurable_set.disjointed MeasureTheory.NullMeasurableSet.disjointed
+-/
 
 #print MeasureTheory.NullMeasurableSet.const /-
 @[simp]
@@ -270,9 +292,11 @@ theorem toMeasurable_ae_eq (h : NullMeasurableSet s μ) : toMeasurable μ s =ᵐ
 #align measure_theory.null_measurable_set.to_measurable_ae_eq MeasureTheory.NullMeasurableSet.toMeasurable_ae_eq
 -/
 
+#print MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq /-
 theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurable μ (sᶜ)ᶜ =ᵐ[μ] s :=
   by simpa only [compl_compl] using h.compl.to_measurable_ae_eq.compl
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq /-
@@ -285,6 +309,7 @@ theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
 
 end NullMeasurableSet
 
+#print MeasureTheory.exists_subordinate_pairwise_disjoint /-
 /-- If `sᵢ` is a countable family of (null) measurable pairwise `μ`-a.e. disjoint sets, then there
 exists a subordinate family `tᵢ ⊆ sᵢ` of measurable pairwise disjoint sets such that
 `tᵢ =ᵐ[μ] sᵢ`. -/
@@ -302,7 +327,9 @@ theorem exists_subordinate_pairwise_disjoint [Countable ι] {s : ι → Set α}
       hud.mono fun i j h =>
         h.mono (diff_subset_diff_left (ht_sub i)) (diff_subset_diff_left (ht_sub j))⟩
 #align measure_theory.exists_subordinate_pairwise_disjoint MeasureTheory.exists_subordinate_pairwise_disjoint
+-/
 
+#print MeasureTheory.measure_iUnion /-
 theorem measure_iUnion {m0 : MeasurableSpace α} {μ : Measure α} [Countable ι] {f : ι → Set α}
     (hn : Pairwise (Disjoint on f)) (h : ∀ i, MeasurableSet (f i)) : μ (⋃ i, f i) = ∑' i, μ (f i) :=
   by
@@ -312,7 +339,9 @@ theorem measure_iUnion {m0 : MeasurableSpace α} {μ : Measure α} [Countable ι
   · exact μ.empty
   · exact μ.m_Union
 #align measure_theory.measure_Union MeasureTheory.measure_iUnion
+-/
 
+#print MeasureTheory.measure_iUnion₀ /-
 theorem measure_iUnion₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AEDisjoint μ on f))
     (h : ∀ i, NullMeasurableSet (f i) μ) : μ (⋃ i, f i) = ∑' i, μ (f i) :=
   by
@@ -322,14 +351,18 @@ theorem measure_iUnion₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AED
     _ = ∑' i, μ (t i) := (measure_Union htd htm)
     _ = ∑' i, μ (f i) := tsum_congr fun i => measure_congr (ht_eq _).symm
 #align measure_theory.measure_Union₀ MeasureTheory.measure_iUnion₀
+-/
 
+#print MeasureTheory.measure_union₀_aux /-
 theorem measure_union₀_aux (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ)
     (hd : AEDisjoint μ s t) : μ (s ∪ t) = μ s + μ t :=
   by
   rw [union_eq_Union, measure_Union₀, tsum_fintype, Fintype.sum_bool, cond, cond]
   exacts [(pairwise_on_bool ae_disjoint.symmetric).2 hd, fun b => Bool.casesOn b ht hs]
 #align measure_theory.measure_union₀_aux MeasureTheory.measure_union₀_aux
+-/
 
+#print MeasureTheory.measure_inter_add_diff₀ /-
 /-- A null measurable set `t` is Carathéodory measurable: for any `s`, we have
 `μ (s ∩ t) + μ (s \ t) = μ s`. -/
 theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
@@ -351,29 +384,40 @@ theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
       μ s = μ (s ∩ t ∪ s \ t) := by rw [inter_union_diff]
       _ ≤ μ (s ∩ t) + μ (s \ t) := measure_union_le _ _
 #align measure_theory.measure_inter_add_diff₀ MeasureTheory.measure_inter_add_diff₀
+-/
 
+#print MeasureTheory.measure_union_add_inter₀ /-
 theorem measure_union_add_inter₀ (s : Set α) (ht : NullMeasurableSet t μ) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by
   rw [← measure_inter_add_diff₀ (s ∪ t) ht, union_inter_cancel_right, union_diff_right, ←
     measure_inter_add_diff₀ s ht, add_comm, ← add_assoc, add_right_comm]
 #align measure_theory.measure_union_add_inter₀ MeasureTheory.measure_union_add_inter₀
+-/
 
+#print MeasureTheory.measure_union_add_inter₀' /-
 theorem measure_union_add_inter₀' (hs : NullMeasurableSet s μ) (t : Set α) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by
   rw [union_comm, inter_comm, measure_union_add_inter₀ t hs, add_comm]
 #align measure_theory.measure_union_add_inter₀' MeasureTheory.measure_union_add_inter₀'
+-/
 
+#print MeasureTheory.measure_union₀ /-
 theorem measure_union₀ (ht : NullMeasurableSet t μ) (hd : AEDisjoint μ s t) :
     μ (s ∪ t) = μ s + μ t := by rw [← measure_union_add_inter₀ s ht, hd.eq, add_zero]
 #align measure_theory.measure_union₀ MeasureTheory.measure_union₀
+-/
 
+#print MeasureTheory.measure_union₀' /-
 theorem measure_union₀' (hs : NullMeasurableSet s μ) (hd : AEDisjoint μ s t) :
     μ (s ∪ t) = μ s + μ t := by rw [union_comm, measure_union₀ hs hd.symm, add_comm]
 #align measure_theory.measure_union₀' MeasureTheory.measure_union₀'
+-/
 
+#print MeasureTheory.measure_add_measure_compl₀ /-
 theorem measure_add_measure_compl₀ {s : Set α} (hs : NullMeasurableSet s μ) :
     μ s + μ (sᶜ) = μ univ := by rw [← measure_union₀' hs ae_disjoint_compl_right, union_compl_self]
 #align measure_theory.measure_add_measure_compl₀ MeasureTheory.measure_add_measure_compl₀
+-/
 
 section MeasurableSingletonClass
 
@@ -476,24 +520,32 @@ def NullMeasurable (f : α → β) (μ : Measure α := by exact MeasureTheory.Me
 #align measure_theory.null_measurable MeasureTheory.NullMeasurable
 -/
 
+#print Measurable.nullMeasurable /-
 protected theorem Measurable.nullMeasurable (h : Measurable f) : NullMeasurable f μ := fun s hs =>
   (h hs).NullMeasurableSet
 #align measurable.null_measurable Measurable.nullMeasurable
+-/
 
+#print MeasureTheory.NullMeasurable.measurable' /-
 protected theorem NullMeasurable.measurable' (h : NullMeasurable f μ) :
     @Measurable (NullMeasurableSpace α μ) β _ _ f :=
   h
 #align measure_theory.null_measurable.measurable' MeasureTheory.NullMeasurable.measurable'
+-/
 
+#print MeasureTheory.Measurable.comp_nullMeasurable /-
 theorem Measurable.comp_nullMeasurable {g : β → γ} (hg : Measurable g) (hf : NullMeasurable f μ) :
     NullMeasurable (g ∘ f) μ :=
   hg.comp hf
 #align measure_theory.measurable.comp_null_measurable MeasureTheory.Measurable.comp_nullMeasurable
+-/
 
+#print MeasureTheory.NullMeasurable.congr /-
 theorem NullMeasurable.congr {g : α → β} (hf : NullMeasurable f μ) (hg : f =ᵐ[μ] g) :
     NullMeasurable g μ := fun s hs =>
   (hf hs).congr <| eventuallyEq_set.2 <| hg.mono fun x hx => by rw [mem_preimage, mem_preimage, hx]
 #align measure_theory.null_measurable.congr MeasureTheory.NullMeasurable.congr
+-/
 
 end NullMeasurable
 
@@ -511,17 +563,23 @@ class Measure.IsComplete {_ : MeasurableSpace α} (μ : Measure α) : Prop where
 
 variable {m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α}
 
+#print MeasureTheory.Measure.isComplete_iff /-
 theorem Measure.isComplete_iff : μ.IsComplete ↔ ∀ s, μ s = 0 → MeasurableSet s :=
   ⟨fun h => h.1, fun h => ⟨h⟩⟩
 #align measure_theory.measure.is_complete_iff MeasureTheory.Measure.isComplete_iff
+-/
 
+#print MeasureTheory.Measure.IsComplete.out /-
 theorem Measure.IsComplete.out (h : μ.IsComplete) : ∀ s, μ s = 0 → MeasurableSet s :=
   h.1
 #align measure_theory.measure.is_complete.out MeasureTheory.Measure.IsComplete.out
+-/
 
+#print MeasureTheory.measurableSet_of_null /-
 theorem measurableSet_of_null [μ.IsComplete] (hs : μ s = 0) : MeasurableSet s :=
   MeasureTheory.Measure.IsComplete.out' s hs
 #align measure_theory.measurable_set_of_null MeasureTheory.measurableSet_of_null
+-/
 
 #print MeasureTheory.NullMeasurableSet.measurable_of_complete /-
 theorem NullMeasurableSet.measurable_of_complete (hs : NullMeasurableSet s μ) [μ.IsComplete] :
@@ -532,14 +590,18 @@ theorem NullMeasurableSet.measurable_of_complete (hs : NullMeasurableSet s μ) [
 #align measure_theory.null_measurable_set.measurable_of_complete MeasureTheory.NullMeasurableSet.measurable_of_complete
 -/
 
+#print MeasureTheory.NullMeasurable.measurable_of_complete /-
 theorem NullMeasurable.measurable_of_complete [μ.IsComplete] {m1 : MeasurableSpace β} {f : α → β}
     (hf : NullMeasurable f μ) : Measurable f := fun s hs => (hf hs).measurable_of_complete
 #align measure_theory.null_measurable.measurable_of_complete MeasureTheory.NullMeasurable.measurable_of_complete
+-/
 
+#print Measurable.congr_ae /-
 theorem Measurable.congr_ae {α β} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α}
     [hμ : μ.IsComplete] {f g : α → β} (hf : Measurable f) (hfg : f =ᵐ[μ] g) : Measurable g :=
   (hf.NullMeasurable.congr hfg).measurable_of_complete
 #align measurable.congr_ae Measurable.congr_ae
+-/
 
 namespace Measure
 
Diff
@@ -321,7 +321,6 @@ theorem measure_iUnion₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AED
     μ (⋃ i, f i) = μ (⋃ i, t i) := measure_congr (EventuallyEq.countable_iUnion ht_eq)
     _ = ∑' i, μ (t i) := (measure_Union htd htm)
     _ = ∑' i, μ (f i) := tsum_congr fun i => measure_congr (ht_eq _).symm
-    
 #align measure_theory.measure_Union₀ MeasureTheory.measure_iUnion₀
 
 theorem measure_union₀_aux (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ)
@@ -347,12 +346,10 @@ theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
             (@disjoint_inf_sdiff _ s' t _).AEDisjoint).symm
       _ = μ s' := (congr_arg μ (inter_union_diff _ _))
       _ = μ s := hs'
-      
   ·
     calc
       μ s = μ (s ∩ t ∪ s \ t) := by rw [inter_union_diff]
       _ ≤ μ (s ∩ t) + μ (s \ t) := measure_union_le _ _
-      
 #align measure_theory.measure_inter_add_diff₀ MeasureTheory.measure_inter_add_diff₀
 
 theorem measure_union_add_inter₀ (s : Set α) (ht : NullMeasurableSet t μ) :
Diff
@@ -249,7 +249,7 @@ protected theorem insert [MeasurableSingletonClass (NullMeasurableSpace α μ)]
 #align measure_theory.null_measurable_set.insert MeasureTheory.NullMeasurableSet.insert
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊇ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_superset_ae_eq /-
 theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _) (_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
@@ -274,7 +274,7 @@ theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurab
   by simpa only [compl_compl] using h.compl.to_measurable_ae_eq.compl
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq /-
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _) (_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
Diff
@@ -234,7 +234,7 @@ protected theorem disjointed {f : ℕ → Set α} (h : ∀ i, NullMeasurableSet
 
 #print MeasureTheory.NullMeasurableSet.const /-
 @[simp]
-protected theorem const (p : Prop) : NullMeasurableSet { a : α | p } μ :=
+protected theorem const (p : Prop) : NullMeasurableSet {a : α | p} μ :=
   MeasurableSet.const p
 #align measure_theory.null_measurable_set.const MeasureTheory.NullMeasurableSet.const
 -/
@@ -397,7 +397,7 @@ theorem nullMeasurableSet_insert {a : α} {s : Set α} :
 -/
 
 #print MeasureTheory.nullMeasurableSet_eq /-
-theorem nullMeasurableSet_eq {a : α} : NullMeasurableSet { x | x = a } μ :=
+theorem nullMeasurableSet_eq {a : α} : NullMeasurableSet {x | x = a} μ :=
   nullMeasurableSet_singleton a
 #align measure_theory.null_measurable_set_eq MeasureTheory.nullMeasurableSet_eq
 -/
Diff
@@ -252,7 +252,7 @@ protected theorem insert [MeasurableSingletonClass (NullMeasurableSpace α μ)]
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊇ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_superset_ae_eq /-
 theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
-    ∃ (t : _)(_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
+    ∃ (t : _) (_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
   by
   rcases h with ⟨t, htm, hst⟩
   refine' ⟨t ∪ to_measurable μ (s \ t), _, htm.union (measurable_set_to_measurable _ _), _⟩
@@ -277,7 +277,7 @@ theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurab
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 #print MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq /-
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
-    ∃ (t : _)(_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
+    ∃ (t : _) (_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
   ⟨toMeasurable μ (sᶜ)ᶜ, compl_subset_comm.2 <| subset_toMeasurable _ _,
     (measurableSet_toMeasurable _ _).compl, h.compl_toMeasurable_compl_ae_eq⟩
 #align measure_theory.null_measurable_set.exists_measurable_subset_ae_eq MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq
@@ -328,7 +328,7 @@ theorem measure_union₀_aux (hs : NullMeasurableSet s μ) (ht : NullMeasurableS
     (hd : AEDisjoint μ s t) : μ (s ∪ t) = μ s + μ t :=
   by
   rw [union_eq_Union, measure_Union₀, tsum_fintype, Fintype.sum_bool, cond, cond]
-  exacts[(pairwise_on_bool ae_disjoint.symmetric).2 hd, fun b => Bool.casesOn b ht hs]
+  exacts [(pairwise_on_bool ae_disjoint.symmetric).2 hd, fun b => Bool.casesOn b ht hs]
 #align measure_theory.measure_union₀_aux MeasureTheory.measure_union₀_aux
 
 /-- A null measurable set `t` is Carathéodory measurable: for any `s`, we have
Diff
@@ -128,42 +128,18 @@ theorem nullMeasurableSet_univ : NullMeasurableSet univ μ :=
 
 namespace NullMeasurableSet
 
-/- warning: measure_theory.null_measurable_set.of_null -> MeasureTheory.NullMeasurableSet.of_null is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.of_null MeasureTheory.NullMeasurableSet.of_nullₓ'. -/
 theorem of_null (h : μ s = 0) : NullMeasurableSet s μ :=
   ⟨∅, MeasurableSet.empty, ae_eq_empty.2 h⟩
 #align measure_theory.null_measurable_set.of_null MeasureTheory.NullMeasurableSet.of_null
 
-/- warning: measure_theory.null_measurable_set.compl -> MeasureTheory.NullMeasurableSet.compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s) μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.compl MeasureTheory.NullMeasurableSet.complₓ'. -/
 theorem compl (h : NullMeasurableSet s μ) : NullMeasurableSet (sᶜ) μ :=
   h.compl
 #align measure_theory.null_measurable_set.compl MeasureTheory.NullMeasurableSet.compl
 
-/- warning: measure_theory.null_measurable_set.of_compl -> MeasureTheory.NullMeasurableSet.of_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s) μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s) μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.of_compl MeasureTheory.NullMeasurableSet.of_complₓ'. -/
 theorem of_compl (h : NullMeasurableSet (sᶜ) μ) : NullMeasurableSet s μ :=
   h.ofCompl
 #align measure_theory.null_measurable_set.of_compl MeasureTheory.NullMeasurableSet.of_compl
 
-/- warning: measure_theory.null_measurable_set.compl_iff -> MeasureTheory.NullMeasurableSet.compl_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s) μ) (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s) μ) (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.compl_iff MeasureTheory.NullMeasurableSet.compl_iffₓ'. -/
 @[simp]
 theorem compl_iff : NullMeasurableSet (sᶜ) μ ↔ NullMeasurableSet s μ :=
   MeasurableSet.compl_iff
@@ -190,12 +166,6 @@ protected theorem iUnion {ι : Sort _} [Countable ι] {s : ι → Set α}
 #align measure_theory.null_measurable_set.Union MeasureTheory.NullMeasurableSet.iUnion
 -/
 
-/- warning: measure_theory.null_measurable_set.bUnion_decode₂ -> MeasureTheory.NullMeasurableSet.biUnion_decode₂ is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Encodable.{u1} ι] {{f : ι -> (Set.{u2} α)}}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u2} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u2} α m0 (Set.iUnion.{u2, succ u1} α ι (fun (b : ι) => Set.iUnion.{u2, 0} α (Membership.Mem.{u1, u1} ι (Option.{u1} ι) (Option.hasMem.{u1} ι) b (Encodable.decode₂.{u1} ι _inst_1 n)) (fun (H : Membership.Mem.{u1, u1} ι (Option.{u1} ι) (Option.hasMem.{u1} ι) b (Encodable.decode₂.{u1} ι _inst_1 n)) => f b))) μ)
-but is expected to have type
-  forall {ι : Type.{u2}} {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : Encodable.{u2} ι] {{f : ι -> (Set.{u1} α)}}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (Set.iUnion.{u1, succ u2} α ι (fun (b : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Option.{u2} ι) (Option.instMembershipOption.{u2} ι) b (Encodable.decode₂.{u2} ι _inst_1 n)) (fun (H : Membership.mem.{u2, u2} ι (Option.{u2} ι) (Option.instMembershipOption.{u2} ι) b (Encodable.decode₂.{u2} ι _inst_1 n)) => f b))) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.biUnion_decode₂ₓ'. -/
 protected theorem biUnion_decode₂ [Encodable ι] ⦃f : ι → Set α⦄ (h : ∀ i, NullMeasurableSet (f i) μ)
     (n : ℕ) : NullMeasurableSet (⋃ b ∈ Encodable.decode₂ ι n, f b) μ :=
   MeasurableSet.biUnion_decode₂ h n
@@ -221,12 +191,6 @@ protected theorem iInter {ι : Sort _} [Countable ι] {f : ι → Set α}
 #align measure_theory.null_measurable_set.Inter MeasureTheory.NullMeasurableSet.iInter
 -/
 
-/- warning: measure_theory.null_measurable_set.bInter -> MeasureTheory.NullMeasurableSet.biInter is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : β -> (Set.{u1} α)} {s : Set.{u2} β}, (Set.Countable.{u2} β s) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (f b) μ)) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Set.iInter.{u1, succ u2} α β (fun (b : β) => Set.iInter.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b))) μ)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {f : β -> (Set.{u2} α)} {s : Set.{u1} β}, (Set.Countable.{u1} β s) -> (forall (b : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) -> (MeasureTheory.NullMeasurableSet.{u2} α m0 (f b) μ)) -> (MeasureTheory.NullMeasurableSet.{u2} α m0 (Set.iInter.{u2, succ u1} α β (fun (b : β) => Set.iInter.{u2, 0} α (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) => f b))) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.biInterₓ'. -/
 protected theorem biInter {f : β → Set α} {s : Set β} (hs : s.Countable)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
   MeasurableSet.biInter hs h
@@ -239,59 +203,29 @@ protected theorem sInter {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s,
 #align measure_theory.null_measurable_set.sInter MeasureTheory.NullMeasurableSet.sInter
 -/
 
-/- warning: measure_theory.null_measurable_set.union -> MeasureTheory.NullMeasurableSet.union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t) μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.union MeasureTheory.NullMeasurableSet.unionₓ'. -/
 @[simp]
 protected theorem union (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s ∪ t) μ :=
   hs.union ht
 #align measure_theory.null_measurable_set.union MeasureTheory.NullMeasurableSet.union
 
-/- warning: measure_theory.null_measurable_set.union_null -> MeasureTheory.NullMeasurableSet.union_null is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t) μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.union_null MeasureTheory.NullMeasurableSet.union_nullₓ'. -/
 protected theorem union_null (hs : NullMeasurableSet s μ) (ht : μ t = 0) :
     NullMeasurableSet (s ∪ t) μ :=
   hs.union (of_null ht)
 #align measure_theory.null_measurable_set.union_null MeasureTheory.NullMeasurableSet.union_null
 
