measure_theory.measure.vector_measureMathlib.MeasureTheory.Measure.VectorMeasure

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -226,7 +226,7 @@ theorem of_diff {M : Type _} [AddCommGroup M] [TopologicalSpace M] [T2Space M]
     {v : VectorMeasure α M} {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet B)
     (h : A ⊆ B) : v (B \ A) = v B - v A :=
   by
-  rw [← of_add_of_diff hA hB h, add_sub_cancel']
+  rw [← of_add_of_diff hA hB h, add_sub_cancel_left]
   infer_instance
 #align measure_theory.vector_measure.of_diff MeasureTheory.VectorMeasure.of_diff
 -/
@@ -1401,8 +1401,8 @@ theorem ennrealToMeasure {μ : VectorMeasure α ℝ≥0∞} :
 
 end AbsolutelyContinuous
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
 #print MeasureTheory.VectorMeasure.MutuallySingular /-
 /-- Two vector measures `v` and `w` are said to be mutually singular if there exists a measurable
 set `s`, such that for all `t ⊆ s`, `v t = 0` and for all `t ⊆ sᶜ`, `w t = 0`.
@@ -1422,8 +1422,8 @@ namespace MutuallySingular
 
 variable {v v₁ v₂ : VectorMeasure α M} {w w₁ w₂ : VectorMeasure α N}
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
 #print MeasureTheory.VectorMeasure.MutuallySingular.mk /-
 theorem mk (s : Set α) (hs : MeasurableSet s) (h₁ : ∀ (t) (_ : t ⊆ s), MeasurableSet t → v t = 0)
     (h₂ : ∀ (t) (_ : t ⊆ sᶜ), MeasurableSet t → w t = 0) : v ⟂ᵥ w :=
Diff
@@ -172,7 +172,7 @@ theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : 
     MeasurableSet.iUnion fun b => MeasurableSet.iUnion fun _ => hf₁ b
   have hg₂ : Pairwise (Disjoint on g) := Encodable.iUnion_decode₂_disjoint_on hf₂
   have := v.of_disjoint_Union_nat hg₁ hg₂
-  rw [hg, Encodable.iUnion_decode₂] at this 
+  rw [hg, Encodable.iUnion_decode₂] at this
   have hg₃ : (fun i : β => v (f i)) = fun i => v (g (Encodable.encode i)) :=
     by
     ext; rw [hg]; simp only
@@ -181,7 +181,7 @@ theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : 
     · intro hy
       refine' ⟨x, (Encodable.decode₂_is_partial_inv _ _).2 rfl, hy⟩
     · rintro ⟨b, hb₁, hb₂⟩
-      rw [Encodable.decode₂_is_partial_inv _ _] at hb₁ 
+      rw [Encodable.decode₂_is_partial_inv _ _] at hb₁
       rwa [← Encodable.encode_injective hb₁]
   rw [Summable.hasSum_iff, this, ← tsum_iUnion_decode₂]
   · exact v.empty
@@ -275,7 +275,7 @@ theorem of_nonneg_disjoint_union_eq_zero {s : SignedMeasure α} {A B : Set α} (
     (hA₁ : MeasurableSet A) (hB₁ : MeasurableSet B) (hA₂ : 0 ≤ s A) (hB₂ : 0 ≤ s B)
     (hAB : s (A ∪ B) = 0) : s A = 0 :=
   by
-  rw [of_union h hA₁ hB₁] at hAB 
+  rw [of_union h hA₁ hB₁] at hAB
   linarith
   infer_instance
 #align measure_theory.vector_measure.of_nonneg_disjoint_union_eq_zero MeasureTheory.VectorMeasure.of_nonneg_disjoint_union_eq_zero
@@ -286,7 +286,7 @@ theorem of_nonpos_disjoint_union_eq_zero {s : SignedMeasure α} {A B : Set α} (
     (hA₁ : MeasurableSet A) (hB₁ : MeasurableSet B) (hA₂ : s A ≤ 0) (hB₂ : s B ≤ 0)
     (hAB : s (A ∪ B) = 0) : s A = 0 :=
   by
-  rw [of_union h hA₁ hB₁] at hAB 
+  rw [of_union h hA₁ hB₁] at hAB
   linarith
   infer_instance
 #align measure_theory.vector_measure.of_nonpos_disjoint_union_eq_zero MeasureTheory.VectorMeasure.of_nonpos_disjoint_union_eq_zero
@@ -537,7 +537,7 @@ theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [IsFiniteMea
   · ext1 i hi
     have : μ.to_signed_measure i = ν.to_signed_measure i := by rw [h]
     rwa [to_signed_measure_apply_measurable hi, to_signed_measure_apply_measurable hi,
-        ENNReal.toReal_eq_toReal] at this  <;>
+        ENNReal.toReal_eq_toReal] at this <;>
       · exact measure_ne_top _ _
   · congr; assumption
 #align measure_theory.measure.to_signed_measure_eq_to_signed_measure_iff MeasureTheory.Measure.toSignedMeasure_eq_toSignedMeasure_iff
@@ -1082,7 +1082,7 @@ theorem le_restrict_univ_iff_le : v ≤[univ] w ↔ v ≤ w :=
   · intro h s hs
     have := h s hs
     rwa [restrict_apply _ MeasurableSet.univ hs, inter_univ, restrict_apply _ MeasurableSet.univ hs,
-      inter_univ] at this 
+      inter_univ] at this
   · intro h s hs
     rw [restrict_apply _ MeasurableSet.univ hs, inter_univ, restrict_apply _ MeasurableSet.univ hs,
       inter_univ]
@@ -1254,8 +1254,8 @@ theorem exists_pos_measure_of_not_restrict_le_zero (hi : ¬v ≤[i] 0) :
     ∃ j : Set α, MeasurableSet j ∧ j ⊆ i ∧ 0 < v j :=
   by
   have hi₁ : MeasurableSet i := measurable_of_not_restrict_le_zero _ hi
-  rw [restrict_le_restrict_iff _ _ hi₁] at hi 
-  push_neg at hi 
+  rw [restrict_le_restrict_iff _ _ hi₁] at hi
+  push_neg at hi
   obtain ⟨j, hj₁, hj₂, hj⟩ := hi
   exact ⟨j, hj₁, hj₂, hj⟩
 #align measure_theory.vector_measure.exists_pos_measure_of_not_restrict_le_zero MeasureTheory.VectorMeasure.exists_pos_measure_of_not_restrict_le_zero
@@ -1347,7 +1347,7 @@ theorem neg_right {N : Type _} [AddCommGroup N] [TopologicalSpace N] [Topologica
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ≪ᵥ w) : v ≪ᵥ -w :=
   by
   intro s hs
-  rw [neg_apply, neg_eq_zero] at hs 
+  rw [neg_apply, neg_eq_zero] at hs
   exact h hs
 #align measure_theory.vector_measure.absolutely_continuous.neg_right MeasureTheory.VectorMeasure.AbsolutelyContinuous.neg_right
 -/
@@ -1393,7 +1393,7 @@ theorem ennrealToMeasure {μ : VectorMeasure α ℝ≥0∞} :
     rw [← hs, ennreal_to_measure_apply hmeas]
   · intro s hs
     by_cases hmeas : MeasurableSet s
-    · rw [ennreal_to_measure_apply hmeas] at hs 
+    · rw [ennreal_to_measure_apply hmeas] at hs
       exact h hs
     · exact not_measurable v hmeas
 #align measure_theory.vector_measure.absolutely_continuous.ennreal_to_measure MeasureTheory.VectorMeasure.AbsolutelyContinuous.ennrealToMeasure
@@ -1463,7 +1463,7 @@ theorem add_left [T2Space N] [ContinuousAdd M] (h₁ : v₁ ⟂ᵥ w) (h₂ : v
   obtain ⟨v, hmv, hv₁, hv₂⟩ := h₂
   refine' mk (u ∩ v) (hmu.inter hmv) (fun t ht hmt => _) fun t ht hmt => _
   · rw [add_apply, hu₁ _ (subset_inter_iff.1 ht).1, hv₁ _ (subset_inter_iff.1 ht).2, zero_add]
-  · rw [compl_inter] at ht 
+  · rw [compl_inter] at ht
     rw [(_ : t = uᶜ ∩ t ∪ vᶜ \ uᶜ ∩ t),
       of_union _ (hmu.compl.inter hmt) ((hmv.compl.diff hmu.compl).inter hmt), hu₂, hv₂, add_zero]
     · exact subset.trans (inter_subset_left _ _) (diff_subset _ _)
Diff
@@ -501,7 +501,7 @@ def toSignedMeasure (μ : Measure α) [hμ : IsFiniteMeasure μ] : SignedMeasure
     rw [μ.m_Union hf₁ hf₂, ENNReal.tsum_toReal_eq, if_pos (MeasurableSet.iUnion hf₁),
       Summable.hasSum_iff]
     · congr; ext n; rw [if_pos (hf₁ n)]
-    · refine' @summable_of_nonneg_of_le _ (ENNReal.toReal ∘ μ ∘ f) _ _ _ _
+    · refine' @Summable.of_nonneg_of_le _ (ENNReal.toReal ∘ μ ∘ f) _ _ _ _
       · intro; split_ifs
         exacts [ENNReal.toReal_nonneg, le_rfl]
       · intro; split_ifs
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Kexing Ying. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kexing Ying
 -/
-import Mathbin.MeasureTheory.Measure.MeasureSpace
-import Mathbin.Analysis.Complex.Basic
+import MeasureTheory.Measure.MeasureSpace
+import Analysis.Complex.Basic
 
