measure_theory.measure.open_posMathlib.MeasureTheory.Measure.OpenPos

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -119,7 +119,7 @@ theorem eqOn_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : I
     (hf : ContinuousOn f U) (hg : ContinuousOn g U) : EqOn f g U :=
   by
   replace h := ae_imp_of_ae_restrict h
-  simp only [eventually_eq, ae_iff, not_imp] at h 
+  simp only [eventually_eq, ae_iff, not_imp] at h
   have : IsOpen (U ∩ {a | f a ≠ g a}) :=
     by
     refine' is_open_iff_mem_nhds.mpr fun a ha => inter_mem (hU.mem_nhds ha.1) _
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2022 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
-import Mathbin.MeasureTheory.Measure.MeasureSpace
+import MeasureTheory.Measure.MeasureSpace
 
 #align_import measure_theory.measure.open_pos from "leanprover-community/mathlib"@"781cb2eed038c4caf53bdbd8d20a95e5822d77df"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
-
-! This file was ported from Lean 3 source module measure_theory.measure.open_pos
-! leanprover-community/mathlib commit 781cb2eed038c4caf53bdbd8d20a95e5822d77df
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Measure.MeasureSpace
 
+#align_import measure_theory.measure.open_pos from "leanprover-community/mathlib"@"781cb2eed038c4caf53bdbd8d20a95e5822d77df"
+
 /-!
 # Measures positive on nonempty opens
 
Diff
@@ -46,34 +46,48 @@ class IsOpenPosMeasure : Prop where
 
 variable [IsOpenPosMeasure μ] {s U : Set X} {x : X}
 
+#print IsOpen.measure_ne_zero /-
 theorem IsOpen.measure_ne_zero (hU : IsOpen U) (hne : U.Nonempty) : μ U ≠ 0 :=
   IsOpenPosMeasure.open_pos U hU hne
 #align is_open.measure_ne_zero IsOpen.measure_ne_zero
+-/
 
+#print IsOpen.measure_pos /-
 theorem IsOpen.measure_pos (hU : IsOpen U) (hne : U.Nonempty) : 0 < μ U :=
   (hU.measure_ne_zero μ hne).bot_lt
 #align is_open.measure_pos IsOpen.measure_pos
+-/
 
+#print IsOpen.measure_pos_iff /-
 theorem IsOpen.measure_pos_iff (hU : IsOpen U) : 0 < μ U ↔ U.Nonempty :=
   ⟨fun h => nonempty_iff_ne_empty.2 fun he => h.ne' <| he.symm ▸ measure_empty, hU.measure_pos μ⟩
 #align is_open.measure_pos_iff IsOpen.measure_pos_iff
+-/
 
+#print IsOpen.measure_eq_zero_iff /-
 theorem IsOpen.measure_eq_zero_iff (hU : IsOpen U) : μ U = 0 ↔ U = ∅ := by
   simpa only [not_lt, nonpos_iff_eq_zero, not_nonempty_iff_eq_empty] using
     not_congr (hU.measure_pos_iff μ)
 #align is_open.measure_eq_zero_iff IsOpen.measure_eq_zero_iff
+-/
 
+#print MeasureTheory.Measure.measure_pos_of_nonempty_interior /-
 theorem measure_pos_of_nonempty_interior (h : (interior s).Nonempty) : 0 < μ s :=
   (isOpen_interior.measure_pos μ h).trans_le (measure_mono interior_subset)
 #align measure_theory.measure.measure_pos_of_nonempty_interior MeasureTheory.Measure.measure_pos_of_nonempty_interior
+-/
 
+#print MeasureTheory.Measure.measure_pos_of_mem_nhds /-
 theorem measure_pos_of_mem_nhds (h : s ∈ 𝓝 x) : 0 < μ s :=
   measure_pos_of_nonempty_interior _ ⟨x, mem_interior_iff_mem_nhds.2 h⟩
 #align measure_theory.measure.measure_pos_of_mem_nhds MeasureTheory.Measure.measure_pos_of_mem_nhds
+-/
 
+#print MeasureTheory.Measure.isOpenPosMeasure_smul /-
 theorem isOpenPosMeasure_smul {c : ℝ≥0∞} (h : c ≠ 0) : IsOpenPosMeasure (c • μ) :=
   ⟨fun U Uo Une => mul_ne_zero h (Uo.measure_ne_zero μ Une)⟩
 #align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.isOpenPosMeasure_smul
+-/
 
 variable {μ ν}
 
@@ -89,14 +103,19 @@ theorem LE.le.isOpenPosMeasure (h : μ ≤ ν) : IsOpenPosMeasure ν :=
 #align has_le.le.is_open_pos_measure LE.le.isOpenPosMeasure
 -/
 
+#print IsOpen.eq_empty_of_measure_zero /-
 theorem IsOpen.eq_empty_of_measure_zero (hU : IsOpen U) (h₀ : μ U = 0) : U = ∅ :=
   (hU.measure_eq_zero_iff μ).mp h₀
 #align is_open.eq_empty_of_measure_zero IsOpen.eq_empty_of_measure_zero
+-/
 
+#print MeasureTheory.Measure.interior_eq_empty_of_null /-
 theorem interior_eq_empty_of_null (hs : μ s = 0) : interior s = ∅ :=
   isOpen_interior.eq_empty_of_measure_zero <| measure_mono_null interior_subset hs
 #align measure_theory.measure.interior_eq_empty_of_null MeasureTheory.Measure.interior_eq_empty_of_null
+-/
 
+#print MeasureTheory.Measure.eqOn_open_of_ae_eq /-
 /-- If two functions are a.e. equal on an open set and are continuous on this set, then they are
 equal on this set. -/
 theorem eqOn_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : IsOpen U)
@@ -114,13 +133,17 @@ theorem eqOn_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : I
   replace := (this.eq_empty_of_measure_zero h).le
   exact fun x hx => Classical.not_not.1 fun h => this ⟨hx, h⟩
 #align measure_theory.measure.eq_on_open_of_ae_eq MeasureTheory.Measure.eqOn_open_of_ae_eq
+-/
 
+#print MeasureTheory.Measure.eq_of_ae_eq /-
 /-- If two continuous functions are a.e. equal, then they are equal. -/
 theorem eq_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ] g) (hf : Continuous f) (hg : Continuous g) : f = g :=
   suffices EqOn f g univ from funext fun x => this trivial
   eqOn_open_of_ae_eq (ae_restrict_of_ae h) isOpen_univ hf.ContinuousOn hg.ContinuousOn
 #align measure_theory.measure.eq_of_ae_eq MeasureTheory.Measure.eq_of_ae_eq
+-/
 
+#print MeasureTheory.Measure.eqOn_of_ae_eq /-
 theorem eqOn_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict s] g) (hf : ContinuousOn f s)
     (hg : ContinuousOn g s) (hU : s ⊆ closure (interior s)) : EqOn f g s :=
   have : interior s ⊆ s := interior_subset
@@ -128,13 +151,16 @@ theorem eqOn_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict s] g) (hf : Contin
         (hg.mono this)).of_subset_closure
     hf hg this hU
 #align measure_theory.measure.eq_on_of_ae_eq MeasureTheory.Measure.eqOn_of_ae_eq
+-/
 
 variable (μ)
 
+#print Continuous.ae_eq_iff_eq /-
 theorem Continuous.ae_eq_iff_eq {f g : X → Y} (hf : Continuous f) (hg : Continuous g) :
     f =ᵐ[μ] g ↔ f = g :=
   ⟨fun h => eq_of_ae_eq h hf hg, fun h => h ▸ EventuallyEq.rfl⟩
 #align continuous.ae_eq_iff_eq Continuous.ae_eq_iff_eq
+-/
 
 end Basic
 
@@ -143,44 +169,60 @@ section LinearOrder
 variable {X Y : Type _} [TopologicalSpace X] [LinearOrder X] [OrderTopology X]
   {m : MeasurableSpace X} [TopologicalSpace Y] [T2Space Y] (μ : Measure X) [IsOpenPosMeasure μ]
 
+#print MeasureTheory.Measure.measure_Ioi_pos /-
 theorem measure_Ioi_pos [NoMaxOrder X] (a : X) : 0 < μ (Ioi a) :=
   isOpen_Ioi.measure_pos μ nonempty_Ioi
 #align measure_theory.measure.measure_Ioi_pos MeasureTheory.Measure.measure_Ioi_pos
+-/
 
+#print MeasureTheory.Measure.measure_Iio_pos /-
 theorem measure_Iio_pos [NoMinOrder X] (a : X) : 0 < μ (Iio a) :=
   isOpen_Iio.measure_pos μ nonempty_Iio
 #align measure_theory.measure.measure_Iio_pos MeasureTheory.Measure.measure_Iio_pos
+-/
 
+#print MeasureTheory.Measure.measure_Ioo_pos /-
 theorem measure_Ioo_pos [DenselyOrdered X] {a b : X} : 0 < μ (Ioo a b) ↔ a < b :=
   (isOpen_Ioo.measure_pos_iff μ).trans nonempty_Ioo
 #align measure_theory.measure.measure_Ioo_pos MeasureTheory.Measure.measure_Ioo_pos
+-/
 
+#print MeasureTheory.Measure.measure_Ioo_eq_zero /-
 theorem measure_Ioo_eq_zero [DenselyOrdered X] {a b : X} : μ (Ioo a b) = 0 ↔ b ≤ a :=
   (isOpen_Ioo.measure_eq_zero_iff μ).trans (Ioo_eq_empty_iff.trans not_lt)
 #align measure_theory.measure.measure_Ioo_eq_zero MeasureTheory.Measure.measure_Ioo_eq_zero
+-/
 
+#print MeasureTheory.Measure.eqOn_Ioo_of_ae_eq /-
 theorem eqOn_Ioo_of_ae_eq {a b : X} {f g : X → Y} (hfg : f =ᵐ[μ.restrict (Ioo a b)] g)
     (hf : ContinuousOn f (Ioo a b)) (hg : ContinuousOn g (Ioo a b)) : EqOn f g (Ioo a b) :=
   eqOn_of_ae_eq hfg hf hg Ioo_subset_closure_interior
 #align measure_theory.measure.eq_on_Ioo_of_ae_eq MeasureTheory.Measure.eqOn_Ioo_of_ae_eq
+-/
 
+#print MeasureTheory.Measure.eqOn_Ioc_of_ae_eq /-
 theorem eqOn_Ioc_of_ae_eq [DenselyOrdered X] {a b : X} {f g : X → Y}
     (hfg : f =ᵐ[μ.restrict (Ioc a b)] g) (hf : ContinuousOn f (Ioc a b))
     (hg : ContinuousOn g (Ioc a b)) : EqOn f g (Ioc a b) :=
   eqOn_of_ae_eq hfg hf hg (Ioc_subset_closure_interior _ _)
 #align measure_theory.measure.eq_on_Ioc_of_ae_eq MeasureTheory.Measure.eqOn_Ioc_of_ae_eq
+-/
 
+#print MeasureTheory.Measure.eqOn_Ico_of_ae_eq /-
 theorem eqOn_Ico_of_ae_eq [DenselyOrdered X] {a b : X} {f g : X → Y}
     (hfg : f =ᵐ[μ.restrict (Ico a b)] g) (hf : ContinuousOn f (Ico a b))
     (hg : ContinuousOn g (Ico a b)) : EqOn f g (Ico a b) :=
   eqOn_of_ae_eq hfg hf hg (Ico_subset_closure_interior _ _)
 #align measure_theory.measure.eq_on_Ico_of_ae_eq MeasureTheory.Measure.eqOn_Ico_of_ae_eq
+-/
 
+#print MeasureTheory.Measure.eqOn_Icc_of_ae_eq /-
 theorem eqOn_Icc_of_ae_eq [DenselyOrdered X] {a b : X} (hne : a ≠ b) {f g : X → Y}
     (hfg : f =ᵐ[μ.restrict (Icc a b)] g) (hf : ContinuousOn f (Icc a b))
     (hg : ContinuousOn g (Icc a b)) : EqOn f g (Icc a b) :=
   eqOn_of_ae_eq hfg hf hg (closure_interior_Icc hne).symm.Subset
 #align measure_theory.measure.eq_on_Icc_of_ae_eq MeasureTheory.Measure.eqOn_Icc_of_ae_eq
+-/
 
 end LinearOrder
 
@@ -195,13 +237,17 @@ namespace Metric
 variable {X : Type _} [PseudoMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
   [IsOpenPosMeasure μ]
 
+#print Metric.measure_ball_pos /-
 theorem measure_ball_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ (nonempty_ball.2 hr)
 #align metric.measure_ball_pos Metric.measure_ball_pos
+-/
 
+#print Metric.measure_closedBall_pos /-
 theorem measure_closedBall_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (closedBall x r) :=
   (measure_ball_pos μ x hr).trans_le (measure_mono ball_subset_closedBall)
 #align metric.measure_closed_ball_pos Metric.measure_closedBall_pos
+-/
 
 end Metric
 
@@ -210,13 +256,17 @@ namespace Emetric
 variable {X : Type _} [PseudoEMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
   [IsOpenPosMeasure μ]
 
+#print EMetric.measure_ball_pos /-
 theorem measure_ball_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ ⟨x, mem_ball_self hr.bot_lt⟩
 #align emetric.measure_ball_pos EMetric.measure_ball_pos
+-/
 
+#print EMetric.measure_closedBall_pos /-
 theorem measure_closedBall_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (closedBall x r) :=
   (measure_ball_pos μ x hr).trans_le (measure_mono ball_subset_closedBall)
 #align emetric.measure_closed_ball_pos EMetric.measure_closedBall_pos
+-/
 
 end Emetric
 
Diff
@@ -37,17 +37,17 @@ section Basic
 variable {X Y : Type _} [TopologicalSpace X] {m : MeasurableSpace X} [TopologicalSpace Y]
   [T2Space Y] (μ ν : Measure X)
 