-/- warning: measure_theory.null_measurable_set.inter -> MeasureTheory.NullMeasurableSet.inter is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t) μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.inter MeasureTheory.NullMeasurableSet.interₓ'. -/
 @[simp]
 protected theorem inter (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s ∩ t) μ :=
   hs.inter ht
 #align measure_theory.null_measurable_set.inter MeasureTheory.NullMeasurableSet.inter
 
-/- warning: measure_theory.null_measurable_set.diff -> MeasureTheory.NullMeasurableSet.diff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t) μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.diff MeasureTheory.NullMeasurableSet.diffₓ'. -/
 @[simp]
 protected theorem diff (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s \ t) μ :=
   hs.diffₓ ht
 #align measure_theory.null_measurable_set.diff MeasureTheory.NullMeasurableSet.diff
 
-/- warning: measure_theory.null_measurable_set.disjointed -> MeasureTheory.NullMeasurableSet.disjointed is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Nat -> (Set.{u1} α)}, (forall (i : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) f n) μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Nat -> (Set.{u1} α)}, (forall (i : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) f n) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.disjointed MeasureTheory.NullMeasurableSet.disjointedₓ'. -/
 @[simp]
 protected theorem disjointed {f : ℕ → Set α} (h : ∀ i, NullMeasurableSet (f i) μ) (n) :
     NullMeasurableSet (disjointed f n) μ :=
@@ -336,12 +270,6 @@ theorem toMeasurable_ae_eq (h : NullMeasurableSet s μ) : toMeasurable μ s =ᵐ
 #align measure_theory.null_measurable_set.to_measurable_ae_eq MeasureTheory.NullMeasurableSet.toMeasurable_ae_eq
 -/
 
-/- warning: measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq -> MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (HasCompl.compl.{u1} (α -> Prop) (Pi.hasCompl.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => Prop.hasCompl)) (MeasureTheory.toMeasurable.{u1} α m0 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (HasCompl.compl.{u1} (α -> Prop) (Pi.hasCompl.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => Prop.hasCompl)) (MeasureTheory.toMeasurable.{u1} α m0 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s))) s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eqₓ'. -/
 theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurable μ (sᶜ)ᶜ =ᵐ[μ] s :=
   by simpa only [compl_compl] using h.compl.to_measurable_ae_eq.compl
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
@@ -357,12 +285,6 @@ theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
 
 end NullMeasurableSet
 
-/- warning: measure_theory.exists_subordinate_pairwise_disjoint -> MeasureTheory.exists_subordinate_pairwise_disjoint is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {s : ι -> (Set.{u2} α)}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u2} α m0 (s i) μ) -> (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (MeasureTheory.AEDisjoint.{u2} α m0 μ) s)) -> (Exists.{max (succ u1) (succ u2)} (ι -> (Set.{u2} α)) (fun (t : ι -> (Set.{u2} α)) => And (forall (i : ι), HasSubset.Subset.{u2} (Set.{u2} α) (Set.hasSubset.{u2} α) (t i) (s i)) (And (forall (i : ι), Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α m0 μ) (s i) (t i)) (And (forall (i : ι), MeasurableSet.{u2} α m0 (t i)) (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.completeBooleanAlgebra.{u2} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u2} (Set.{u2} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} (Set.{u2} α) (Set.booleanAlgebra.{u2} α)))) t))))))
-but is expected to have type
-  forall {ι : Type.{u2}} {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (s i) μ) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) s)) -> (Exists.{max (succ u2) (succ u1)} (ι -> (Set.{u1} α)) (fun (t : ι -> (Set.{u1} α)) => And (forall (i : ι), HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (t i) (s i)) (And (forall (i : ι), Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (s i) (t i)) (And (forall (i : ι), MeasurableSet.{u1} α m0 (t i)) (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) t))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_subordinate_pairwise_disjoint MeasureTheory.exists_subordinate_pairwise_disjointₓ'. -/
 /-- If `sᵢ` is a countable family of (null) measurable pairwise `μ`-a.e. disjoint sets, then there
 exists a subordinate family `tᵢ ⊆ sᵢ` of measurable pairwise disjoint sets such that
 `tᵢ =ᵐ[μ] sᵢ`. -/
@@ -381,12 +303,6 @@ theorem exists_subordinate_pairwise_disjoint [Countable ι] {s : ι → Set α}
         h.mono (diff_subset_diff_left (ht_sub i)) (diff_subset_diff_left (ht_sub j))⟩
 #align measure_theory.exists_subordinate_pairwise_disjoint MeasureTheory.exists_subordinate_pairwise_disjoint
 
-/- warning: measure_theory.measure_Union -> MeasureTheory.measure_iUnion is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.completeBooleanAlgebra.{u2} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u2} (Set.{u2} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} (Set.{u2} α) (Set.booleanAlgebra.{u2} α)))) f)) -> (forall (i : ι), MeasurableSet.{u2} α m0 (f i)) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (f i))))
-but is expected to have type
-  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) f)) -> (forall (i : ι), MeasurableSet.{u2} α m0 (f i)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (f i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union MeasureTheory.measure_iUnionₓ'. -/
 theorem measure_iUnion {m0 : MeasurableSpace α} {μ : Measure α} [Countable ι] {f : ι → Set α}
     (hn : Pairwise (Disjoint on f)) (h : ∀ i, MeasurableSet (f i)) : μ (⋃ i, f i) = ∑' i, μ (f i) :=
   by
@@ -397,12 +313,6 @@ theorem measure_iUnion {m0 : MeasurableSpace α} {μ : Measure α} [Countable ι
   · exact μ.m_Union
 #align measure_theory.measure_Union MeasureTheory.measure_iUnion
 
-/- warning: measure_theory.measure_Union₀ -> MeasureTheory.measure_iUnion₀ is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (MeasureTheory.AEDisjoint.{u2} α m0 μ) f)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u2} α m0 (f i) μ) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (f i))))
-but is expected to have type
-  forall {ι : Type.{u2}} {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : Countable.{succ u2} ι] {f : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) f)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => f i))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (f i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union₀ MeasureTheory.measure_iUnion₀ₓ'. -/
 theorem measure_iUnion₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AEDisjoint μ on f))
     (h : ∀ i, NullMeasurableSet (f i) μ) : μ (⋃ i, f i) = ∑' i, μ (f i) :=
   by
@@ -414,12 +324,6 @@ theorem measure_iUnion₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AED
     
 #align measure_theory.measure_Union₀ MeasureTheory.measure_iUnion₀
 
-/- warning: measure_theory.measure_union₀_aux -> MeasureTheory.measure_union₀_aux is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union₀_aux MeasureTheory.measure_union₀_auxₓ'. -/
 theorem measure_union₀_aux (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ)
     (hd : AEDisjoint μ s t) : μ (s ∪ t) = μ s + μ t :=
   by
@@ -427,12 +331,6 @@ theorem measure_union₀_aux (hs : NullMeasurableSet s μ) (ht : NullMeasurableS
   exacts[(pairwise_on_bool ae_disjoint.symmetric).2 hd, fun b => Bool.casesOn b ht hs]
 #align measure_theory.measure_union₀_aux MeasureTheory.measure_union₀_aux
 
-/- warning: measure_theory.measure_inter_add_diff₀ -> MeasureTheory.measure_inter_add_diff₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {t : Set.{u1} α} (s : Set.{u1} α), (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {t : Set.{u1} α} (s : Set.{u1} α), (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_inter_add_diff₀ MeasureTheory.measure_inter_add_diff₀ₓ'. -/
 /-- A null measurable set `t` is Carathéodory measurable: for any `s`, we have
 `μ (s ∩ t) + μ (s \ t) = μ s`. -/
 theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
@@ -457,55 +355,25 @@ theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
       
 #align measure_theory.measure_inter_add_diff₀ MeasureTheory.measure_inter_add_diff₀
 
-/- warning: measure_theory.measure_union_add_inter₀ -> MeasureTheory.measure_union_add_inter₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {t : Set.{u1} α} (s : Set.{u1} α), (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {t : Set.{u1} α} (s : Set.{u1} α), (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_add_inter₀ MeasureTheory.measure_union_add_inter₀ₓ'. -/
 theorem measure_union_add_inter₀ (s : Set α) (ht : NullMeasurableSet t μ) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by
   rw [← measure_inter_add_diff₀ (s ∪ t) ht, union_inter_cancel_right, union_diff_right, ←
     measure_inter_add_diff₀ s ht, add_comm, ← add_assoc, add_right_comm]
 #align measure_theory.measure_union_add_inter₀ MeasureTheory.measure_union_add_inter₀
 
-/- warning: measure_theory.measure_union_add_inter₀' -> MeasureTheory.measure_union_add_inter₀' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_add_inter₀' MeasureTheory.measure_union_add_inter₀'ₓ'. -/
 theorem measure_union_add_inter₀' (hs : NullMeasurableSet s μ) (t : Set α) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by
   rw [union_comm, inter_comm, measure_union_add_inter₀ t hs, add_comm]
 #align measure_theory.measure_union_add_inter₀' MeasureTheory.measure_union_add_inter₀'
 
-/- warning: measure_theory.measure_union₀ -> MeasureTheory.measure_union₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union₀ MeasureTheory.measure_union₀ₓ'. -/
 theorem measure_union₀ (ht : NullMeasurableSet t μ) (hd : AEDisjoint μ s t) :
     μ (s ∪ t) = μ s + μ t := by rw [← measure_union_add_inter₀ s ht, hd.eq, add_zero]
 #align measure_theory.measure_union₀ MeasureTheory.measure_union₀
 
-/- warning: measure_theory.measure_union₀' -> MeasureTheory.measure_union₀' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union₀' MeasureTheory.measure_union₀'ₓ'. -/
 theorem measure_union₀' (hs : NullMeasurableSet s μ) (hd : AEDisjoint μ s t) :
     μ (s ∪ t) = μ s + μ t := by rw [union_comm, measure_union₀ hs hd.symm, add_comm]
 #align measure_theory.measure_union₀' MeasureTheory.measure_union₀'
 
-/- warning: measure_theory.measure_add_measure_compl₀ -> MeasureTheory.measure_add_measure_compl₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_add_measure_compl₀ MeasureTheory.measure_add_measure_compl₀ₓ'. -/
 theorem measure_add_measure_compl₀ {s : Set α} (hs : NullMeasurableSet s μ) :
     μ s + μ (sᶜ) = μ univ := by rw [← measure_union₀' hs ae_disjoint_compl_right, union_compl_self]
 #align measure_theory.measure_add_measure_compl₀ MeasureTheory.measure_add_measure_compl₀
@@ -611,44 +479,20 @@ def NullMeasurable (f : α → β) (μ : Measure α := by exact MeasureTheory.Me
 #align measure_theory.null_measurable MeasureTheory.NullMeasurable
 -/
 
-/- warning: measurable.null_measurable -> Measurable.nullMeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α _inst_1}, (Measurable.{u1, u2} α β _inst_1 _inst_2 f) -> (MeasureTheory.NullMeasurable.{u1, u2} α β _inst_1 _inst_2 f μ)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {f : α -> β} {μ : MeasureTheory.Measure.{u2} α _inst_1}, (Measurable.{u2, u1} α β _inst_1 _inst_2 f) -> (MeasureTheory.NullMeasurable.{u2, u1} α β _inst_1 _inst_2 f μ)
-Case conversion may be inaccurate. Consider using '#align measurable.null_measurable Measurable.nullMeasurableₓ'. -/
 protected theorem Measurable.nullMeasurable (h : Measurable f) : NullMeasurable f μ := fun s hs =>
   (h hs).NullMeasurableSet
 #align measurable.null_measurable Measurable.nullMeasurable
 
-/- warning: measure_theory.null_measurable.measurable' -> MeasureTheory.NullMeasurable.measurable' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α _inst_1}, (MeasureTheory.NullMeasurable.{u1, u2} α β _inst_1 _inst_2 f μ) -> (Measurable.{u1, u2} (MeasureTheory.NullMeasurableSpace.{u1} α _inst_1 μ) β (MeasureTheory.NullMeasurableSpace.instMeasurableSpace.{u1} α _inst_1 μ) _inst_2 f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {f : α -> β} {μ : MeasureTheory.Measure.{u2} α _inst_1}, (MeasureTheory.NullMeasurable.{u2, u1} α β _inst_1 _inst_2 f μ) -> (Measurable.{u2, u1} (MeasureTheory.NullMeasurableSpace.{u2} α _inst_1 μ) β (MeasureTheory.NullMeasurableSpace.instMeasurableSpace.{u2} α _inst_1 μ) _inst_2 f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable.measurable' MeasureTheory.NullMeasurable.measurable'ₓ'. -/
 protected theorem NullMeasurable.measurable' (h : NullMeasurable f μ) :
     @Measurable (NullMeasurableSpace α μ) β _ _ f :=
   h
 #align measure_theory.null_measurable.measurable' MeasureTheory.NullMeasurable.measurable'
 
-/- warning: measure_theory.measurable.comp_null_measurable -> MeasureTheory.Measurable.comp_nullMeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u3} γ] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α _inst_1} {g : β -> γ}, (Measurable.{u2, u3} β γ _inst_2 _inst_3 g) -> (MeasureTheory.NullMeasurable.{u1, u2} α β _inst_1 _inst_2 f μ) -> (MeasureTheory.NullMeasurable.{u1, u3} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) μ)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u3} β] [_inst_3 : MeasurableSpace.{u2} γ] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α _inst_1} {g : β -> γ}, (Measurable.{u3, u2} β γ _inst_2 _inst_3 g) -> (MeasureTheory.NullMeasurable.{u1, u3} α β _inst_1 _inst_2 f μ) -> (MeasureTheory.NullMeasurable.{u1, u2} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measurable.comp_null_measurable MeasureTheory.Measurable.comp_nullMeasurableₓ'. -/
 theorem Measurable.comp_nullMeasurable {g : β → γ} (hg : Measurable g) (hf : NullMeasurable f μ) :
     NullMeasurable (g ∘ f) μ :=
   hg.comp hf
 #align measure_theory.measurable.comp_null_measurable MeasureTheory.Measurable.comp_nullMeasurable
 
-/- warning: measure_theory.null_measurable.congr -> MeasureTheory.NullMeasurable.congr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α _inst_1} {g : α -> β}, (MeasureTheory.NullMeasurable.{u1, u2} α β _inst_1 _inst_2 f μ) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f g) -> (MeasureTheory.NullMeasurable.{u1, u2} α β _inst_1 _inst_2 g μ)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {f : α -> β} {μ : MeasureTheory.Measure.{u2} α _inst_1} {g : α -> β}, (MeasureTheory.NullMeasurable.{u2, u1} α β _inst_1 _inst_2 f μ) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) f g) -> (MeasureTheory.NullMeasurable.{u2, u1} α β _inst_1 _inst_2 g μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable.congr MeasureTheory.NullMeasurable.congrₓ'. -/
 theorem NullMeasurable.congr {g : α → β} (hf : NullMeasurable f μ) (hg : f =ᵐ[μ] g) :
     NullMeasurable g μ := fun s hs =>
   (hf hs).congr <| eventuallyEq_set.2 <| hg.mono fun x hx => by rw [mem_preimage, mem_preimage, hx]
@@ -670,32 +514,14 @@ class Measure.IsComplete {_ : MeasurableSpace α} (μ : Measure α) : Prop where
 
 variable {m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α}
 
-/- warning: measure_theory.measure.is_complete_iff -> MeasureTheory.Measure.isComplete_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (MeasureTheory.Measure.IsComplete.{u1} α m0 μ) (forall (s : Set.{u1} α), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasurableSet.{u1} α m0 s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (MeasureTheory.Measure.IsComplete.{u1} α m0 μ) (forall (s : Set.{u1} α), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasurableSet.{u1} α m0 s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_complete_iff MeasureTheory.Measure.isComplete_iffₓ'. -/
 theorem Measure.isComplete_iff : μ.IsComplete ↔ ∀ s, μ s = 0 → MeasurableSet s :=
   ⟨fun h => h.1, fun h => ⟨h⟩⟩
 #align measure_theory.measure.is_complete_iff MeasureTheory.Measure.isComplete_iff
 
-/- warning: measure_theory.measure.is_complete.out -> MeasureTheory.Measure.IsComplete.out is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.IsComplete.{u1} α m0 μ) -> (forall (s : Set.{u1} α), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasurableSet.{u1} α m0 s))
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.IsComplete.{u1} α m0 μ) -> (forall (s : Set.{u1} α), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasurableSet.{u1} α m0 s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_complete.out MeasureTheory.Measure.IsComplete.outₓ'. -/
 theorem Measure.IsComplete.out (h : μ.IsComplete) : ∀ s, μ s = 0 → MeasurableSet s :=
   h.1
 #align measure_theory.measure.is_complete.out MeasureTheory.Measure.IsComplete.out
 
-/- warning: measure_theory.measurable_set_of_null -> MeasureTheory.measurableSet_of_null is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_1 : MeasureTheory.Measure.IsComplete.{u1} α m0 μ], (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasurableSet.{u1} α m0 s)
-but is expected to have type
-  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_1 : MeasureTheory.Measure.IsComplete.{u1} α m0 μ], (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasurableSet.{u1} α m0 s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measurable_set_of_null MeasureTheory.measurableSet_of_nullₓ'. -/
 theorem measurableSet_of_null [μ.IsComplete] (hs : μ s = 0) : MeasurableSet s :=
   MeasureTheory.Measure.IsComplete.out' s hs
 #align measure_theory.measurable_set_of_null MeasureTheory.measurableSet_of_null
@@ -709,22 +535,10 @@ theorem NullMeasurableSet.measurable_of_complete (hs : NullMeasurableSet s μ) [
 #align measure_theory.null_measurable_set.measurable_of_complete MeasureTheory.NullMeasurableSet.measurable_of_complete
 -/
 
-/- warning: measure_theory.null_measurable.measurable_of_complete -> MeasureTheory.NullMeasurable.measurable_of_complete is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : MeasureTheory.Measure.IsComplete.{u1} α m0 μ] {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasureTheory.NullMeasurable.{u1, u2} α β m0 m1 f μ) -> (Measurable.{u1, u2} α β m0 m1 f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : MeasureTheory.Measure.IsComplete.{u2} α m0 μ] {m1 : MeasurableSpace.{u1} β} {f : α -> β}, (MeasureTheory.NullMeasurable.{u2, u1} α β m0 m1 f μ) -> (Measurable.{u2, u1} α β m0 m1 f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable.measurable_of_complete MeasureTheory.NullMeasurable.measurable_of_completeₓ'. -/
 theorem NullMeasurable.measurable_of_complete [μ.IsComplete] {m1 : MeasurableSpace β} {f : α → β}
     (hf : NullMeasurable f μ) : Measurable f := fun s hs => (hf hs).measurable_of_complete
 #align measure_theory.null_measurable.measurable_of_complete MeasureTheory.NullMeasurable.measurable_of_complete
 
-/- warning: measurable.congr_ae -> Measurable.congr_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α _inst_1} [hμ : MeasureTheory.Measure.IsComplete.{u1} α _inst_1 μ] {f : α -> β} {g : α -> β}, (Measurable.{u1, u2} α β _inst_1 _inst_2 f) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f g) -> (Measurable.{u1, u2} α β _inst_1 _inst_2 g)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α _inst_1} [hμ : MeasureTheory.Measure.IsComplete.{u2} α _inst_1 μ] {f : α -> β} {g : α -> β}, (Measurable.{u2, u1} α β _inst_1 _inst_2 f) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) f g) -> (Measurable.{u2, u1} α β _inst_1 _inst_2 g)
-Case conversion may be inaccurate. Consider using '#align measurable.congr_ae Measurable.congr_aeₓ'. -/
 theorem Measurable.congr_ae {α β} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α}
     [hμ : μ.IsComplete] {f g : α → β} (hf : Measurable f) (hfg : f =ᵐ[μ] g) : Measurable g :=
   (hf.NullMeasurable.congr hfg).measurable_of_complete
Diff
@@ -210,9 +210,7 @@ protected theorem biUnion {f : ι → Set α} {s : Set ι} (hs : s.Countable)
 
 #print MeasureTheory.NullMeasurableSet.sUnion /-
 protected theorem sUnion {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
-    NullMeasurableSet (⋃₀ s) μ := by
-  rw [sUnion_eq_bUnion]
-  exact MeasurableSet.biUnion hs h
+    NullMeasurableSet (⋃₀ s) μ := by rw [sUnion_eq_bUnion]; exact MeasurableSet.biUnion hs h
 #align measure_theory.null_measurable_set.sUnion MeasureTheory.NullMeasurableSet.sUnion
 -/
 