 #align_import measure_theory.measure.vector_measure from "leanprover-community/mathlib"@"f60c6087a7275b72d5db3c5a1d0e19e35a429c0a"
 
@@ -1401,8 +1401,8 @@ theorem ennrealToMeasure {μ : VectorMeasure α ℝ≥0∞} :
 
 end AbsolutelyContinuous
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
 #print MeasureTheory.VectorMeasure.MutuallySingular /-
 /-- Two vector measures `v` and `w` are said to be mutually singular if there exists a measurable
 set `s`, such that for all `t ⊆ s`, `v t = 0` and for all `t ⊆ sᶜ`, `w t = 0`.
@@ -1422,8 +1422,8 @@ namespace MutuallySingular
 
 variable {v v₁ v₂ : VectorMeasure α M} {w w₁ w₂ : VectorMeasure α N}
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
 #print MeasureTheory.VectorMeasure.MutuallySingular.mk /-
 theorem mk (s : Set α) (hs : MeasurableSet s) (h₁ : ∀ (t) (_ : t ⊆ s), MeasurableSet t → v t = 0)
     (h₂ : ∀ (t) (_ : t ⊆ sᶜ), MeasurableSet t → w t = 0) : v ⟂ᵥ w :=
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Kexing Ying. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kexing Ying
-
-! This file was ported from Lean 3 source module measure_theory.measure.vector_measure
-! leanprover-community/mathlib commit f60c6087a7275b72d5db3c5a1d0e19e35a429c0a
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Measure.MeasureSpace
 import Mathbin.Analysis.Complex.Basic
 
+#align_import measure_theory.measure.vector_measure from "leanprover-community/mathlib"@"f60c6087a7275b72d5db3c5a1d0e19e35a429c0a"
+
 /-!
 
 # Vector valued measures
@@ -1404,8 +1401,8 @@ theorem ennrealToMeasure {μ : VectorMeasure α ℝ≥0∞} :
 
 end AbsolutelyContinuous
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
 #print MeasureTheory.VectorMeasure.MutuallySingular /-
 /-- Two vector measures `v` and `w` are said to be mutually singular if there exists a measurable
 set `s`, such that for all `t ⊆ s`, `v t = 0` and for all `t ⊆ sᶜ`, `w t = 0`.
@@ -1425,8 +1422,8 @@ namespace MutuallySingular
 
 variable {v v₁ v₂ : VectorMeasure α M} {w w₁ w₂ : VectorMeasure α N}
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
 #print MeasureTheory.VectorMeasure.MutuallySingular.mk /-
 theorem mk (s : Set α) (hs : MeasurableSet s) (h₁ : ∀ (t) (_ : t ⊆ s), MeasurableSet t → v t = 0)
     (h₂ : ∀ (t) (_ : t ⊆ sᶜ), MeasurableSet t → w t = 0) : v ⟂ᵥ w :=
Diff
@@ -548,7 +548,7 @@ theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [IsFiniteMea
 
 #print MeasureTheory.Measure.toSignedMeasure_zero /-
 @[simp]
-theorem toSignedMeasure_zero : (0 : Measure α).toSignedMeasure = 0 := by ext (i hi); simp
+theorem toSignedMeasure_zero : (0 : Measure α).toSignedMeasure = 0 := by ext i hi; simp
 #align measure_theory.measure.to_signed_measure_zero MeasureTheory.Measure.toSignedMeasure_zero
 -/
 
@@ -557,7 +557,7 @@ theorem toSignedMeasure_zero : (0 : Measure α).toSignedMeasure = 0 := by ext (i
 theorem toSignedMeasure_add (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
     (μ + ν).toSignedMeasure = μ.toSignedMeasure + ν.toSignedMeasure :=
   by
-  ext (i hi)
+  ext i hi
   rw [to_signed_measure_apply_measurable hi, add_apply,
     ENNReal.toReal_add (ne_of_lt (measure_lt_top _ _)) (ne_of_lt (measure_lt_top _ _)),
     vector_measure.add_apply, to_signed_measure_apply_measurable hi,
@@ -571,7 +571,7 @@ theorem toSignedMeasure_add (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteM
 theorem toSignedMeasure_smul (μ : Measure α) [IsFiniteMeasure μ] (r : ℝ≥0) :
     (r • μ).toSignedMeasure = r • μ.toSignedMeasure :=
   by
-  ext (i hi)
+  ext i hi
   rw [to_signed_measure_apply_measurable hi, vector_measure.smul_apply,
     to_signed_measure_apply_measurable hi, coe_smul, Pi.smul_apply, ENNReal.toReal_smul]
 #align measure_theory.measure.to_signed_measure_smul MeasureTheory.Measure.toSignedMeasure_smul
@@ -601,7 +601,7 @@ theorem toENNRealVectorMeasure_apply_measurable {μ : Measure α} {i : Set α} (
 
 #print MeasureTheory.Measure.toENNRealVectorMeasure_zero /-
 @[simp]
-theorem toENNRealVectorMeasure_zero : (0 : Measure α).toENNRealVectorMeasure = 0 := by ext (i hi);
+theorem toENNRealVectorMeasure_zero : (0 : Measure α).toENNRealVectorMeasure = 0 := by ext i hi;
   simp
 #align measure_theory.measure.to_ennreal_vector_measure_zero MeasureTheory.Measure.toENNRealVectorMeasure_zero
 -/
@@ -716,7 +716,7 @@ theorem map_id : v.map id = v :=
 theorem map_zero (f : α → β) : (0 : VectorMeasure α M).map f = 0 :=
   by
   by_cases hf : Measurable f
-  · ext (i hi)
+  · ext i hi
     rw [map_apply _ hf hi, zero_apply, zero_apply]
   · exact dif_neg hf
 #align measure_theory.vector_measure.map_zero MeasureTheory.VectorMeasure.map_zero
@@ -860,7 +860,7 @@ theorem restrict_univ : v.restrict univ = v :=
 theorem restrict_zero {i : Set α} : (0 : VectorMeasure α M).restrict i = 0 :=
   by
   by_cases hi : MeasurableSet i
-  · ext (j hj); rw [restrict_apply 0 hi hj]; rfl
+  · ext j hj; rw [restrict_apply 0 hi hj]; rfl
   · exact dif_neg hi
 #align measure_theory.vector_measure.restrict_zero MeasureTheory.VectorMeasure.restrict_zero
 -/
@@ -873,7 +873,7 @@ variable [ContinuousAdd M]
 theorem map_add (v w : VectorMeasure α M) (f : α → β) : (v + w).map f = v.map f + w.map f :=
   by
   by_cases hf : Measurable f
-  · ext (i hi)
+  · ext i hi
     simp [map_apply _ hf hi]
   · simp [map, dif_neg hf]
 #align measure_theory.vector_measure.map_add MeasureTheory.VectorMeasure.map_add
@@ -895,7 +895,7 @@ theorem restrict_add (v w : VectorMeasure α M) (i : Set α) :
     (v + w).restrict i = v.restrict i + w.restrict i :=
   by
   by_cases hi : MeasurableSet i
-  · ext (j hj)
+  · ext j hj
     simp [restrict_apply _ hi hj]
   · simp [restrict_not_measurable _ hi]
 #align measure_theory.vector_measure.restrict_add MeasureTheory.VectorMeasure.restrict_add
@@ -929,11 +929,11 @@ variable {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R
 theorem map_smul {v : VectorMeasure α M} {f : α → β} (c : R) : (c • v).map f = c • v.map f :=
   by
   by_cases hf : Measurable f
-  · ext (i hi)
+  · ext i hi
     simp [map_apply _ hf hi]
   · simp only [map, dif_neg hf]
     -- `smul_zero` does not work since we do not require `has_continuous_add`
-    ext (i hi);
+    ext i hi;
     simp
 #align measure_theory.vector_measure.map_smul MeasureTheory.VectorMeasure.map_smul
 -/
@@ -944,11 +944,11 @@ theorem restrict_smul {v : VectorMeasure α M} {i : Set α} (c : R) :
     (c • v).restrict i = c • v.restrict i :=
   by
   by_cases hi : MeasurableSet i
-  · ext (j hj)
+  · ext j hj
     simp [restrict_apply _ hi hj]
   · simp only [restrict_not_measurable _ hi]
     -- `smul_zero` does not work since we do not require `has_continuous_add`
-    ext (j hj);
+    ext j hj;
     simp
 #align measure_theory.vector_measure.restrict_smul MeasureTheory.VectorMeasure.restrict_smul
 -/
@@ -1587,7 +1587,7 @@ theorem trim_measurableSet_eq (hle : m ≤ n) {i : Set α} (hi : measurable_set[
 theorem restrict_trim (hle : m ≤ n) {i : Set α} (hi : measurable_set[m] i) :
     @VectorMeasure.restrict α m M _ _ (v.trim hle) i = (v.restrict i).trim hle :=
   by
-  ext (j hj)
+  ext j hj
   rw [restrict_apply, trim_measurable_set_eq hle hj, restrict_apply, trim_measurable_set_eq]
   all_goals measurability
 #align measure_theory.vector_measure.restrict_trim MeasureTheory.VectorMeasure.restrict_trim
@@ -1708,7 +1708,7 @@ instance toMeasureOfLEZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
 theorem toMeasureOfZeroLE_toSignedMeasure (hs : 0 ≤[univ] s) :
     (s.toMeasureOfZeroLE univ MeasurableSet.univ hs).toSignedMeasure = s :=
   by
-  ext (i hi)
+  ext i hi
   simp [measure.to_signed_measure_apply_measurable hi, to_measure_of_zero_le_apply _ _ _ hi]
 #align measure_theory.signed_measure.to_measure_of_zero_le_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfZeroLE_toSignedMeasure
 -/
@@ -1717,7 +1717,7 @@ theorem toMeasureOfZeroLE_toSignedMeasure (hs : 0 ≤[univ] s) :
 theorem toMeasureOfLEZero_toSignedMeasure (hs : s ≤[univ] 0) :
     (s.toMeasureOfLEZero univ MeasurableSet.univ hs).toSignedMeasure = -s :=
   by
-  ext (i hi)
+  ext i hi
   simp [measure.to_signed_measure_apply_measurable hi, to_measure_of_le_zero_apply _ _ _ hi]
 #align measure_theory.signed_measure.to_measure_of_le_zero_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfLEZero_toSignedMeasure
 -/
Diff
@@ -93,8 +93,6 @@ section
 
 variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
 
-include m
-
 instance : CoeFun (VectorMeasure α M) fun _ => Set α → M :=
   ⟨VectorMeasure.measureOf'⟩
 