-#print MeasureTheory.Measure.OpenPosMeasure /-
+#print MeasureTheory.Measure.IsOpenPosMeasure /-
 /-- A measure is said to be `is_open_pos_measure` if it is positive on nonempty open sets. -/
-class OpenPosMeasure : Prop where
+class IsOpenPosMeasure : Prop where
   open_pos : ∀ U : Set X, IsOpen U → U.Nonempty → μ U ≠ 0
-#align measure_theory.measure.is_open_pos_measure MeasureTheory.Measure.OpenPosMeasure
+#align measure_theory.measure.is_open_pos_measure MeasureTheory.Measure.IsOpenPosMeasure
 -/
 
-variable [OpenPosMeasure μ] {s U : Set X} {x : X}
+variable [IsOpenPosMeasure μ] {s U : Set X} {x : X}
 
 theorem IsOpen.measure_ne_zero (hU : IsOpen U) (hne : U.Nonempty) : μ U ≠ 0 :=
-  OpenPosMeasure.open_pos U hU hne
+  IsOpenPosMeasure.open_pos U hU hne
 #align is_open.measure_ne_zero IsOpen.measure_ne_zero
 
 theorem IsOpen.measure_pos (hU : IsOpen U) (hne : U.Nonempty) : 0 < μ U :=
@@ -71,21 +71,21 @@ theorem measure_pos_of_mem_nhds (h : s ∈ 𝓝 x) : 0 < μ s :=
   measure_pos_of_nonempty_interior _ ⟨x, mem_interior_iff_mem_nhds.2 h⟩
 #align measure_theory.measure.measure_pos_of_mem_nhds MeasureTheory.Measure.measure_pos_of_mem_nhds
 
-theorem openPosMeasure_smul {c : ℝ≥0∞} (h : c ≠ 0) : OpenPosMeasure (c • μ) :=
+theorem isOpenPosMeasure_smul {c : ℝ≥0∞} (h : c ≠ 0) : IsOpenPosMeasure (c • μ) :=
   ⟨fun U Uo Une => mul_ne_zero h (Uo.measure_ne_zero μ Une)⟩
-#align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.openPosMeasure_smul
+#align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.isOpenPosMeasure_smul
 
 variable {μ ν}
 
-#print MeasureTheory.Measure.AbsolutelyContinuous.openPosMeasure /-
-protected theorem AbsolutelyContinuous.openPosMeasure (h : μ ≪ ν) : OpenPosMeasure ν :=
+#print MeasureTheory.Measure.AbsolutelyContinuous.isOpenPosMeasure /-
+protected theorem AbsolutelyContinuous.isOpenPosMeasure (h : μ ≪ ν) : IsOpenPosMeasure ν :=
   ⟨fun U ho hne h₀ => ho.measure_ne_zero μ hne (h h₀)⟩
-#align measure_theory.measure.absolutely_continuous.is_open_pos_measure MeasureTheory.Measure.AbsolutelyContinuous.openPosMeasure
+#align measure_theory.measure.absolutely_continuous.is_open_pos_measure MeasureTheory.Measure.AbsolutelyContinuous.isOpenPosMeasure
 -/
 
 #print LE.le.isOpenPosMeasure /-
-theorem LE.le.isOpenPosMeasure (h : μ ≤ ν) : OpenPosMeasure ν :=
-  h.AbsolutelyContinuous.OpenPosMeasure
+theorem LE.le.isOpenPosMeasure (h : μ ≤ ν) : IsOpenPosMeasure ν :=
+  h.AbsolutelyContinuous.IsOpenPosMeasure
 #align has_le.le.is_open_pos_measure LE.le.isOpenPosMeasure
 -/
 
@@ -104,7 +104,7 @@ theorem eqOn_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : I
   by
   replace h := ae_imp_of_ae_restrict h
   simp only [eventually_eq, ae_iff, not_imp] at h 
-  have : IsOpen (U ∩ { a | f a ≠ g a }) :=
+  have : IsOpen (U ∩ {a | f a ≠ g a}) :=
     by
     refine' is_open_iff_mem_nhds.mpr fun a ha => inter_mem (hU.mem_nhds ha.1) _
     rcases ha with ⟨ha : a ∈ U, ha' : (f a, g a) ∈ diagonal Yᶜ⟩
@@ -141,7 +141,7 @@ end Basic
 section LinearOrder
 
 variable {X Y : Type _} [TopologicalSpace X] [LinearOrder X] [OrderTopology X]
-  {m : MeasurableSpace X} [TopologicalSpace Y] [T2Space Y] (μ : Measure X) [OpenPosMeasure μ]
+  {m : MeasurableSpace X} [TopologicalSpace Y] [T2Space Y] (μ : Measure X) [IsOpenPosMeasure μ]
 
 theorem measure_Ioi_pos [NoMaxOrder X] (a : X) : 0 < μ (Ioi a) :=
   isOpen_Ioi.measure_pos μ nonempty_Ioi
@@ -193,7 +193,7 @@ open MeasureTheory MeasureTheory.Measure
 namespace Metric
 
 variable {X : Type _} [PseudoMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
-  [OpenPosMeasure μ]
+  [IsOpenPosMeasure μ]
 
 theorem measure_ball_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ (nonempty_ball.2 hr)
@@ -208,7 +208,7 @@ end Metric
 namespace Emetric
 
 variable {X : Type _} [PseudoEMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
-  [OpenPosMeasure μ]
+  [IsOpenPosMeasure μ]
 
 theorem measure_ball_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ ⟨x, mem_ball_self hr.bot_lt⟩
Diff
@@ -103,7 +103,7 @@ theorem eqOn_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : I
     (hf : ContinuousOn f U) (hg : ContinuousOn g U) : EqOn f g U :=
   by
   replace h := ae_imp_of_ae_restrict h
-  simp only [eventually_eq, ae_iff, not_imp] at h
+  simp only [eventually_eq, ae_iff, not_imp] at h 
   have : IsOpen (U ∩ { a | f a ≠ g a }) :=
     by
     refine' is_open_iff_mem_nhds.mpr fun a ha => inter_mem (hU.mem_nhds ha.1) _
Diff
@@ -24,7 +24,7 @@ about these measures.
 -/
 
 
-open Topology ENNReal MeasureTheory
+open scoped Topology ENNReal MeasureTheory
 
 open Set Function Filter
 
@@ -83,9 +83,11 @@ protected theorem AbsolutelyContinuous.openPosMeasure (h : μ ≪ ν) : OpenPosM
 #align measure_theory.measure.absolutely_continuous.is_open_pos_measure MeasureTheory.Measure.AbsolutelyContinuous.openPosMeasure
 -/
 
+#print LE.le.isOpenPosMeasure /-
 theorem LE.le.isOpenPosMeasure (h : μ ≤ ν) : OpenPosMeasure ν :=
   h.AbsolutelyContinuous.OpenPosMeasure
 #align has_le.le.is_open_pos_measure LE.le.isOpenPosMeasure
+-/
 
 theorem IsOpen.eq_empty_of_measure_zero (hU : IsOpen U) (h₀ : μ U = 0) : U = ∅ :=
   (hU.measure_eq_zero_iff μ).mp h₀
Diff
@@ -46,73 +46,31 @@ class OpenPosMeasure : Prop where
 
 variable [OpenPosMeasure μ] {s U : Set X} {x : X}
 
-/- warning: is_open.measure_ne_zero -> IsOpen.measure_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align is_open.measure_ne_zero IsOpen.measure_ne_zeroₓ'. -/
 theorem IsOpen.measure_ne_zero (hU : IsOpen U) (hne : U.Nonempty) : μ U ≠ 0 :=
   OpenPosMeasure.open_pos U hU hne
 #align is_open.measure_ne_zero IsOpen.measure_ne_zero
 
-/- warning: is_open.measure_pos -> IsOpen.measure_pos is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U))
-Case conversion may be inaccurate. Consider using '#align is_open.measure_pos IsOpen.measure_posₓ'. -/
 theorem IsOpen.measure_pos (hU : IsOpen U) (hne : U.Nonempty) : 0 < μ U :=
   (hU.measure_ne_zero μ hne).bot_lt
 #align is_open.measure_pos IsOpen.measure_pos
 
-/- warning: is_open.measure_pos_iff -> IsOpen.measure_pos_iff is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U)) (Set.Nonempty.{u1} X U))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U)) (Set.Nonempty.{u1} X U))
-Case conversion may be inaccurate. Consider using '#align is_open.measure_pos_iff IsOpen.measure_pos_iffₓ'. -/
 theorem IsOpen.measure_pos_iff (hU : IsOpen U) : 0 < μ U ↔ U.Nonempty :=
   ⟨fun h => nonempty_iff_ne_empty.2 fun he => h.ne' <| he.symm ▸ measure_empty, hU.measure_pos μ⟩
 #align is_open.measure_pos_iff IsOpen.measure_pos_iff
 
-/- warning: is_open.measure_eq_zero_iff -> IsOpen.measure_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{succ u1} (Set.{u1} X) U (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.hasEmptyc.{u1} X))))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{succ u1} (Set.{u1} X) U (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.instEmptyCollectionSet.{u1} X))))
-Case conversion may be inaccurate. Consider using '#align is_open.measure_eq_zero_iff IsOpen.measure_eq_zero_iffₓ'. -/
 theorem IsOpen.measure_eq_zero_iff (hU : IsOpen U) : μ U = 0 ↔ U = ∅ := by
   simpa only [not_lt, nonpos_iff_eq_zero, not_nonempty_iff_eq_empty] using
     not_congr (hU.measure_pos_iff μ)
 #align is_open.measure_eq_zero_iff IsOpen.measure_eq_zero_iff
 
-/- warning: measure_theory.measure.measure_pos_of_nonempty_interior -> MeasureTheory.Measure.measure_pos_of_nonempty_interior is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Set.Nonempty.{u1} X (interior.{u1} X _inst_1 s)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ s))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Set.Nonempty.{u1} X (interior.{u1} X _inst_1 s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_pos_of_nonempty_interior MeasureTheory.Measure.measure_pos_of_nonempty_interiorₓ'. -/
 theorem measure_pos_of_nonempty_interior (h : (interior s).Nonempty) : 0 < μ s :=
   (isOpen_interior.measure_pos μ h).trans_le (measure_mono interior_subset)
 #align measure_theory.measure.measure_pos_of_nonempty_interior MeasureTheory.Measure.measure_pos_of_nonempty_interior
 
-/- warning: measure_theory.measure.measure_pos_of_mem_nhds -> MeasureTheory.Measure.measure_pos_of_mem_nhds is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X} {x : X}, (Membership.Mem.{u1, u1} (Set.{u1} X) (Filter.{u1} X) (Filter.hasMem.{u1} X) s (nhds.{u1} X _inst_1 x)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ s))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X} {x : X}, (Membership.mem.{u1, u1} (Set.{u1} X) (Filter.{u1} X) (instMembershipSetFilter.{u1} X) s (nhds.{u1} X _inst_1 x)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_pos_of_mem_nhds MeasureTheory.Measure.measure_pos_of_mem_nhdsₓ'. -/
 theorem measure_pos_of_mem_nhds (h : s ∈ 𝓝 x) : 0 < μ s :=
   measure_pos_of_nonempty_interior _ ⟨x, mem_interior_iff_mem_nhds.2 h⟩
 #align measure_theory.measure.measure_pos_of_mem_nhds MeasureTheory.Measure.measure_pos_of_mem_nhds
 
-/- warning: measure_theory.measure.is_open_pos_measure_smul -> MeasureTheory.Measure.openPosMeasure_smul is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} X m) (MeasureTheory.Measure.instSMul.{u1, 0} X ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m) c μ))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} X m) (MeasureTheory.Measure.{u1} X m) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} X m) (MeasureTheory.Measure.instSMul.{u1, 0} X ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m)) c μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.openPosMeasure_smulₓ'. -/
 theorem openPosMeasure_smul {c : ℝ≥0∞} (h : c ≠ 0) : OpenPosMeasure (c • μ) :=
   ⟨fun U Uo Une => mul_ne_zero h (Uo.measure_ne_zero μ Une)⟩
 #align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.openPosMeasure_smul
@@ -125,42 +83,18 @@ protected theorem AbsolutelyContinuous.openPosMeasure (h : μ ≪ ν) : OpenPosM
 #align measure_theory.measure.absolutely_continuous.is_open_pos_measure MeasureTheory.Measure.AbsolutelyContinuous.openPosMeasure
 -/
 
-/- warning: has_le.le.is_open_pos_measure -> LE.le.isOpenPosMeasure is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} {ν : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} X m) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} X m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} X m) (MeasureTheory.Measure.instPartialOrder.{u1} X m))) μ ν) -> (MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m ν)
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} {ν : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} X m) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} X m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} X m) (MeasureTheory.Measure.instPartialOrder.{u1} X m))) μ ν) -> (MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m ν)
-Case conversion may be inaccurate. Consider using '#align has_le.le.is_open_pos_measure LE.le.isOpenPosMeasureₓ'. -/
 theorem LE.le.isOpenPosMeasure (h : μ ≤ ν) : OpenPosMeasure ν :=
   h.AbsolutelyContinuous.OpenPosMeasure
 #align has_le.le.is_open_pos_measure LE.le.isOpenPosMeasure
 