Diff
@@ -92,9 +92,9 @@ instance : MeasurableSpace (NullMeasurableSpace α μ)
   MeasurableSet' s := ∃ t, MeasurableSet t ∧ s =ᵐ[μ] t
   measurable_set_empty := ⟨∅, MeasurableSet.empty, ae_eq_refl _⟩
   measurable_set_compl := fun s ⟨t, htm, hts⟩ => ⟨tᶜ, htm.compl, hts.compl⟩
-  measurable_set_unionᵢ s hs := by
+  measurable_set_iUnion s hs := by
     choose t htm hts using hs
-    exact ⟨⋃ i, t i, MeasurableSet.unionᵢ htm, EventuallyEq.countable_unionᵢ hts⟩
+    exact ⟨⋃ i, t i, MeasurableSet.iUnion htm, EventuallyEq.countable_iUnion hts⟩
 
 #print MeasureTheory.NullMeasurableSet /-
 /-- A set is called `null_measurable_set` if it can be approximated by a measurable set up to
@@ -183,62 +183,62 @@ protected theorem congr (hs : NullMeasurableSet s μ) (h : s =ᵐ[μ] t) : NullM
 #align measure_theory.null_measurable_set.congr MeasureTheory.NullMeasurableSet.congr
 -/
 
-#print MeasureTheory.NullMeasurableSet.unionᵢ /-
-protected theorem unionᵢ {ι : Sort _} [Countable ι] {s : ι → Set α}
+#print MeasureTheory.NullMeasurableSet.iUnion /-
+protected theorem iUnion {ι : Sort _} [Countable ι] {s : ι → Set α}
     (h : ∀ i, NullMeasurableSet (s i) μ) : NullMeasurableSet (⋃ i, s i) μ :=
-  MeasurableSet.unionᵢ h
-#align measure_theory.null_measurable_set.Union MeasureTheory.NullMeasurableSet.unionᵢ
+  MeasurableSet.iUnion h
+#align measure_theory.null_measurable_set.Union MeasureTheory.NullMeasurableSet.iUnion
 -/
 
-/- warning: measure_theory.null_measurable_set.bUnion_decode₂ -> MeasureTheory.NullMeasurableSet.bunionᵢ_decode₂ is a dubious translation:
+/- warning: measure_theory.null_measurable_set.bUnion_decode₂ -> MeasureTheory.NullMeasurableSet.biUnion_decode₂ is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Encodable.{u1} ι] {{f : ι -> (Set.{u2} α)}}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u2} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u2} α m0 (Set.unionᵢ.{u2, succ u1} α ι (fun (b : ι) => Set.unionᵢ.{u2, 0} α (Membership.Mem.{u1, u1} ι (Option.{u1} ι) (Option.hasMem.{u1} ι) b (Encodable.decode₂.{u1} ι _inst_1 n)) (fun (H : Membership.Mem.{u1, u1} ι (Option.{u1} ι) (Option.hasMem.{u1} ι) b (Encodable.decode₂.{u1} ι _inst_1 n)) => f b))) μ)
+  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Encodable.{u1} ι] {{f : ι -> (Set.{u2} α)}}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u2} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u2} α m0 (Set.iUnion.{u2, succ u1} α ι (fun (b : ι) => Set.iUnion.{u2, 0} α (Membership.Mem.{u1, u1} ι (Option.{u1} ι) (Option.hasMem.{u1} ι) b (Encodable.decode₂.{u1} ι _inst_1 n)) (fun (H : Membership.Mem.{u1, u1} ι (Option.{u1} ι) (Option.hasMem.{u1} ι) b (Encodable.decode₂.{u1} ι _inst_1 n)) => f b))) μ)
 but is expected to have type
-  forall {ι : Type.{u2}} {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : Encodable.{u2} ι] {{f : ι -> (Set.{u1} α)}}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (Set.unionᵢ.{u1, succ u2} α ι (fun (b : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Option.{u2} ι) (Option.instMembershipOption.{u2} ι) b (Encodable.decode₂.{u2} ι _inst_1 n)) (fun (H : Membership.mem.{u2, u2} ι (Option.{u2} ι) (Option.instMembershipOption.{u2} ι) b (Encodable.decode₂.{u2} ι _inst_1 n)) => f b))) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.bunionᵢ_decode₂ₓ'. -/
-protected theorem bunionᵢ_decode₂ [Encodable ι] ⦃f : ι → Set α⦄ (h : ∀ i, NullMeasurableSet (f i) μ)
+  forall {ι : Type.{u2}} {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : Encodable.{u2} ι] {{f : ι -> (Set.{u1} α)}}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (Set.iUnion.{u1, succ u2} α ι (fun (b : ι) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} ι (Option.{u2} ι) (Option.instMembershipOption.{u2} ι) b (Encodable.decode₂.{u2} ι _inst_1 n)) (fun (H : Membership.mem.{u2, u2} ι (Option.{u2} ι) (Option.instMembershipOption.{u2} ι) b (Encodable.decode₂.{u2} ι _inst_1 n)) => f b))) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.biUnion_decode₂ₓ'. -/
+protected theorem biUnion_decode₂ [Encodable ι] ⦃f : ι → Set α⦄ (h : ∀ i, NullMeasurableSet (f i) μ)
     (n : ℕ) : NullMeasurableSet (⋃ b ∈ Encodable.decode₂ ι n, f b) μ :=
-  MeasurableSet.bunionᵢ_decode₂ h n
-#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.bunionᵢ_decode₂
+  MeasurableSet.biUnion_decode₂ h n
+#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.biUnion_decode₂
 
-#print MeasureTheory.NullMeasurableSet.bunionᵢ /-
-protected theorem bunionᵢ {f : ι → Set α} {s : Set ι} (hs : s.Countable)
+#print MeasureTheory.NullMeasurableSet.biUnion /-
+protected theorem biUnion {f : ι → Set α} {s : Set ι} (hs : s.Countable)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
-  MeasurableSet.bunionᵢ hs h
-#align measure_theory.null_measurable_set.bUnion MeasureTheory.NullMeasurableSet.bunionᵢ
+  MeasurableSet.biUnion hs h
+#align measure_theory.null_measurable_set.bUnion MeasureTheory.NullMeasurableSet.biUnion
 -/
 
-#print MeasureTheory.NullMeasurableSet.unionₛ /-
-protected theorem unionₛ {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
+#print MeasureTheory.NullMeasurableSet.sUnion /-
+protected theorem sUnion {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
     NullMeasurableSet (⋃₀ s) μ := by
   rw [sUnion_eq_bUnion]
-  exact MeasurableSet.bunionᵢ hs h
-#align measure_theory.null_measurable_set.sUnion MeasureTheory.NullMeasurableSet.unionₛ
+  exact MeasurableSet.biUnion hs h
+#align measure_theory.null_measurable_set.sUnion MeasureTheory.NullMeasurableSet.sUnion
 -/
 
-#print MeasureTheory.NullMeasurableSet.interᵢ /-
-protected theorem interᵢ {ι : Sort _} [Countable ι] {f : ι → Set α}
+#print MeasureTheory.NullMeasurableSet.iInter /-
+protected theorem iInter {ι : Sort _} [Countable ι] {f : ι → Set α}
     (h : ∀ i, NullMeasurableSet (f i) μ) : NullMeasurableSet (⋂ i, f i) μ :=
-  MeasurableSet.interᵢ h
-#align measure_theory.null_measurable_set.Inter MeasureTheory.NullMeasurableSet.interᵢ
+  MeasurableSet.iInter h
+#align measure_theory.null_measurable_set.Inter MeasureTheory.NullMeasurableSet.iInter
 -/
 
-/- warning: measure_theory.null_measurable_set.bInter -> MeasureTheory.NullMeasurableSet.binterᵢ is a dubious translation:
+/- warning: measure_theory.null_measurable_set.bInter -> MeasureTheory.NullMeasurableSet.biInter is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : β -> (Set.{u1} α)} {s : Set.{u2} β}, (Set.Countable.{u2} β s) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (f b) μ)) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Set.interᵢ.{u1, succ u2} α β (fun (b : β) => Set.interᵢ.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b))) μ)
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : β -> (Set.{u1} α)} {s : Set.{u2} β}, (Set.Countable.{u2} β s) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (f b) μ)) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Set.iInter.{u1, succ u2} α β (fun (b : β) => Set.iInter.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b))) μ)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {f : β -> (Set.{u2} α)} {s : Set.{u1} β}, (Set.Countable.{u1} β s) -> (forall (b : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) -> (MeasureTheory.NullMeasurableSet.{u2} α m0 (f b) μ)) -> (MeasureTheory.NullMeasurableSet.{u2} α m0 (Set.interᵢ.{u2, succ u1} α β (fun (b : β) => Set.interᵢ.{u2, 0} α (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) => f b))) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.binterᵢₓ'. -/
-protected theorem binterᵢ {f : β → Set α} {s : Set β} (hs : s.Countable)
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {f : β -> (Set.{u2} α)} {s : Set.{u1} β}, (Set.Countable.{u1} β s) -> (forall (b : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) -> (MeasureTheory.NullMeasurableSet.{u2} α m0 (f b) μ)) -> (MeasureTheory.NullMeasurableSet.{u2} α m0 (Set.iInter.{u2, succ u1} α β (fun (b : β) => Set.iInter.{u2, 0} α (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) => f b))) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.biInterₓ'. -/
+protected theorem biInter {f : β → Set α} {s : Set β} (hs : s.Countable)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
-  MeasurableSet.binterᵢ hs h
-#align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.binterᵢ
+  MeasurableSet.biInter hs h
+#align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.biInter
 
-#print MeasureTheory.NullMeasurableSet.interₛ /-
-protected theorem interₛ {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
+#print MeasureTheory.NullMeasurableSet.sInter /-
+protected theorem sInter {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
     NullMeasurableSet (⋂₀ s) μ :=
-  MeasurableSet.interₛ hs h
-#align measure_theory.null_measurable_set.sInter MeasureTheory.NullMeasurableSet.interₛ
+  MeasurableSet.sInter hs h
+#align measure_theory.null_measurable_set.sInter MeasureTheory.NullMeasurableSet.sInter
 -/
 
 /- warning: measure_theory.null_measurable_set.union -> MeasureTheory.NullMeasurableSet.union is a dubious translation:
@@ -383,38 +383,38 @@ theorem exists_subordinate_pairwise_disjoint [Countable ι] {s : ι → Set α}
         h.mono (diff_subset_diff_left (ht_sub i)) (diff_subset_diff_left (ht_sub j))⟩
 #align measure_theory.exists_subordinate_pairwise_disjoint MeasureTheory.exists_subordinate_pairwise_disjoint
 
-/- warning: measure_theory.measure_Union -> MeasureTheory.measure_unionᵢ is a dubious translation:
+/- warning: measure_theory.measure_Union -> MeasureTheory.measure_iUnion is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.completeBooleanAlgebra.{u2} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u2} (Set.{u2} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} (Set.{u2} α) (Set.booleanAlgebra.{u2} α)))) f)) -> (forall (i : ι), MeasurableSet.{u2} α m0 (f i)) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (f i))))
+  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.completeBooleanAlgebra.{u2} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u2} (Set.{u2} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} (Set.{u2} α) (Set.booleanAlgebra.{u2} α)))) f)) -> (forall (i : ι), MeasurableSet.{u2} α m0 (f i)) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (f i))))
 but is expected to have type
-  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) f)) -> (forall (i : ι), MeasurableSet.{u2} α m0 (f i)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (f i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union MeasureTheory.measure_unionᵢₓ'. -/
-theorem measure_unionᵢ {m0 : MeasurableSpace α} {μ : Measure α} [Countable ι] {f : ι → Set α}
+  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) f)) -> (forall (i : ι), MeasurableSet.{u2} α m0 (f i)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (f i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union MeasureTheory.measure_iUnionₓ'. -/
+theorem measure_iUnion {m0 : MeasurableSpace α} {μ : Measure α} [Countable ι] {f : ι → Set α}
     (hn : Pairwise (Disjoint on f)) (h : ∀ i, MeasurableSet (f i)) : μ (⋃ i, f i) = ∑' i, μ (f i) :=
   by
-  rw [measure_eq_extend (MeasurableSet.unionᵢ h),
-    extend_Union MeasurableSet.empty _ MeasurableSet.unionᵢ _ hn h]
+  rw [measure_eq_extend (MeasurableSet.iUnion h),
+    extend_Union MeasurableSet.empty _ MeasurableSet.iUnion _ hn h]
   · simp [measure_eq_extend, h]
   · exact μ.empty
   · exact μ.m_Union
-#align measure_theory.measure_Union MeasureTheory.measure_unionᵢ
+#align measure_theory.measure_Union MeasureTheory.measure_iUnion
 
-/- warning: measure_theory.measure_Union₀ -> MeasureTheory.measure_unionᵢ₀ is a dubious translation:
+/- warning: measure_theory.measure_Union₀ -> MeasureTheory.measure_iUnion₀ is a dubious translation:
 lean 3 declaration is
-  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (MeasureTheory.AEDisjoint.{u2} α m0 μ) f)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u2} α m0 (f i) μ) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (f i))))
+  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (MeasureTheory.AEDisjoint.{u2} α m0 μ) f)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u2} α m0 (f i) μ) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (Set.iUnion.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (f i))))
 but is expected to have type
-  forall {ι : Type.{u2}} {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : Countable.{succ u2} ι] {f : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) f)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => f i))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (f i))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union₀ MeasureTheory.measure_unionᵢ₀ₓ'. -/
-theorem measure_unionᵢ₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AEDisjoint μ on f))
+  forall {ι : Type.{u2}} {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : Countable.{succ u2} ι] {f : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) f)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.iUnion.{u1, succ u2} α ι (fun (i : ι) => f i))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (f i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union₀ MeasureTheory.measure_iUnion₀ₓ'. -/
+theorem measure_iUnion₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AEDisjoint μ on f))
     (h : ∀ i, NullMeasurableSet (f i) μ) : μ (⋃ i, f i) = ∑' i, μ (f i) :=
   by
   rcases exists_subordinate_pairwise_disjoint h hd with ⟨t, ht_sub, ht_eq, htm, htd⟩
   calc
-    μ (⋃ i, f i) = μ (⋃ i, t i) := measure_congr (EventuallyEq.countable_unionᵢ ht_eq)
+    μ (⋃ i, f i) = μ (⋃ i, t i) := measure_congr (EventuallyEq.countable_iUnion ht_eq)
     _ = ∑' i, μ (t i) := (measure_Union htd htm)
     _ = ∑' i, μ (f i) := tsum_congr fun i => measure_congr (ht_eq _).symm
     
-#align measure_theory.measure_Union₀ MeasureTheory.measure_unionᵢ₀
+#align measure_theory.measure_Union₀ MeasureTheory.measure_iUnion₀
 
 /- warning: measure_theory.measure_union₀_aux -> MeasureTheory.measure_union₀_aux is a dubious translation:
 lean 3 declaration is
@@ -550,46 +550,46 @@ protected theorem Finset.nullMeasurableSet (s : Finset α) : NullMeasurableSet (
 
 end MeasurableSingletonClass
 
-#print Set.Finite.nullMeasurableSet_bunionᵢ /-
-theorem Set.Finite.nullMeasurableSet_bunionᵢ {f : ι → Set α} {s : Set ι} (hs : s.Finite)
+#print Set.Finite.nullMeasurableSet_biUnion /-
+theorem Set.Finite.nullMeasurableSet_biUnion {f : ι → Set α} {s : Set ι} (hs : s.Finite)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
-  Finite.measurableSet_bunionᵢ hs h
-#align set.finite.null_measurable_set_bUnion Set.Finite.nullMeasurableSet_bunionᵢ
+  Finite.measurableSet_biUnion hs h
+#align set.finite.null_measurable_set_bUnion Set.Finite.nullMeasurableSet_biUnion
 -/
 
-#print Finset.nullMeasurableSet_bunionᵢ /-
-theorem Finset.nullMeasurableSet_bunionᵢ {f : ι → Set α} (s : Finset ι)
+#print Finset.nullMeasurableSet_biUnion /-
+theorem Finset.nullMeasurableSet_biUnion {f : ι → Set α} (s : Finset ι)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
-  Finset.measurableSet_bunionᵢ s h
-#align finset.null_measurable_set_bUnion Finset.nullMeasurableSet_bunionᵢ
+  Finset.measurableSet_biUnion s h
+#align finset.null_measurable_set_bUnion Finset.nullMeasurableSet_biUnion
 -/
 
-#print Set.Finite.nullMeasurableSet_unionₛ /-
-theorem Set.Finite.nullMeasurableSet_unionₛ {s : Set (Set α)} (hs : s.Finite)
+#print Set.Finite.nullMeasurableSet_sUnion /-
+theorem Set.Finite.nullMeasurableSet_sUnion {s : Set (Set α)} (hs : s.Finite)
     (h : ∀ t ∈ s, NullMeasurableSet t μ) : NullMeasurableSet (⋃₀ s) μ :=
-  Finite.measurableSet_unionₛ hs h
-#align set.finite.null_measurable_set_sUnion Set.Finite.nullMeasurableSet_unionₛ
+  Finite.measurableSet_sUnion hs h
+#align set.finite.null_measurable_set_sUnion Set.Finite.nullMeasurableSet_sUnion
 -/
 
-#print Set.Finite.nullMeasurableSet_binterᵢ /-
-theorem Set.Finite.nullMeasurableSet_binterᵢ {f : ι → Set α} {s : Set ι} (hs : s.Finite)
+#print Set.Finite.nullMeasurableSet_biInter /-
+theorem Set.Finite.nullMeasurableSet_biInter {f : ι → Set α} {s : Set ι} (hs : s.Finite)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
-  Finite.measurableSet_binterᵢ hs h
-#align set.finite.null_measurable_set_bInter Set.Finite.nullMeasurableSet_binterᵢ
+  Finite.measurableSet_biInter hs h
+#align set.finite.null_measurable_set_bInter Set.Finite.nullMeasurableSet_biInter
 -/
 
-#print Finset.nullMeasurableSet_binterᵢ /-
-theorem Finset.nullMeasurableSet_binterᵢ {f : ι → Set α} (s : Finset ι)
+#print Finset.nullMeasurableSet_biInter /-
+theorem Finset.nullMeasurableSet_biInter {f : ι → Set α} (s : Finset ι)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
-  s.finite_toSet.nullMeasurableSet_binterᵢ h
-#align finset.null_measurable_set_bInter Finset.nullMeasurableSet_binterᵢ
+  s.finite_toSet.nullMeasurableSet_biInter h
+#align finset.null_measurable_set_bInter Finset.nullMeasurableSet_biInter
 -/
 
-#print Set.Finite.nullMeasurableSet_interₛ /-
-theorem Set.Finite.nullMeasurableSet_interₛ {s : Set (Set α)} (hs : s.Finite)
+#print Set.Finite.nullMeasurableSet_sInter /-
+theorem Set.Finite.nullMeasurableSet_sInter {s : Set (Set α)} (hs : s.Finite)
     (h : ∀ t ∈ s, NullMeasurableSet t μ) : NullMeasurableSet (⋂₀ s) μ :=
-  NullMeasurableSet.interₛ hs.Countable h
-#align set.finite.null_measurable_set_sInter Set.Finite.nullMeasurableSet_interₛ
+  NullMeasurableSet.sInter hs.Countable h
+#align set.finite.null_measurable_set_sInter Set.Finite.nullMeasurableSet_sInter
 -/
 
 #print MeasureTheory.nullMeasurableSet_toMeasurable /-
@@ -740,12 +740,12 @@ def completion {_ : MeasurableSpace α} (μ : Measure α) :
     @MeasureTheory.Measure (NullMeasurableSpace α μ) _
     where
   toOuterMeasure := μ.toOuterMeasure
-  m_unionᵢ s hs hd := measure_unionᵢ₀ (hd.mono fun i j h => h.AEDisjoint) hs
+  m_iUnion s hs hd := measure_iUnion₀ (hd.mono fun i j h => h.AEDisjoint) hs
   trimmed := by
     refine' le_antisymm (fun s => _) (outer_measure.le_trim _)
     rw [outer_measure.trim_eq_infi]; simp only [to_outer_measure_apply]
-    refine' (infᵢ₂_mono _).trans_eq (measure_eq_infi _).symm
-    exact fun t ht => infᵢ_mono' fun h => ⟨h.NullMeasurableSet, le_rfl⟩
+    refine' (iInf₂_mono _).trans_eq (measure_eq_infi _).symm
+    exact fun t ht => iInf_mono' fun h => ⟨h.NullMeasurableSet, le_rfl⟩
 #align measure_theory.measure.completion MeasureTheory.Measure.completion
 -/
 