@@ -105,25 +103,33 @@ theorem measure_of_eq_coe (v : VectorMeasure α M) : v.measureOf' = v :=
   rfl
 #align measure_theory.vector_measure.measure_of_eq_coe MeasureTheory.VectorMeasure.measure_of_eq_coe
 
+#print MeasureTheory.VectorMeasure.empty /-
 @[simp]
 theorem empty (v : VectorMeasure α M) : v ∅ = 0 :=
   v.empty'
 #align measure_theory.vector_measure.empty MeasureTheory.VectorMeasure.empty
+-/
 
+#print MeasureTheory.VectorMeasure.not_measurable /-
 theorem not_measurable (v : VectorMeasure α M) {i : Set α} (hi : ¬MeasurableSet i) : v i = 0 :=
   v.not_measurable' hi
 #align measure_theory.vector_measure.not_measurable MeasureTheory.VectorMeasure.not_measurable
+-/
 
+#print MeasureTheory.VectorMeasure.m_iUnion /-
 theorem m_iUnion (v : VectorMeasure α M) {f : ℕ → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) : HasSum (fun i => v (f i)) (v (⋃ i, f i)) :=
   v.m_iUnion' hf₁ hf₂
 #align measure_theory.vector_measure.m_Union MeasureTheory.VectorMeasure.m_iUnion
+-/
 
+#print MeasureTheory.VectorMeasure.of_disjoint_iUnion_nat /-
 theorem of_disjoint_iUnion_nat [T2Space M] (v : VectorMeasure α M) {f : ℕ → Set α}
     (hf₁ : ∀ i, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
     v (⋃ i, f i) = ∑' i, v (f i) :=
   (v.m_iUnion hf₁ hf₂).tsum_eq.symm
 #align measure_theory.vector_measure.of_disjoint_Union_nat MeasureTheory.VectorMeasure.of_disjoint_iUnion_nat
+-/
 
 #print MeasureTheory.VectorMeasure.coe_injective /-
 theorem coe_injective : @Function.Injective (VectorMeasure α M) (Set α → M) coeFn := fun v w h => by
@@ -131,10 +137,13 @@ theorem coe_injective : @Function.Injective (VectorMeasure α M) (Set α → M)
 #align measure_theory.vector_measure.coe_injective MeasureTheory.VectorMeasure.coe_injective
 -/
 
+#print MeasureTheory.VectorMeasure.ext_iff' /-
 theorem ext_iff' (v w : VectorMeasure α M) : v = w ↔ ∀ i : Set α, v i = w i := by
   rw [← coe_injective.eq_iff, Function.funext_iff]
 #align measure_theory.vector_measure.ext_iff' MeasureTheory.VectorMeasure.ext_iff'
+-/
 
+#print MeasureTheory.VectorMeasure.ext_iff /-
 theorem ext_iff (v w : VectorMeasure α M) : v = w ↔ ∀ i : Set α, MeasurableSet i → v i = w i :=
   by
   constructor
@@ -145,14 +154,18 @@ theorem ext_iff (v w : VectorMeasure α M) : v = w ↔ ∀ i : Set α, Measurabl
     · exact h i hi
     · simp_rw [not_measurable _ hi]
 #align measure_theory.vector_measure.ext_iff MeasureTheory.VectorMeasure.ext_iff
+-/
 
+#print MeasureTheory.VectorMeasure.ext /-
 @[ext]
 theorem ext {s t : VectorMeasure α M} (h : ∀ i : Set α, MeasurableSet i → s i = t i) : s = t :=
   (ext_iff s t).2 h
 #align measure_theory.vector_measure.ext MeasureTheory.VectorMeasure.ext
+-/
 
 variable [T2Space M] {v : VectorMeasure α M} {f : ℕ → Set α}
 
+#print MeasureTheory.VectorMeasure.hasSum_of_disjoint_iUnion /-
 theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) : HasSum (fun i => v (f i)) (v (⋃ i, f i)) :=
   by
@@ -184,26 +197,34 @@ theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : 
       intro i hi
       exact False.elim ((hx i) ((Encodable.decode₂_is_partial_inv _ _).1 hi))
 #align measure_theory.vector_measure.has_sum_of_disjoint_Union MeasureTheory.VectorMeasure.hasSum_of_disjoint_iUnion
+-/
 
+#print MeasureTheory.VectorMeasure.of_disjoint_iUnion /-
 theorem of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) : v (⋃ i, f i) = ∑' i, v (f i) :=
   (hasSum_of_disjoint_iUnion hf₁ hf₂).tsum_eq.symm
 #align measure_theory.vector_measure.of_disjoint_Union MeasureTheory.VectorMeasure.of_disjoint_iUnion
+-/
 
+#print MeasureTheory.VectorMeasure.of_union /-
 theorem of_union {A B : Set α} (h : Disjoint A B) (hA : MeasurableSet A) (hB : MeasurableSet B) :
     v (A ∪ B) = v A + v B :=
   by
   rw [union_eq_Union, of_disjoint_Union, tsum_fintype, Fintype.sum_bool, cond, cond]
   exacts [fun b => Bool.casesOn b hB hA, pairwise_disjoint_on_bool.2 h]
 #align measure_theory.vector_measure.of_union MeasureTheory.VectorMeasure.of_union
+-/
 
+#print MeasureTheory.VectorMeasure.of_add_of_diff /-
 theorem of_add_of_diff {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet B) (h : A ⊆ B) :
     v A + v (B \ A) = v B :=
   by
   rw [← of_union disjoint_sdiff_right hA (hB.diff hA), union_diff_cancel h]
   infer_instance
 #align measure_theory.vector_measure.of_add_of_diff MeasureTheory.VectorMeasure.of_add_of_diff
+-/
 
+#print MeasureTheory.VectorMeasure.of_diff /-
 theorem of_diff {M : Type _} [AddCommGroup M] [TopologicalSpace M] [T2Space M]
     {v : VectorMeasure α M} {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet B)
     (h : A ⊆ B) : v (B \ A) = v B - v A :=
@@ -211,7 +232,9 @@ theorem of_diff {M : Type _} [AddCommGroup M] [TopologicalSpace M] [T2Space M]
   rw [← of_add_of_diff hA hB h, add_sub_cancel']
   infer_instance
 #align measure_theory.vector_measure.of_diff MeasureTheory.VectorMeasure.of_diff
+-/
 
+#print MeasureTheory.VectorMeasure.of_diff_of_diff_eq_zero /-
 theorem of_diff_of_diff_eq_zero {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet B)
     (h' : v (B \ A) = 0) : v (A \ B) + v B = v A :=
   by
@@ -232,19 +255,25 @@ theorem of_diff_of_diff_eq_zero {A B : Set α} (hA : MeasurableSet A) (hB : Meas
       · exact hB.diff hA
     _ = v (A \ B) + v B := by rw [Set.union_comm, Set.inter_comm, Set.diff_union_inter]
 #align measure_theory.vector_measure.of_diff_of_diff_eq_zero MeasureTheory.VectorMeasure.of_diff_of_diff_eq_zero
+-/
 
+#print MeasureTheory.VectorMeasure.of_iUnion_nonneg /-
 theorem of_iUnion_nonneg {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
     [OrderClosedTopology M] {v : VectorMeasure α M} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) (hf₃ : ∀ i, 0 ≤ v (f i)) : 0 ≤ v (⋃ i, f i) :=
   (v.of_disjoint_iUnion_nat hf₁ hf₂).symm ▸ tsum_nonneg hf₃
 #align measure_theory.vector_measure.of_Union_nonneg MeasureTheory.VectorMeasure.of_iUnion_nonneg
+-/
 
+#print MeasureTheory.VectorMeasure.of_iUnion_nonpos /-
 theorem of_iUnion_nonpos {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
     [OrderClosedTopology M] {v : VectorMeasure α M} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) (hf₃ : ∀ i, v (f i) ≤ 0) : v (⋃ i, f i) ≤ 0 :=
   (v.of_disjoint_iUnion_nat hf₁ hf₂).symm ▸ tsum_nonpos hf₃
 #align measure_theory.vector_measure.of_Union_nonpos MeasureTheory.VectorMeasure.of_iUnion_nonpos
+-/
 
+#print MeasureTheory.VectorMeasure.of_nonneg_disjoint_union_eq_zero /-
 theorem of_nonneg_disjoint_union_eq_zero {s : SignedMeasure α} {A B : Set α} (h : Disjoint A B)
     (hA₁ : MeasurableSet A) (hB₁ : MeasurableSet B) (hA₂ : 0 ≤ s A) (hB₂ : 0 ≤ s B)
     (hAB : s (A ∪ B) = 0) : s A = 0 :=
@@ -253,7 +282,9 @@ theorem of_nonneg_disjoint_union_eq_zero {s : SignedMeasure α} {A B : Set α} (
   linarith
   infer_instance
 #align measure_theory.vector_measure.of_nonneg_disjoint_union_eq_zero MeasureTheory.VectorMeasure.of_nonneg_disjoint_union_eq_zero
+-/
 