-/- warning: is_open.eq_empty_of_measure_zero -> IsOpen.eq_empty_of_measure_zero is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u1} (Set.{u1} X) U (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.hasEmptyc.{u1} X)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u1} (Set.{u1} X) U (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.instEmptyCollectionSet.{u1} X)))
-Case conversion may be inaccurate. Consider using '#align is_open.eq_empty_of_measure_zero IsOpen.eq_empty_of_measure_zeroₓ'. -/
 theorem IsOpen.eq_empty_of_measure_zero (hU : IsOpen U) (h₀ : μ U = 0) : U = ∅ :=
   (hU.measure_eq_zero_iff μ).mp h₀
 #align is_open.eq_empty_of_measure_zero IsOpen.eq_empty_of_measure_zero
 
-/- warning: measure_theory.measure.interior_eq_empty_of_null -> MeasureTheory.Measure.interior_eq_empty_of_null is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u1} (Set.{u1} X) (interior.{u1} X _inst_1 s) (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.hasEmptyc.{u1} X)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u1} (Set.{u1} X) (interior.{u1} X _inst_1 s) (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.instEmptyCollectionSet.{u1} X)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.interior_eq_empty_of_null MeasureTheory.Measure.interior_eq_empty_of_nullₓ'. -/
 theorem interior_eq_empty_of_null (hs : μ s = 0) : interior s = ∅ :=
   isOpen_interior.eq_empty_of_measure_zero <| measure_mono_null interior_subset hs
 #align measure_theory.measure.interior_eq_empty_of_null MeasureTheory.Measure.interior_eq_empty_of_null
 
-/- warning: measure_theory.measure.eq_on_open_of_ae_eq -> MeasureTheory.Measure.eqOn_open_of_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} [_inst_2 : TopologicalSpace.{u2} Y] [_inst_3 : T2Space.{u2} Y _inst_2] {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ U)) f g) -> (IsOpen.{u1} X _inst_1 U) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_2 f U) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_2 g U) -> (Set.EqOn.{u1, u2} X Y f g U)
-but is expected to have type
-  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] {m : MeasurableSpace.{u2} X} [_inst_2 : TopologicalSpace.{u1} Y] [_inst_3 : T2Space.{u1} Y _inst_2] {μ : MeasureTheory.Measure.{u2} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] {U : Set.{u2} X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ U)) f g) -> (IsOpen.{u2} X _inst_1 U) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_2 f U) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_2 g U) -> (Set.EqOn.{u2, u1} X Y f g U)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_open_of_ae_eq MeasureTheory.Measure.eqOn_open_of_ae_eqₓ'. -/
 /-- If two functions are a.e. equal on an open set and are continuous on this set, then they are
 equal on this set. -/
 theorem eqOn_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : IsOpen U)
@@ -179,24 +113,12 @@ theorem eqOn_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : I
   exact fun x hx => Classical.not_not.1 fun h => this ⟨hx, h⟩
 #align measure_theory.measure.eq_on_open_of_ae_eq MeasureTheory.Measure.eqOn_open_of_ae_eq
 
-/- warning: measure_theory.measure.eq_of_ae_eq -> MeasureTheory.Measure.eq_of_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} [_inst_2 : TopologicalSpace.{u2} Y] [_inst_3 : T2Space.{u2} Y _inst_2] {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m μ) f g) -> (Continuous.{u1, u2} X Y _inst_1 _inst_2 f) -> (Continuous.{u1, u2} X Y _inst_1 _inst_2 g) -> (Eq.{max (succ u1) (succ u2)} (X -> Y) f g)
-but is expected to have type
-  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] {m : MeasurableSpace.{u2} X} [_inst_2 : TopologicalSpace.{u1} Y] [_inst_3 : T2Space.{u1} Y _inst_2] {μ : MeasureTheory.Measure.{u2} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m μ) f g) -> (Continuous.{u2, u1} X Y _inst_1 _inst_2 f) -> (Continuous.{u2, u1} X Y _inst_1 _inst_2 g) -> (Eq.{max (succ u2) (succ u1)} (X -> Y) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_of_ae_eq MeasureTheory.Measure.eq_of_ae_eqₓ'. -/
 /-- If two continuous functions are a.e. equal, then they are equal. -/
 theorem eq_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ] g) (hf : Continuous f) (hg : Continuous g) : f = g :=
   suffices EqOn f g univ from funext fun x => this trivial
   eqOn_open_of_ae_eq (ae_restrict_of_ae h) isOpen_univ hf.ContinuousOn hg.ContinuousOn
 #align measure_theory.measure.eq_of_ae_eq MeasureTheory.Measure.eq_of_ae_eq
 
-/- warning: measure_theory.measure.eq_on_of_ae_eq -> MeasureTheory.Measure.eqOn_of_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} [_inst_2 : TopologicalSpace.{u2} Y] [_inst_3 : T2Space.{u2} Y _inst_2] {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ s)) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_2 f s) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_2 g s) -> (HasSubset.Subset.{u1} (Set.{u1} X) (Set.hasSubset.{u1} X) s (closure.{u1} X _inst_1 (interior.{u1} X _inst_1 s))) -> (Set.EqOn.{u1, u2} X Y f g s)
-but is expected to have type
-  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] {m : MeasurableSpace.{u2} X} [_inst_2 : TopologicalSpace.{u1} Y] [_inst_3 : T2Space.{u1} Y _inst_2] {μ : MeasureTheory.Measure.{u2} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] {s : Set.{u2} X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ s)) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_2 f s) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_2 g s) -> (HasSubset.Subset.{u2} (Set.{u2} X) (Set.instHasSubsetSet.{u2} X) s (closure.{u2} X _inst_1 (interior.{u2} X _inst_1 s))) -> (Set.EqOn.{u2, u1} X Y f g s)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_of_ae_eq MeasureTheory.Measure.eqOn_of_ae_eqₓ'. -/
 theorem eqOn_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict s] g) (hf : ContinuousOn f s)
     (hg : ContinuousOn g s) (hU : s ⊆ closure (interior s)) : EqOn f g s :=
   have : interior s ⊆ s := interior_subset
@@ -207,12 +129,6 @@ theorem eqOn_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict s] g) (hf : Contin
 
 variable (μ)
 
-/- warning: continuous.ae_eq_iff_eq -> Continuous.ae_eq_iff_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} [_inst_2 : TopologicalSpace.{u2} Y] [_inst_3 : T2Space.{u2} Y _inst_2] (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {f : X -> Y} {g : X -> Y}, (Continuous.{u1, u2} X Y _inst_1 _inst_2 f) -> (Continuous.{u1, u2} X Y _inst_1 _inst_2 g) -> (Iff (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m μ) f g) (Eq.{max (succ u1) (succ u2)} (X -> Y) f g))
-but is expected to have type
-  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] {m : MeasurableSpace.{u2} X} [_inst_2 : TopologicalSpace.{u1} Y] [_inst_3 : T2Space.{u1} Y _inst_2] (μ : MeasureTheory.Measure.{u2} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] {f : X -> Y} {g : X -> Y}, (Continuous.{u2, u1} X Y _inst_1 _inst_2 f) -> (Continuous.{u2, u1} X Y _inst_1 _inst_2 g) -> (Iff (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m μ) f g) (Eq.{max (succ u2) (succ u1)} (X -> Y) f g))
-Case conversion may be inaccurate. Consider using '#align continuous.ae_eq_iff_eq Continuous.ae_eq_iff_eqₓ'. -/
 theorem Continuous.ae_eq_iff_eq {f g : X → Y} (hf : Continuous f) (hg : Continuous g) :
     f =ᵐ[μ] g ↔ f = g :=
   ⟨fun h => eq_of_ae_eq h hf hg, fun h => h ▸ EventuallyEq.rfl⟩
@@ -225,84 +141,39 @@ section LinearOrder
 variable {X Y : Type _} [TopologicalSpace X] [LinearOrder X] [OrderTopology X]
   {m : MeasurableSpace X} [TopologicalSpace Y] [T2Space Y] (μ : Measure X) [OpenPosMeasure μ]
 
-/- warning: measure_theory.measure.measure_Ioi_pos -> MeasureTheory.Measure.measure_Ioi_pos is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMaxOrder.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] (a : X), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioi.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMaxOrder.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] (a : X), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Ioi.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Ioi_pos MeasureTheory.Measure.measure_Ioi_posₓ'. -/
 theorem measure_Ioi_pos [NoMaxOrder X] (a : X) : 0 < μ (Ioi a) :=
   isOpen_Ioi.measure_pos μ nonempty_Ioi
 #align measure_theory.measure.measure_Ioi_pos MeasureTheory.Measure.measure_Ioi_pos
 
-/- warning: measure_theory.measure.measure_Iio_pos -> MeasureTheory.Measure.measure_Iio_pos is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMinOrder.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] (a : X), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Iio.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMinOrder.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] (a : X), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Iio.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Iio_pos MeasureTheory.Measure.measure_Iio_posₓ'. -/
 theorem measure_Iio_pos [NoMinOrder X] (a : X) : 0 < μ (Iio a) :=
   isOpen_Iio.measure_pos μ nonempty_Iio
 #align measure_theory.measure.measure_Iio_pos MeasureTheory.Measure.measure_Iio_pos
 
-/- warning: measure_theory.measure.measure_Ioo_pos -> MeasureTheory.Measure.measure_Ioo_pos is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) (LT.lt.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))) a b)
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] {a : X} {b : X}, Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a b))) (LT.lt.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))) a b)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Ioo_pos MeasureTheory.Measure.measure_Ioo_posₓ'. -/
 theorem measure_Ioo_pos [DenselyOrdered X] {a b : X} : 0 < μ (Ioo a b) ↔ a < b :=
   (isOpen_Ioo.measure_pos_iff μ).trans nonempty_Ioo
 #align measure_theory.measure.measure_Ioo_pos MeasureTheory.Measure.measure_Ioo_pos
 
-/- warning: measure_theory.measure.measure_Ioo_eq_zero -> MeasureTheory.Measure.measure_Ioo_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (LE.le.{u1} X (Preorder.toHasLe.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))) b a)
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] {a : X} {b : X}, Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (LE.le.{u1} X (Preorder.toLE.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))) b a)
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Ioo_eq_zero MeasureTheory.Measure.measure_Ioo_eq_zeroₓ'. -/
 theorem measure_Ioo_eq_zero [DenselyOrdered X] {a b : X} : μ (Ioo a b) = 0 ↔ b ≤ a :=
   (isOpen_Ioo.measure_eq_zero_iff μ).trans (Ioo_eq_empty_iff.trans not_lt)
 #align measure_theory.measure.measure_Ioo_eq_zero MeasureTheory.Measure.measure_Ioo_eq_zero
 
-/- warning: measure_theory.measure.eq_on_Ioo_of_ae_eq -> MeasureTheory.Measure.eqOn_Ioo_of_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))
-but is expected to have type
-  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Ioo.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Ioo.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Ioo.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Ioo.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Ioo_of_ae_eq MeasureTheory.Measure.eqOn_Ioo_of_ae_eqₓ'. -/
 theorem eqOn_Ioo_of_ae_eq {a b : X} {f g : X → Y} (hfg : f =ᵐ[μ.restrict (Ioo a b)] g)
     (hf : ContinuousOn f (Ioo a b)) (hg : ContinuousOn g (Ioo a b)) : EqOn f g (Ioo a b) :=
   eqOn_of_ae_eq hfg hf hg Ioo_subset_closure_interior
 #align measure_theory.measure.eq_on_Ioo_of_ae_eq MeasureTheory.Measure.eqOn_Ioo_of_ae_eq
 
-/- warning: measure_theory.measure.eq_on_Ioc_of_ae_eq -> MeasureTheory.Measure.eqOn_Ioc_of_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))
-but is expected to have type
-  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u2} X (Preorder.toLT.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Ioc_of_ae_eq MeasureTheory.Measure.eqOn_Ioc_of_ae_eqₓ'. -/
 theorem eqOn_Ioc_of_ae_eq [DenselyOrdered X] {a b : X} {f g : X → Y}
     (hfg : f =ᵐ[μ.restrict (Ioc a b)] g) (hf : ContinuousOn f (Ioc a b))
     (hg : ContinuousOn g (Ioc a b)) : EqOn f g (Ioc a b) :=
   eqOn_of_ae_eq hfg hf hg (Ioc_subset_closure_interior _ _)
 #align measure_theory.measure.eq_on_Ioc_of_ae_eq MeasureTheory.Measure.eqOn_Ioc_of_ae_eq
 
-/- warning: measure_theory.measure.eq_on_Ico_of_ae_eq -> MeasureTheory.Measure.eqOn_Ico_of_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))
-but is expected to have type
-  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u2} X (Preorder.toLT.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Ico_of_ae_eq MeasureTheory.Measure.eqOn_Ico_of_ae_eqₓ'. -/
 theorem eqOn_Ico_of_ae_eq [DenselyOrdered X] {a b : X} {f g : X → Y}
     (hfg : f =ᵐ[μ.restrict (Ico a b)] g) (hf : ContinuousOn f (Ico a b))
     (hg : ContinuousOn g (Ico a b)) : EqOn f g (Ico a b) :=
   eqOn_of_ae_eq hfg hf hg (Ico_subset_closure_interior _ _)
 #align measure_theory.measure.eq_on_Ico_of_ae_eq MeasureTheory.Measure.eqOn_Ico_of_ae_eq
 
-/- warning: measure_theory.measure.eq_on_Icc_of_ae_eq -> MeasureTheory.Measure.eqOn_Icc_of_ae_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Icc_of_ae_eq MeasureTheory.Measure.eqOn_Icc_of_ae_eqₓ'. -/
 theorem eqOn_Icc_of_ae_eq [DenselyOrdered X] {a b : X} (hne : a ≠ b) {f g : X → Y}
     (hfg : f =ᵐ[μ.restrict (Icc a b)] g) (hf : ContinuousOn f (Icc a b))
     (hg : ContinuousOn g (Icc a b)) : EqOn f g (Icc a b) :=
@@ -322,22 +193,10 @@ namespace Metric
 variable {X : Type _} [PseudoMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
   [OpenPosMeasure μ]
 