Diff
@@ -592,10 +592,10 @@ theorem Set.Finite.nullMeasurableSet_interₛ {s : Set (Set α)} (hs : s.Finite)
 #align set.finite.null_measurable_set_sInter Set.Finite.nullMeasurableSet_interₛ
 -/
 
-#print MeasureTheory.nullMeasurableSet_to_measurable /-
-theorem nullMeasurableSet_to_measurable : NullMeasurableSet (toMeasurable μ s) μ :=
+#print MeasureTheory.nullMeasurableSet_toMeasurable /-
+theorem nullMeasurableSet_toMeasurable : NullMeasurableSet (toMeasurable μ s) μ :=
   (measurableSet_toMeasurable _ _).NullMeasurableSet
-#align measure_theory.null_measurable_set_to_measurable MeasureTheory.nullMeasurableSet_to_measurable
+#align measure_theory.null_measurable_set_to_measurable MeasureTheory.nullMeasurableSet_toMeasurable
 -/
 
 end
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module measure_theory.measure.null_measurable
-! leanprover-community/mathlib commit e4edb23029fff178210b9945dcb77d293f001e1c
+! leanprover-community/mathlib commit b5ad141426bb005414324f89719c77c0aa3ec612
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.MeasureTheory.Measure.AeDisjoint
 /-!
 # Null measurable sets and complete measures
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 ## Main definitions
 
 ### Null measurable sets and functions
Diff
@@ -65,12 +65,14 @@ variable {ι α β γ : Type _}
 
 namespace MeasureTheory
 
+#print MeasureTheory.NullMeasurableSpace /-
 /-- A type tag for `α` with `measurable_set` given by `null_measurable_set`. -/
 @[nolint unused_arguments]
 def NullMeasurableSpace (α : Type _) [MeasurableSpace α]
     (μ : Measure α := by exact MeasureTheory.MeasureSpace.volume) : Type _ :=
   α
 #align measure_theory.null_measurable_space MeasureTheory.NullMeasurableSpace
+-/
 
 section
 
@@ -91,136 +93,229 @@ instance : MeasurableSpace (NullMeasurableSpace α μ)
     choose t htm hts using hs
     exact ⟨⋃ i, t i, MeasurableSet.unionᵢ htm, EventuallyEq.countable_unionᵢ hts⟩
 
+#print MeasureTheory.NullMeasurableSet /-
 /-- A set is called `null_measurable_set` if it can be approximated by a measurable set up to
 a set of null measure. -/
 def NullMeasurableSet [MeasurableSpace α] (s : Set α)
     (μ : Measure α := by exact MeasureTheory.MeasureSpace.volume) : Prop :=
   @MeasurableSet (NullMeasurableSpace α μ) _ s
 #align measure_theory.null_measurable_set MeasureTheory.NullMeasurableSet
+-/
 
+#print MeasurableSet.nullMeasurableSet /-
 @[simp]
 theorem MeasurableSet.nullMeasurableSet (h : MeasurableSet s) : NullMeasurableSet s μ :=
   ⟨s, h, ae_eq_refl _⟩
 #align measurable_set.null_measurable_set MeasurableSet.nullMeasurableSet
+-/
 
+#print MeasureTheory.nullMeasurableSet_empty /-
 @[simp]
 theorem nullMeasurableSet_empty : NullMeasurableSet ∅ μ :=
   MeasurableSet.empty
 #align measure_theory.null_measurable_set_empty MeasureTheory.nullMeasurableSet_empty
+-/
 
+#print MeasureTheory.nullMeasurableSet_univ /-
 @[simp]
 theorem nullMeasurableSet_univ : NullMeasurableSet univ μ :=
   MeasurableSet.univ
 #align measure_theory.null_measurable_set_univ MeasureTheory.nullMeasurableSet_univ
+-/
 
 namespace NullMeasurableSet
 
+/- warning: measure_theory.null_measurable_set.of_null -> MeasureTheory.NullMeasurableSet.of_null is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.of_null MeasureTheory.NullMeasurableSet.of_nullₓ'. -/
 theorem of_null (h : μ s = 0) : NullMeasurableSet s μ :=
   ⟨∅, MeasurableSet.empty, ae_eq_empty.2 h⟩
 #align measure_theory.null_measurable_set.of_null MeasureTheory.NullMeasurableSet.of_null
 
+/- warning: measure_theory.null_measurable_set.compl -> MeasureTheory.NullMeasurableSet.compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s) μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.compl MeasureTheory.NullMeasurableSet.complₓ'. -/
 theorem compl (h : NullMeasurableSet s μ) : NullMeasurableSet (sᶜ) μ :=
   h.compl
 #align measure_theory.null_measurable_set.compl MeasureTheory.NullMeasurableSet.compl
 
+/- warning: measure_theory.null_measurable_set.of_compl -> MeasureTheory.NullMeasurableSet.of_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s) μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s) μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.of_compl MeasureTheory.NullMeasurableSet.of_complₓ'. -/
 theorem of_compl (h : NullMeasurableSet (sᶜ) μ) : NullMeasurableSet s μ :=
   h.ofCompl
 #align measure_theory.null_measurable_set.of_compl MeasureTheory.NullMeasurableSet.of_compl
 
+/- warning: measure_theory.null_measurable_set.compl_iff -> MeasureTheory.NullMeasurableSet.compl_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s) μ) (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, Iff (MeasureTheory.NullMeasurableSet.{u1} α m0 (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s) μ) (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.compl_iff MeasureTheory.NullMeasurableSet.compl_iffₓ'. -/
 @[simp]
 theorem compl_iff : NullMeasurableSet (sᶜ) μ ↔ NullMeasurableSet s μ :=
   MeasurableSet.compl_iff
 #align measure_theory.null_measurable_set.compl_iff MeasureTheory.NullMeasurableSet.compl_iff
 
+#print MeasureTheory.NullMeasurableSet.of_subsingleton /-
 @[nontriviality]
 theorem of_subsingleton [Subsingleton α] : NullMeasurableSet s μ :=
   Subsingleton.measurableSet
 #align measure_theory.null_measurable_set.of_subsingleton MeasureTheory.NullMeasurableSet.of_subsingleton
+-/
 
+#print MeasureTheory.NullMeasurableSet.congr /-
 protected theorem congr (hs : NullMeasurableSet s μ) (h : s =ᵐ[μ] t) : NullMeasurableSet t μ :=
   let ⟨s', hm, hs'⟩ := hs
   ⟨s', hm, h.symm.trans hs'⟩
 #align measure_theory.null_measurable_set.congr MeasureTheory.NullMeasurableSet.congr
+-/
 
+#print MeasureTheory.NullMeasurableSet.unionᵢ /-
 protected theorem unionᵢ {ι : Sort _} [Countable ι] {s : ι → Set α}
     (h : ∀ i, NullMeasurableSet (s i) μ) : NullMeasurableSet (⋃ i, s i) μ :=
   MeasurableSet.unionᵢ h
 #align measure_theory.null_measurable_set.Union MeasureTheory.NullMeasurableSet.unionᵢ
+-/
 
-protected theorem bUnion_decode₂ [Encodable ι] ⦃f : ι → Set α⦄ (h : ∀ i, NullMeasurableSet (f i) μ)
+/- warning: measure_theory.null_measurable_set.bUnion_decode₂ -> MeasureTheory.NullMeasurableSet.bunionᵢ_decode₂ is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Encodable.{u1} ι] {{f : ι -> (Set.{u2} α)}}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u2} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u2} α m0 (Set.unionᵢ.{u2, succ u1} α ι (fun (b : ι) => Set.unionᵢ.{u2, 0} α (Membership.Mem.{u1, u1} ι (Option.{u1} ι) (Option.hasMem.{u1} ι) b (Encodable.decode₂.{u1} ι _inst_1 n)) (fun (H : Membership.Mem.{u1, u1} ι (Option.{u1} ι) (Option.hasMem.{u1} ι) b (Encodable.decode₂.{u1} ι _inst_1 n)) => f b))) μ)
+but is expected to have type
+  forall {ι : Type.{u2}} {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : Encodable.{u2} ι] {{f : ι -> (Set.{u1} α)}}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (Set.unionᵢ.{u1, succ u2} α ι (fun (b : ι) => Set.unionᵢ.{u1, 0} α (Membership.mem.{u2, u2} ι (Option.{u2} ι) (Option.instMembershipOption.{u2} ι) b (Encodable.decode₂.{u2} ι _inst_1 n)) (fun (H : Membership.mem.{u2, u2} ι (Option.{u2} ι) (Option.instMembershipOption.{u2} ι) b (Encodable.decode₂.{u2} ι _inst_1 n)) => f b))) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.bunionᵢ_decode₂ₓ'. -/
+protected theorem bunionᵢ_decode₂ [Encodable ι] ⦃f : ι → Set α⦄ (h : ∀ i, NullMeasurableSet (f i) μ)
     (n : ℕ) : NullMeasurableSet (⋃ b ∈ Encodable.decode₂ ι n, f b) μ :=
   MeasurableSet.bunionᵢ_decode₂ h n
-#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.bUnion_decode₂
+#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.bunionᵢ_decode₂
 
-protected theorem bUnion {f : ι → Set α} {s : Set ι} (hs : s.Countable)
+#print MeasureTheory.NullMeasurableSet.bunionᵢ /-
+protected theorem bunionᵢ {f : ι → Set α} {s : Set ι} (hs : s.Countable)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
   MeasurableSet.bunionᵢ hs h
-#align measure_theory.null_measurable_set.bUnion MeasureTheory.NullMeasurableSet.bUnion
+#align measure_theory.null_measurable_set.bUnion MeasureTheory.NullMeasurableSet.bunionᵢ
+-/
 
+#print MeasureTheory.NullMeasurableSet.unionₛ /-
 protected theorem unionₛ {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
     NullMeasurableSet (⋃₀ s) μ := by
   rw [sUnion_eq_bUnion]
   exact MeasurableSet.bunionᵢ hs h
 #align measure_theory.null_measurable_set.sUnion MeasureTheory.NullMeasurableSet.unionₛ
+-/
 
+#print MeasureTheory.NullMeasurableSet.interᵢ /-
 protected theorem interᵢ {ι : Sort _} [Countable ι] {f : ι → Set α}
     (h : ∀ i, NullMeasurableSet (f i) μ) : NullMeasurableSet (⋂ i, f i) μ :=
   MeasurableSet.interᵢ h
 #align measure_theory.null_measurable_set.Inter MeasureTheory.NullMeasurableSet.interᵢ
+-/
 
-protected theorem bInter {f : β → Set α} {s : Set β} (hs : s.Countable)
+/- warning: measure_theory.null_measurable_set.bInter -> MeasureTheory.NullMeasurableSet.binterᵢ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : β -> (Set.{u1} α)} {s : Set.{u2} β}, (Set.Countable.{u2} β s) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (f b) μ)) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Set.interᵢ.{u1, succ u2} α β (fun (b : β) => Set.interᵢ.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b s) => f b))) μ)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} {f : β -> (Set.{u2} α)} {s : Set.{u1} β}, (Set.Countable.{u1} β s) -> (forall (b : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) -> (MeasureTheory.NullMeasurableSet.{u2} α m0 (f b) μ)) -> (MeasureTheory.NullMeasurableSet.{u2} α m0 (Set.interᵢ.{u2, succ u1} α β (fun (b : β) => Set.interᵢ.{u2, 0} α (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) b s) => f b))) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.binterᵢₓ'. -/
+protected theorem binterᵢ {f : β → Set α} {s : Set β} (hs : s.Countable)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
   MeasurableSet.binterᵢ hs h
-#align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.bInter
+#align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.binterᵢ
 
+#print MeasureTheory.NullMeasurableSet.interₛ /-
 protected theorem interₛ {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
     NullMeasurableSet (⋂₀ s) μ :=
   MeasurableSet.interₛ hs h
 #align measure_theory.null_measurable_set.sInter MeasureTheory.NullMeasurableSet.interₛ
+-/
 
+/- warning: measure_theory.null_measurable_set.union -> MeasureTheory.NullMeasurableSet.union is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t) μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.union MeasureTheory.NullMeasurableSet.unionₓ'. -/
 @[simp]
 protected theorem union (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s ∪ t) μ :=
   hs.union ht
 #align measure_theory.null_measurable_set.union MeasureTheory.NullMeasurableSet.union
 
+/- warning: measure_theory.null_measurable_set.union_null -> MeasureTheory.NullMeasurableSet.union_null is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t) μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.union_null MeasureTheory.NullMeasurableSet.union_nullₓ'. -/
 protected theorem union_null (hs : NullMeasurableSet s μ) (ht : μ t = 0) :
     NullMeasurableSet (s ∪ t) μ :=
   hs.union (of_null ht)
 #align measure_theory.null_measurable_set.union_null MeasureTheory.NullMeasurableSet.union_null
 
+/- warning: measure_theory.null_measurable_set.inter -> MeasureTheory.NullMeasurableSet.inter is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t) μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.inter MeasureTheory.NullMeasurableSet.interₓ'. -/
 @[simp]
 protected theorem inter (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s ∩ t) μ :=
   hs.inter ht
 #align measure_theory.null_measurable_set.inter MeasureTheory.NullMeasurableSet.inter
 
+/- warning: measure_theory.null_measurable_set.diff -> MeasureTheory.NullMeasurableSet.diff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t) μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.diff MeasureTheory.NullMeasurableSet.diffₓ'. -/
 @[simp]
 protected theorem diff (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s \ t) μ :=
   hs.diffₓ ht
 #align measure_theory.null_measurable_set.diff MeasureTheory.NullMeasurableSet.diff
 
+/- warning: measure_theory.null_measurable_set.disjointed -> MeasureTheory.NullMeasurableSet.disjointed is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Nat -> (Set.{u1} α)}, (forall (i : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) f n) μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {f : Nat -> (Set.{u1} α)}, (forall (i : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (forall (n : Nat), MeasureTheory.NullMeasurableSet.{u1} α m0 (disjointed.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) f n) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.disjointed MeasureTheory.NullMeasurableSet.disjointedₓ'. -/
 @[simp]
 protected theorem disjointed {f : ℕ → Set α} (h : ∀ i, NullMeasurableSet (f i) μ) (n) :
     NullMeasurableSet (disjointed f n) μ :=
   MeasurableSet.disjointed h n
 #align measure_theory.null_measurable_set.disjointed MeasureTheory.NullMeasurableSet.disjointed
 
+#print MeasureTheory.NullMeasurableSet.const /-
 @[simp]
 protected theorem const (p : Prop) : NullMeasurableSet { a : α | p } μ :=
   MeasurableSet.const p
 #align measure_theory.null_measurable_set.const MeasureTheory.NullMeasurableSet.const
+-/
 
 instance [MeasurableSingletonClass α] : MeasurableSingletonClass (NullMeasurableSpace α μ) :=
   ⟨fun x => (@measurableSet_singleton α _ _ x).NullMeasurableSet⟩
 
+#print MeasureTheory.NullMeasurableSet.insert /-
 protected theorem insert [MeasurableSingletonClass (NullMeasurableSpace α μ)]
     (hs : NullMeasurableSet s μ) (a : α) : NullMeasurableSet (insert a s) μ :=
   hs.insert a
 #align measure_theory.null_measurable_set.insert MeasureTheory.NullMeasurableSet.insert
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊇ » s) -/
+#print MeasureTheory.NullMeasurableSet.exists_measurable_superset_ae_eq /-
 theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _)(_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
   by
@@ -230,26 +325,43 @@ theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
   · have : to_measurable μ (s \ t) =ᵐ[μ] (∅ : Set α) := by simp [ae_le_set.1 hst.le]
     simpa only [union_empty] using hst.symm.union this
 #align measure_theory.null_measurable_set.exists_measurable_superset_ae_eq MeasureTheory.NullMeasurableSet.exists_measurable_superset_ae_eq
+-/
 
+#print MeasureTheory.NullMeasurableSet.toMeasurable_ae_eq /-
 theorem toMeasurable_ae_eq (h : NullMeasurableSet s μ) : toMeasurable μ s =ᵐ[μ] s :=
   by
   rw [to_measurable, dif_pos]
   exact h.exists_measurable_superset_ae_eq.some_spec.snd.2
 #align measure_theory.null_measurable_set.to_measurable_ae_eq MeasureTheory.NullMeasurableSet.toMeasurable_ae_eq
+-/
 
+/- warning: measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq -> MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (HasCompl.compl.{u1} (α -> Prop) (Pi.hasCompl.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => Prop.hasCompl)) (MeasureTheory.toMeasurable.{u1} α m0 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) s)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (HasCompl.compl.{u1} (α -> Prop) (Pi.hasCompl.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => Prop.hasCompl)) (MeasureTheory.toMeasurable.{u1} α m0 μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s))) s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eqₓ'. -/
 theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurable μ (sᶜ)ᶜ =ᵐ[μ] s :=
   by simpa only [compl_compl] using h.compl.to_measurable_ae_eq.compl
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+#print MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq /-
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _)(_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
   ⟨toMeasurable μ (sᶜ)ᶜ, compl_subset_comm.2 <| subset_toMeasurable _ _,
     (measurableSet_toMeasurable _ _).compl, h.compl_toMeasurable_compl_ae_eq⟩
 #align measure_theory.null_measurable_set.exists_measurable_subset_ae_eq MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq
+-/
 
 end NullMeasurableSet
 
+/- warning: measure_theory.exists_subordinate_pairwise_disjoint -> MeasureTheory.exists_subordinate_pairwise_disjoint is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {s : ι -> (Set.{u2} α)}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u2} α m0 (s i) μ) -> (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (MeasureTheory.AEDisjoint.{u2} α m0 μ) s)) -> (Exists.{max (succ u1) (succ u2)} (ι -> (Set.{u2} α)) (fun (t : ι -> (Set.{u2} α)) => And (forall (i : ι), HasSubset.Subset.{u2} (Set.{u2} α) (Set.hasSubset.{u2} α) (t i) (s i)) (And (forall (i : ι), Filter.EventuallyEq.{u2, 0} α Prop (MeasureTheory.Measure.ae.{u2} α m0 μ) (s i) (t i)) (And (forall (i : ι), MeasurableSet.{u2} α m0 (t i)) (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.completeBooleanAlgebra.{u2} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u2} (Set.{u2} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} (Set.{u2} α) (Set.booleanAlgebra.{u2} α)))) t))))))
+but is expected to have type
+  forall {ι : Type.{u2}} {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : Countable.{succ u2} ι] {s : ι -> (Set.{u1} α)}, (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (s i) μ) -> (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) s)) -> (Exists.{max (succ u2) (succ u1)} (ι -> (Set.{u1} α)) (fun (t : ι -> (Set.{u1} α)) => And (forall (i : ι), HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (t i) (s i)) (And (forall (i : ι), Filter.EventuallyEq.{u1, 0} α Prop (MeasureTheory.Measure.ae.{u1} α m0 μ) (s i) (t i)) (And (forall (i : ι), MeasurableSet.{u1} α m0 (t i)) (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) t))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_subordinate_pairwise_disjoint MeasureTheory.exists_subordinate_pairwise_disjointₓ'. -/
 /-- If `sᵢ` is a countable family of (null) measurable pairwise `μ`-a.e. disjoint sets, then there
 exists a subordinate family `tᵢ ⊆ sᵢ` of measurable pairwise disjoint sets such that
 `tᵢ =ᵐ[μ] sᵢ`. -/
@@ -268,6 +380,12 @@ theorem exists_subordinate_pairwise_disjoint [Countable ι] {s : ι → Set α}
         h.mono (diff_subset_diff_left (ht_sub i)) (diff_subset_diff_left (ht_sub j))⟩
 #align measure_theory.exists_subordinate_pairwise_disjoint MeasureTheory.exists_subordinate_pairwise_disjoint
 
+/- warning: measure_theory.measure_Union -> MeasureTheory.measure_unionᵢ is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.completeBooleanAlgebra.{u2} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u2} (Set.{u2} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u2} (Set.{u2} α) (Set.booleanAlgebra.{u2} α)))) f)) -> (forall (i : ι), MeasurableSet.{u2} α m0 (f i)) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (f i))))
+but is expected to have type
+  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (Disjoint.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))) (BoundedOrder.toOrderBot.{u2} (Set.{u2} α) (Preorder.toLE.{u2} (Set.{u2} α) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (OmegaCompletePartialOrder.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.instOmegaCompletePartialOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α)))))))) (CompleteLattice.toBoundedOrder.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) f)) -> (forall (i : ι), MeasurableSet.{u2} α m0 (f i)) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m0 μ) (f i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union MeasureTheory.measure_unionᵢₓ'. -/
 theorem measure_unionᵢ {m0 : MeasurableSpace α} {μ : Measure α} [Countable ι] {f : ι → Set α}
     (hn : Pairwise (Disjoint on f)) (h : ∀ i, MeasurableSet (f i)) : μ (⋃ i, f i) = ∑' i, μ (f i) :=
   by
@@ -278,7 +396,13 @@ theorem measure_unionᵢ {m0 : MeasurableSpace α} {μ : Measure α} [Countable
   · exact μ.m_Union
 #align measure_theory.measure_Union MeasureTheory.measure_unionᵢ
 