+#print MeasureTheory.VectorMeasure.of_nonpos_disjoint_union_eq_zero /-
 theorem of_nonpos_disjoint_union_eq_zero {s : SignedMeasure α} {A B : Set α} (h : Disjoint A B)
     (hA₁ : MeasurableSet A) (hB₁ : MeasurableSet B) (hA₂ : s A ≤ 0) (hB₂ : s B ≤ 0)
     (hAB : s (A ∪ B) = 0) : s A = 0 :=
@@ -262,6 +293,7 @@ theorem of_nonpos_disjoint_union_eq_zero {s : SignedMeasure α} {A B : Set α} (
   linarith
   infer_instance
 #align measure_theory.vector_measure.of_nonpos_disjoint_union_eq_zero MeasureTheory.VectorMeasure.of_nonpos_disjoint_union_eq_zero
+-/
 
 end
 
@@ -271,8 +303,7 @@ variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
 
 variable {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
 
-include m
-
+#print MeasureTheory.VectorMeasure.smul /-
 /-- Given a real number `r` and a signed measure `s`, `smul r s` is the signed
 measure corresponding to the function `r • s`. -/
 def smul (r : R) (v : VectorMeasure α M) : VectorMeasure α M
@@ -282,18 +313,23 @@ def smul (r : R) (v : VectorMeasure α M) : VectorMeasure α M
   not_measurable' _ hi := by rw [Pi.smul_apply, v.not_measurable hi, smul_zero]
   m_iUnion' _ hf₁ hf₂ := HasSum.const_smul _ (v.m_iUnion hf₁ hf₂)
 #align measure_theory.vector_measure.smul MeasureTheory.VectorMeasure.smul
+-/
 
 instance : SMul R (VectorMeasure α M) :=
   ⟨smul⟩
 
+#print MeasureTheory.VectorMeasure.coe_smul /-
 @[simp]
 theorem coe_smul (r : R) (v : VectorMeasure α M) : ⇑(r • v) = r • v :=
   rfl
 #align measure_theory.vector_measure.coe_smul MeasureTheory.VectorMeasure.coe_smul
+-/
 
+#print MeasureTheory.VectorMeasure.smul_apply /-
 theorem smul_apply (r : R) (v : VectorMeasure α M) (i : Set α) : (r • v) i = r • v i :=
   rfl
 #align measure_theory.vector_measure.smul_apply MeasureTheory.VectorMeasure.smul_apply
+-/
 
 end SMul
 
@@ -301,25 +337,28 @@ section AddCommMonoid
 
 variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
 
-include m
-
 instance : Zero (VectorMeasure α M) :=
   ⟨⟨0, rfl, fun _ _ => rfl, fun _ _ _ => hasSum_zero⟩⟩
 
 instance : Inhabited (VectorMeasure α M) :=
   ⟨0⟩
 
+#print MeasureTheory.VectorMeasure.coe_zero /-
 @[simp]
 theorem coe_zero : ⇑(0 : VectorMeasure α M) = 0 :=
   rfl
 #align measure_theory.vector_measure.coe_zero MeasureTheory.VectorMeasure.coe_zero
+-/
 
+#print MeasureTheory.VectorMeasure.zero_apply /-
 theorem zero_apply (i : Set α) : (0 : VectorMeasure α M) i = 0 :=
   rfl
 #align measure_theory.vector_measure.zero_apply MeasureTheory.VectorMeasure.zero_apply
+-/
 
 variable [ContinuousAdd M]
 
+#print MeasureTheory.VectorMeasure.add /-
 /-- The sum of two vector measure is a vector measure. -/
 def add (v w : VectorMeasure α M) : VectorMeasure α M
     where
@@ -328,22 +367,28 @@ def add (v w : VectorMeasure α M) : VectorMeasure α M
   not_measurable' _ hi := by simp [v.not_measurable hi, w.not_measurable hi]
   m_iUnion' f hf₁ hf₂ := HasSum.add (v.m_iUnion hf₁ hf₂) (w.m_iUnion hf₁ hf₂)
 #align measure_theory.vector_measure.add MeasureTheory.VectorMeasure.add
+-/
 
 instance : Add (VectorMeasure α M) :=
   ⟨add⟩
 
+#print MeasureTheory.VectorMeasure.coe_add /-
 @[simp]
 theorem coe_add (v w : VectorMeasure α M) : ⇑(v + w) = v + w :=
   rfl
 #align measure_theory.vector_measure.coe_add MeasureTheory.VectorMeasure.coe_add
+-/
 
+#print MeasureTheory.VectorMeasure.add_apply /-
 theorem add_apply (v w : VectorMeasure α M) (i : Set α) : (v + w) i = v i + w i :=
   rfl
 #align measure_theory.vector_measure.add_apply MeasureTheory.VectorMeasure.add_apply
+-/
 
 instance : AddCommMonoid (VectorMeasure α M) :=
   Function.Injective.addCommMonoid _ coe_injective coe_zero coe_add fun _ _ => coe_smul _ _
 
+#print MeasureTheory.VectorMeasure.coeFnAddMonoidHom /-
 /-- `coe_fn` is an `add_monoid_hom`. -/
 @[simps]
 def coeFnAddMonoidHom : VectorMeasure α M →+ Set α → M
@@ -352,6 +397,7 @@ def coeFnAddMonoidHom : VectorMeasure α M →+ Set α → M
   map_zero' := coe_zero
   map_add' := coe_add
 #align measure_theory.vector_measure.coe_fn_add_monoid_hom MeasureTheory.VectorMeasure.coeFnAddMonoidHom
+-/
 
 end AddCommMonoid
 
@@ -359,8 +405,6 @@ section AddCommGroup
 
 variable {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
 
-include m
-
 #print MeasureTheory.VectorMeasure.neg /-
 /-- The negative of a vector measure is a vector measure. -/
 def neg (v : VectorMeasure α M) : VectorMeasure α M
@@ -375,14 +419,18 @@ def neg (v : VectorMeasure α M) : VectorMeasure α M
 instance : Neg (VectorMeasure α M) :=
   ⟨neg⟩
 
+#print MeasureTheory.VectorMeasure.coe_neg /-
 @[simp]
 theorem coe_neg (v : VectorMeasure α M) : ⇑(-v) = -v :=
   rfl
 #align measure_theory.vector_measure.coe_neg MeasureTheory.VectorMeasure.coe_neg
+-/
 
+#print MeasureTheory.VectorMeasure.neg_apply /-
 theorem neg_apply (v : VectorMeasure α M) (i : Set α) : (-v) i = -v i :=
   rfl
 #align measure_theory.vector_measure.neg_apply MeasureTheory.VectorMeasure.neg_apply
+-/
 
 #print MeasureTheory.VectorMeasure.sub /-
 /-- The difference of two vector measure is a vector measure. -/
@@ -398,14 +446,18 @@ def sub (v w : VectorMeasure α M) : VectorMeasure α M
 instance : Sub (VectorMeasure α M) :=
   ⟨sub⟩
 
+#print MeasureTheory.VectorMeasure.coe_sub /-
 @[simp]
 theorem coe_sub (v w : VectorMeasure α M) : ⇑(v - w) = v - w :=
   rfl
 #align measure_theory.vector_measure.coe_sub MeasureTheory.VectorMeasure.coe_sub
+-/
 
+#print MeasureTheory.VectorMeasure.sub_apply /-
 theorem sub_apply (v w : VectorMeasure α M) (i : Set α) : (v - w) i = v i - w i :=
   rfl
 #align measure_theory.vector_measure.sub_apply MeasureTheory.VectorMeasure.sub_apply
+-/
 
 instance : AddCommGroup (VectorMeasure α M) :=
   Function.Injective.addCommGroup _ coe_injective coe_zero coe_add coe_neg coe_sub
@@ -419,8 +471,6 @@ variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
 
 variable {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
 
-include m
-
 instance [ContinuousAdd M] : DistribMulAction R (VectorMeasure α M) :=
   Function.Injective.distribMulAction coeFnAddMonoidHom coe_injective coe_smul
 
@@ -432,8 +482,6 @@ variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
 
 variable {R : Type _} [Semiring R] [Module R M] [ContinuousConstSMul R M]
 
-include m
-
 instance [ContinuousAdd M] : Module R (VectorMeasure α M) :=
   Function.Injective.module R coeFnAddMonoidHom coe_injective coe_smul
 
@@ -443,8 +491,6 @@ end VectorMeasure
 
 namespace Measure
 
-include m
-
 #print MeasureTheory.Measure.toSignedMeasure /-
 /-- A finite measure coerced into a real function is a signed measure. -/
 @[simps]
@@ -520,6 +566,7 @@ theorem toSignedMeasure_add (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteM
 #align measure_theory.measure.to_signed_measure_add MeasureTheory.Measure.toSignedMeasure_add
 -/
 
+#print MeasureTheory.Measure.toSignedMeasure_smul /-
 @[simp]
 theorem toSignedMeasure_smul (μ : Measure α) [IsFiniteMeasure μ] (r : ℝ≥0) :
     (r • μ).toSignedMeasure = r • μ.toSignedMeasure :=
@@ -528,7 +575,9 @@ theorem toSignedMeasure_smul (μ : Measure α) [IsFiniteMeasure μ] (r : ℝ≥0
   rw [to_signed_measure_apply_measurable hi, vector_measure.smul_apply,
     to_signed_measure_apply_measurable hi, coe_smul, Pi.smul_apply, ENNReal.toReal_smul]
 #align measure_theory.measure.to_signed_measure_smul MeasureTheory.Measure.toSignedMeasure_smul
+-/
 