-/- warning: metric.measure_ball_pos -> Metric.measure_ball_pos is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Metric.ball.{u1} X _inst_1 x r)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Metric.ball.{u1} X _inst_1 x r)))
-Case conversion may be inaccurate. Consider using '#align metric.measure_ball_pos Metric.measure_ball_posₓ'. -/
 theorem measure_ball_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ (nonempty_ball.2 hr)
 #align metric.measure_ball_pos Metric.measure_ball_pos
 
-/- warning: metric.measure_closed_ball_pos -> Metric.measure_closedBall_pos is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Metric.closedBall.{u1} X _inst_1 x r)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Metric.closedBall.{u1} X _inst_1 x r)))
-Case conversion may be inaccurate. Consider using '#align metric.measure_closed_ball_pos Metric.measure_closedBall_posₓ'. -/
 theorem measure_closedBall_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (closedBall x r) :=
   (measure_ball_pos μ x hr).trans_le (measure_mono ball_subset_closedBall)
 #align metric.measure_closed_ball_pos Metric.measure_closedBall_pos
@@ -349,22 +208,10 @@ namespace Emetric
 variable {X : Type _} [PseudoEMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
   [OpenPosMeasure μ]
 
-/- warning: emetric.measure_ball_pos -> EMetric.measure_ball_pos is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (EMetric.ball.{u1} X _inst_1 x r)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (EMetric.ball.{u1} X _inst_1 x r)))
-Case conversion may be inaccurate. Consider using '#align emetric.measure_ball_pos EMetric.measure_ball_posₓ'. -/
 theorem measure_ball_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ ⟨x, mem_ball_self hr.bot_lt⟩
 #align emetric.measure_ball_pos EMetric.measure_ball_pos
 
-/- warning: emetric.measure_closed_ball_pos -> EMetric.measure_closedBall_pos is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (EMetric.closedBall.{u1} X _inst_1 x r)))
-but is expected to have type
-  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (EMetric.closedBall.{u1} X _inst_1 x r)))
-Case conversion may be inaccurate. Consider using '#align emetric.measure_closed_ball_pos EMetric.measure_closedBall_posₓ'. -/
 theorem measure_closedBall_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (closedBall x r) :=
   (measure_ball_pos μ x hr).trans_le (measure_mono ball_subset_closedBall)
 #align emetric.measure_closed_ball_pos EMetric.measure_closedBall_pos
Diff
@@ -301,10 +301,7 @@ theorem eqOn_Ico_of_ae_eq [DenselyOrdered X] {a b : X} {f g : X → Y}
 #align measure_theory.measure.eq_on_Ico_of_ae_eq MeasureTheory.Measure.eqOn_Ico_of_ae_eq
 
 /- warning: measure_theory.measure.eq_on_Icc_of_ae_eq -> MeasureTheory.Measure.eqOn_Icc_of_ae_eq is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, (Ne.{succ u1} X a b) -> (forall {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)))
-but is expected to have type
-  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u2} X (Preorder.toLT.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))))] {a : X} {b : X}, (Ne.{succ u2} X a b) -> (forall {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Icc_of_ae_eq MeasureTheory.Measure.eqOn_Icc_of_ae_eqₓ'. -/
 theorem eqOn_Icc_of_ae_eq [DenselyOrdered X] {a b : X} (hne : a ≠ b) {f g : X → Y}
     (hfg : f =ᵐ[μ.restrict (Icc a b)] g) (hf : ContinuousOn f (Icc a b))
Diff
@@ -58,7 +58,7 @@ theorem IsOpen.measure_ne_zero (hU : IsOpen U) (hne : U.Nonempty) : μ U ≠ 0 :
 
 /- warning: is_open.measure_pos -> IsOpen.measure_pos is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U))
 Case conversion may be inaccurate. Consider using '#align is_open.measure_pos IsOpen.measure_posₓ'. -/
@@ -68,7 +68,7 @@ theorem IsOpen.measure_pos (hU : IsOpen U) (hne : U.Nonempty) : 0 < μ U :=
 
 /- warning: is_open.measure_pos_iff -> IsOpen.measure_pos_iff is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U)) (Set.Nonempty.{u1} X U))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U)) (Set.Nonempty.{u1} X U))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U)) (Set.Nonempty.{u1} X U))
 Case conversion may be inaccurate. Consider using '#align is_open.measure_pos_iff IsOpen.measure_pos_iffₓ'. -/
@@ -89,7 +89,7 @@ theorem IsOpen.measure_eq_zero_iff (hU : IsOpen U) : μ U = 0 ↔ U = ∅ := by
 
 /- warning: measure_theory.measure.measure_pos_of_nonempty_interior -> MeasureTheory.Measure.measure_pos_of_nonempty_interior is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Set.Nonempty.{u1} X (interior.{u1} X _inst_1 s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ s))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Set.Nonempty.{u1} X (interior.{u1} X _inst_1 s)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ s))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Set.Nonempty.{u1} X (interior.{u1} X _inst_1 s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_pos_of_nonempty_interior MeasureTheory.Measure.measure_pos_of_nonempty_interiorₓ'. -/
@@ -99,7 +99,7 @@ theorem measure_pos_of_nonempty_interior (h : (interior s).Nonempty) : 0 < μ s
 
 /- warning: measure_theory.measure.measure_pos_of_mem_nhds -> MeasureTheory.Measure.measure_pos_of_mem_nhds is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X} {x : X}, (Membership.Mem.{u1, u1} (Set.{u1} X) (Filter.{u1} X) (Filter.hasMem.{u1} X) s (nhds.{u1} X _inst_1 x)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ s))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X} {x : X}, (Membership.Mem.{u1, u1} (Set.{u1} X) (Filter.{u1} X) (Filter.hasMem.{u1} X) s (nhds.{u1} X _inst_1 x)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ s))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X} {x : X}, (Membership.mem.{u1, u1} (Set.{u1} X) (Filter.{u1} X) (instMembershipSetFilter.{u1} X) s (nhds.{u1} X _inst_1 x)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) s))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_pos_of_mem_nhds MeasureTheory.Measure.measure_pos_of_mem_nhdsₓ'. -/
@@ -125,11 +125,15 @@ protected theorem AbsolutelyContinuous.openPosMeasure (h : μ ≪ ν) : OpenPosM
 #align measure_theory.measure.absolutely_continuous.is_open_pos_measure MeasureTheory.Measure.AbsolutelyContinuous.openPosMeasure
 -/
 
-#print LE.le.isOpenPosMeasure /-
+/- warning: has_le.le.is_open_pos_measure -> LE.le.isOpenPosMeasure is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} {ν : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} X m) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} X m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} X m) (MeasureTheory.Measure.instPartialOrder.{u1} X m))) μ ν) -> (MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m ν)
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} {ν : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ], (LE.le.{u1} (MeasureTheory.Measure.{u1} X m) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} X m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} X m) (MeasureTheory.Measure.instPartialOrder.{u1} X m))) μ ν) -> (MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m ν)
+Case conversion may be inaccurate. Consider using '#align has_le.le.is_open_pos_measure LE.le.isOpenPosMeasureₓ'. -/
 theorem LE.le.isOpenPosMeasure (h : μ ≤ ν) : OpenPosMeasure ν :=
   h.AbsolutelyContinuous.OpenPosMeasure
 #align has_le.le.is_open_pos_measure LE.le.isOpenPosMeasure
--/
 
 /- warning: is_open.eq_empty_of_measure_zero -> IsOpen.eq_empty_of_measure_zero is a dubious translation:
 lean 3 declaration is
@@ -223,7 +227,7 @@ variable {X Y : Type _} [TopologicalSpace X] [LinearOrder X] [OrderTopology X]
 
 /- warning: measure_theory.measure.measure_Ioi_pos -> MeasureTheory.Measure.measure_Ioi_pos is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMaxOrder.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] (a : X), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioi.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMaxOrder.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] (a : X), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioi.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMaxOrder.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] (a : X), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Ioi.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Ioi_pos MeasureTheory.Measure.measure_Ioi_posₓ'. -/
@@ -233,7 +237,7 @@ theorem measure_Ioi_pos [NoMaxOrder X] (a : X) : 0 < μ (Ioi a) :=
 
 /- warning: measure_theory.measure.measure_Iio_pos -> MeasureTheory.Measure.measure_Iio_pos is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMinOrder.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] (a : X), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Iio.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a))
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMinOrder.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] (a : X), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Iio.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMinOrder.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] (a : X), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Iio.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Iio_pos MeasureTheory.Measure.measure_Iio_posₓ'. -/
@@ -243,7 +247,7 @@ theorem measure_Iio_pos [NoMinOrder X] (a : X) : 0 < μ (Iio a) :=
 
 /- warning: measure_theory.measure.measure_Ioo_pos -> MeasureTheory.Measure.measure_Ioo_pos is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) (LT.lt.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))) a b)
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) (LT.lt.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))) a b)
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] {a : X} {b : X}, Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a b))) (LT.lt.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))) a b)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Ioo_pos MeasureTheory.Measure.measure_Ioo_posₓ'. -/
@@ -253,7 +257,7 @@ theorem measure_Ioo_pos [DenselyOrdered X] {a b : X} : 0 < μ (Ioo a b) ↔ a <
 
 /- warning: measure_theory.measure.measure_Ioo_eq_zero -> MeasureTheory.Measure.measure_Ioo_eq_zero is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (LE.le.{u1} X (Preorder.toLE.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))) b a)
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (LE.le.{u1} X (Preorder.toHasLe.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))) b a)
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] {a : X} {b : X}, Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (LE.le.{u1} X (Preorder.toLE.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))) b a)
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Ioo_eq_zero MeasureTheory.Measure.measure_Ioo_eq_zeroₓ'. -/
@@ -274,7 +278,7 @@ theorem eqOn_Ioo_of_ae_eq {a b : X} {f g : X → Y} (hfg : f =ᵐ[μ.restrict (I
 
 /- warning: measure_theory.measure.eq_on_Ioc_of_ae_eq -> MeasureTheory.Measure.eqOn_Ioc_of_ae_eq is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))
 but is expected to have type
   forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u2} X (Preorder.toLT.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Ioc_of_ae_eq MeasureTheory.Measure.eqOn_Ioc_of_ae_eqₓ'. -/
@@ -286,7 +290,7 @@ theorem eqOn_Ioc_of_ae_eq [DenselyOrdered X] {a b : X} {f g : X → Y}
 
 /- warning: measure_theory.measure.eq_on_Ico_of_ae_eq -> MeasureTheory.Measure.eqOn_Ico_of_ae_eq is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))
 but is expected to have type
   forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u2} X (Preorder.toLT.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Ico_of_ae_eq MeasureTheory.Measure.eqOn_Ico_of_ae_eqₓ'. -/
@@ -298,7 +302,7 @@ theorem eqOn_Ico_of_ae_eq [DenselyOrdered X] {a b : X} {f g : X → Y}
 
 /- warning: measure_theory.measure.eq_on_Icc_of_ae_eq -> MeasureTheory.Measure.eqOn_Icc_of_ae_eq is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, (Ne.{succ u1} X a b) -> (forall {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)))
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toHasLt.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, (Ne.{succ u1} X a b) -> (forall {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)))
 but is expected to have type
   forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u2} X (Preorder.toLT.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))))] {a : X} {b : X}, (Ne.{succ u2} X a b) -> (forall {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Icc_of_ae_eq MeasureTheory.Measure.eqOn_Icc_of_ae_eqₓ'. -/
@@ -323,7 +327,7 @@ variable {X : Type _} [PseudoMetricSpace X] {m : MeasurableSpace X} (μ : Measur
 
 /- warning: metric.measure_ball_pos -> Metric.measure_ball_pos is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Metric.ball.{u1} X _inst_1 x r)))
+  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Metric.ball.{u1} X _inst_1 x r)))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Metric.ball.{u1} X _inst_1 x r)))
 Case conversion may be inaccurate. Consider using '#align metric.measure_ball_pos Metric.measure_ball_posₓ'. -/
@@ -333,7 +337,7 @@ theorem measure_ball_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (ball x r) :=
 
 /- warning: metric.measure_closed_ball_pos -> Metric.measure_closedBall_pos is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Metric.closedBall.{u1} X _inst_1 x r)))
+  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Metric.closedBall.{u1} X _inst_1 x r)))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Metric.closedBall.{u1} X _inst_1 x r)))
 Case conversion may be inaccurate. Consider using '#align metric.measure_closed_ball_pos Metric.measure_closedBall_posₓ'. -/
@@ -350,7 +354,7 @@ variable {X : Type _} [PseudoEMetricSpace X] {m : MeasurableSpace X} (μ : Measu
 
 /- warning: emetric.measure_ball_pos -> EMetric.measure_ball_pos is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (EMetric.ball.{u1} X _inst_1 x r)))
+  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (EMetric.ball.{u1} X _inst_1 x r)))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (EMetric.ball.{u1} X _inst_1 x r)))
 Case conversion may be inaccurate. Consider using '#align emetric.measure_ball_pos EMetric.measure_ball_posₓ'. -/
@@ -360,7 +364,7 @@ theorem measure_ball_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (ball
 