-theorem measure_Union₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AEDisjoint μ on f))
+/- warning: measure_theory.measure_Union₀ -> MeasureTheory.measure_unionᵢ₀ is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u1}} {α : Type.{u2}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : Countable.{succ u1} ι] {f : ι -> (Set.{u2} α)}, (Pairwise.{u1} ι (Function.onFun.{succ u1, succ u2, 1} ι (Set.{u2} α) Prop (MeasureTheory.AEDisjoint.{u2} α m0 μ) f)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u2} α m0 (f i) μ) -> (Eq.{1} ENNReal (coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (Set.unionᵢ.{u2, succ u1} α ι (fun (i : ι) => f i))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => coeFn.{succ u2, succ u2} (MeasureTheory.Measure.{u2} α m0) (fun (_x : MeasureTheory.Measure.{u2} α m0) => (Set.{u2} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u2} α m0) μ (f i))))
+but is expected to have type
+  forall {ι : Type.{u2}} {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : Countable.{succ u2} ι] {f : ι -> (Set.{u1} α)}, (Pairwise.{u2} ι (Function.onFun.{succ u2, succ u1, 1} ι (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m0 μ) f)) -> (forall (i : ι), MeasureTheory.NullMeasurableSet.{u1} α m0 (f i) μ) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.unionᵢ.{u1, succ u2} α ι (fun (i : ι) => f i))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (f i))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_Union₀ MeasureTheory.measure_unionᵢ₀ₓ'. -/
+theorem measure_unionᵢ₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AEDisjoint μ on f))
     (h : ∀ i, NullMeasurableSet (f i) μ) : μ (⋃ i, f i) = ∑' i, μ (f i) :=
   by
   rcases exists_subordinate_pairwise_disjoint h hd with ⟨t, ht_sub, ht_eq, htm, htd⟩
@@ -287,8 +411,14 @@ theorem measure_Union₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AEDi
     _ = ∑' i, μ (t i) := (measure_Union htd htm)
     _ = ∑' i, μ (f i) := tsum_congr fun i => measure_congr (ht_eq _).symm
     
-#align measure_theory.measure_Union₀ MeasureTheory.measure_Union₀
-
+#align measure_theory.measure_Union₀ MeasureTheory.measure_unionᵢ₀
+
+/- warning: measure_theory.measure_union₀_aux -> MeasureTheory.measure_union₀_aux is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union₀_aux MeasureTheory.measure_union₀_auxₓ'. -/
 theorem measure_union₀_aux (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ)
     (hd : AEDisjoint μ s t) : μ (s ∪ t) = μ s + μ t :=
   by
@@ -296,6 +426,12 @@ theorem measure_union₀_aux (hs : NullMeasurableSet s μ) (ht : NullMeasurableS
   exacts[(pairwise_on_bool ae_disjoint.symmetric).2 hd, fun b => Bool.casesOn b ht hs]
 #align measure_theory.measure_union₀_aux MeasureTheory.measure_union₀_aux
 
+/- warning: measure_theory.measure_inter_add_diff₀ -> MeasureTheory.measure_inter_add_diff₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {t : Set.{u1} α} (s : Set.{u1} α), (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s t))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {t : Set.{u1} α} (s : Set.{u1} α), (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s t))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_inter_add_diff₀ MeasureTheory.measure_inter_add_diff₀ₓ'. -/
 /-- A null measurable set `t` is Carathéodory measurable: for any `s`, we have
 `μ (s ∩ t) + μ (s \ t) = μ s`. -/
 theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
@@ -320,25 +456,55 @@ theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
       
 #align measure_theory.measure_inter_add_diff₀ MeasureTheory.measure_inter_add_diff₀
 
+/- warning: measure_theory.measure_union_add_inter₀ -> MeasureTheory.measure_union_add_inter₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {t : Set.{u1} α} (s : Set.{u1} α), (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {t : Set.{u1} α} (s : Set.{u1} α), (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_add_inter₀ MeasureTheory.measure_union_add_inter₀ₓ'. -/
 theorem measure_union_add_inter₀ (s : Set α) (ht : NullMeasurableSet t μ) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by
   rw [← measure_inter_add_diff₀ (s ∪ t) ht, union_inter_cancel_right, union_diff_right, ←
     measure_inter_add_diff₀ s ht, add_comm, ← add_assoc, add_right_comm]
 #align measure_theory.measure_union_add_inter₀ MeasureTheory.measure_union_add_inter₀
 
+/- warning: measure_theory.measure_union_add_inter₀' -> MeasureTheory.measure_union_add_inter₀' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (forall (t : Set.{u1} α), Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union_add_inter₀' MeasureTheory.measure_union_add_inter₀'ₓ'. -/
 theorem measure_union_add_inter₀' (hs : NullMeasurableSet s μ) (t : Set α) :
     μ (s ∪ t) + μ (s ∩ t) = μ s + μ t := by
   rw [union_comm, inter_comm, measure_union_add_inter₀ t hs, add_comm]
 #align measure_theory.measure_union_add_inter₀' MeasureTheory.measure_union_add_inter₀'
 
+/- warning: measure_theory.measure_union₀ -> MeasureTheory.measure_union₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 t μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union₀ MeasureTheory.measure_union₀ₓ'. -/
 theorem measure_union₀ (ht : NullMeasurableSet t μ) (hd : AEDisjoint μ s t) :
     μ (s ∪ t) = μ s + μ t := by rw [← measure_union_add_inter₀ s ht, hd.eq, add_zero]
 #align measure_theory.measure_union₀ MeasureTheory.measure_union₀
 
+/- warning: measure_theory.measure_union₀' -> MeasureTheory.measure_union₀' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ t)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} {t : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (MeasureTheory.AEDisjoint.{u1} α m0 μ s t) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_union₀' MeasureTheory.measure_union₀'ₓ'. -/
 theorem measure_union₀' (hs : NullMeasurableSet s μ) (hd : AEDisjoint μ s t) :
     μ (s ∪ t) = μ s + μ t := by rw [union_comm, measure_union₀ hs hd.symm, add_comm]
 #align measure_theory.measure_union₀' MeasureTheory.measure_union₀'
 
+/- warning: measure_theory.measure_add_measure_compl₀ -> MeasureTheory.measure_add_measure_compl₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ (Set.univ.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m0 s μ) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) s))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) (Set.univ.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure_add_measure_compl₀ MeasureTheory.measure_add_measure_compl₀ₓ'. -/
 theorem measure_add_measure_compl₀ {s : Set α} (hs : NullMeasurableSet s μ) :
     μ s + μ (sᶜ) = μ univ := by rw [← measure_union₀' hs ae_disjoint_compl_right, union_compl_self]
 #align measure_theory.measure_add_measure_compl₀ MeasureTheory.measure_add_measure_compl₀
@@ -347,63 +513,87 @@ section MeasurableSingletonClass
 
 variable [MeasurableSingletonClass (NullMeasurableSpace α μ)]
 
+#print MeasureTheory.nullMeasurableSet_singleton /-
 theorem nullMeasurableSet_singleton (x : α) : NullMeasurableSet {x} μ :=
   measurableSet_singleton x
 #align measure_theory.null_measurable_set_singleton MeasureTheory.nullMeasurableSet_singleton
+-/
 
+#print MeasureTheory.nullMeasurableSet_insert /-
 @[simp]
 theorem nullMeasurableSet_insert {a : α} {s : Set α} :
     NullMeasurableSet (insert a s) μ ↔ NullMeasurableSet s μ :=
   measurableSet_insert
 #align measure_theory.null_measurable_set_insert MeasureTheory.nullMeasurableSet_insert
+-/
 
+#print MeasureTheory.nullMeasurableSet_eq /-
 theorem nullMeasurableSet_eq {a : α} : NullMeasurableSet { x | x = a } μ :=
   nullMeasurableSet_singleton a
 #align measure_theory.null_measurable_set_eq MeasureTheory.nullMeasurableSet_eq
+-/
 
+#print Set.Finite.nullMeasurableSet /-
 protected theorem Set.Finite.nullMeasurableSet (hs : s.Finite) : NullMeasurableSet s μ :=
   Finite.measurableSet hs
 #align set.finite.null_measurable_set Set.Finite.nullMeasurableSet
+-/
 
+#print Finset.nullMeasurableSet /-
 protected theorem Finset.nullMeasurableSet (s : Finset α) : NullMeasurableSet (↑s) μ :=
   Finset.measurableSet s
 #align finset.null_measurable_set Finset.nullMeasurableSet
+-/
 
 end MeasurableSingletonClass
 
-theorem Set.Finite.nullMeasurableSet_bUnion {f : ι → Set α} {s : Set ι} (hs : s.Finite)
+#print Set.Finite.nullMeasurableSet_bunionᵢ /-
+theorem Set.Finite.nullMeasurableSet_bunionᵢ {f : ι → Set α} {s : Set ι} (hs : s.Finite)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
   Finite.measurableSet_bunionᵢ hs h
-#align set.finite.null_measurable_set_bUnion Set.Finite.nullMeasurableSet_bUnion
+#align set.finite.null_measurable_set_bUnion Set.Finite.nullMeasurableSet_bunionᵢ
+-/
 
-theorem Finset.nullMeasurableSet_bUnion {f : ι → Set α} (s : Finset ι)
+#print Finset.nullMeasurableSet_bunionᵢ /-
+theorem Finset.nullMeasurableSet_bunionᵢ {f : ι → Set α} (s : Finset ι)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
   Finset.measurableSet_bunionᵢ s h
-#align finset.null_measurable_set_bUnion Finset.nullMeasurableSet_bUnion
+#align finset.null_measurable_set_bUnion Finset.nullMeasurableSet_bunionᵢ
+-/
 
+#print Set.Finite.nullMeasurableSet_unionₛ /-
 theorem Set.Finite.nullMeasurableSet_unionₛ {s : Set (Set α)} (hs : s.Finite)
     (h : ∀ t ∈ s, NullMeasurableSet t μ) : NullMeasurableSet (⋃₀ s) μ :=
   Finite.measurableSet_unionₛ hs h
 #align set.finite.null_measurable_set_sUnion Set.Finite.nullMeasurableSet_unionₛ
+-/
 
-theorem Set.Finite.nullMeasurableSet_bInter {f : ι → Set α} {s : Set ι} (hs : s.Finite)
+#print Set.Finite.nullMeasurableSet_binterᵢ /-
+theorem Set.Finite.nullMeasurableSet_binterᵢ {f : ι → Set α} {s : Set ι} (hs : s.Finite)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
   Finite.measurableSet_binterᵢ hs h
-#align set.finite.null_measurable_set_bInter Set.Finite.nullMeasurableSet_bInter
+#align set.finite.null_measurable_set_bInter Set.Finite.nullMeasurableSet_binterᵢ
+-/
 
-theorem Finset.nullMeasurableSet_bInter {f : ι → Set α} (s : Finset ι)
+#print Finset.nullMeasurableSet_binterᵢ /-
+theorem Finset.nullMeasurableSet_binterᵢ {f : ι → Set α} (s : Finset ι)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
-  s.finite_toSet.nullMeasurableSet_bInter h
-#align finset.null_measurable_set_bInter Finset.nullMeasurableSet_bInter
+  s.finite_toSet.nullMeasurableSet_binterᵢ h
+#align finset.null_measurable_set_bInter Finset.nullMeasurableSet_binterᵢ
+-/
 
+#print Set.Finite.nullMeasurableSet_interₛ /-
 theorem Set.Finite.nullMeasurableSet_interₛ {s : Set (Set α)} (hs : s.Finite)
     (h : ∀ t ∈ s, NullMeasurableSet t μ) : NullMeasurableSet (⋂₀ s) μ :=
   NullMeasurableSet.interₛ hs.Countable h
 #align set.finite.null_measurable_set_sInter Set.Finite.nullMeasurableSet_interₛ
+-/
 
-theorem nullMeasurableSet_toMeasurable : NullMeasurableSet (toMeasurable μ s) μ :=
+#print MeasureTheory.nullMeasurableSet_to_measurable /-
+theorem nullMeasurableSet_to_measurable : NullMeasurableSet (toMeasurable μ s) μ :=
   (measurableSet_toMeasurable _ _).NullMeasurableSet
-#align measure_theory.null_measurable_set_to_measurable MeasureTheory.nullMeasurableSet_toMeasurable
+#align measure_theory.null_measurable_set_to_measurable MeasureTheory.nullMeasurableSet_to_measurable
+-/
 
 end
 
@@ -411,27 +601,53 @@ section NullMeasurable
 
 variable [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] {f : α → β} {μ : Measure α}
 
+#print MeasureTheory.NullMeasurable /-
 /-- A function `f : α → β` is null measurable if the preimage of a measurable set is a null
 measurable set. -/
 def NullMeasurable (f : α → β) (μ : Measure α := by exact MeasureTheory.MeasureSpace.volume) :
     Prop :=
   ∀ ⦃s : Set β⦄, MeasurableSet s → NullMeasurableSet (f ⁻¹' s) μ
 #align measure_theory.null_measurable MeasureTheory.NullMeasurable
+-/
 
+/- warning: measurable.null_measurable -> Measurable.nullMeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α _inst_1}, (Measurable.{u1, u2} α β _inst_1 _inst_2 f) -> (MeasureTheory.NullMeasurable.{u1, u2} α β _inst_1 _inst_2 f μ)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {f : α -> β} {μ : MeasureTheory.Measure.{u2} α _inst_1}, (Measurable.{u2, u1} α β _inst_1 _inst_2 f) -> (MeasureTheory.NullMeasurable.{u2, u1} α β _inst_1 _inst_2 f μ)
+Case conversion may be inaccurate. Consider using '#align measurable.null_measurable Measurable.nullMeasurableₓ'. -/
 protected theorem Measurable.nullMeasurable (h : Measurable f) : NullMeasurable f μ := fun s hs =>
   (h hs).NullMeasurableSet
 #align measurable.null_measurable Measurable.nullMeasurable
 
+/- warning: measure_theory.null_measurable.measurable' -> MeasureTheory.NullMeasurable.measurable' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α _inst_1}, (MeasureTheory.NullMeasurable.{u1, u2} α β _inst_1 _inst_2 f μ) -> (Measurable.{u1, u2} (MeasureTheory.NullMeasurableSpace.{u1} α _inst_1 μ) β (MeasureTheory.NullMeasurableSpace.instMeasurableSpace.{u1} α _inst_1 μ) _inst_2 f)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {f : α -> β} {μ : MeasureTheory.Measure.{u2} α _inst_1}, (MeasureTheory.NullMeasurable.{u2, u1} α β _inst_1 _inst_2 f μ) -> (Measurable.{u2, u1} (MeasureTheory.NullMeasurableSpace.{u2} α _inst_1 μ) β (MeasureTheory.NullMeasurableSpace.instMeasurableSpace.{u2} α _inst_1 μ) _inst_2 f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable.measurable' MeasureTheory.NullMeasurable.measurable'ₓ'. -/
 protected theorem NullMeasurable.measurable' (h : NullMeasurable f μ) :
     @Measurable (NullMeasurableSpace α μ) β _ _ f :=
   h
 #align measure_theory.null_measurable.measurable' MeasureTheory.NullMeasurable.measurable'
 
+/- warning: measure_theory.measurable.comp_null_measurable -> MeasureTheory.Measurable.comp_nullMeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] [_inst_3 : MeasurableSpace.{u3} γ] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α _inst_1} {g : β -> γ}, (Measurable.{u2, u3} β γ _inst_2 _inst_3 g) -> (MeasureTheory.NullMeasurable.{u1, u2} α β _inst_1 _inst_2 f μ) -> (MeasureTheory.NullMeasurable.{u1, u3} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) μ)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u3} β] [_inst_3 : MeasurableSpace.{u2} γ] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α _inst_1} {g : β -> γ}, (Measurable.{u3, u2} β γ _inst_2 _inst_3 g) -> (MeasureTheory.NullMeasurable.{u1, u3} α β _inst_1 _inst_2 f μ) -> (MeasureTheory.NullMeasurable.{u1, u2} α γ _inst_1 _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measurable.comp_null_measurable MeasureTheory.Measurable.comp_nullMeasurableₓ'. -/
 theorem Measurable.comp_nullMeasurable {g : β → γ} (hg : Measurable g) (hf : NullMeasurable f μ) :
     NullMeasurable (g ∘ f) μ :=
   hg.comp hf
 #align measure_theory.measurable.comp_null_measurable MeasureTheory.Measurable.comp_nullMeasurable
 
+/- warning: measure_theory.null_measurable.congr -> MeasureTheory.NullMeasurable.congr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {f : α -> β} {μ : MeasureTheory.Measure.{u1} α _inst_1} {g : α -> β}, (MeasureTheory.NullMeasurable.{u1, u2} α β _inst_1 _inst_2 f μ) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f g) -> (MeasureTheory.NullMeasurable.{u1, u2} α β _inst_1 _inst_2 g μ)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {f : α -> β} {μ : MeasureTheory.Measure.{u2} α _inst_1} {g : α -> β}, (MeasureTheory.NullMeasurable.{u2, u1} α β _inst_1 _inst_2 f μ) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) f g) -> (MeasureTheory.NullMeasurable.{u2, u1} α β _inst_1 _inst_2 g μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable.congr MeasureTheory.NullMeasurable.congrₓ'. -/
 theorem NullMeasurable.congr {g : α → β} (hf : NullMeasurable f μ) (hg : f =ᵐ[μ] g) :
     NullMeasurable g μ := fun s hs =>
   (hf hs).congr <| eventuallyEq_set.2 <| hg.mono fun x hx => by rw [mem_preimage, mem_preimage, hx]
@@ -441,6 +657,7 @@ end NullMeasurable
 
 section IsComplete
 
+#print MeasureTheory.Measure.IsComplete /-
 /-- A measure is complete if every null set is also measurable.
   A null set is a subset of a measurable set with measure `0`.
   Since every measure is defined as a special case of an outer measure, we can more simply state
@@ -448,32 +665,65 @@ section IsComplete
 class Measure.IsComplete {_ : MeasurableSpace α} (μ : Measure α) : Prop where
   out' : ∀ s, μ s = 0 → MeasurableSet s
 #align measure_theory.measure.is_complete MeasureTheory.Measure.IsComplete
+-/
 
 variable {m0 : MeasurableSpace α} {μ : Measure α} {s t : Set α}
 
+/- warning: measure_theory.measure.is_complete_iff -> MeasureTheory.Measure.isComplete_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (MeasureTheory.Measure.IsComplete.{u1} α m0 μ) (forall (s : Set.{u1} α), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasurableSet.{u1} α m0 s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, Iff (MeasureTheory.Measure.IsComplete.{u1} α m0 μ) (forall (s : Set.{u1} α), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasurableSet.{u1} α m0 s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_complete_iff MeasureTheory.Measure.isComplete_iffₓ'. -/
 theorem Measure.isComplete_iff : μ.IsComplete ↔ ∀ s, μ s = 0 → MeasurableSet s :=
   ⟨fun h => h.1, fun h => ⟨h⟩⟩
 #align measure_theory.measure.is_complete_iff MeasureTheory.Measure.isComplete_iff
 
+/- warning: measure_theory.measure.is_complete.out -> MeasureTheory.Measure.IsComplete.out is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.IsComplete.{u1} α m0 μ) -> (forall (s : Set.{u1} α), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasurableSet.{u1} α m0 s))
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0}, (MeasureTheory.Measure.IsComplete.{u1} α m0 μ) -> (forall (s : Set.{u1} α), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasurableSet.{u1} α m0 s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_complete.out MeasureTheory.Measure.IsComplete.outₓ'. -/
 theorem Measure.IsComplete.out (h : μ.IsComplete) : ∀ s, μ s = 0 → MeasurableSet s :=
   h.1
 #align measure_theory.measure.is_complete.out MeasureTheory.Measure.IsComplete.out
 
+/- warning: measure_theory.measurable_set_of_null -> MeasureTheory.measurableSet_of_null is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_1 : MeasureTheory.Measure.IsComplete.{u1} α m0 μ], (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasurableSet.{u1} α m0 s)
+but is expected to have type
+  forall {α : Type.{u1}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} {s : Set.{u1} α} [_inst_1 : MeasureTheory.Measure.IsComplete.{u1} α m0 μ], (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasurableSet.{u1} α m0 s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measurable_set_of_null MeasureTheory.measurableSet_of_nullₓ'. -/
 theorem measurableSet_of_null [μ.IsComplete] (hs : μ s = 0) : MeasurableSet s :=
   MeasureTheory.Measure.IsComplete.out' s hs
 #align measure_theory.measurable_set_of_null MeasureTheory.measurableSet_of_null
 