+#print MeasureTheory.Measure.toENNRealVectorMeasure /-
 /-- A measure is a vector measure over `ℝ≥0∞`. -/
 @[simps]
 def toENNRealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞
@@ -541,6 +590,7 @@ def toENNRealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞
     · rw [if_pos (MeasurableSet.iUnion hf₁), MeasureTheory.measure_iUnion hf₂ hf₁]
       exact tsum_congr fun n => if_pos (hf₁ n)
 #align measure_theory.measure.to_ennreal_vector_measure MeasureTheory.Measure.toENNRealVectorMeasure
+-/
 
 #print MeasureTheory.Measure.toENNRealVectorMeasure_apply_measurable /-
 theorem toENNRealVectorMeasure_apply_measurable {μ : Measure α} {i : Set α} (hi : MeasurableSet i) :
@@ -549,11 +599,14 @@ theorem toENNRealVectorMeasure_apply_measurable {μ : Measure α} {i : Set α} (
 #align measure_theory.measure.to_ennreal_vector_measure_apply_measurable MeasureTheory.Measure.toENNRealVectorMeasure_apply_measurable
 -/
 
+#print MeasureTheory.Measure.toENNRealVectorMeasure_zero /-
 @[simp]
 theorem toENNRealVectorMeasure_zero : (0 : Measure α).toENNRealVectorMeasure = 0 := by ext (i hi);
   simp
 #align measure_theory.measure.to_ennreal_vector_measure_zero MeasureTheory.Measure.toENNRealVectorMeasure_zero
+-/
 
+#print MeasureTheory.Measure.toENNRealVectorMeasure_add /-
 @[simp]
 theorem toENNRealVectorMeasure_add (μ ν : Measure α) :
     (μ + ν).toENNRealVectorMeasure = μ.toENNRealVectorMeasure + ν.toENNRealVectorMeasure :=
@@ -562,13 +615,16 @@ theorem toENNRealVectorMeasure_add (μ ν : Measure α) :
   rw [to_ennreal_vector_measure_apply_measurable hi, add_apply, vector_measure.add_apply,
     to_ennreal_vector_measure_apply_measurable hi, to_ennreal_vector_measure_apply_measurable hi]
 #align measure_theory.measure.to_ennreal_vector_measure_add MeasureTheory.Measure.toENNRealVectorMeasure_add
+-/
 
+#print MeasureTheory.Measure.toSignedMeasure_sub_apply /-
 theorem toSignedMeasure_sub_apply {μ ν : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν]
     {i : Set α} (hi : MeasurableSet i) :
     (μ.toSignedMeasure - ν.toSignedMeasure) i = (μ i).toReal - (ν i).toReal := by
   rw [vector_measure.sub_apply, to_signed_measure_apply_measurable hi,
     measure.to_signed_measure_apply_measurable hi, sub_eq_add_neg]
 #align measure_theory.measure.to_signed_measure_sub_apply MeasureTheory.Measure.toSignedMeasure_sub_apply
+-/
 
 end Measure
 
@@ -578,16 +634,21 @@ open Measure
 
 section
 
+#print MeasureTheory.VectorMeasure.ennrealToMeasure /-
 /-- A vector measure over `ℝ≥0∞` is a measure. -/
 def ennrealToMeasure {m : MeasurableSpace α} (v : VectorMeasure α ℝ≥0∞) : Measure α :=
   ofMeasurable (fun s _ => v s) v.Empty fun f hf₁ hf₂ => v.of_disjoint_iUnion_nat hf₁ hf₂
 #align measure_theory.vector_measure.ennreal_to_measure MeasureTheory.VectorMeasure.ennrealToMeasure
+-/
 
+#print MeasureTheory.VectorMeasure.ennrealToMeasure_apply /-
 theorem ennrealToMeasure_apply {m : MeasurableSpace α} {v : VectorMeasure α ℝ≥0∞} {s : Set α}
     (hs : MeasurableSet s) : ennrealToMeasure v s = v s := by
   rw [ennreal_to_measure, of_measurable_apply _ hs]
 #align measure_theory.vector_measure.ennreal_to_measure_apply MeasureTheory.VectorMeasure.ennrealToMeasure_apply
+-/
 
+#print MeasureTheory.VectorMeasure.equivMeasure /-
 /-- The equiv between `vector_measure α ℝ≥0∞` and `measure α` formed by
 `measure_theory.vector_measure.ennreal_to_measure` and
 `measure_theory.measure.to_ennreal_vector_measure`. -/
@@ -603,6 +664,7 @@ def equivMeasure [MeasurableSpace α] : VectorMeasure α ℝ≥0∞ ≃ Measure
     Measure.ext fun s hs => by
       rw [ennreal_to_measure_apply hs, to_ennreal_vector_measure_apply_measurable hs]
 #align measure_theory.vector_measure.equiv_measure MeasureTheory.VectorMeasure.equivMeasure
+-/
 
 end
 
@@ -630,19 +692,26 @@ def map (v : VectorMeasure α M) (f : α → β) : VectorMeasure β M :=
 #align measure_theory.vector_measure.map MeasureTheory.VectorMeasure.map
 -/
 
+#print MeasureTheory.VectorMeasure.map_not_measurable /-
 theorem map_not_measurable {f : α → β} (hf : ¬Measurable f) : v.map f = 0 :=
   dif_neg hf
 #align measure_theory.vector_measure.map_not_measurable MeasureTheory.VectorMeasure.map_not_measurable
+-/
 
+#print MeasureTheory.VectorMeasure.map_apply /-
 theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
     v.map f s = v (f ⁻¹' s) := by rw [map, dif_pos hf]; exact if_pos hs
 #align measure_theory.vector_measure.map_apply MeasureTheory.VectorMeasure.map_apply
+-/
 
+#print MeasureTheory.VectorMeasure.map_id /-
 @[simp]
 theorem map_id : v.map id = v :=
   ext fun i hi => by rw [map_apply v measurable_id hi, preimage_id]
 #align measure_theory.vector_measure.map_id MeasureTheory.VectorMeasure.map_id
+-/
 
+#print MeasureTheory.VectorMeasure.map_zero /-
 @[simp]
 theorem map_zero (f : α → β) : (0 : VectorMeasure α M).map f = 0 :=
   by
@@ -651,11 +720,13 @@ theorem map_zero (f : α → β) : (0 : VectorMeasure α M).map f = 0 :=
     rw [map_apply _ hf hi, zero_apply, zero_apply]
   · exact dif_neg hf
 #align measure_theory.vector_measure.map_zero MeasureTheory.VectorMeasure.map_zero
+-/
 
 section
 
 variable {N : Type _} [AddCommMonoid N] [TopologicalSpace N]
 
+#print MeasureTheory.VectorMeasure.mapRange /-
 /-- Given a vector measure `v` on `M` and a continuous add_monoid_hom `f : M → N`, `f ∘ v` is a
 vector measure on `N`. -/
 def mapRange (v : VectorMeasure α M) (f : M →+ N) (hf : Continuous f) : VectorMeasure α N
@@ -665,31 +736,41 @@ def mapRange (v : VectorMeasure α M) (f : M →+ N) (hf : Continuous f) : Vecto
   not_measurable' i hi := by rw [not_measurable v hi, AddMonoidHom.map_zero]
   m_iUnion' g hg₁ hg₂ := HasSum.map (v.m_iUnion hg₁ hg₂) f hf
 #align measure_theory.vector_measure.map_range MeasureTheory.VectorMeasure.mapRange
+-/
 
+#print MeasureTheory.VectorMeasure.mapRange_apply /-
 @[simp]
 theorem mapRange_apply {f : M →+ N} (hf : Continuous f) {s : Set α} :
     v.map_range f hf s = f (v s) :=
   rfl
 #align measure_theory.vector_measure.map_range_apply MeasureTheory.VectorMeasure.mapRange_apply
+-/
 
+#print MeasureTheory.VectorMeasure.mapRange_id /-
 @[simp]
 theorem mapRange_id : v.map_range (AddMonoidHom.id M) continuous_id = v := by ext; rfl
 #align measure_theory.vector_measure.map_range_id MeasureTheory.VectorMeasure.mapRange_id
+-/
 
+#print MeasureTheory.VectorMeasure.mapRange_zero /-
 @[simp]
 theorem mapRange_zero {f : M →+ N} (hf : Continuous f) :
     mapRange (0 : VectorMeasure α M) f hf = 0 := by ext; simp
 #align measure_theory.vector_measure.map_range_zero MeasureTheory.VectorMeasure.mapRange_zero
+-/
 
 section ContinuousAdd
 
 variable [ContinuousAdd M] [ContinuousAdd N]
 
+#print MeasureTheory.VectorMeasure.mapRange_add /-
 @[simp]
 theorem mapRange_add {v w : VectorMeasure α M} {f : M →+ N} (hf : Continuous f) :
     (v + w).map_range f hf = v.map_range f hf + w.map_range f hf := by ext; simp
 #align measure_theory.vector_measure.map_range_add MeasureTheory.VectorMeasure.mapRange_add
+-/
 