 /- warning: emetric.measure_closed_ball_pos -> EMetric.measure_closedBall_pos is a dubious translation:
 lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (EMetric.closedBall.{u1} X _inst_1 x r)))
+  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (EMetric.closedBall.{u1} X _inst_1 x r)))
 but is expected to have type
   forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (EMetric.closedBall.{u1} X _inst_1 x r)))
 Case conversion may be inaccurate. Consider using '#align emetric.measure_closed_ball_pos EMetric.measure_closedBall_posₓ'. -/
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 
 ! This file was ported from Lean 3 source module measure_theory.measure.open_pos
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 781cb2eed038c4caf53bdbd8d20a95e5822d77df
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.MeasureTheory.Measure.MeasureSpace
 /-!
 # Measures positive on nonempty opens
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 In this file we define a typeclass for measures that are positive on nonempty opens, see
 `measure_theory.measure.is_open_pos_measure`. Examples include (additive) Haar measures, as well as
 measures that have positive density with respect to a Haar measure. We also prove some basic facts
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 
 ! This file was ported from Lean 3 source module measure_theory.measure.open_pos
-! leanprover-community/mathlib commit 781cb2eed038c4caf53bdbd8d20a95e5822d77df
+! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,9 +13,6 @@ import Mathbin.MeasureTheory.Measure.MeasureSpace
 /-!
 # Measures positive on nonempty opens
 
-> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
-> Any changes to this file require a corresponding PR to mathlib4.
-
 In this file we define a typeclass for measures that are positive on nonempty opens, see
 `measure_theory.measure.is_open_pos_measure`. Examples include (additive) Haar measures, as well as
 measures that have positive density with respect to a Haar measure. We also prove some basic facts
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 
 ! This file was ported from Lean 3 source module measure_theory.measure.open_pos
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 781cb2eed038c4caf53bdbd8d20a95e5822d77df
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.MeasureTheory.Measure.MeasureSpace
 /-!
 # Measures positive on nonempty opens
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 In this file we define a typeclass for measures that are positive on nonempty opens, see
 `measure_theory.measure.is_open_pos_measure`. Examples include (additive) Haar measures, as well as
 measures that have positive density with respect to a Haar measure. We also prove some basic facts
Diff
@@ -34,60 +34,126 @@ section Basic
 variable {X Y : Type _} [TopologicalSpace X] {m : MeasurableSpace X} [TopologicalSpace Y]
   [T2Space Y] (μ ν : Measure X)
 
+#print MeasureTheory.Measure.OpenPosMeasure /-
 /-- A measure is said to be `is_open_pos_measure` if it is positive on nonempty open sets. -/
-class IsOpenPosMeasure : Prop where
+class OpenPosMeasure : Prop where
   open_pos : ∀ U : Set X, IsOpen U → U.Nonempty → μ U ≠ 0
-#align measure_theory.measure.is_open_pos_measure MeasureTheory.Measure.IsOpenPosMeasure
+#align measure_theory.measure.is_open_pos_measure MeasureTheory.Measure.OpenPosMeasure
+-/
 
-variable [IsOpenPosMeasure μ] {s U : Set X} {x : X}
+variable [OpenPosMeasure μ] {s U : Set X} {x : X}
 
+/- warning: is_open.measure_ne_zero -> IsOpen.measure_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align is_open.measure_ne_zero IsOpen.measure_ne_zeroₓ'. -/
 theorem IsOpen.measure_ne_zero (hU : IsOpen U) (hne : U.Nonempty) : μ U ≠ 0 :=
-  IsOpenPosMeasure.open_pos U hU hne
+  OpenPosMeasure.open_pos U hU hne
 #align is_open.measure_ne_zero IsOpen.measure_ne_zero
 
+/- warning: is_open.measure_pos -> IsOpen.measure_pos is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Set.Nonempty.{u1} X U) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U))
+Case conversion may be inaccurate. Consider using '#align is_open.measure_pos IsOpen.measure_posₓ'. -/
 theorem IsOpen.measure_pos (hU : IsOpen U) (hne : U.Nonempty) : 0 < μ U :=
   (hU.measure_ne_zero μ hne).bot_lt
 #align is_open.measure_pos IsOpen.measure_pos
 
+/- warning: is_open.measure_pos_iff -> IsOpen.measure_pos_iff is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U)) (Set.Nonempty.{u1} X U))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U)) (Set.Nonempty.{u1} X U))
+Case conversion may be inaccurate. Consider using '#align is_open.measure_pos_iff IsOpen.measure_pos_iffₓ'. -/
 theorem IsOpen.measure_pos_iff (hU : IsOpen U) : 0 < μ U ↔ U.Nonempty :=
   ⟨fun h => nonempty_iff_ne_empty.2 fun he => h.ne' <| he.symm ▸ measure_empty, hU.measure_pos μ⟩
 #align is_open.measure_pos_iff IsOpen.measure_pos_iff
 
+/- warning: is_open.measure_eq_zero_iff -> IsOpen.measure_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{succ u1} (Set.{u1} X) U (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.hasEmptyc.{u1} X))))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{succ u1} (Set.{u1} X) U (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.instEmptyCollectionSet.{u1} X))))
+Case conversion may be inaccurate. Consider using '#align is_open.measure_eq_zero_iff IsOpen.measure_eq_zero_iffₓ'. -/
 theorem IsOpen.measure_eq_zero_iff (hU : IsOpen U) : μ U = 0 ↔ U = ∅ := by
   simpa only [not_lt, nonpos_iff_eq_zero, not_nonempty_iff_eq_empty] using
     not_congr (hU.measure_pos_iff μ)
 #align is_open.measure_eq_zero_iff IsOpen.measure_eq_zero_iff
 
+/- warning: measure_theory.measure.measure_pos_of_nonempty_interior -> MeasureTheory.Measure.measure_pos_of_nonempty_interior is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Set.Nonempty.{u1} X (interior.{u1} X _inst_1 s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ s))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Set.Nonempty.{u1} X (interior.{u1} X _inst_1 s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_pos_of_nonempty_interior MeasureTheory.Measure.measure_pos_of_nonempty_interiorₓ'. -/
 theorem measure_pos_of_nonempty_interior (h : (interior s).Nonempty) : 0 < μ s :=
   (isOpen_interior.measure_pos μ h).trans_le (measure_mono interior_subset)
 #align measure_theory.measure.measure_pos_of_nonempty_interior MeasureTheory.Measure.measure_pos_of_nonempty_interior
 
+/- warning: measure_theory.measure.measure_pos_of_mem_nhds -> MeasureTheory.Measure.measure_pos_of_mem_nhds is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X} {x : X}, (Membership.Mem.{u1, u1} (Set.{u1} X) (Filter.{u1} X) (Filter.hasMem.{u1} X) s (nhds.{u1} X _inst_1 x)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ s))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X} {x : X}, (Membership.mem.{u1, u1} (Set.{u1} X) (Filter.{u1} X) (instMembershipSetFilter.{u1} X) s (nhds.{u1} X _inst_1 x)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_pos_of_mem_nhds MeasureTheory.Measure.measure_pos_of_mem_nhdsₓ'. -/
 theorem measure_pos_of_mem_nhds (h : s ∈ 𝓝 x) : 0 < μ s :=
   measure_pos_of_nonempty_interior _ ⟨x, mem_interior_iff_mem_nhds.2 h⟩
 #align measure_theory.measure.measure_pos_of_mem_nhds MeasureTheory.Measure.measure_pos_of_mem_nhds
 
-theorem isOpenPosMeasure_smul {c : ℝ≥0∞} (h : c ≠ 0) : IsOpenPosMeasure (c • μ) :=
+/- warning: measure_theory.measure.is_open_pos_measure_smul -> MeasureTheory.Measure.openPosMeasure_smul is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} X m) (MeasureTheory.Measure.instSMul.{u1, 0} X ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m) c μ))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} X m) (MeasureTheory.Measure.{u1} X m) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} X m) (MeasureTheory.Measure.instSMul.{u1, 0} X ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m)) c μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.openPosMeasure_smulₓ'. -/
+theorem openPosMeasure_smul {c : ℝ≥0∞} (h : c ≠ 0) : OpenPosMeasure (c • μ) :=
   ⟨fun U Uo Une => mul_ne_zero h (Uo.measure_ne_zero μ Une)⟩
-#align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.isOpenPosMeasure_smul
+#align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.openPosMeasure_smul
 
 variable {μ ν}
 
-protected theorem AbsolutelyContinuous.isOpenPosMeasure (h : μ ≪ ν) : IsOpenPosMeasure ν :=
+#print MeasureTheory.Measure.AbsolutelyContinuous.openPosMeasure /-
+protected theorem AbsolutelyContinuous.openPosMeasure (h : μ ≪ ν) : OpenPosMeasure ν :=
   ⟨fun U ho hne h₀ => ho.measure_ne_zero μ hne (h h₀)⟩
-#align measure_theory.measure.absolutely_continuous.is_open_pos_measure MeasureTheory.Measure.AbsolutelyContinuous.isOpenPosMeasure
+#align measure_theory.measure.absolutely_continuous.is_open_pos_measure MeasureTheory.Measure.AbsolutelyContinuous.openPosMeasure
+-/
 
-theorem LE.le.isOpenPosMeasure (h : μ ≤ ν) : IsOpenPosMeasure ν :=
-  h.AbsolutelyContinuous.IsOpenPosMeasure
+#print LE.le.isOpenPosMeasure /-
+theorem LE.le.isOpenPosMeasure (h : μ ≤ ν) : OpenPosMeasure ν :=
+  h.AbsolutelyContinuous.OpenPosMeasure
 #align has_le.le.is_open_pos_measure LE.le.isOpenPosMeasure
+-/
 
+/- warning: is_open.eq_empty_of_measure_zero -> IsOpen.eq_empty_of_measure_zero is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ U) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u1} (Set.{u1} X) U (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.hasEmptyc.{u1} X)))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X}, (IsOpen.{u1} X _inst_1 U) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) U) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u1} (Set.{u1} X) U (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.instEmptyCollectionSet.{u1} X)))
+Case conversion may be inaccurate. Consider using '#align is_open.eq_empty_of_measure_zero IsOpen.eq_empty_of_measure_zeroₓ'. -/
 theorem IsOpen.eq_empty_of_measure_zero (hU : IsOpen U) (h₀ : μ U = 0) : U = ∅ :=
   (hU.measure_eq_zero_iff μ).mp h₀
 #align is_open.eq_empty_of_measure_zero IsOpen.eq_empty_of_measure_zero
 
+/- warning: measure_theory.measure.interior_eq_empty_of_null -> MeasureTheory.Measure.interior_eq_empty_of_null is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u1} (Set.{u1} X) (interior.{u1} X _inst_1 s) (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.hasEmptyc.{u1} X)))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X}, (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u1} (Set.{u1} X) (interior.{u1} X _inst_1 s) (EmptyCollection.emptyCollection.{u1} (Set.{u1} X) (Set.instEmptyCollectionSet.{u1} X)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.interior_eq_empty_of_null MeasureTheory.Measure.interior_eq_empty_of_nullₓ'. -/
 theorem interior_eq_empty_of_null (hs : μ s = 0) : interior s = ∅ :=
   isOpen_interior.eq_empty_of_measure_zero <| measure_mono_null interior_subset hs
 #align measure_theory.measure.interior_eq_empty_of_null MeasureTheory.Measure.interior_eq_empty_of_null
 
+/- warning: measure_theory.measure.eq_on_open_of_ae_eq -> MeasureTheory.Measure.eqOn_open_of_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} [_inst_2 : TopologicalSpace.{u2} Y] [_inst_3 : T2Space.{u2} Y _inst_2] {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {U : Set.{u1} X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ U)) f g) -> (IsOpen.{u1} X _inst_1 U) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_2 f U) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_2 g U) -> (Set.EqOn.{u1, u2} X Y f g U)
+but is expected to have type
+  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] {m : MeasurableSpace.{u2} X} [_inst_2 : TopologicalSpace.{u1} Y] [_inst_3 : T2Space.{u1} Y _inst_2] {μ : MeasureTheory.Measure.{u2} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] {U : Set.{u2} X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ U)) f g) -> (IsOpen.{u2} X _inst_1 U) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_2 f U) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_2 g U) -> (Set.EqOn.{u2, u1} X Y f g U)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_open_of_ae_eq MeasureTheory.Measure.eqOn_open_of_ae_eqₓ'. -/
 /-- If two functions are a.e. equal on an open set and are continuous on this set, then they are
 equal on this set. -/
 theorem eqOn_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : IsOpen U)
@@ -106,12 +172,24 @@ theorem eqOn_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : I
   exact fun x hx => Classical.not_not.1 fun h => this ⟨hx, h⟩
 #align measure_theory.measure.eq_on_open_of_ae_eq MeasureTheory.Measure.eqOn_open_of_ae_eq
 
+/- warning: measure_theory.measure.eq_of_ae_eq -> MeasureTheory.Measure.eq_of_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} [_inst_2 : TopologicalSpace.{u2} Y] [_inst_3 : T2Space.{u2} Y _inst_2] {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m μ) f g) -> (Continuous.{u1, u2} X Y _inst_1 _inst_2 f) -> (Continuous.{u1, u2} X Y _inst_1 _inst_2 g) -> (Eq.{max (succ u1) (succ u2)} (X -> Y) f g)
+but is expected to have type
+  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] {m : MeasurableSpace.{u2} X} [_inst_2 : TopologicalSpace.{u1} Y] [_inst_3 : T2Space.{u1} Y _inst_2] {μ : MeasureTheory.Measure.{u2} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m μ) f g) -> (Continuous.{u2, u1} X Y _inst_1 _inst_2 f) -> (Continuous.{u2, u1} X Y _inst_1 _inst_2 g) -> (Eq.{max (succ u2) (succ u1)} (X -> Y) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_of_ae_eq MeasureTheory.Measure.eq_of_ae_eqₓ'. -/
 /-- If two continuous functions are a.e. equal, then they are equal. -/
 theorem eq_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ] g) (hf : Continuous f) (hg : Continuous g) : f = g :=
   suffices EqOn f g univ from funext fun x => this trivial
   eqOn_open_of_ae_eq (ae_restrict_of_ae h) isOpen_univ hf.ContinuousOn hg.ContinuousOn
 #align measure_theory.measure.eq_of_ae_eq MeasureTheory.Measure.eq_of_ae_eq
 