+#print MeasureTheory.NullMeasurableSet.measurable_of_complete /-
 theorem NullMeasurableSet.measurable_of_complete (hs : NullMeasurableSet s μ) [μ.IsComplete] :
     MeasurableSet s :=
   diff_diff_cancel_left (subset_toMeasurable μ s) ▸
     (measurableSet_toMeasurable _ _).diffₓ
       (measurableSet_of_null (ae_le_set.1 hs.toMeasurable_ae_eq.le))
 #align measure_theory.null_measurable_set.measurable_of_complete MeasureTheory.NullMeasurableSet.measurable_of_complete
+-/
 
+/- warning: measure_theory.null_measurable.measurable_of_complete -> MeasureTheory.NullMeasurable.measurable_of_complete is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} [_inst_1 : MeasureTheory.Measure.IsComplete.{u1} α m0 μ] {m1 : MeasurableSpace.{u2} β} {f : α -> β}, (MeasureTheory.NullMeasurable.{u1, u2} α β m0 m1 f μ) -> (Measurable.{u1, u2} α β m0 m1 f)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m0 : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m0} [_inst_1 : MeasureTheory.Measure.IsComplete.{u2} α m0 μ] {m1 : MeasurableSpace.{u1} β} {f : α -> β}, (MeasureTheory.NullMeasurable.{u2, u1} α β m0 m1 f μ) -> (Measurable.{u2, u1} α β m0 m1 f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable.measurable_of_complete MeasureTheory.NullMeasurable.measurable_of_completeₓ'. -/
 theorem NullMeasurable.measurable_of_complete [μ.IsComplete] {m1 : MeasurableSpace β} {f : α → β}
     (hf : NullMeasurable f μ) : Measurable f := fun s hs => (hf hs).measurable_of_complete
 #align measure_theory.null_measurable.measurable_of_complete MeasureTheory.NullMeasurable.measurable_of_complete
 
+/- warning: measurable.congr_ae -> Measurable.congr_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSpace.{u2} β] {μ : MeasureTheory.Measure.{u1} α _inst_1} [hμ : MeasureTheory.Measure.IsComplete.{u1} α _inst_1 μ] {f : α -> β} {g : α -> β}, (Measurable.{u1, u2} α β _inst_1 _inst_2 f) -> (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f g) -> (Measurable.{u1, u2} α β _inst_1 _inst_2 g)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] [_inst_2 : MeasurableSpace.{u1} β] {μ : MeasureTheory.Measure.{u2} α _inst_1} [hμ : MeasureTheory.Measure.IsComplete.{u2} α _inst_1 μ] {f : α -> β} {g : α -> β}, (Measurable.{u2, u1} α β _inst_1 _inst_2 f) -> (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) f g) -> (Measurable.{u2, u1} α β _inst_1 _inst_2 g)
+Case conversion may be inaccurate. Consider using '#align measurable.congr_ae Measurable.congr_aeₓ'. -/
 theorem Measurable.congr_ae {α β} [MeasurableSpace α] [MeasurableSpace β] {μ : Measure α}
     [hμ : μ.IsComplete] {f g : α → β} (hf : Measurable f) (hfg : f =ᵐ[μ] g) : Measurable g :=
   (hf.NullMeasurable.congr hfg).measurable_of_complete
@@ -481,32 +731,40 @@ theorem Measurable.congr_ae {α β} [MeasurableSpace α] [MeasurableSpace β] {
 
 namespace Measure
 
+#print MeasureTheory.Measure.completion /-
 /-- Given a measure we can complete it to a (complete) measure on all null measurable sets. -/
 def completion {_ : MeasurableSpace α} (μ : Measure α) :
     @MeasureTheory.Measure (NullMeasurableSpace α μ) _
     where
   toOuterMeasure := μ.toOuterMeasure
-  m_unionᵢ s hs hd := measure_Union₀ (hd.mono fun i j h => h.AEDisjoint) hs
+  m_unionᵢ s hs hd := measure_unionᵢ₀ (hd.mono fun i j h => h.AEDisjoint) hs
   trimmed := by
     refine' le_antisymm (fun s => _) (outer_measure.le_trim _)
     rw [outer_measure.trim_eq_infi]; simp only [to_outer_measure_apply]
     refine' (infᵢ₂_mono _).trans_eq (measure_eq_infi _).symm
     exact fun t ht => infᵢ_mono' fun h => ⟨h.NullMeasurableSet, le_rfl⟩
 #align measure_theory.measure.completion MeasureTheory.Measure.completion
+-/
 
+#print MeasureTheory.Measure.completion.isComplete /-
 instance completion.isComplete {m : MeasurableSpace α} (μ : Measure α) : μ.Completion.IsComplete :=
   ⟨fun z hz => NullMeasurableSet.of_null hz⟩
 #align measure_theory.measure.completion.is_complete MeasureTheory.Measure.completion.isComplete
+-/
 
+#print MeasureTheory.Measure.coe_completion /-
 @[simp]
 theorem coe_completion {_ : MeasurableSpace α} (μ : Measure α) : ⇑μ.Completion = μ :=
   rfl
 #align measure_theory.measure.coe_completion MeasureTheory.Measure.coe_completion
+-/
 
+#print MeasureTheory.Measure.completion_apply /-
 theorem completion_apply {_ : MeasurableSpace α} (μ : Measure α) (s : Set α) :
     μ.Completion s = μ s :=
   rfl
 #align measure_theory.measure.completion_apply MeasureTheory.Measure.completion_apply
+-/
 
 end Measure
 
Diff
@@ -254,7 +254,7 @@ end NullMeasurableSet
 exists a subordinate family `tᵢ ⊆ sᵢ` of measurable pairwise disjoint sets such that
 `tᵢ =ᵐ[μ] sᵢ`. -/
 theorem exists_subordinate_pairwise_disjoint [Countable ι] {s : ι → Set α}
-    (h : ∀ i, NullMeasurableSet (s i) μ) (hd : Pairwise (AeDisjoint μ on s)) :
+    (h : ∀ i, NullMeasurableSet (s i) μ) (hd : Pairwise (AEDisjoint μ on s)) :
     ∃ t : ι → Set α,
       (∀ i, t i ⊆ s i) ∧
         (∀ i, s i =ᵐ[μ] t i) ∧ (∀ i, MeasurableSet (t i)) ∧ Pairwise (Disjoint on t) :=
@@ -278,7 +278,7 @@ theorem measure_unionᵢ {m0 : MeasurableSpace α} {μ : Measure α} [Countable
   · exact μ.m_Union
 #align measure_theory.measure_Union MeasureTheory.measure_unionᵢ
 
-theorem measure_Union₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AeDisjoint μ on f))
+theorem measure_Union₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AEDisjoint μ on f))
     (h : ∀ i, NullMeasurableSet (f i) μ) : μ (⋃ i, f i) = ∑' i, μ (f i) :=
   by
   rcases exists_subordinate_pairwise_disjoint h hd with ⟨t, ht_sub, ht_eq, htm, htd⟩
@@ -290,7 +290,7 @@ theorem measure_Union₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AeDi
 #align measure_theory.measure_Union₀ MeasureTheory.measure_Union₀
 
 theorem measure_union₀_aux (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ)
-    (hd : AeDisjoint μ s t) : μ (s ∪ t) = μ s + μ t :=
+    (hd : AEDisjoint μ s t) : μ (s ∪ t) = μ s + μ t :=
   by
   rw [union_eq_Union, measure_Union₀, tsum_fintype, Fintype.sum_bool, cond, cond]
   exacts[(pairwise_on_bool ae_disjoint.symmetric).2 hd, fun b => Bool.casesOn b ht hs]
@@ -309,7 +309,7 @@ theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
           (measure_mono <| diff_subset_diff_left hsub)
       _ = μ (s' ∩ t ∪ s' \ t) :=
         (measure_union₀_aux (hs'm.inter ht) (hs'm.diff ht) <|
-            (@disjoint_inf_sdiff _ s' t _).AeDisjoint).symm
+            (@disjoint_inf_sdiff _ s' t _).AEDisjoint).symm
       _ = μ s' := (congr_arg μ (inter_union_diff _ _))
       _ = μ s := hs'
       
@@ -331,11 +331,11 @@ theorem measure_union_add_inter₀' (hs : NullMeasurableSet s μ) (t : Set α) :
   rw [union_comm, inter_comm, measure_union_add_inter₀ t hs, add_comm]
 #align measure_theory.measure_union_add_inter₀' MeasureTheory.measure_union_add_inter₀'
 
-theorem measure_union₀ (ht : NullMeasurableSet t μ) (hd : AeDisjoint μ s t) :
+theorem measure_union₀ (ht : NullMeasurableSet t μ) (hd : AEDisjoint μ s t) :
     μ (s ∪ t) = μ s + μ t := by rw [← measure_union_add_inter₀ s ht, hd.eq, add_zero]
 #align measure_theory.measure_union₀ MeasureTheory.measure_union₀
 
-theorem measure_union₀' (hs : NullMeasurableSet s μ) (hd : AeDisjoint μ s t) :
+theorem measure_union₀' (hs : NullMeasurableSet s μ) (hd : AEDisjoint μ s t) :
     μ (s ∪ t) = μ s + μ t := by rw [union_comm, measure_union₀ hs hd.symm, add_comm]
 #align measure_theory.measure_union₀' MeasureTheory.measure_union₀'
 
@@ -486,7 +486,7 @@ def completion {_ : MeasurableSpace α} (μ : Measure α) :
     @MeasureTheory.Measure (NullMeasurableSpace α μ) _
     where
   toOuterMeasure := μ.toOuterMeasure
-  m_unionᵢ s hs hd := measure_Union₀ (hd.mono fun i j h => h.AeDisjoint) hs
+  m_unionᵢ s hs hd := measure_Union₀ (hd.mono fun i j h => h.AEDisjoint) hs
   trimmed := by
     refine' le_antisymm (fun s => _) (outer_measure.le_trim _)
     rw [outer_measure.trim_eq_infi]; simp only [to_outer_measure_apply]
Diff
@@ -104,28 +104,28 @@ theorem MeasurableSet.nullMeasurableSet (h : MeasurableSet s) : NullMeasurableSe
 #align measurable_set.null_measurable_set MeasurableSet.nullMeasurableSet
 
 @[simp]
-theorem nullMeasurableSetEmpty : NullMeasurableSet ∅ μ :=
+theorem nullMeasurableSet_empty : NullMeasurableSet ∅ μ :=
   MeasurableSet.empty
-#align measure_theory.null_measurable_set_empty MeasureTheory.nullMeasurableSetEmpty
+#align measure_theory.null_measurable_set_empty MeasureTheory.nullMeasurableSet_empty
 
 @[simp]
-theorem nullMeasurableSetUniv : NullMeasurableSet univ μ :=
+theorem nullMeasurableSet_univ : NullMeasurableSet univ μ :=
   MeasurableSet.univ
-#align measure_theory.null_measurable_set_univ MeasureTheory.nullMeasurableSetUniv
+#align measure_theory.null_measurable_set_univ MeasureTheory.nullMeasurableSet_univ
 
 namespace NullMeasurableSet
 
-theorem ofNull (h : μ s = 0) : NullMeasurableSet s μ :=
+theorem of_null (h : μ s = 0) : NullMeasurableSet s μ :=
   ⟨∅, MeasurableSet.empty, ae_eq_empty.2 h⟩
-#align measure_theory.null_measurable_set.of_null MeasureTheory.NullMeasurableSet.ofNull
+#align measure_theory.null_measurable_set.of_null MeasureTheory.NullMeasurableSet.of_null
 
 theorem compl (h : NullMeasurableSet s μ) : NullMeasurableSet (sᶜ) μ :=
   h.compl
 #align measure_theory.null_measurable_set.compl MeasureTheory.NullMeasurableSet.compl
 
-theorem ofCompl (h : NullMeasurableSet (sᶜ) μ) : NullMeasurableSet s μ :=
+theorem of_compl (h : NullMeasurableSet (sᶜ) μ) : NullMeasurableSet s μ :=
   h.ofCompl
-#align measure_theory.null_measurable_set.of_compl MeasureTheory.NullMeasurableSet.ofCompl
+#align measure_theory.null_measurable_set.of_compl MeasureTheory.NullMeasurableSet.of_compl
 
 @[simp]
 theorem compl_iff : NullMeasurableSet (sᶜ) μ ↔ NullMeasurableSet s μ :=
@@ -133,76 +133,62 @@ theorem compl_iff : NullMeasurableSet (sᶜ) μ ↔ NullMeasurableSet s μ :=
 #align measure_theory.null_measurable_set.compl_iff MeasureTheory.NullMeasurableSet.compl_iff
 
 @[nontriviality]
-theorem ofSubsingleton [Subsingleton α] : NullMeasurableSet s μ :=
+theorem of_subsingleton [Subsingleton α] : NullMeasurableSet s μ :=
   Subsingleton.measurableSet
-#align measure_theory.null_measurable_set.of_subsingleton MeasureTheory.NullMeasurableSet.ofSubsingleton
+#align measure_theory.null_measurable_set.of_subsingleton MeasureTheory.NullMeasurableSet.of_subsingleton
 
 protected theorem congr (hs : NullMeasurableSet s μ) (h : s =ᵐ[μ] t) : NullMeasurableSet t μ :=
   let ⟨s', hm, hs'⟩ := hs
   ⟨s', hm, h.symm.trans hs'⟩
 #align measure_theory.null_measurable_set.congr MeasureTheory.NullMeasurableSet.congr
 
-protected theorem union {ι : Sort _} [Countable ι] {s : ι → Set α}
+protected theorem unionᵢ {ι : Sort _} [Countable ι] {s : ι → Set α}
     (h : ∀ i, NullMeasurableSet (s i) μ) : NullMeasurableSet (⋃ i, s i) μ :=
   MeasurableSet.unionᵢ h
-#align measure_theory.null_measurable_set.Union MeasureTheory.NullMeasurableSet.union
+#align measure_theory.null_measurable_set.Union MeasureTheory.NullMeasurableSet.unionᵢ
 
-protected theorem bUnionDecode₂ [Encodable ι] ⦃f : ι → Set α⦄ (h : ∀ i, NullMeasurableSet (f i) μ)
+protected theorem bUnion_decode₂ [Encodable ι] ⦃f : ι → Set α⦄ (h : ∀ i, NullMeasurableSet (f i) μ)
     (n : ℕ) : NullMeasurableSet (⋃ b ∈ Encodable.decode₂ ι n, f b) μ :=
   MeasurableSet.bunionᵢ_decode₂ h n
-#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.bUnionDecode₂
+#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.bUnion_decode₂
 
 protected theorem bUnion {f : ι → Set α} {s : Set ι} (hs : s.Countable)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
   MeasurableSet.bunionᵢ hs h
 #align measure_theory.null_measurable_set.bUnion MeasureTheory.NullMeasurableSet.bUnion
 
-protected theorem sUnion {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
+protected theorem unionₛ {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
     NullMeasurableSet (⋃₀ s) μ := by
   rw [sUnion_eq_bUnion]
   exact MeasurableSet.bunionᵢ hs h
-#align measure_theory.null_measurable_set.sUnion MeasureTheory.NullMeasurableSet.sUnion
+#align measure_theory.null_measurable_set.sUnion MeasureTheory.NullMeasurableSet.unionₛ
 
-protected theorem inter {ι : Sort _} [Countable ι] {f : ι → Set α}
+protected theorem interᵢ {ι : Sort _} [Countable ι] {f : ι → Set α}
     (h : ∀ i, NullMeasurableSet (f i) μ) : NullMeasurableSet (⋂ i, f i) μ :=
   MeasurableSet.interᵢ h
-#align measure_theory.null_measurable_set.Inter MeasureTheory.NullMeasurableSet.inter
+#align measure_theory.null_measurable_set.Inter MeasureTheory.NullMeasurableSet.interᵢ
 
 protected theorem bInter {f : β → Set α} {s : Set β} (hs : s.Countable)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
   MeasurableSet.binterᵢ hs h
 #align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.bInter
 
-protected theorem sInter {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
+protected theorem interₛ {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
     NullMeasurableSet (⋂₀ s) μ :=
   MeasurableSet.interₛ hs h
-#align measure_theory.null_measurable_set.sInter MeasureTheory.NullMeasurableSet.sInter
-
-/- warning: measure_theory.null_measurable_set.union clashes with measure_theory.null_measurable_set.Union -> MeasureTheory.NullMeasurableSet.union
-warning: measure_theory.null_measurable_set.union -> MeasureTheory.NullMeasurableSet.union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u_2}} {m0 : MeasurableSpace.{u_2} α} {μ : MeasureTheory.Measure.{u_2} α m0} {s : Set.{u_2} α} {t : Set.{u_2} α}, (MeasureTheory.NullMeasurableSet.{u_2} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u_2} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u_2} α m0 (Union.union.{u_2} (Set.{u_2} α) (Set.hasUnion.{u_2} α) s t) μ)
-but is expected to have type
-  PUnit.{0}
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.union MeasureTheory.NullMeasurableSet.unionₓ'. -/
+#align measure_theory.null_measurable_set.sInter MeasureTheory.NullMeasurableSet.interₛ
+
 @[simp]
 protected theorem union (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s ∪ t) μ :=
   hs.union ht
 #align measure_theory.null_measurable_set.union MeasureTheory.NullMeasurableSet.union
 
-protected theorem unionNull (hs : NullMeasurableSet s μ) (ht : μ t = 0) :
+protected theorem union_null (hs : NullMeasurableSet s μ) (ht : μ t = 0) :
     NullMeasurableSet (s ∪ t) μ :=
-  hs.union (ofNull ht)
-#align measure_theory.null_measurable_set.union_null MeasureTheory.NullMeasurableSet.unionNull
-
-/- warning: measure_theory.null_measurable_set.inter clashes with measure_theory.null_measurable_set.Inter -> MeasureTheory.NullMeasurableSet.inter
-warning: measure_theory.null_measurable_set.inter -> MeasureTheory.NullMeasurableSet.inter is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u_2}} {m0 : MeasurableSpace.{u_2} α} {μ : MeasureTheory.Measure.{u_2} α m0} {s : Set.{u_2} α} {t : Set.{u_2} α}, (MeasureTheory.NullMeasurableSet.{u_2} α m0 s μ) -> (MeasureTheory.NullMeasurableSet.{u_2} α m0 t μ) -> (MeasureTheory.NullMeasurableSet.{u_2} α m0 (Inter.inter.{u_2} (Set.{u_2} α) (Set.hasInter.{u_2} α) s t) μ)
-but is expected to have type
-  PUnit.{0}
-Case conversion may be inaccurate. Consider using '#align measure_theory.null_measurable_set.inter MeasureTheory.NullMeasurableSet.interₓ'. -/
+  hs.union (of_null ht)
+#align measure_theory.null_measurable_set.union_null MeasureTheory.NullMeasurableSet.union_null
+
 @[simp]
 protected theorem inter (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
     NullMeasurableSet (s ∩ t) μ :=
@@ -361,9 +347,9 @@ section MeasurableSingletonClass
 
 variable [MeasurableSingletonClass (NullMeasurableSpace α μ)]
 
-theorem nullMeasurableSetSingleton (x : α) : NullMeasurableSet {x} μ :=
+theorem nullMeasurableSet_singleton (x : α) : NullMeasurableSet {x} μ :=
   measurableSet_singleton x
-#align measure_theory.null_measurable_set_singleton MeasureTheory.nullMeasurableSetSingleton
+#align measure_theory.null_measurable_set_singleton MeasureTheory.nullMeasurableSet_singleton
 
 @[simp]
 theorem nullMeasurableSet_insert {a : α} {s : Set α} :
@@ -371,9 +357,9 @@ theorem nullMeasurableSet_insert {a : α} {s : Set α} :
   measurableSet_insert
 #align measure_theory.null_measurable_set_insert MeasureTheory.nullMeasurableSet_insert
 