+#print MeasureTheory.VectorMeasure.mapRangeHom /-
 /-- Given a continuous add_monoid_hom `f : M → N`, `map_range_hom` is the add_monoid_hom mapping the
 vector measure `v` on `M` to the vector measure `f ∘ v` on `N`. -/
 def mapRangeHom (f : M →+ N) (hf : Continuous f) : VectorMeasure α M →+ VectorMeasure α N
@@ -698,6 +779,7 @@ def mapRangeHom (f : M →+ N) (hf : Continuous f) : VectorMeasure α M →+ Vec
   map_zero' := mapRange_zero hf
   map_add' _ _ := mapRange_add hf
 #align measure_theory.vector_measure.map_range_hom MeasureTheory.VectorMeasure.mapRangeHom
+-/
 
 end ContinuousAdd
 
@@ -707,6 +789,7 @@ variable {R : Type _} [Semiring R] [Module R M] [Module R N]
 
 variable [ContinuousAdd M] [ContinuousAdd N] [ContinuousConstSMul R M] [ContinuousConstSMul R N]
 
+#print MeasureTheory.VectorMeasure.mapRangeₗ /-
 /-- Given a continuous linear map `f : M → N`, `map_rangeₗ` is the linear map mapping the
 vector measure `v` on `M` to the vector measure `f ∘ v` on `N`. -/
 def mapRangeₗ (f : M →ₗ[R] N) (hf : Continuous f) : VectorMeasure α M →ₗ[R] VectorMeasure α N
@@ -715,6 +798,7 @@ def mapRangeₗ (f : M →ₗ[R] N) (hf : Continuous f) : VectorMeasure α M →
   map_add' _ _ := mapRange_add hf
   map_smul' := by intros; ext; simp
 #align measure_theory.vector_measure.map_rangeₗ MeasureTheory.VectorMeasure.mapRangeₗ
+-/
 
 end Module
 
@@ -738,29 +822,40 @@ def restrict (v : VectorMeasure α M) (i : Set α) : VectorMeasure α M :=
 #align measure_theory.vector_measure.restrict MeasureTheory.VectorMeasure.restrict
 -/
 
+#print MeasureTheory.VectorMeasure.restrict_not_measurable /-
 theorem restrict_not_measurable {i : Set α} (hi : ¬MeasurableSet i) : v.restrict i = 0 :=
   dif_neg hi
 #align measure_theory.vector_measure.restrict_not_measurable MeasureTheory.VectorMeasure.restrict_not_measurable
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_apply /-
 theorem restrict_apply {i : Set α} (hi : MeasurableSet i) {j : Set α} (hj : MeasurableSet j) :
     v.restrict i j = v (j ∩ i) := by rw [restrict, dif_pos hi]; exact if_pos hj
 #align measure_theory.vector_measure.restrict_apply MeasureTheory.VectorMeasure.restrict_apply
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_eq_self /-
 theorem restrict_eq_self {i : Set α} (hi : MeasurableSet i) {j : Set α} (hj : MeasurableSet j)
     (hij : j ⊆ i) : v.restrict i j = v j := by
   rw [restrict_apply v hi hj, inter_eq_left_iff_subset.2 hij]
 #align measure_theory.vector_measure.restrict_eq_self MeasureTheory.VectorMeasure.restrict_eq_self
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_empty /-
 @[simp]
 theorem restrict_empty : v.restrict ∅ = 0 :=
   ext fun i hi => by rw [restrict_apply v MeasurableSet.empty hi, inter_empty, v.empty, zero_apply]
 #align measure_theory.vector_measure.restrict_empty MeasureTheory.VectorMeasure.restrict_empty
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_univ /-
 @[simp]
 theorem restrict_univ : v.restrict univ = v :=
   ext fun i hi => by rw [restrict_apply v MeasurableSet.univ hi, inter_univ]
 #align measure_theory.vector_measure.restrict_univ MeasureTheory.VectorMeasure.restrict_univ
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_zero /-
 @[simp]
 theorem restrict_zero {i : Set α} : (0 : VectorMeasure α M).restrict i = 0 :=
   by
@@ -768,11 +863,13 @@ theorem restrict_zero {i : Set α} : (0 : VectorMeasure α M).restrict i = 0 :=
   · ext (j hj); rw [restrict_apply 0 hi hj]; rfl
   · exact dif_neg hi
 #align measure_theory.vector_measure.restrict_zero MeasureTheory.VectorMeasure.restrict_zero
+-/
 
 section ContinuousAdd
 
 variable [ContinuousAdd M]
 
+#print MeasureTheory.VectorMeasure.map_add /-
 theorem map_add (v w : VectorMeasure α M) (f : α → β) : (v + w).map f = v.map f + w.map f :=
   by
   by_cases hf : Measurable f
@@ -780,7 +877,9 @@ theorem map_add (v w : VectorMeasure α M) (f : α → β) : (v + w).map f = v.m
     simp [map_apply _ hf hi]
   · simp [map, dif_neg hf]
 #align measure_theory.vector_measure.map_add MeasureTheory.VectorMeasure.map_add
+-/
 
+#print MeasureTheory.VectorMeasure.mapGm /-
 /-- `vector_measure.map` as an additive monoid homomorphism. -/
 @[simps]
 def mapGm (f : α → β) : VectorMeasure α M →+ VectorMeasure β M
@@ -789,7 +888,9 @@ def mapGm (f : α → β) : VectorMeasure α M →+ VectorMeasure β M
   map_zero' := map_zero f
   map_add' _ _ := map_add _ _ f
 #align measure_theory.vector_measure.map_gm MeasureTheory.VectorMeasure.mapGm
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_add /-
 theorem restrict_add (v w : VectorMeasure α M) (i : Set α) :
     (v + w).restrict i = v.restrict i + w.restrict i :=
   by
@@ -798,7 +899,9 @@ theorem restrict_add (v w : VectorMeasure α M) (i : Set α) :
     simp [restrict_apply _ hi hj]
   · simp [restrict_not_measurable _ hi]
 #align measure_theory.vector_measure.restrict_add MeasureTheory.VectorMeasure.restrict_add
+-/
 
+#print MeasureTheory.VectorMeasure.restrictGm /-
 /-- `vector_measure.restrict` as an additive monoid homomorphism. -/
 @[simps]
 def restrictGm (i : Set α) : VectorMeasure α M →+ VectorMeasure α M
@@ -807,6 +910,7 @@ def restrictGm (i : Set α) : VectorMeasure α M →+ VectorMeasure α M
   map_zero' := restrict_zero
   map_add' _ _ := restrict_add _ _ i
 #align measure_theory.vector_measure.restrict_gm MeasureTheory.VectorMeasure.restrictGm
+-/
 
 end ContinuousAdd
 
@@ -820,8 +924,7 @@ variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
 
 variable {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
 
-include m
-
+#print MeasureTheory.VectorMeasure.map_smul /-
 @[simp]
 theorem map_smul {v : VectorMeasure α M} {f : α → β} (c : R) : (c • v).map f = c • v.map f :=
   by
@@ -833,7 +936,9 @@ theorem map_smul {v : VectorMeasure α M} {f : α → β} (c : R) : (c • v).ma
     ext (i hi);
     simp
 #align measure_theory.vector_measure.map_smul MeasureTheory.VectorMeasure.map_smul
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_smul /-
 @[simp]
 theorem restrict_smul {v : VectorMeasure α M} {i : Set α} (c : R) :
     (c • v).restrict i = c • v.restrict i :=
@@ -846,6 +951,7 @@ theorem restrict_smul {v : VectorMeasure α M} {i : Set α} (c : R) :
     ext (j hj);
     simp
 #align measure_theory.vector_measure.restrict_smul MeasureTheory.VectorMeasure.restrict_smul
+-/
 
 end
 
@@ -857,8 +963,7 @@ variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
 
 variable {R : Type _} [Semiring R] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M]
 
-include m
-
+#print MeasureTheory.VectorMeasure.mapₗ /-
 /-- `vector_measure.map` as a linear map. -/
 @[simps]
 def mapₗ (f : α → β) : VectorMeasure α M →ₗ[R] VectorMeasure β M
@@ -867,7 +972,9 @@ def mapₗ (f : α → β) : VectorMeasure α M →ₗ[R] VectorMeasure β M
   map_add' _ _ := map_add _ _ f
   map_smul' _ _ := map_smul _
 #align measure_theory.vector_measure.mapₗ MeasureTheory.VectorMeasure.mapₗ
+-/
 
+#print MeasureTheory.VectorMeasure.restrictₗ /-
 /-- `vector_measure.restrict` as an additive monoid homomorphism. -/
 @[simps]
 def restrictₗ (i : Set α) : VectorMeasure α M →ₗ[R] VectorMeasure α M
@@ -876,6 +983,7 @@ def restrictₗ (i : Set α) : VectorMeasure α M →ₗ[R] VectorMeasure α M
   map_add' _ _ := restrict_add _ _ i
   map_smul' _ _ := restrict_smul _
 #align measure_theory.vector_measure.restrictₗ MeasureTheory.VectorMeasure.restrictₗ
+-/
 
 end
 
@@ -883,8 +991,6 @@ section
 
 variable {M : Type _} [TopologicalSpace M] [AddCommMonoid M] [PartialOrder M]
 
-include m
-
 /-- Vector measures over a partially ordered monoid is partially ordered.
 