+/- warning: measure_theory.measure.eq_on_of_ae_eq -> MeasureTheory.Measure.eqOn_of_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} [_inst_2 : TopologicalSpace.{u2} Y] [_inst_3 : T2Space.{u2} Y _inst_2] {μ : MeasureTheory.Measure.{u1} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {s : Set.{u1} X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ s)) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_2 f s) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_2 g s) -> (HasSubset.Subset.{u1} (Set.{u1} X) (Set.hasSubset.{u1} X) s (closure.{u1} X _inst_1 (interior.{u1} X _inst_1 s))) -> (Set.EqOn.{u1, u2} X Y f g s)
+but is expected to have type
+  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] {m : MeasurableSpace.{u2} X} [_inst_2 : TopologicalSpace.{u1} Y] [_inst_3 : T2Space.{u1} Y _inst_2] {μ : MeasureTheory.Measure.{u2} X m} [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] {s : Set.{u2} X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ s)) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_2 f s) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_2 g s) -> (HasSubset.Subset.{u2} (Set.{u2} X) (Set.instHasSubsetSet.{u2} X) s (closure.{u2} X _inst_1 (interior.{u2} X _inst_1 s))) -> (Set.EqOn.{u2, u1} X Y f g s)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_of_ae_eq MeasureTheory.Measure.eqOn_of_ae_eqₓ'. -/
 theorem eqOn_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict s] g) (hf : ContinuousOn f s)
     (hg : ContinuousOn g s) (hU : s ⊆ closure (interior s)) : EqOn f g s :=
   have : interior s ⊆ s := interior_subset
@@ -122,6 +200,12 @@ theorem eqOn_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict s] g) (hf : Contin
 
 variable (μ)
 
+/- warning: continuous.ae_eq_iff_eq -> Continuous.ae_eq_iff_eq is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] {m : MeasurableSpace.{u1} X} [_inst_2 : TopologicalSpace.{u2} Y] [_inst_3 : T2Space.{u2} Y _inst_2] (μ : MeasureTheory.Measure.{u1} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {f : X -> Y} {g : X -> Y}, (Continuous.{u1, u2} X Y _inst_1 _inst_2 f) -> (Continuous.{u1, u2} X Y _inst_1 _inst_2 g) -> (Iff (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m μ) f g) (Eq.{max (succ u1) (succ u2)} (X -> Y) f g))
+but is expected to have type
+  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] {m : MeasurableSpace.{u2} X} [_inst_2 : TopologicalSpace.{u1} Y] [_inst_3 : T2Space.{u1} Y _inst_2] (μ : MeasureTheory.Measure.{u2} X m) [_inst_4 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] {f : X -> Y} {g : X -> Y}, (Continuous.{u2, u1} X Y _inst_1 _inst_2 f) -> (Continuous.{u2, u1} X Y _inst_1 _inst_2 g) -> (Iff (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m μ) f g) (Eq.{max (succ u2) (succ u1)} (X -> Y) f g))
+Case conversion may be inaccurate. Consider using '#align continuous.ae_eq_iff_eq Continuous.ae_eq_iff_eqₓ'. -/
 theorem Continuous.ae_eq_iff_eq {f g : X → Y} (hf : Continuous f) (hg : Continuous g) :
     f =ᵐ[μ] g ↔ f = g :=
   ⟨fun h => eq_of_ae_eq h hf hg, fun h => h ▸ EventuallyEq.rfl⟩
@@ -132,41 +216,89 @@ end Basic
 section LinearOrder
 
 variable {X Y : Type _} [TopologicalSpace X] [LinearOrder X] [OrderTopology X]
-  {m : MeasurableSpace X} [TopologicalSpace Y] [T2Space Y] (μ : Measure X) [IsOpenPosMeasure μ]
-
+  {m : MeasurableSpace X} [TopologicalSpace Y] [T2Space Y] (μ : Measure X) [OpenPosMeasure μ]
+
+/- warning: measure_theory.measure.measure_Ioi_pos -> MeasureTheory.Measure.measure_Ioi_pos is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMaxOrder.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] (a : X), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioi.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMaxOrder.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] (a : X), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Ioi.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Ioi_pos MeasureTheory.Measure.measure_Ioi_posₓ'. -/
 theorem measure_Ioi_pos [NoMaxOrder X] (a : X) : 0 < μ (Ioi a) :=
   isOpen_Ioi.measure_pos μ nonempty_Ioi
 #align measure_theory.measure.measure_Ioi_pos MeasureTheory.Measure.measure_Ioi_pos
 
+/- warning: measure_theory.measure.measure_Iio_pos -> MeasureTheory.Measure.measure_Iio_pos is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMinOrder.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] (a : X), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Iio.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : NoMinOrder.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] (a : X), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Iio.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Iio_pos MeasureTheory.Measure.measure_Iio_posₓ'. -/
 theorem measure_Iio_pos [NoMinOrder X] (a : X) : 0 < μ (Iio a) :=
   isOpen_Iio.measure_pos μ nonempty_Iio
 #align measure_theory.measure.measure_Iio_pos MeasureTheory.Measure.measure_Iio_pos
 
+/- warning: measure_theory.measure.measure_Ioo_pos -> MeasureTheory.Measure.measure_Ioo_pos is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) (LT.lt.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))) a b)
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] {a : X} {b : X}, Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a b))) (LT.lt.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))) a b)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Ioo_pos MeasureTheory.Measure.measure_Ioo_posₓ'. -/
 theorem measure_Ioo_pos [DenselyOrdered X] {a b : X} : 0 < μ (Ioo a b) ↔ a < b :=
   (isOpen_Ioo.measure_pos_iff μ).trans nonempty_Ioo
 #align measure_theory.measure.measure_Ioo_pos MeasureTheory.Measure.measure_Ioo_pos
 
+/- warning: measure_theory.measure.measure_Ioo_eq_zero -> MeasureTheory.Measure.measure_Ioo_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (LE.le.{u1} X (Preorder.toLE.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))) b a)
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))))] {a : X} {b : X}, Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2))))) a b)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (LE.le.{u1} X (Preorder.toLE.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (DistribLattice.toLattice.{u1} X (instDistribLattice.{u1} X _inst_2)))))) b a)
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.measure_Ioo_eq_zero MeasureTheory.Measure.measure_Ioo_eq_zeroₓ'. -/
 theorem measure_Ioo_eq_zero [DenselyOrdered X] {a b : X} : μ (Ioo a b) = 0 ↔ b ≤ a :=
   (isOpen_Ioo.measure_eq_zero_iff μ).trans (Ioo_eq_empty_iff.trans not_lt)
 #align measure_theory.measure.measure_Ioo_eq_zero MeasureTheory.Measure.measure_Ioo_eq_zero
 
+/- warning: measure_theory.measure.eq_on_Ioo_of_ae_eq -> MeasureTheory.Measure.eqOn_Ioo_of_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Ioo.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))
+but is expected to have type
+  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Ioo.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Ioo.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Ioo.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Ioo.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Ioo_of_ae_eq MeasureTheory.Measure.eqOn_Ioo_of_ae_eqₓ'. -/
 theorem eqOn_Ioo_of_ae_eq {a b : X} {f g : X → Y} (hfg : f =ᵐ[μ.restrict (Ioo a b)] g)
     (hf : ContinuousOn f (Ioo a b)) (hg : ContinuousOn g (Ioo a b)) : EqOn f g (Ioo a b) :=
   eqOn_of_ae_eq hfg hf hg Ioo_subset_closure_interior
 #align measure_theory.measure.eq_on_Ioo_of_ae_eq MeasureTheory.Measure.eqOn_Ioo_of_ae_eq
 
+/- warning: measure_theory.measure.eq_on_Ioc_of_ae_eq -> MeasureTheory.Measure.eqOn_Ioc_of_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Ioc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))
+but is expected to have type
+  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u2} X (Preorder.toLT.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Ioc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Ioc_of_ae_eq MeasureTheory.Measure.eqOn_Ioc_of_ae_eqₓ'. -/
 theorem eqOn_Ioc_of_ae_eq [DenselyOrdered X] {a b : X} {f g : X → Y}
     (hfg : f =ᵐ[μ.restrict (Ioc a b)] g) (hf : ContinuousOn f (Ioc a b))
     (hg : ContinuousOn g (Ioc a b)) : EqOn f g (Ioc a b) :=
   eqOn_of_ae_eq hfg hf hg (Ioc_subset_closure_interior _ _)
 #align measure_theory.measure.eq_on_Ioc_of_ae_eq MeasureTheory.Measure.eqOn_Ioc_of_ae_eq
 
+/- warning: measure_theory.measure.eq_on_Ico_of_ae_eq -> MeasureTheory.Measure.eqOn_Ico_of_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Ico.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))
+but is expected to have type
+  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u2} X (Preorder.toLT.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))))] {a : X} {b : X} {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Ico.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Ico_of_ae_eq MeasureTheory.Measure.eqOn_Ico_of_ae_eqₓ'. -/
 theorem eqOn_Ico_of_ae_eq [DenselyOrdered X] {a b : X} {f g : X → Y}
     (hfg : f =ᵐ[μ.restrict (Ico a b)] g) (hf : ContinuousOn f (Ico a b))
     (hg : ContinuousOn g (Ico a b)) : EqOn f g (Ico a b) :=
   eqOn_of_ae_eq hfg hf hg (Ico_subset_closure_interior _ _)
 #align measure_theory.measure.eq_on_Ico_of_ae_eq MeasureTheory.Measure.eqOn_Ico_of_ae_eq
 
+/- warning: measure_theory.measure.eq_on_Icc_of_ae_eq -> MeasureTheory.Measure.eqOn_Icc_of_ae_eq is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} {Y : Type.{u2}} [_inst_1 : TopologicalSpace.{u1} X] [_inst_2 : LinearOrder.{u1} X] [_inst_3 : OrderTopology.{u1} X _inst_1 (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2))))] {m : MeasurableSpace.{u1} X} [_inst_4 : TopologicalSpace.{u2} Y] [_inst_5 : T2Space.{u2} Y _inst_4] (μ : MeasureTheory.Measure.{u1} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u1} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u1} X (Preorder.toLT.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))))] {a : X} {b : X}, (Ne.{succ u1} X a b) -> (forall {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u1, u2} X Y (MeasureTheory.Measure.ae.{u1} X m (MeasureTheory.Measure.restrict.{u1} X m μ (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b))) f g) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 f (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (ContinuousOn.{u1, u2} X Y _inst_1 _inst_4 g (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)) -> (Set.EqOn.{u1, u2} X Y f g (Set.Icc.{u1} X (PartialOrder.toPreorder.{u1} X (SemilatticeInf.toPartialOrder.{u1} X (Lattice.toSemilatticeInf.{u1} X (LinearOrder.toLattice.{u1} X _inst_2)))) a b)))
+but is expected to have type
+  forall {X : Type.{u2}} {Y : Type.{u1}} [_inst_1 : TopologicalSpace.{u2} X] [_inst_2 : LinearOrder.{u2} X] [_inst_3 : OrderTopology.{u2} X _inst_1 (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2)))))] {m : MeasurableSpace.{u2} X} [_inst_4 : TopologicalSpace.{u1} Y] [_inst_5 : T2Space.{u1} Y _inst_4] (μ : MeasureTheory.Measure.{u2} X m) [_inst_6 : MeasureTheory.Measure.OpenPosMeasure.{u2} X _inst_1 m μ] [_inst_7 : DenselyOrdered.{u2} X (Preorder.toLT.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))))] {a : X} {b : X}, (Ne.{succ u2} X a b) -> (forall {f : X -> Y} {g : X -> Y}, (Filter.EventuallyEq.{u2, u1} X Y (MeasureTheory.Measure.ae.{u2} X m (MeasureTheory.Measure.restrict.{u2} X m μ (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b))) f g) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 f (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (ContinuousOn.{u2, u1} X Y _inst_1 _inst_4 g (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)) -> (Set.EqOn.{u2, u1} X Y f g (Set.Icc.{u2} X (PartialOrder.toPreorder.{u2} X (SemilatticeInf.toPartialOrder.{u2} X (Lattice.toSemilatticeInf.{u2} X (DistribLattice.toLattice.{u2} X (instDistribLattice.{u2} X _inst_2))))) a b)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.measure.eq_on_Icc_of_ae_eq MeasureTheory.Measure.eqOn_Icc_of_ae_eqₓ'. -/
 theorem eqOn_Icc_of_ae_eq [DenselyOrdered X] {a b : X} (hne : a ≠ b) {f g : X → Y}
     (hfg : f =ᵐ[μ.restrict (Icc a b)] g) (hf : ContinuousOn f (Icc a b))
     (hg : ContinuousOn g (Icc a b)) : EqOn f g (Icc a b) :=
@@ -184,12 +316,24 @@ open MeasureTheory MeasureTheory.Measure
 namespace Metric
 
 variable {X : Type _} [PseudoMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
-  [IsOpenPosMeasure μ]
-
+  [OpenPosMeasure μ]
+
+/- warning: metric.measure_ball_pos -> Metric.measure_ball_pos is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Metric.ball.{u1} X _inst_1 x r)))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Metric.ball.{u1} X _inst_1 x r)))
+Case conversion may be inaccurate. Consider using '#align metric.measure_ball_pos Metric.measure_ball_posₓ'. -/
 theorem measure_ball_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ (nonempty_ball.2 hr)
 #align metric.measure_ball_pos Metric.measure_ball_pos
 