-theorem nullMeasurableSetEq {a : α} : NullMeasurableSet { x | x = a } μ :=
-  nullMeasurableSetSingleton a
-#align measure_theory.null_measurable_set_eq MeasureTheory.nullMeasurableSetEq
+theorem nullMeasurableSet_eq {a : α} : NullMeasurableSet { x | x = a } μ :=
+  nullMeasurableSet_singleton a
+#align measure_theory.null_measurable_set_eq MeasureTheory.nullMeasurableSet_eq
 
 protected theorem Set.Finite.nullMeasurableSet (hs : s.Finite) : NullMeasurableSet s μ :=
   Finite.measurableSet hs
@@ -385,39 +371,39 @@ protected theorem Finset.nullMeasurableSet (s : Finset α) : NullMeasurableSet (
 
 end MeasurableSingletonClass
 
-theorem Set.Finite.nullMeasurableSetBUnion {f : ι → Set α} {s : Set ι} (hs : s.Finite)
+theorem Set.Finite.nullMeasurableSet_bUnion {f : ι → Set α} {s : Set ι} (hs : s.Finite)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
   Finite.measurableSet_bunionᵢ hs h
-#align set.finite.null_measurable_set_bUnion Set.Finite.nullMeasurableSetBUnion
+#align set.finite.null_measurable_set_bUnion Set.Finite.nullMeasurableSet_bUnion
 
-theorem Finset.nullMeasurableSetBUnion {f : ι → Set α} (s : Finset ι)
+theorem Finset.nullMeasurableSet_bUnion {f : ι → Set α} (s : Finset ι)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
   Finset.measurableSet_bunionᵢ s h
-#align finset.null_measurable_set_bUnion Finset.nullMeasurableSetBUnion
+#align finset.null_measurable_set_bUnion Finset.nullMeasurableSet_bUnion
 
-theorem Set.Finite.nullMeasurableSetSUnion {s : Set (Set α)} (hs : s.Finite)
+theorem Set.Finite.nullMeasurableSet_unionₛ {s : Set (Set α)} (hs : s.Finite)
     (h : ∀ t ∈ s, NullMeasurableSet t μ) : NullMeasurableSet (⋃₀ s) μ :=
   Finite.measurableSet_unionₛ hs h
-#align set.finite.null_measurable_set_sUnion Set.Finite.nullMeasurableSetSUnion
+#align set.finite.null_measurable_set_sUnion Set.Finite.nullMeasurableSet_unionₛ
 
-theorem Set.Finite.nullMeasurableSetBInter {f : ι → Set α} {s : Set ι} (hs : s.Finite)
+theorem Set.Finite.nullMeasurableSet_bInter {f : ι → Set α} {s : Set ι} (hs : s.Finite)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
   Finite.measurableSet_binterᵢ hs h
-#align set.finite.null_measurable_set_bInter Set.Finite.nullMeasurableSetBInter
+#align set.finite.null_measurable_set_bInter Set.Finite.nullMeasurableSet_bInter
 
-theorem Finset.nullMeasurableSetBInter {f : ι → Set α} (s : Finset ι)
+theorem Finset.nullMeasurableSet_bInter {f : ι → Set α} (s : Finset ι)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
-  s.finite_toSet.nullMeasurableSetBInter h
-#align finset.null_measurable_set_bInter Finset.nullMeasurableSetBInter
+  s.finite_toSet.nullMeasurableSet_bInter h
+#align finset.null_measurable_set_bInter Finset.nullMeasurableSet_bInter
 
-theorem Set.Finite.nullMeasurableSetSInter {s : Set (Set α)} (hs : s.Finite)
+theorem Set.Finite.nullMeasurableSet_interₛ {s : Set (Set α)} (hs : s.Finite)
     (h : ∀ t ∈ s, NullMeasurableSet t μ) : NullMeasurableSet (⋂₀ s) μ :=
-  NullMeasurableSet.sInter hs.Countable h
-#align set.finite.null_measurable_set_sInter Set.Finite.nullMeasurableSetSInter
+  NullMeasurableSet.interₛ hs.Countable h
+#align set.finite.null_measurable_set_sInter Set.Finite.nullMeasurableSet_interₛ
 
-theorem nullMeasurableSetToMeasurable : NullMeasurableSet (toMeasurable μ s) μ :=
+theorem nullMeasurableSet_toMeasurable : NullMeasurableSet (toMeasurable μ s) μ :=
   (measurableSet_toMeasurable _ _).NullMeasurableSet
-#align measure_theory.null_measurable_set_to_measurable MeasureTheory.nullMeasurableSetToMeasurable
+#align measure_theory.null_measurable_set_to_measurable MeasureTheory.nullMeasurableSet_toMeasurable
 
 end
 
@@ -441,10 +427,10 @@ protected theorem NullMeasurable.measurable' (h : NullMeasurable f μ) :
   h
 #align measure_theory.null_measurable.measurable' MeasureTheory.NullMeasurable.measurable'
 
-theorem Measurable.compNullMeasurable {g : β → γ} (hg : Measurable g) (hf : NullMeasurable f μ) :
+theorem Measurable.comp_nullMeasurable {g : β → γ} (hg : Measurable g) (hf : NullMeasurable f μ) :
     NullMeasurable (g ∘ f) μ :=
   hg.comp hf
-#align measure_theory.measurable.comp_null_measurable MeasureTheory.Measurable.compNullMeasurable
+#align measure_theory.measurable.comp_null_measurable MeasureTheory.Measurable.comp_nullMeasurable
 
 theorem NullMeasurable.congr {g : α → β} (hf : NullMeasurable f μ) (hg : f =ᵐ[μ] g) :
     NullMeasurable g μ := fun s hs =>
@@ -509,7 +495,7 @@ def completion {_ : MeasurableSpace α} (μ : Measure α) :
 #align measure_theory.measure.completion MeasureTheory.Measure.completion
 
 instance completion.isComplete {m : MeasurableSpace α} (μ : Measure α) : μ.Completion.IsComplete :=
-  ⟨fun z hz => NullMeasurableSet.ofNull hz⟩
+  ⟨fun z hz => NullMeasurableSet.of_null hz⟩
 #align measure_theory.measure.completion.is_complete MeasureTheory.Measure.completion.isComplete
 
 @[simp]
Diff
@@ -234,7 +234,7 @@ protected theorem insert [MeasurableSingletonClass (NullMeasurableSpace α μ)]
   hs.insert a
 #align measure_theory.null_measurable_set.insert MeasureTheory.NullMeasurableSet.insert
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (t «expr ⊇ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊇ » s) -/
 theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _)(_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
   by
@@ -255,7 +255,7 @@ theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurab
   by simpa only [compl_compl] using h.compl.to_measurable_ae_eq.compl
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _)(_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
   ⟨toMeasurable μ (sᶜ)ᶜ, compl_subset_comm.2 <| subset_toMeasurable _ _,
@@ -298,7 +298,7 @@ theorem measure_Union₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AeDi
   rcases exists_subordinate_pairwise_disjoint h hd with ⟨t, ht_sub, ht_eq, htm, htd⟩
   calc
     μ (⋃ i, f i) = μ (⋃ i, t i) := measure_congr (EventuallyEq.countable_unionᵢ ht_eq)
-    _ = ∑' i, μ (t i) := measure_Union htd htm
+    _ = ∑' i, μ (t i) := (measure_Union htd htm)
     _ = ∑' i, μ (f i) := tsum_congr fun i => measure_congr (ht_eq _).symm
     
 #align measure_theory.measure_Union₀ MeasureTheory.measure_Union₀
@@ -324,7 +324,7 @@ theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
       _ = μ (s' ∩ t ∪ s' \ t) :=
         (measure_union₀_aux (hs'm.inter ht) (hs'm.diff ht) <|
             (@disjoint_inf_sdiff _ s' t _).AeDisjoint).symm
-      _ = μ s' := congr_arg μ (inter_union_diff _ _)
+      _ = μ s' := (congr_arg μ (inter_union_diff _ _))
       _ = μ s := hs'
       
   ·

Changes in mathlib4

mathlib3
mathlib4
chore: superfluous parentheses part 2 (#12131)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -284,7 +284,7 @@ theorem measure_iUnion₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AED
   rcases exists_subordinate_pairwise_disjoint h hd with ⟨t, _ht_sub, ht_eq, htm, htd⟩
   calc
     μ (⋃ i, f i) = μ (⋃ i, t i) := measure_congr (EventuallyEq.countable_iUnion ht_eq)
-    _ = ∑' i, μ (t i) := (measure_iUnion htd htm)
+    _ = ∑' i, μ (t i) := measure_iUnion htd htm
     _ = ∑' i, μ (f i) := tsum_congr fun i => measure_congr (ht_eq _).symm
 
 #align measure_theory.measure_Union₀ MeasureTheory.measure_iUnion₀
@@ -309,7 +309,7 @@ theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
       _ = μ (s' ∩ t ∪ s' \ t) :=
         (measure_union₀_aux (hs'm.inter ht) (hs'm.diff ht) <|
             (@disjoint_inf_sdiff _ s' t _).aedisjoint).symm
-      _ = μ s' := (congr_arg μ (inter_union_diff _ _))
+      _ = μ s' := congr_arg μ (inter_union_diff _ _)
       _ = μ s := hs'
   · calc
       μ s = μ (s ∩ t ∪ s \ t) := by rw [inter_union_diff]
chore: tidy various files (#11490)
Diff
@@ -225,7 +225,7 @@ protected theorem insert [MeasurableSingletonClass (NullMeasurableSpace α μ)]
 #align measure_theory.null_measurable_set.insert MeasureTheory.NullMeasurableSet.insert
 
 theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
-    ∃ t, t ⊇ s ∧ MeasurableSet t ∧ t =ᵐ[μ] s := by
+    ∃ t ⊇ s, MeasurableSet t ∧ t =ᵐ[μ] s := by
   rcases h with ⟨t, htm, hst⟩
   refine' ⟨t ∪ toMeasurable μ (s \ t), _, htm.union (measurableSet_toMeasurable _ _), _⟩
   · exact diff_subset_iff.1 (subset_toMeasurable _ _)
@@ -243,7 +243,7 @@ theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : (toMeasura
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
 
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
-    ∃ t, t ⊆ s ∧ MeasurableSet t ∧ t =ᵐ[μ] s :=
+    ∃ t ⊆ s, MeasurableSet t ∧ t =ᵐ[μ] s :=
   ⟨(toMeasurable μ sᶜ)ᶜ, compl_subset_comm.2 <| subset_toMeasurable _ _,
     (measurableSet_toMeasurable _ _).compl, compl_toMeasurable_compl_ae_eq h⟩
 #align measure_theory.null_measurable_set.exists_measurable_subset_ae_eq MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq
chore: classify simp can do this porting notes (#10619)

Classify by adding issue number (#10618) to porting notes claiming anything semantically equivalent to simp can prove this or simp can simplify this.

Diff
@@ -104,12 +104,12 @@ theorem _root_.MeasurableSet.nullMeasurableSet (h : MeasurableSet s) : NullMeasu
   ⟨s, h, ae_eq_refl _⟩
 #align measurable_set.null_measurable_set MeasurableSet.nullMeasurableSet
 
--- @[simp] -- Porting note: simp can prove this
+-- @[simp] -- Porting note (#10618): simp can prove this
 theorem nullMeasurableSet_empty : NullMeasurableSet ∅ μ :=
   MeasurableSet.empty
 #align measure_theory.null_measurable_set_empty MeasureTheory.nullMeasurableSet_empty
 
--- @[simp] -- Porting note: simp can prove this
+-- @[simp] -- Porting note (#10618): simp can prove this
 theorem nullMeasurableSet_univ : NullMeasurableSet univ μ :=
   MeasurableSet.univ
 #align measure_theory.null_measurable_set_univ MeasureTheory.nullMeasurableSet_univ
@@ -209,7 +209,7 @@ protected theorem disjointed {f : ℕ → Set α} (h : ∀ i, NullMeasurableSet
   MeasurableSet.disjointed h n
 #align measure_theory.null_measurable_set.disjointed MeasureTheory.NullMeasurableSet.disjointed
 
--- @[simp] -- Porting note: simp can prove this
+-- @[simp] -- Porting note (#10618): simp can prove thisrove this
 protected theorem const (p : Prop) : NullMeasurableSet { _a : α | p } μ :=
   MeasurableSet.const p
 #align measure_theory.null_measurable_set.const MeasureTheory.NullMeasurableSet.const
feat: NullMeasurable function is AEMeasurable (#7604)

This is true if the function admits an a.e. range with countably generated σ-algebra.

In particular, a function is AEStronglyMeasurable iff it is NullMeasurable and it admits a separable a.e. range.

Diff
@@ -508,6 +508,9 @@ theorem completion_apply {_ : MeasurableSpace α} (μ : Measure α) (s : Set α)
   rfl
 #align measure_theory.measure.completion_apply MeasureTheory.Measure.completion_apply
 
+@[simp]
+theorem ae_completion {_ : MeasurableSpace α} (μ : Measure α) : μ.completion.ae = μ.ae := rfl
+
 end Measure
 
 end IsComplete
chore(MeasureTheory/Measure): use instead of (#7603)

Use ∃ t', t' ⊆ t ∧ _ instead of ∃ t' (_ : t' ⊆ t), _ and similarly with in MeasureTheory.toMeasurable and related lemmas.

Also reflow linebreaks in an unrelated proof.

Diff
@@ -225,7 +225,7 @@ protected theorem insert [MeasurableSingletonClass (NullMeasurableSpace α μ)]
 #align measure_theory.null_measurable_set.insert MeasureTheory.NullMeasurableSet.insert
 
 theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
-    ∃ (t : _) (_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s := by
+    ∃ t, t ⊇ s ∧ MeasurableSet t ∧ t =ᵐ[μ] s := by
   rcases h with ⟨t, htm, hst⟩
   refine' ⟨t ∪ toMeasurable μ (s \ t), _, htm.union (measurableSet_toMeasurable _ _), _⟩
   · exact diff_subset_iff.1 (subset_toMeasurable _ _)
@@ -235,7 +235,7 @@ theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
 
 theorem toMeasurable_ae_eq (h : NullMeasurableSet s μ) : toMeasurable μ s =ᵐ[μ] s := by
   rw [toMeasurable_def, dif_pos]
-  exact (exists_measurable_superset_ae_eq h).choose_spec.snd.2
+  exact (exists_measurable_superset_ae_eq h).choose_spec.2.2
 #align measure_theory.null_measurable_set.to_measurable_ae_eq MeasureTheory.NullMeasurableSet.toMeasurable_ae_eq
 
 theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : (toMeasurable μ sᶜ)ᶜ =ᵐ[μ] s :=
@@ -243,7 +243,7 @@ theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : (toMeasura
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
 
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
-    ∃ (t : _) (_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
+    ∃ t, t ⊆ s ∧ MeasurableSet t ∧ t =ᵐ[μ] s :=
   ⟨(toMeasurable μ sᶜ)ᶜ, compl_subset_comm.2 <| subset_toMeasurable _ _,
     (measurableSet_toMeasurable _ _).compl, compl_toMeasurable_compl_ae_eq h⟩
 #align measure_theory.null_measurable_set.exists_measurable_subset_ae_eq MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -58,13 +58,13 @@ measurable, measure, null measurable, completion
 
 open Filter Set Encodable
 
-variable {ι α β γ : Type _}
+variable {ι α β γ : Type*}
 
 namespace MeasureTheory
 
 /-- A type tag for `α` with `MeasurableSet` given by `NullMeasurableSet`. -/
 @[nolint unusedArguments]
-def NullMeasurableSpace (α : Type _) [MeasurableSpace α]
+def NullMeasurableSpace (α : Type*) [MeasurableSpace α]
     (_μ : Measure α := by volume_tac) : Type _ :=
   α
 #align measure_theory.null_measurable_space MeasureTheory.NullMeasurableSpace
@@ -143,7 +143,7 @@ protected theorem congr (hs : NullMeasurableSet s μ) (h : s =ᵐ[μ] t) : NullM
   ⟨s', hm, h.symm.trans hs'⟩
 #align measure_theory.null_measurable_set.congr MeasureTheory.NullMeasurableSet.congr
 
-protected theorem iUnion {ι : Sort _} [Countable ι] {s : ι → Set α}
+protected theorem iUnion {ι : Sort*} [Countable ι] {s : ι → Set α}
     (h : ∀ i, NullMeasurableSet (s i) μ) : NullMeasurableSet (⋃ i, s i) μ :=
   MeasurableSet.iUnion h
 #align measure_theory.null_measurable_set.Union MeasureTheory.NullMeasurableSet.iUnion
@@ -165,7 +165,7 @@ protected theorem sUnion {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s,
   exact MeasurableSet.biUnion hs h
 #align measure_theory.null_measurable_set.sUnion MeasureTheory.NullMeasurableSet.sUnion
 
-protected theorem iInter {ι : Sort _} [Countable ι] {f : ι → Set α}
+protected theorem iInter {ι : Sort*} [Countable ι] {f : ι → Set α}
     (h : ∀ i, NullMeasurableSet (f i) μ) : NullMeasurableSet (⋂ i, f i) μ :=
   MeasurableSet.iInter h
 #align measure_theory.null_measurable_set.Inter MeasureTheory.NullMeasurableSet.iInter
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov
-
-! This file was ported from Lean 3 source module measure_theory.measure.null_measurable
-! leanprover-community/mathlib commit e4edb23029fff178210b9945dcb77d293f001e1c
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Measure.AEDisjoint
 
+#align_import measure_theory.measure.null_measurable from "leanprover-community/mathlib"@"e4edb23029fff178210b9945dcb77d293f001e1c"
+
 /-!
 # Null measurable sets and complete measures
 
chore: fix focusing dots (#5708)

This PR is the result of running

find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;

which firstly replaces . focusing dots with · and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.

Diff
@@ -314,8 +314,7 @@ theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
             (@disjoint_inf_sdiff _ s' t _).aedisjoint).symm
       _ = μ s' := (congr_arg μ (inter_union_diff _ _))
       _ = μ s := hs'
-  ·
-    calc
+  · calc
       μ s = μ (s ∩ t ∪ s \ t) := by rw [inter_union_diff]
       _ ≤ μ (s ∩ t) + μ (s \ t) := measure_union_le _ _
 
fix: change compl precedence (#5586)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -123,16 +123,16 @@ theorem of_null (h : μ s = 0) : NullMeasurableSet s μ :=
   ⟨∅, MeasurableSet.empty, ae_eq_empty.2 h⟩
 #align measure_theory.null_measurable_set.of_null MeasureTheory.NullMeasurableSet.of_null
 
-theorem compl (h : NullMeasurableSet s μ) : NullMeasurableSet (sᶜ) μ :=
+theorem compl (h : NullMeasurableSet s μ) : NullMeasurableSet sᶜ μ :=
   MeasurableSet.compl h
 #align measure_theory.null_measurable_set.compl MeasureTheory.NullMeasurableSet.compl
 
-theorem of_compl (h : NullMeasurableSet (sᶜ) μ) : NullMeasurableSet s μ :=
+theorem of_compl (h : NullMeasurableSet sᶜ μ) : NullMeasurableSet s μ :=
   MeasurableSet.of_compl h
 #align measure_theory.null_measurable_set.of_compl MeasureTheory.NullMeasurableSet.of_compl
 
 @[simp]
-theorem compl_iff : NullMeasurableSet (sᶜ) μ ↔ NullMeasurableSet s μ :=
+theorem compl_iff : NullMeasurableSet sᶜ μ ↔ NullMeasurableSet s μ :=
   MeasurableSet.compl_iff
 #align measure_theory.null_measurable_set.compl_iff MeasureTheory.NullMeasurableSet.compl_iff
 
@@ -241,13 +241,13 @@ theorem toMeasurable_ae_eq (h : NullMeasurableSet s μ) : toMeasurable μ s =ᵐ
   exact (exists_measurable_superset_ae_eq h).choose_spec.snd.2
 #align measure_theory.null_measurable_set.to_measurable_ae_eq MeasureTheory.NullMeasurableSet.toMeasurable_ae_eq
 
-theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurable μ (sᶜ)ᶜ =ᵐ[μ] s :=
+theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : (toMeasurable μ sᶜ)ᶜ =ᵐ[μ] s :=
   Iff.mpr ae_eq_set_compl <| toMeasurable_ae_eq h.compl
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
 
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
     ∃ (t : _) (_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
-  ⟨toMeasurable μ (sᶜ)ᶜ, compl_subset_comm.2 <| subset_toMeasurable _ _,
+  ⟨(toMeasurable μ sᶜ)ᶜ, compl_subset_comm.2 <| subset_toMeasurable _ _,
     (measurableSet_toMeasurable _ _).compl, compl_toMeasurable_compl_ae_eq h⟩
 #align measure_theory.null_measurable_set.exists_measurable_subset_ae_eq MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq
 