 This definition is consistent with `measure.partial_order`. -/
@@ -897,10 +1003,13 @@ instance : PartialOrder (VectorMeasure α M)
 
 variable {u v w : VectorMeasure α M}
 
+#print MeasureTheory.VectorMeasure.le_iff /-
 theorem le_iff : v ≤ w ↔ ∀ i, MeasurableSet i → v i ≤ w i :=
   Iff.rfl
 #align measure_theory.vector_measure.le_iff MeasureTheory.VectorMeasure.le_iff
+-/
 
+#print MeasureTheory.VectorMeasure.le_iff' /-
 theorem le_iff' : v ≤ w ↔ ∀ i, v i ≤ w i :=
   by
   refine' ⟨fun h i => _, fun h i hi => h i⟩
@@ -908,10 +1017,10 @@ theorem le_iff' : v ≤ w ↔ ∀ i, v i ≤ w i :=
   · exact h i hi
   · rw [v.not_measurable hi, w.not_measurable hi]
 #align measure_theory.vector_measure.le_iff' MeasureTheory.VectorMeasure.le_iff'
+-/
 
 end
 
--- mathport name: vector_measure.restrict
 scoped[MeasureTheory]
   notation:50 v " ≤[" i:50 "] " w:50 =>
     MeasureTheory.VectorMeasure.restrict v i ≤ MeasureTheory.VectorMeasure.restrict w i
@@ -922,6 +1031,7 @@ variable {M : Type _} [TopologicalSpace M] [AddCommMonoid M] [PartialOrder M]
 
 variable (v w : VectorMeasure α M)
 
+#print MeasureTheory.VectorMeasure.restrict_le_restrict_iff /-
 theorem restrict_le_restrict_iff {i : Set α} (hi : MeasurableSet i) :
     v ≤[i] w ↔ ∀ ⦃j⦄, MeasurableSet j → j ⊆ i → v j ≤ w j :=
   ⟨fun h j hj₁ hj₂ => restrict_eq_self v hi hj₁ hj₂ ▸ restrict_eq_self w hi hj₁ hj₂ ▸ h j hj₁,
@@ -930,7 +1040,9 @@ theorem restrict_le_restrict_iff {i : Set α} (hi : MeasurableSet i) :
       (restrict_apply v hi hj).symm ▸
         (restrict_apply w hi hj).symm ▸ h (hj.inter hi) (Set.inter_subset_right j i)⟩
 #align measure_theory.vector_measure.restrict_le_restrict_iff MeasureTheory.VectorMeasure.restrict_le_restrict_iff
+-/
 
+#print MeasureTheory.VectorMeasure.subset_le_of_restrict_le_restrict /-
 theorem subset_le_of_restrict_le_restrict {i : Set α} (hi : MeasurableSet i) (hi₂ : v ≤[i] w)
     {j : Set α} (hj : j ⊆ i) : v j ≤ w j :=
   by
@@ -938,7 +1050,9 @@ theorem subset_le_of_restrict_le_restrict {i : Set α} (hi : MeasurableSet i) (h
   · exact (restrict_le_restrict_iff _ _ hi).1 hi₂ hj₁ hj
   · rw [v.not_measurable hj₁, w.not_measurable hj₁]
 #align measure_theory.vector_measure.subset_le_of_restrict_le_restrict MeasureTheory.VectorMeasure.subset_le_of_restrict_le_restrict
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_le_restrict_of_subset_le /-
 theorem restrict_le_restrict_of_subset_le {i : Set α}
     (h : ∀ ⦃j⦄, MeasurableSet j → j ⊆ i → v j ≤ w j) : v ≤[i] w :=
   by
@@ -947,18 +1061,24 @@ theorem restrict_le_restrict_of_subset_le {i : Set α}
   · rw [restrict_not_measurable v hi, restrict_not_measurable w hi]
     exact le_rfl
 #align measure_theory.vector_measure.restrict_le_restrict_of_subset_le MeasureTheory.VectorMeasure.restrict_le_restrict_of_subset_le
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_le_restrict_subset /-
 theorem restrict_le_restrict_subset {i j : Set α} (hi₁ : MeasurableSet i) (hi₂ : v ≤[i] w)
     (hij : j ⊆ i) : v ≤[j] w :=
   restrict_le_restrict_of_subset_le v w fun k hk₁ hk₂ =>
     subset_le_of_restrict_le_restrict v w hi₁ hi₂ (Set.Subset.trans hk₂ hij)
 #align measure_theory.vector_measure.restrict_le_restrict_subset MeasureTheory.VectorMeasure.restrict_le_restrict_subset
+-/
 
+#print MeasureTheory.VectorMeasure.le_restrict_empty /-
 theorem le_restrict_empty : v ≤[∅] w := by
   intro j hj
   rw [restrict_empty, restrict_empty]
 #align measure_theory.vector_measure.le_restrict_empty MeasureTheory.VectorMeasure.le_restrict_empty
+-/
 
+#print MeasureTheory.VectorMeasure.le_restrict_univ_iff_le /-
 theorem le_restrict_univ_iff_le : v ≤[univ] w ↔ v ≤ w :=
   by
   constructor
@@ -971,6 +1091,7 @@ theorem le_restrict_univ_iff_le : v ≤[univ] w ↔ v ≤ w :=
       inter_univ]
     exact h s hs
 #align measure_theory.vector_measure.le_restrict_univ_iff_le MeasureTheory.VectorMeasure.le_restrict_univ_iff_le
+-/
 
 end
 
@@ -980,6 +1101,7 @@ variable {M : Type _} [TopologicalSpace M] [OrderedAddCommGroup M] [TopologicalA
 
 variable (v w : VectorMeasure α M)
 
+#print MeasureTheory.VectorMeasure.neg_le_neg /-
 theorem neg_le_neg {i : Set α} (hi : MeasurableSet i) (h : v ≤[i] w) : -w ≤[i] -v :=
   by
   intro j hj₁
@@ -988,11 +1110,14 @@ theorem neg_le_neg {i : Set α} (hi : MeasurableSet i) (h : v ≤[i] w) : -w ≤
   rw [← restrict_apply _ hi hj₁, ← restrict_apply _ hi hj₁]
   exact h j hj₁
 #align measure_theory.vector_measure.neg_le_neg MeasureTheory.VectorMeasure.neg_le_neg
+-/
 
+#print MeasureTheory.VectorMeasure.neg_le_neg_iff /-
 @[simp]
 theorem neg_le_neg_iff {i : Set α} (hi : MeasurableSet i) : -w ≤[i] -v ↔ v ≤[i] w :=
   ⟨fun h => neg_neg v ▸ neg_neg w ▸ neg_le_neg _ _ hi h, fun h => neg_le_neg _ _ hi h⟩
 #align measure_theory.vector_measure.neg_le_neg_iff MeasureTheory.VectorMeasure.neg_le_neg_iff
+-/
 
 end
 
@@ -1002,6 +1127,7 @@ variable {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M] [OrderClosed
 
 variable (v w : VectorMeasure α M) {i j : Set α}
 
+#print MeasureTheory.VectorMeasure.restrict_le_restrict_iUnion /-
 theorem restrict_le_restrict_iUnion {f : ℕ → Set α} (hf₁ : ∀ n, MeasurableSet (f n))
     (hf₂ : ∀ n, v ≤[f n] w) : v ≤[⋃ n, f n] w :=
   by
@@ -1023,7 +1149,9 @@ theorem restrict_le_restrict_iUnion {f : ℕ → Set α} (hf₁ : ∀ n, Measura
   · intro n; exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
   · exact fun n => ha₁.inter (MeasurableSet.disjointed hf₁ n)
 #align measure_theory.vector_measure.restrict_le_restrict_Union MeasureTheory.VectorMeasure.restrict_le_restrict_iUnion
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_le_restrict_countable_iUnion /-
 theorem restrict_le_restrict_countable_iUnion [Countable β] {f : β → Set α}
     (hf₁ : ∀ b, MeasurableSet (f b)) (hf₂ : ∀ b, v ≤[f b] w) : v ≤[⋃ b, f b] w :=
   by
@@ -1036,7 +1164,9 @@ theorem restrict_le_restrict_countable_iUnion [Countable β] {f : β → Set α}
     · simp
     · simp [hf₂ b]
 #align measure_theory.vector_measure.restrict_le_restrict_countable_Union MeasureTheory.VectorMeasure.restrict_le_restrict_countable_iUnion
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_le_restrict_union /-
 theorem restrict_le_restrict_union (hi₁ : MeasurableSet i) (hi₂ : v ≤[i] w) (hj₁ : MeasurableSet j)
     (hj₂ : v ≤[j] w) : v ≤[i ∪ j] w := by
   rw [union_eq_Union]
@@ -1044,6 +1174,7 @@ theorem restrict_le_restrict_union (hi₁ : MeasurableSet i) (hi₂ : v ≤[i] w
   · measurability
   · rintro (_ | _) <;> simpa
 #align measure_theory.vector_measure.restrict_le_restrict_union MeasureTheory.VectorMeasure.restrict_le_restrict_union
+-/
 
 end
 
@@ -1053,49 +1184,65 @@ variable {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
 
 variable (v w : VectorMeasure α M) {i j : Set α}
 
+#print MeasureTheory.VectorMeasure.nonneg_of_zero_le_restrict /-
 theorem nonneg_of_zero_le_restrict (hi₂ : 0 ≤[i] v) : 0 ≤ v i :=
   by
   by_cases hi₁ : MeasurableSet i
   · exact (restrict_le_restrict_iff _ _ hi₁).1 hi₂ hi₁ Set.Subset.rfl
   · rw [v.not_measurable hi₁]
 #align measure_theory.vector_measure.nonneg_of_zero_le_restrict MeasureTheory.VectorMeasure.nonneg_of_zero_le_restrict
+-/
 
+#print MeasureTheory.VectorMeasure.nonpos_of_restrict_le_zero /-
 theorem nonpos_of_restrict_le_zero (hi₂ : v ≤[i] 0) : v i ≤ 0 :=
   by
   by_cases hi₁ : MeasurableSet i
   · exact (restrict_le_restrict_iff _ _ hi₁).1 hi₂ hi₁ Set.Subset.rfl
   · rw [v.not_measurable hi₁]
 #align measure_theory.vector_measure.nonpos_of_restrict_le_zero MeasureTheory.VectorMeasure.nonpos_of_restrict_le_zero
+-/
 