+/- warning: metric.measure_closed_ball_pos -> Metric.measure_closedBall_pos is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (Metric.closedBall.{u1} X _inst_1 x r)))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : PseudoMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (Metric.closedBall.{u1} X _inst_1 x r)))
+Case conversion may be inaccurate. Consider using '#align metric.measure_closed_ball_pos Metric.measure_closedBall_posₓ'. -/
 theorem measure_closedBall_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (closedBall x r) :=
   (measure_ball_pos μ x hr).trans_le (measure_mono ball_subset_closedBall)
 #align metric.measure_closed_ball_pos Metric.measure_closedBall_pos
@@ -199,15 +343,27 @@ end Metric
 namespace Emetric
 
 variable {X : Type _} [PseudoEMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
-  [IsOpenPosMeasure μ]
-
+  [OpenPosMeasure μ]
+
+/- warning: emetric.measure_ball_pos -> EMetric.measure_ball_pos is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (EMetric.ball.{u1} X _inst_1 x r)))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (EMetric.ball.{u1} X _inst_1 x r)))
+Case conversion may be inaccurate. Consider using '#align emetric.measure_ball_pos EMetric.measure_ball_posₓ'. -/
 theorem measure_ball_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ ⟨x, mem_ball_self hr.bot_lt⟩
-#align emetric.measure_ball_pos Emetric.measure_ball_pos
-
+#align emetric.measure_ball_pos EMetric.measure_ball_pos
+
+/- warning: emetric.measure_closed_ball_pos -> EMetric.measure_closedBall_pos is a dubious translation:
+lean 3 declaration is
+  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} X m) (fun (_x : MeasureTheory.Measure.{u1} X m) => (Set.{u1} X) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} X m) μ (EMetric.closedBall.{u1} X _inst_1 x r)))
+but is expected to have type
+  forall {X : Type.{u1}} [_inst_1 : PseudoEMetricSpace.{u1} X] {m : MeasurableSpace.{u1} X} (μ : MeasureTheory.Measure.{u1} X m) [_inst_2 : MeasureTheory.Measure.OpenPosMeasure.{u1} X (UniformSpace.toTopologicalSpace.{u1} X (PseudoEMetricSpace.toUniformSpace.{u1} X _inst_1)) m μ] (x : X) {r : ENNReal}, (Ne.{1} ENNReal r (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} X (MeasureTheory.Measure.toOuterMeasure.{u1} X m μ) (EMetric.closedBall.{u1} X _inst_1 x r)))
+Case conversion may be inaccurate. Consider using '#align emetric.measure_closed_ball_pos EMetric.measure_closedBall_posₓ'. -/
 theorem measure_closedBall_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (closedBall x r) :=
   (measure_ball_pos μ x hr).trans_le (measure_mono ball_subset_closedBall)
-#align emetric.measure_closed_ball_pos Emetric.measure_closedBall_pos
+#align emetric.measure_closed_ball_pos EMetric.measure_closedBall_pos
 
 end Emetric
 
Diff
@@ -66,9 +66,9 @@ theorem measure_pos_of_mem_nhds (h : s ∈ 𝓝 x) : 0 < μ s :=
   measure_pos_of_nonempty_interior _ ⟨x, mem_interior_iff_mem_nhds.2 h⟩
 #align measure_theory.measure.measure_pos_of_mem_nhds MeasureTheory.Measure.measure_pos_of_mem_nhds
 
-theorem isOpenPosMeasureSmul {c : ℝ≥0∞} (h : c ≠ 0) : IsOpenPosMeasure (c • μ) :=
+theorem isOpenPosMeasure_smul {c : ℝ≥0∞} (h : c ≠ 0) : IsOpenPosMeasure (c • μ) :=
   ⟨fun U Uo Une => mul_ne_zero h (Uo.measure_ne_zero μ Une)⟩
-#align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.isOpenPosMeasureSmul
+#align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.isOpenPosMeasure_smul
 
 variable {μ ν}
 
Diff
@@ -198,7 +198,7 @@ end Metric
 
 namespace Emetric
 
-variable {X : Type _} [PseudoEmetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
+variable {X : Type _} [PseudoEMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
   [IsOpenPosMeasure μ]
 
 theorem measure_ball_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (ball x r) :=
Diff
@@ -21,7 +21,7 @@ about these measures.
 -/
 
 
-open Topology Ennreal MeasureTheory
+open Topology ENNReal MeasureTheory
 
 open Set Function Filter
 

Changes in mathlib4

mathlib3
mathlib4
feat: sigma-compact measure zero sets are meagre (#7640)

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -89,6 +89,7 @@ theorem _root_.IsOpen.ae_eq_empty_iff_eq (hU : IsOpen U) :
     U =ᵐ[μ] (∅ : Set X) ↔ U = ∅ := by
   rw [ae_eq_empty, hU.measure_zero_iff_eq_empty]
 
+/-- An open null set w.r.t. an `IsOpenPosMeasure` is empty. -/
 theorem _root_.IsOpen.eq_empty_of_measure_zero (hU : IsOpen U) (h₀ : μ U = 0) : U = ∅ :=
   (hU.measure_eq_zero_iff μ).mp h₀
 #align is_open.eq_empty_of_measure_zero IsOpen.eq_empty_of_measure_zero
@@ -108,6 +109,7 @@ theorem _root_.IsClosed.measure_eq_one_iff_eq_univ [OpensMeasurableSpace X] [IsP
     μ F = 1 ↔ F = univ := by
   rw [← measure_univ (μ := μ), hF.measure_eq_univ_iff_eq]
 
+/-- A null set has empty interior. -/
 theorem interior_eq_empty_of_null (hs : μ s = 0) : interior s = ∅ :=
   isOpen_interior.eq_empty_of_measure_zero <| measure_mono_null interior_subset hs
 #align measure_theory.measure.interior_eq_empty_of_null MeasureTheory.Measure.interior_eq_empty_of_null
@@ -251,3 +253,39 @@ theorem measure_closedBall_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ
 #align emetric.measure_closed_ball_pos EMetric.measure_closedBall_pos
 
 end EMetric
+
+section MeasureZero
+/-! ## Meagre sets and measure zero
+In general, neither of meagre and measure zero implies the other.
+- The set of Liouville numbers is a Lebesgue measure zero subset of ℝ, but is not meagre.
+(In fact, its complement is meagre. See `Real.disjoint_residual_ae`.)
+
+- The complement of the set of Liouville numbers in $[0,1]$ is meagre and has measure 1.
+For another counterexample, for all $α ∈ (0,1)$, there is a generalised Cantor set $C ⊆ [0,1]$
+of measure `α`. Cantor sets are nowhere dense (hence meagre). Taking a countable union of
+fat Cantor sets whose measure approaches 1 even yields a meagre set of measure 1.
+
+However, with respect to a measure which is positive on non-empty open sets, *closed* measure
+zero sets are nowhere dense and σ-compact measure zero sets in a Hausdorff space are meagre.
+-/
+
+variable {X : Type*} [TopologicalSpace X] [MeasurableSpace X] [BorelSpace X] {s : Set X}
+  {μ : Measure X} [IsOpenPosMeasure μ]
+
+/-- A *closed* measure zero subset is nowhere dense. (Closedness is required: for instance, the
+rational numbers are countable (thus have measure zero), but are dense (hence not nowhere dense). -/
+lemma IsNowhereDense.of_isClosed_null (h₁s : IsClosed s) (h₂s : μ s = 0) :
+    IsNowhereDense s := h₁s.isNowhereDense_iff.mpr (interior_eq_empty_of_null h₂s)
+
+/-- A σ-compact measure zero subset is meagre.
+(More generally, every Fσ set of measure zero is meagre.) -/
+lemma IsMeagre.of_isSigmaCompact_null [T2Space X] (h₁s : IsSigmaCompact s) (h₂s : μ s = 0) :
+    IsMeagre s := by
+  rcases h₁s with ⟨K, hcompact, hcover⟩
+  have h (n : ℕ) : IsNowhereDense (K n) := by
+    have : μ (K n) = 0 := measure_mono_null (hcover ▸ subset_iUnion K n) h₂s
+    exact .of_isClosed_null (hcompact n).isClosed this
+  rw [isMeagre_iff_countable_union_isNowhereDense]
+  exact ⟨range K, fun t ⟨n, hn⟩ ↦ hn ▸ h n, countable_range K, hcover.symm.subset⟩
+
+end MeasureZero
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -29,7 +29,7 @@ namespace Measure
 
 section Basic
 
-variable {X Y : Type _} [TopologicalSpace X] {m : MeasurableSpace X} [TopologicalSpace Y]
+variable {X Y : Type*} [TopologicalSpace X] {m : MeasurableSpace X} [TopologicalSpace Y]
   [T2Space Y] (μ ν : Measure X)
 
 /-- A measure is said to be `IsOpenPosMeasure` if it is positive on nonempty open sets. -/
@@ -152,7 +152,7 @@ theorem _root_.Continuous.ae_eq_iff_eq {f g : X → Y} (hf : Continuous f) (hg :
 variable {μ}
 
 theorem _root_.Continuous.isOpenPosMeasure_map [OpensMeasurableSpace X]
-    {Z : Type _} [TopologicalSpace Z] [MeasurableSpace Z] [BorelSpace Z]
+    {Z : Type*} [TopologicalSpace Z] [MeasurableSpace Z] [BorelSpace Z]
     {f : X → Z} (hf : Continuous f) (hf_surj : Function.Surjective f) :
     (Measure.map f μ).IsOpenPosMeasure := by
   refine' ⟨fun U hUo hUne => _⟩
@@ -164,7 +164,7 @@ end Basic
 
 section LinearOrder
 
-variable {X Y : Type _} [TopologicalSpace X] [LinearOrder X] [OrderTopology X]
+variable {X Y : Type*} [TopologicalSpace X] [LinearOrder X] [OrderTopology X]
   {m : MeasurableSpace X} [TopologicalSpace Y] [T2Space Y] (μ : Measure X) [IsOpenPosMeasure μ]
 
 theorem measure_Ioi_pos [NoMaxOrder X] (a : X) : 0 < μ (Ioi a) :=
@@ -216,7 +216,7 @@ open MeasureTheory MeasureTheory.Measure
 
 namespace Metric
 
-variable {X : Type _} [PseudoMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
+variable {X : Type*} [PseudoMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
   [IsOpenPosMeasure μ]
 
 theorem measure_ball_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (ball x r) :=
@@ -228,7 +228,7 @@ theorem measure_closedBall_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (closedBa
   (measure_ball_pos μ x hr).trans_le (measure_mono ball_subset_closedBall)
 #align metric.measure_closed_ball_pos Metric.measure_closedBall_pos
 
-@[simp] lemma measure_closedBall_pos_iff {X : Type _} [MetricSpace X] {m : MeasurableSpace X}
+@[simp] lemma measure_closedBall_pos_iff {X : Type*} [MetricSpace X] {m : MeasurableSpace X}
     (μ : Measure X) [IsOpenPosMeasure μ] [NoAtoms μ] {x : X} {r : ℝ} :
     0 < μ (closedBall x r) ↔ 0 < r := by
   refine' ⟨fun h ↦ _, measure_closedBall_pos μ x⟩
@@ -239,7 +239,7 @@ end Metric
 
 namespace EMetric
 
-variable {X : Type _} [PseudoEMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
+variable {X : Type*} [PseudoEMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
   [IsOpenPosMeasure μ]
 
 theorem measure_ball_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (ball x r) :=
refactor: use NeZero for measures (#6048)

Assume NeZero μ instead of μ.ae.NeBot everywhere, and sometimes instead of μ ≠ 0.

API changes

  • Convex.average_mem, Convex.set_average_mem, ConvexOn.average_mem_epigraph, ConcaveOn.average_mem_hypograph, ConvexOn.map_average_le, ConcaveOn.le_map_average: assume [NeZero μ] instead of μ ≠ 0;
  • MeasureTheory.condexp_bot', essSup_const', essInf_const', MeasureTheory.laverage_const, MeasureTheory.laverage_one, MeasureTheory.average_const: assume [NeZero μ] instead of [μ.ae.NeBot]
  • MeasureTheory.Measure.measure_ne_zero: replace with an instance;
  • remove @[simp] from MeasureTheory.ae_restrict_neBot, use ≠ 0 in the RHS;
  • turn MeasureTheory.IsProbabilityMeasure.ae_neBot into a theorem because inferInstance can find it now;
  • add instances:
    • [NeZero μ] : NeZero (μ univ);
    • [NeZero (μ s)] : NeZero (μ.restrict s);
    • [NeZero μ] : μ.ae.NeBot;
    • [IsProbabilityMeasure μ] : NeZero μ;
    • [IsFiniteMeasure μ] [NeZero μ] : IsProbabilityMeasure ((μ univ)⁻¹ • μ) this was a theorem MeasureTheory.isProbabilityMeasureSmul assuming μ ≠ 0;
Diff
@@ -47,8 +47,8 @@ theorem _root_.IsOpen.measure_pos (hU : IsOpen U) (hne : U.Nonempty) : 0 < μ U
   (hU.measure_ne_zero μ hne).bot_lt
 #align is_open.measure_pos IsOpen.measure_pos
 
-@[simp] lemma measure_ne_zero [Nonempty X] : μ ≠ 0 := by
-  simpa only [← measure_univ_pos] using isOpen_univ.measure_pos μ univ_nonempty
+instance (priority := 100) [Nonempty X] : NeZero μ :=
+  ⟨measure_univ_pos.mp <| isOpen_univ.measure_pos μ univ_nonempty⟩
 
 theorem _root_.IsOpen.measure_pos_iff (hU : IsOpen U) : 0 < μ U ↔ U.Nonempty :=
   ⟨fun h => nonempty_iff_ne_empty.2 fun he => h.ne' <| he.symm ▸ measure_empty, hU.measure_pos μ⟩
feat: basic measure / topology lemmas (#5986)
Diff
@@ -47,6 +47,9 @@ theorem _root_.IsOpen.measure_pos (hU : IsOpen U) (hne : U.Nonempty) : 0 < μ U
   (hU.measure_ne_zero μ hne).bot_lt
 #align is_open.measure_pos IsOpen.measure_pos
 