@@ -341,7 +341,7 @@ theorem measure_union₀' (hs : NullMeasurableSet s μ) (hd : AEDisjoint μ s t)
 #align measure_theory.measure_union₀' MeasureTheory.measure_union₀'
 
 theorem measure_add_measure_compl₀ {s : Set α} (hs : NullMeasurableSet s μ) :
-    μ s + μ (sᶜ) = μ univ := by rw [← measure_union₀' hs aedisjoint_compl_right, union_compl_self]
+    μ s + μ sᶜ = μ univ := by rw [← measure_union₀' hs aedisjoint_compl_right, union_compl_self]
 #align measure_theory.measure_add_measure_compl₀ MeasureTheory.measure_add_measure_compl₀
 
 section MeasurableSingletonClass
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -228,7 +228,7 @@ protected theorem insert [MeasurableSingletonClass (NullMeasurableSpace α μ)]
 #align measure_theory.null_measurable_set.insert MeasureTheory.NullMeasurableSet.insert
 
 theorem exists_measurable_superset_ae_eq (h : NullMeasurableSet s μ) :
-    ∃ (t : _)(_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s := by
+    ∃ (t : _) (_ : t ⊇ s), MeasurableSet t ∧ t =ᵐ[μ] s := by
   rcases h with ⟨t, htm, hst⟩
   refine' ⟨t ∪ toMeasurable μ (s \ t), _, htm.union (measurableSet_toMeasurable _ _), _⟩
   · exact diff_subset_iff.1 (subset_toMeasurable _ _)
@@ -246,7 +246,7 @@ theorem compl_toMeasurable_compl_ae_eq (h : NullMeasurableSet s μ) : toMeasurab
 #align measure_theory.null_measurable_set.compl_to_measurable_compl_ae_eq MeasureTheory.NullMeasurableSet.compl_toMeasurable_compl_ae_eq
 
 theorem exists_measurable_subset_ae_eq (h : NullMeasurableSet s μ) :
-    ∃ (t : _)(_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
+    ∃ (t : _) (_ : t ⊆ s), MeasurableSet t ∧ t =ᵐ[μ] s :=
   ⟨toMeasurable μ (sᶜ)ᶜ, compl_subset_comm.2 <| subset_toMeasurable _ _,
     (measurableSet_toMeasurable _ _).compl, compl_toMeasurable_compl_ae_eq h⟩
 #align measure_theory.null_measurable_set.exists_measurable_subset_ae_eq MeasureTheory.NullMeasurableSet.exists_measurable_subset_ae_eq
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -295,7 +295,7 @@ theorem measure_iUnion₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AED
 theorem measure_union₀_aux (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ)
     (hd : AEDisjoint μ s t) : μ (s ∪ t) = μ s + μ t := by
   rw [union_eq_iUnion, measure_iUnion₀, tsum_fintype, Fintype.sum_bool, cond, cond]
-  exacts[(pairwise_on_bool AEDisjoint.symmetric).2 hd, fun b => Bool.casesOn b ht hs]
+  exacts [(pairwise_on_bool AEDisjoint.symmetric).2 hd, fun b => Bool.casesOn b ht hs]
 #align measure_theory.measure_union₀_aux MeasureTheory.measure_union₀_aux
 
 /-- A null measurable set `t` is Carathéodory measurable: for any `s`, we have
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -90,9 +90,9 @@ instance NullMeasurableSpace.instMeasurableSpace : MeasurableSpace (NullMeasurab
   MeasurableSet' s := ∃ t, MeasurableSet t ∧ s =ᵐ[μ] t
   measurableSet_empty := ⟨∅, MeasurableSet.empty, ae_eq_refl _⟩
   measurableSet_compl := fun s ⟨t, htm, hts⟩ => ⟨tᶜ, htm.compl, hts.compl⟩
-  measurableSet_unionᵢ s hs := by
+  measurableSet_iUnion s hs := by
     choose t htm hts using hs
-    exact ⟨⋃ i, t i, MeasurableSet.unionᵢ htm, EventuallyEq.countable_unionᵢ hts⟩
+    exact ⟨⋃ i, t i, MeasurableSet.iUnion htm, EventuallyEq.countable_iUnion hts⟩
 #align measure_theory.null_measurable_space.measurable_space MeasureTheory.NullMeasurableSpace.instMeasurableSpace
 
 /-- A set is called `NullMeasurableSet` if it can be approximated by a measurable set up to
@@ -146,42 +146,42 @@ protected theorem congr (hs : NullMeasurableSet s μ) (h : s =ᵐ[μ] t) : NullM
   ⟨s', hm, h.symm.trans hs'⟩
 #align measure_theory.null_measurable_set.congr MeasureTheory.NullMeasurableSet.congr
 
-protected theorem unionᵢ {ι : Sort _} [Countable ι] {s : ι → Set α}
+protected theorem iUnion {ι : Sort _} [Countable ι] {s : ι → Set α}
     (h : ∀ i, NullMeasurableSet (s i) μ) : NullMeasurableSet (⋃ i, s i) μ :=
-  MeasurableSet.unionᵢ h
-#align measure_theory.null_measurable_set.Union MeasureTheory.NullMeasurableSet.unionᵢ
+  MeasurableSet.iUnion h
+#align measure_theory.null_measurable_set.Union MeasureTheory.NullMeasurableSet.iUnion
 
-@[deprecated unionᵢ]
-protected theorem bunionᵢ_decode₂ [Encodable ι] ⦃f : ι → Set α⦄ (h : ∀ i, NullMeasurableSet (f i) μ)
+@[deprecated iUnion]
+protected theorem biUnion_decode₂ [Encodable ι] ⦃f : ι → Set α⦄ (h : ∀ i, NullMeasurableSet (f i) μ)
     (n : ℕ) : NullMeasurableSet (⋃ b ∈ Encodable.decode₂ ι n, f b) μ :=
-  .unionᵢ fun _ => .unionᵢ fun _ => h _
-#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.bunionᵢ_decode₂
+  .iUnion fun _ => .iUnion fun _ => h _
+#align measure_theory.null_measurable_set.bUnion_decode₂ MeasureTheory.NullMeasurableSet.biUnion_decode₂
 
-protected theorem bunionᵢ {f : ι → Set α} {s : Set ι} (hs : s.Countable)
+protected theorem biUnion {f : ι → Set α} {s : Set ι} (hs : s.Countable)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
-  MeasurableSet.bunionᵢ hs h
-#align measure_theory.null_measurable_set.bUnion MeasureTheory.NullMeasurableSet.bunionᵢ
+  MeasurableSet.biUnion hs h
+#align measure_theory.null_measurable_set.bUnion MeasureTheory.NullMeasurableSet.biUnion
 
-protected theorem unionₛ {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
+protected theorem sUnion {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
     NullMeasurableSet (⋃₀ s) μ := by
-  rw [unionₛ_eq_bunionᵢ]
-  exact MeasurableSet.bunionᵢ hs h
-#align measure_theory.null_measurable_set.sUnion MeasureTheory.NullMeasurableSet.unionₛ
+  rw [sUnion_eq_biUnion]
+  exact MeasurableSet.biUnion hs h
+#align measure_theory.null_measurable_set.sUnion MeasureTheory.NullMeasurableSet.sUnion
 
-protected theorem interᵢ {ι : Sort _} [Countable ι] {f : ι → Set α}
+protected theorem iInter {ι : Sort _} [Countable ι] {f : ι → Set α}
     (h : ∀ i, NullMeasurableSet (f i) μ) : NullMeasurableSet (⋂ i, f i) μ :=
-  MeasurableSet.interᵢ h
-#align measure_theory.null_measurable_set.Inter MeasureTheory.NullMeasurableSet.interᵢ
+  MeasurableSet.iInter h
+#align measure_theory.null_measurable_set.Inter MeasureTheory.NullMeasurableSet.iInter
 
-protected theorem binterᵢ {f : β → Set α} {s : Set β} (hs : s.Countable)
+protected theorem biInter {f : β → Set α} {s : Set β} (hs : s.Countable)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
-  MeasurableSet.binterᵢ hs h
-#align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.binterᵢ
+  MeasurableSet.biInter hs h
+#align measure_theory.null_measurable_set.bInter MeasureTheory.NullMeasurableSet.biInter
 
-protected theorem interₛ {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
+protected theorem sInter {s : Set (Set α)} (hs : s.Countable) (h : ∀ t ∈ s, NullMeasurableSet t μ) :
     NullMeasurableSet (⋂₀ s) μ :=
-  MeasurableSet.interₛ hs h
-#align measure_theory.null_measurable_set.sInter MeasureTheory.NullMeasurableSet.interₛ
+  MeasurableSet.sInter hs h
+#align measure_theory.null_measurable_set.sInter MeasureTheory.NullMeasurableSet.sInter
 
 @[simp]
 protected theorem union (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ) :
@@ -272,29 +272,29 @@ theorem exists_subordinate_pairwise_disjoint [Countable ι] {s : ι → Set α}
         h.mono (diff_subset_diff_left (ht_sub i)) (diff_subset_diff_left (ht_sub j))⟩
 #align measure_theory.exists_subordinate_pairwise_disjoint MeasureTheory.exists_subordinate_pairwise_disjoint
 
-theorem measure_unionᵢ {m0 : MeasurableSpace α} {μ : Measure α} [Countable ι] {f : ι → Set α}
+theorem measure_iUnion {m0 : MeasurableSpace α} {μ : Measure α} [Countable ι] {f : ι → Set α}
     (hn : Pairwise (Disjoint on f)) (h : ∀ i, MeasurableSet (f i)) :
     μ (⋃ i, f i) = ∑' i, μ (f i) := by
-  rw [measure_eq_extend (MeasurableSet.unionᵢ h),
-    extend_unionᵢ MeasurableSet.empty _ MeasurableSet.unionᵢ _ hn h]
+  rw [measure_eq_extend (MeasurableSet.iUnion h),
+    extend_iUnion MeasurableSet.empty _ MeasurableSet.iUnion _ hn h]
   · simp [measure_eq_extend, h]
   · exact μ.empty
-  · exact μ.m_unionᵢ
-#align measure_theory.measure_Union MeasureTheory.measure_unionᵢ
+  · exact μ.m_iUnion
+#align measure_theory.measure_Union MeasureTheory.measure_iUnion
 
-theorem measure_unionᵢ₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AEDisjoint μ on f))
+theorem measure_iUnion₀ [Countable ι] {f : ι → Set α} (hd : Pairwise (AEDisjoint μ on f))
     (h : ∀ i, NullMeasurableSet (f i) μ) : μ (⋃ i, f i) = ∑' i, μ (f i) := by
   rcases exists_subordinate_pairwise_disjoint h hd with ⟨t, _ht_sub, ht_eq, htm, htd⟩
   calc
-    μ (⋃ i, f i) = μ (⋃ i, t i) := measure_congr (EventuallyEq.countable_unionᵢ ht_eq)
-    _ = ∑' i, μ (t i) := (measure_unionᵢ htd htm)
+    μ (⋃ i, f i) = μ (⋃ i, t i) := measure_congr (EventuallyEq.countable_iUnion ht_eq)
+    _ = ∑' i, μ (t i) := (measure_iUnion htd htm)
     _ = ∑' i, μ (f i) := tsum_congr fun i => measure_congr (ht_eq _).symm
 
-#align measure_theory.measure_Union₀ MeasureTheory.measure_unionᵢ₀
+#align measure_theory.measure_Union₀ MeasureTheory.measure_iUnion₀
 
 theorem measure_union₀_aux (hs : NullMeasurableSet s μ) (ht : NullMeasurableSet t μ)
     (hd : AEDisjoint μ s t) : μ (s ∪ t) = μ s + μ t := by
-  rw [union_eq_unionᵢ, measure_unionᵢ₀, tsum_fintype, Fintype.sum_bool, cond, cond]
+  rw [union_eq_iUnion, measure_iUnion₀, tsum_fintype, Fintype.sum_bool, cond, cond]
   exacts[(pairwise_on_bool AEDisjoint.symmetric).2 hd, fun b => Bool.casesOn b ht hs]
 #align measure_theory.measure_union₀_aux MeasureTheory.measure_union₀_aux
 
@@ -372,35 +372,35 @@ protected theorem _root_.Finset.nullMeasurableSet (s : Finset α) : NullMeasurab
 
 end MeasurableSingletonClass
 
-theorem _root_.Set.Finite.nullMeasurableSet_bunionᵢ {f : ι → Set α} {s : Set ι} (hs : s.Finite)
+theorem _root_.Set.Finite.nullMeasurableSet_biUnion {f : ι → Set α} {s : Set ι} (hs : s.Finite)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
-  Finite.measurableSet_bunionᵢ hs h
-#align set.finite.null_measurable_set_bUnion Set.Finite.nullMeasurableSet_bunionᵢ
+  Finite.measurableSet_biUnion hs h
+#align set.finite.null_measurable_set_bUnion Set.Finite.nullMeasurableSet_biUnion
 
-theorem _root_.Finset.nullMeasurableSet_bunionᵢ {f : ι → Set α} (s : Finset ι)
+theorem _root_.Finset.nullMeasurableSet_biUnion {f : ι → Set α} (s : Finset ι)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋃ b ∈ s, f b) μ :=
-  Finset.measurableSet_bunionᵢ s h
-#align finset.null_measurable_set_bUnion Finset.nullMeasurableSet_bunionᵢ
+  Finset.measurableSet_biUnion s h
+#align finset.null_measurable_set_bUnion Finset.nullMeasurableSet_biUnion
 
-theorem _root_.Set.Finite.nullMeasurableSet_unionₛ {s : Set (Set α)} (hs : s.Finite)
+theorem _root_.Set.Finite.nullMeasurableSet_sUnion {s : Set (Set α)} (hs : s.Finite)
     (h : ∀ t ∈ s, NullMeasurableSet t μ) : NullMeasurableSet (⋃₀ s) μ :=
-  Finite.measurableSet_unionₛ hs h
-#align set.finite.null_measurable_set_sUnion Set.Finite.nullMeasurableSet_unionₛ
+  Finite.measurableSet_sUnion hs h
+#align set.finite.null_measurable_set_sUnion Set.Finite.nullMeasurableSet_sUnion
 
-theorem _root_.Set.Finite.nullMeasurableSet_binterᵢ {f : ι → Set α} {s : Set ι} (hs : s.Finite)
+theorem _root_.Set.Finite.nullMeasurableSet_biInter {f : ι → Set α} {s : Set ι} (hs : s.Finite)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
-  Finite.measurableSet_binterᵢ hs h
-#align set.finite.null_measurable_set_bInter Set.Finite.nullMeasurableSet_binterᵢ
+  Finite.measurableSet_biInter hs h
+#align set.finite.null_measurable_set_bInter Set.Finite.nullMeasurableSet_biInter
 
-theorem _root_.Finset.nullMeasurableSet_binterᵢ {f : ι → Set α} (s : Finset ι)
+theorem _root_.Finset.nullMeasurableSet_biInter {f : ι → Set α} (s : Finset ι)
     (h : ∀ b ∈ s, NullMeasurableSet (f b) μ) : NullMeasurableSet (⋂ b ∈ s, f b) μ :=
-  s.finite_toSet.nullMeasurableSet_binterᵢ h
-#align finset.null_measurable_set_bInter Finset.nullMeasurableSet_binterᵢ
+  s.finite_toSet.nullMeasurableSet_biInter h
+#align finset.null_measurable_set_bInter Finset.nullMeasurableSet_biInter
 
-theorem _root_.Set.Finite.nullMeasurableSet_interₛ {s : Set (Set α)} (hs : s.Finite)
+theorem _root_.Set.Finite.nullMeasurableSet_sInter {s : Set (Set α)} (hs : s.Finite)
     (h : ∀ t ∈ s, NullMeasurableSet t μ) : NullMeasurableSet (⋂₀ s) μ :=
-  NullMeasurableSet.interₛ (Finite.countable hs) h
-#align set.finite.null_measurable_set_sInter Set.Finite.nullMeasurableSet_interₛ
+  NullMeasurableSet.sInter (Finite.countable hs) h
+#align set.finite.null_measurable_set_sInter Set.Finite.nullMeasurableSet_sInter
 
 theorem nullMeasurableSet_toMeasurable : NullMeasurableSet (toMeasurable μ s) μ :=
   (measurableSet_toMeasurable _ _).nullMeasurableSet
@@ -487,15 +487,15 @@ namespace Measure
 def completion {_ : MeasurableSpace α} (μ : Measure α) :
     @MeasureTheory.Measure (NullMeasurableSpace α μ) _ where
   toOuterMeasure := μ.toOuterMeasure
-  m_unionᵢ s hs hd := measure_unionᵢ₀ (hd.mono fun i j h => h.aedisjoint) hs
+  m_iUnion s hs hd := measure_iUnion₀ (hd.mono fun i j h => h.aedisjoint) hs
   trimmed := by
     refine' le_antisymm (fun s => _)
       (@OuterMeasure.le_trim (NullMeasurableSpace α μ) _ _)
-    rw [@OuterMeasure.trim_eq_infᵢ (NullMeasurableSpace α μ) _];
+    rw [@OuterMeasure.trim_eq_iInf (NullMeasurableSpace α μ) _];
     have : ∀ s, μ.toOuterMeasure s = μ s := by simp only [forall_const]
-    rw [this, measure_eq_infᵢ]
-    apply infᵢ₂_mono
-    exact fun t _ht => infᵢ_mono' fun h => ⟨MeasurableSet.nullMeasurableSet h, le_rfl⟩
+    rw [this, measure_eq_iInf]
+    apply iInf₂_mono
+    exact fun t _ht => iInf_mono' fun h => ⟨MeasurableSet.nullMeasurableSet h, le_rfl⟩
 #align measure_theory.measure.completion MeasureTheory.Measure.completion
 
 instance completion.isComplete {_m : MeasurableSpace α} (μ : Measure α) : μ.completion.IsComplete :=
chore: tidy various files (#3848)
Diff
@@ -314,7 +314,6 @@ theorem measure_inter_add_diff₀ (s : Set α) (ht : NullMeasurableSet t μ) :
             (@disjoint_inf_sdiff _ s' t _).aedisjoint).symm
       _ = μ s' := (congr_arg μ (inter_union_diff _ _))
       _ = μ s := hs'
-
   ·
     calc
       μ s = μ (s ∩ t ∪ s \ t) := by rw [inter_union_diff]
@@ -403,9 +402,9 @@ theorem _root_.Set.Finite.nullMeasurableSet_interₛ {s : Set (Set α)} (hs : s.
   NullMeasurableSet.interₛ (Finite.countable hs) h
 #align set.finite.null_measurable_set_sInter Set.Finite.nullMeasurableSet_interₛ
 
-theorem nullMeasurableSet_to_measurable : NullMeasurableSet (toMeasurable μ s) μ :=
+theorem nullMeasurableSet_toMeasurable : NullMeasurableSet (toMeasurable μ s) μ :=
   (measurableSet_toMeasurable _ _).nullMeasurableSet
-#align measure_theory.null_measurable_set_to_measurable MeasureTheory.nullMeasurableSet_to_measurable
+#align measure_theory.null_measurable_set_to_measurable MeasureTheory.nullMeasurableSet_toMeasurable
 
 end
 
@@ -493,7 +492,7 @@ def completion {_ : MeasurableSpace α} (μ : Measure α) :
     refine' le_antisymm (fun s => _)
       (@OuterMeasure.le_trim (NullMeasurableSpace α μ) _ _)
     rw [@OuterMeasure.trim_eq_infᵢ (NullMeasurableSpace α μ) _];
-    have : ∀s, μ.toOuterMeasure s = μ s := by simp only [forall_const]
+    have : ∀ s, μ.toOuterMeasure s = μ s := by simp only [forall_const]
     rw [this, measure_eq_infᵢ]
     apply infᵢ₂_mono
     exact fun t _ht => infᵢ_mono' fun h => ⟨MeasurableSet.nullMeasurableSet h, le_rfl⟩
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -273,8 +273,8 @@ theorem exists_subordinate_pairwise_disjoint [Countable ι] {s : ι → Set α}
 #align measure_theory.exists_subordinate_pairwise_disjoint MeasureTheory.exists_subordinate_pairwise_disjoint
 
 theorem measure_unionᵢ {m0 : MeasurableSpace α} {μ : Measure α} [Countable ι] {f : ι → Set α}
-    (hn : Pairwise (Disjoint on f)) (h : ∀ i, MeasurableSet (f i)) : μ (⋃ i, f i) = ∑' i, μ (f i) :=
-  by
+    (hn : Pairwise (Disjoint on f)) (h : ∀ i, MeasurableSet (f i)) :
+    μ (⋃ i, f i) = ∑' i, μ (f i) := by
   rw [measure_eq_extend (MeasurableSet.unionᵢ h),
     extend_unionᵢ MeasurableSet.empty _ MeasurableSet.unionᵢ _ hn h]
   · simp [measure_eq_extend, h]
feat: port MeasureTheory.Measure.NullMeasurable (#3349)

Co-authored-by: MonadMaverick <MonadMaverick@pm.me> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Dependencies 10 + 603

604 files ported (98.4%)
265412 lines ported (98.0%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file