+@[simp] lemma measure_ne_zero [Nonempty X] : μ ≠ 0 := by
+  simpa only [← measure_univ_pos] using isOpen_univ.measure_pos μ univ_nonempty
+
 theorem _root_.IsOpen.measure_pos_iff (hU : IsOpen U) : 0 < μ U ↔ U.Nonempty :=
   ⟨fun h => nonempty_iff_ne_empty.2 fun he => h.ne' <| he.symm ▸ measure_empty, hU.measure_pos μ⟩
 #align is_open.measure_pos_iff IsOpen.measure_pos_iff
@@ -220,10 +223,18 @@ theorem measure_ball_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ (nonempty_ball.2 hr)
 #align metric.measure_ball_pos Metric.measure_ball_pos
 
+/-- See also `Metric.measure_closedBall_pos_iff`. -/
 theorem measure_closedBall_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (closedBall x r) :=
   (measure_ball_pos μ x hr).trans_le (measure_mono ball_subset_closedBall)
 #align metric.measure_closed_ball_pos Metric.measure_closedBall_pos
 
+@[simp] lemma measure_closedBall_pos_iff {X : Type _} [MetricSpace X] {m : MeasurableSpace X}
+    (μ : Measure X) [IsOpenPosMeasure μ] [NoAtoms μ] {x : X} {r : ℝ} :
+    0 < μ (closedBall x r) ↔ 0 < r := by
+  refine' ⟨fun h ↦ _, measure_closedBall_pos μ x⟩
+  contrapose! h
+  rw [(subsingleton_closedBall x h).measure_zero μ]
+
 end Metric
 
 namespace EMetric
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2022 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
-
-! This file was ported from Lean 3 source module measure_theory.measure.open_pos
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Measure.MeasureSpace
 import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
 
+#align_import measure_theory.measure.open_pos from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Measures positive on nonempty opens
 
feat: for an open-positive measure, an open/closed subset is almost empty/full iff it is actually empty/full (#5746)

Also invert the import order so that MeasureTheory.Measure.OpenPos imports MeasureTheory.Constructions.BorelSpace.Basic rather than the other way around.

Diff
@@ -9,6 +9,7 @@ Authors: Yury Kudryashov
 ! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Measure.MeasureSpace
+import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
 
 /-!
 # Measures positive on nonempty opens
@@ -39,7 +40,7 @@ class IsOpenPosMeasure : Prop where
   open_pos : ∀ U : Set X, IsOpen U → U.Nonempty → μ U ≠ 0
 #align measure_theory.measure.is_open_pos_measure MeasureTheory.Measure.IsOpenPosMeasure
 
-variable [IsOpenPosMeasure μ] {s U : Set X} {x : X}
+variable [IsOpenPosMeasure μ] {s U F : Set X} {x : X}
 
 theorem _root_.IsOpen.measure_ne_zero (hU : IsOpen U) (hne : U.Nonempty) : μ U ≠ 0 :=
   IsOpenPosMeasure.open_pos U hU hne
@@ -80,10 +81,33 @@ theorem _root_.LE.le.isOpenPosMeasure (h : μ ≤ ν) : IsOpenPosMeasure ν :=
   h.absolutelyContinuous.isOpenPosMeasure
 #align has_le.le.is_open_pos_measure LE.le.isOpenPosMeasure
 
+theorem _root_.IsOpen.measure_zero_iff_eq_empty (hU : IsOpen U) :
+    μ U = 0 ↔ U = ∅ :=
+  ⟨fun h ↦ (hU.measure_eq_zero_iff μ).mp h, fun h ↦ by simp [h]⟩
+
+theorem _root_.IsOpen.ae_eq_empty_iff_eq (hU : IsOpen U) :
+    U =ᵐ[μ] (∅ : Set X) ↔ U = ∅ := by
+  rw [ae_eq_empty, hU.measure_zero_iff_eq_empty]
+
 theorem _root_.IsOpen.eq_empty_of_measure_zero (hU : IsOpen U) (h₀ : μ U = 0) : U = ∅ :=
   (hU.measure_eq_zero_iff μ).mp h₀
 #align is_open.eq_empty_of_measure_zero IsOpen.eq_empty_of_measure_zero
 
+theorem _root_.IsClosed.ae_eq_univ_iff_eq (hF : IsClosed F) :
+    F =ᵐ[μ] univ ↔ F = univ := by
+  refine' ⟨fun h ↦ _, fun h ↦ by rw [h]⟩
+  rwa [ae_eq_univ, hF.isOpen_compl.measure_eq_zero_iff μ, compl_empty_iff] at h
+
+theorem _root_.IsClosed.measure_eq_univ_iff_eq [OpensMeasurableSpace X] [IsFiniteMeasure μ]
+    (hF : IsClosed F) :
+    μ F = μ univ ↔ F = univ := by
+  rw [← ae_eq_univ_iff_measure_eq hF.measurableSet.nullMeasurableSet, hF.ae_eq_univ_iff_eq]
+
+theorem _root_.IsClosed.measure_eq_one_iff_eq_univ [OpensMeasurableSpace X] [IsProbabilityMeasure μ]
+    (hF : IsClosed F) :
+    μ F = 1 ↔ F = univ := by
+  rw [← measure_univ (μ := μ), hF.measure_eq_univ_iff_eq]
+
 theorem interior_eq_empty_of_null (hs : μ s = 0) : interior s = ∅ :=
   isOpen_interior.eq_empty_of_measure_zero <| measure_mono_null interior_subset hs
 #align measure_theory.measure.interior_eq_empty_of_null MeasureTheory.Measure.interior_eq_empty_of_null
@@ -125,6 +149,17 @@ theorem _root_.Continuous.ae_eq_iff_eq {f g : X → Y} (hf : Continuous f) (hg :
   ⟨fun h => eq_of_ae_eq h hf hg, fun h => h ▸ EventuallyEq.rfl⟩
 #align continuous.ae_eq_iff_eq Continuous.ae_eq_iff_eq
 
+variable {μ}
+
+theorem _root_.Continuous.isOpenPosMeasure_map [OpensMeasurableSpace X]
+    {Z : Type _} [TopologicalSpace Z] [MeasurableSpace Z] [BorelSpace Z]
+    {f : X → Z} (hf : Continuous f) (hf_surj : Function.Surjective f) :
+    (Measure.map f μ).IsOpenPosMeasure := by
+  refine' ⟨fun U hUo hUne => _⟩
+  rw [Measure.map_apply hf.measurable hUo.measurableSet]
+  exact (hUo.preimage hf).measure_ne_zero μ (hf_surj.nonempty_preimage.mpr hUne)
+#align continuous.is_open_pos_measure_map Continuous.isOpenPosMeasure_map
+
 end Basic
 
 section LinearOrder
fix: change compl precedence (#5586)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -96,7 +96,7 @@ theorem eqOn_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : I
   simp only [EventuallyEq, ae_iff, not_imp] at h
   have : IsOpen (U ∩ { a | f a ≠ g a }) := by
     refine' isOpen_iff_mem_nhds.mpr fun a ha => inter_mem (hU.mem_nhds ha.1) _
-    rcases ha with ⟨ha : a ∈ U, ha' : (f a, g a) ∈ diagonal Yᶜ⟩
+    rcases ha with ⟨ha : a ∈ U, ha' : (f a, g a) ∈ (diagonal Y)ᶜ⟩
     exact
       (hf.continuousAt (hU.mem_nhds ha)).prod_mk_nhds (hg.continuousAt (hU.mem_nhds ha))
         (isClosed_diagonal.isOpen_compl.mem_nhds ha')
style: recover Is of Foo which is ported from is_foo (#4639)

I have misported is_foo to Foo because I misunderstood the rule for IsLawfulFoo. This PR recover Is of Foo which is ported from is_foo. This PR also renames some misported theorems.

Diff
@@ -14,7 +14,7 @@ import Mathlib.MeasureTheory.Measure.MeasureSpace
 # Measures positive on nonempty opens
 
 In this file we define a typeclass for measures that are positive on nonempty opens, see
-`MeasureTheory.Measure.OpenPosMeasure`. Examples include (additive) Haar measures, as well as
+`MeasureTheory.Measure.IsOpenPosMeasure`. Examples include (additive) Haar measures, as well as
 measures that have positive density with respect to a Haar measure. We also prove some basic facts
 about these measures.
 
@@ -34,15 +34,15 @@ section Basic
 variable {X Y : Type _} [TopologicalSpace X] {m : MeasurableSpace X} [TopologicalSpace Y]
   [T2Space Y] (μ ν : Measure X)
 
-/-- A measure is said to be `OpenPosMeasure` if it is positive on nonempty open sets. -/
-class OpenPosMeasure : Prop where
+/-- A measure is said to be `IsOpenPosMeasure` if it is positive on nonempty open sets. -/
+class IsOpenPosMeasure : Prop where
   open_pos : ∀ U : Set X, IsOpen U → U.Nonempty → μ U ≠ 0
-#align measure_theory.measure.is_open_pos_measure MeasureTheory.Measure.OpenPosMeasure
+#align measure_theory.measure.is_open_pos_measure MeasureTheory.Measure.IsOpenPosMeasure
 
-variable [OpenPosMeasure μ] {s U : Set X} {x : X}
+variable [IsOpenPosMeasure μ] {s U : Set X} {x : X}
 
 theorem _root_.IsOpen.measure_ne_zero (hU : IsOpen U) (hne : U.Nonempty) : μ U ≠ 0 :=
-  OpenPosMeasure.open_pos U hU hne
+  IsOpenPosMeasure.open_pos U hU hne
 #align is_open.measure_ne_zero IsOpen.measure_ne_zero
 
 theorem _root_.IsOpen.measure_pos (hU : IsOpen U) (hne : U.Nonempty) : 0 < μ U :=
@@ -66,18 +66,18 @@ theorem measure_pos_of_mem_nhds (h : s ∈ 𝓝 x) : 0 < μ s :=
   measure_pos_of_nonempty_interior _ ⟨x, mem_interior_iff_mem_nhds.2 h⟩
 #align measure_theory.measure.measure_pos_of_mem_nhds MeasureTheory.Measure.measure_pos_of_mem_nhds
 
-theorem openPosMeasure_smul {c : ℝ≥0∞} (h : c ≠ 0) : OpenPosMeasure (c • μ) :=
+theorem isOpenPosMeasure_smul {c : ℝ≥0∞} (h : c ≠ 0) : IsOpenPosMeasure (c • μ) :=
   ⟨fun _U Uo Une => mul_ne_zero h (Uo.measure_ne_zero μ Une)⟩
-#align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.openPosMeasure_smul
+#align measure_theory.measure.is_open_pos_measure_smul MeasureTheory.Measure.isOpenPosMeasure_smul
 
 variable {μ ν}
 
-protected theorem AbsolutelyContinuous.openPosMeasure (h : μ ≪ ν) : OpenPosMeasure ν :=
+protected theorem AbsolutelyContinuous.isOpenPosMeasure (h : μ ≪ ν) : IsOpenPosMeasure ν :=
   ⟨fun _U ho hne h₀ => ho.measure_ne_zero μ hne (h h₀)⟩
-#align measure_theory.measure.absolutely_continuous.is_open_pos_measure MeasureTheory.Measure.AbsolutelyContinuous.openPosMeasure
+#align measure_theory.measure.absolutely_continuous.is_open_pos_measure MeasureTheory.Measure.AbsolutelyContinuous.isOpenPosMeasure
 
-theorem _root_.LE.le.isOpenPosMeasure (h : μ ≤ ν) : OpenPosMeasure ν :=
-  h.absolutelyContinuous.openPosMeasure
+theorem _root_.LE.le.isOpenPosMeasure (h : μ ≤ ν) : IsOpenPosMeasure ν :=
+  h.absolutelyContinuous.isOpenPosMeasure
 #align has_le.le.is_open_pos_measure LE.le.isOpenPosMeasure
 
 theorem _root_.IsOpen.eq_empty_of_measure_zero (hU : IsOpen U) (h₀ : μ U = 0) : U = ∅ :=
@@ -130,7 +130,7 @@ end Basic
 section LinearOrder
 
 variable {X Y : Type _} [TopologicalSpace X] [LinearOrder X] [OrderTopology X]
-  {m : MeasurableSpace X} [TopologicalSpace Y] [T2Space Y] (μ : Measure X) [OpenPosMeasure μ]
+  {m : MeasurableSpace X} [TopologicalSpace Y] [T2Space Y] (μ : Measure X) [IsOpenPosMeasure μ]
 
 theorem measure_Ioi_pos [NoMaxOrder X] (a : X) : 0 < μ (Ioi a) :=
   isOpen_Ioi.measure_pos μ nonempty_Ioi
@@ -182,7 +182,7 @@ open MeasureTheory MeasureTheory.Measure
 namespace Metric
 
 variable {X : Type _} [PseudoMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
-  [OpenPosMeasure μ]
+  [IsOpenPosMeasure μ]
 
 theorem measure_ball_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ (nonempty_ball.2 hr)
@@ -197,7 +197,7 @@ end Metric
 namespace EMetric
 
 variable {X : Type _} [PseudoEMetricSpace X] {m : MeasurableSpace X} (μ : Measure X)
-  [OpenPosMeasure μ]
+  [IsOpenPosMeasure μ]
 
 theorem measure_ball_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (ball x r) :=
   isOpen_ball.measure_pos μ ⟨x, mem_ball_self hr.bot_lt⟩
feat: port MeasureTheory.Measure.OpenPos (#3820)

Co-authored-by: Komyyy <pol_tta@outlook.jp> Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Dependencies 10 + 609

610 files ported (98.4%)
271934 lines ported (98.1%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file