+#print MeasureTheory.VectorMeasure.zero_le_restrict_not_measurable /-
 theorem zero_le_restrict_not_measurable (hi : ¬MeasurableSet i) : 0 ≤[i] v :=
   by
   rw [restrict_zero, restrict_not_measurable _ hi]
   exact le_rfl
 #align measure_theory.vector_measure.zero_le_restrict_not_measurable MeasureTheory.VectorMeasure.zero_le_restrict_not_measurable
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_le_zero_of_not_measurable /-
 theorem restrict_le_zero_of_not_measurable (hi : ¬MeasurableSet i) : v ≤[i] 0 :=
   by
   rw [restrict_zero, restrict_not_measurable _ hi]
   exact le_rfl
 #align measure_theory.vector_measure.restrict_le_zero_of_not_measurable MeasureTheory.VectorMeasure.restrict_le_zero_of_not_measurable
+-/
 
+#print MeasureTheory.VectorMeasure.measurable_of_not_zero_le_restrict /-
 theorem measurable_of_not_zero_le_restrict (hi : ¬0 ≤[i] v) : MeasurableSet i :=
   Not.imp_symm (zero_le_restrict_not_measurable _) hi
 #align measure_theory.vector_measure.measurable_of_not_zero_le_restrict MeasureTheory.VectorMeasure.measurable_of_not_zero_le_restrict
+-/
 
+#print MeasureTheory.VectorMeasure.measurable_of_not_restrict_le_zero /-
 theorem measurable_of_not_restrict_le_zero (hi : ¬v ≤[i] 0) : MeasurableSet i :=
   Not.imp_symm (restrict_le_zero_of_not_measurable _) hi
 #align measure_theory.vector_measure.measurable_of_not_restrict_le_zero MeasureTheory.VectorMeasure.measurable_of_not_restrict_le_zero
+-/
 
+#print MeasureTheory.VectorMeasure.zero_le_restrict_subset /-
 theorem zero_le_restrict_subset (hi₁ : MeasurableSet i) (hij : j ⊆ i) (hi₂ : 0 ≤[i] v) : 0 ≤[j] v :=
   restrict_le_restrict_of_subset_le _ _ fun k hk₁ hk₂ =>
     (restrict_le_restrict_iff _ _ hi₁).1 hi₂ hk₁ (Set.Subset.trans hk₂ hij)
 #align measure_theory.vector_measure.zero_le_restrict_subset MeasureTheory.VectorMeasure.zero_le_restrict_subset
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_le_zero_subset /-
 theorem restrict_le_zero_subset (hi₁ : MeasurableSet i) (hij : j ⊆ i) (hi₂ : v ≤[i] 0) : v ≤[j] 0 :=
   restrict_le_restrict_of_subset_le _ _ fun k hk₁ hk₂ =>
     (restrict_le_restrict_iff _ _ hi₁).1 hi₂ hk₁ (Set.Subset.trans hk₂ hij)
 #align measure_theory.vector_measure.restrict_le_zero_subset MeasureTheory.VectorMeasure.restrict_le_zero_subset
+-/
 
 end
 
@@ -1105,8 +1252,7 @@ variable {M : Type _} [TopologicalSpace M] [LinearOrderedAddCommMonoid M]
 
 variable (v w : VectorMeasure α M) {i j : Set α}
 
-include m
-
+#print MeasureTheory.VectorMeasure.exists_pos_measure_of_not_restrict_le_zero /-
 theorem exists_pos_measure_of_not_restrict_le_zero (hi : ¬v ≤[i] 0) :
     ∃ j : Set α, MeasurableSet j ∧ j ⊆ i ∧ 0 < v j :=
   by
@@ -1116,6 +1262,7 @@ theorem exists_pos_measure_of_not_restrict_le_zero (hi : ¬v ≤[i] 0) :
   obtain ⟨j, hj₁, hj₂, hj⟩ := hi
   exact ⟨j, hj₁, hj₂, hj⟩
 #align measure_theory.vector_measure.exists_pos_measure_of_not_restrict_le_zero MeasureTheory.VectorMeasure.exists_pos_measure_of_not_restrict_le_zero
+-/
 
 end
 
@@ -1124,12 +1271,12 @@ section
 variable {M : Type _} [TopologicalSpace M] [AddCommMonoid M] [PartialOrder M]
   [CovariantClass M M (· + ·) (· ≤ ·)] [ContinuousAdd M]
 
-include m
-
+#print MeasureTheory.VectorMeasure.covariant_add_le /-
 instance covariant_add_le :
     CovariantClass (VectorMeasure α M) (VectorMeasure α M) (· + ·) (· ≤ ·) :=
   ⟨fun u v w h i hi => add_le_add_left (h i hi) _⟩
 #align measure_theory.vector_measure.covariant_add_le MeasureTheory.VectorMeasure.covariant_add_le
+-/
 
 end
 
@@ -1140,8 +1287,6 @@ variable {L M N : Type _}
 variable [AddCommMonoid L] [TopologicalSpace L] [AddCommMonoid M] [TopologicalSpace M]
   [AddCommMonoid N] [TopologicalSpace N]
 
-include m
-
 #print MeasureTheory.VectorMeasure.AbsolutelyContinuous /-
 /-- A vector measure `v` is absolutely continuous with respect to a measure `μ` if for all sets
 `s`, `μ s = 0`, we have `v s = 0`. -/
@@ -1150,7 +1295,6 @@ def AbsolutelyContinuous (v : VectorMeasure α M) (w : VectorMeasure α N) :=
 #align measure_theory.vector_measure.absolutely_continuous MeasureTheory.VectorMeasure.AbsolutelyContinuous
 -/
 
--- mathport name: vector_measure.absolutely_continuous
 scoped[MeasureTheory] infixl:50 " ≪ᵥ " => MeasureTheory.VectorMeasure.AbsolutelyContinuous
 
 open scoped MeasureTheory
@@ -1159,6 +1303,7 @@ namespace AbsolutelyContinuous
 
 variable {v : VectorMeasure α M} {w : VectorMeasure α N}
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.mk /-
 theorem mk (h : ∀ ⦃s : Set α⦄, MeasurableSet s → w s = 0 → v s = 0) : v ≪ᵥ w :=
   by
   intro s hs
@@ -1166,29 +1311,41 @@ theorem mk (h : ∀ ⦃s : Set α⦄, MeasurableSet s → w s = 0 → v s = 0) :
   · exact h hmeas hs
   · exact not_measurable v hmeas
 #align measure_theory.vector_measure.absolutely_continuous.mk MeasureTheory.VectorMeasure.AbsolutelyContinuous.mk
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.eq /-
 theorem eq {w : VectorMeasure α M} (h : v = w) : v ≪ᵥ w := fun s hs => h.symm ▸ hs
 #align measure_theory.vector_measure.absolutely_continuous.eq MeasureTheory.VectorMeasure.AbsolutelyContinuous.eq
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.refl /-
 @[refl]
 theorem refl (v : VectorMeasure α M) : v ≪ᵥ v :=
   eq rfl
 #align measure_theory.vector_measure.absolutely_continuous.refl MeasureTheory.VectorMeasure.AbsolutelyContinuous.refl
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.trans /-
 @[trans]
 theorem trans {u : VectorMeasure α L} {v : VectorMeasure α M} {w : VectorMeasure α N} (huv : u ≪ᵥ v)
     (hvw : v ≪ᵥ w) : u ≪ᵥ w := fun _ hs => huv <| hvw hs
 #align measure_theory.vector_measure.absolutely_continuous.trans MeasureTheory.VectorMeasure.AbsolutelyContinuous.trans
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.zero /-
 theorem zero (v : VectorMeasure α N) : (0 : VectorMeasure α M) ≪ᵥ v := fun s _ =>
   VectorMeasure.zero_apply s
 #align measure_theory.vector_measure.absolutely_continuous.zero MeasureTheory.VectorMeasure.AbsolutelyContinuous.zero
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.neg_left /-
 theorem neg_left {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ≪ᵥ w) : -v ≪ᵥ w := fun s hs => by
   rw [neg_apply, h hs, neg_zero]
 #align measure_theory.vector_measure.absolutely_continuous.neg_left MeasureTheory.VectorMeasure.AbsolutelyContinuous.neg_left
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.neg_right /-
 theorem neg_right {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ≪ᵥ w) : v ≪ᵥ -w :=
   by
@@ -1196,21 +1353,29 @@ theorem neg_right {N : Type _} [AddCommGroup N] [TopologicalSpace N] [Topologica
   rw [neg_apply, neg_eq_zero] at hs 
   exact h hs
 #align measure_theory.vector_measure.absolutely_continuous.neg_right MeasureTheory.VectorMeasure.AbsolutelyContinuous.neg_right
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.add /-
 theorem add [ContinuousAdd M] {v₁ v₂ : VectorMeasure α M} {w : VectorMeasure α N} (hv₁ : v₁ ≪ᵥ w)
     (hv₂ : v₂ ≪ᵥ w) : v₁ + v₂ ≪ᵥ w := fun s hs => by rw [add_apply, hv₁ hs, hv₂ hs, zero_add]
 #align measure_theory.vector_measure.absolutely_continuous.add MeasureTheory.VectorMeasure.AbsolutelyContinuous.add
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.sub /-
 theorem sub {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v₁ v₂ : VectorMeasure α M} {w : VectorMeasure α N} (hv₁ : v₁ ≪ᵥ w) (hv₂ : v₂ ≪ᵥ w) :
     v₁ - v₂ ≪ᵥ w := fun s hs => by rw [sub_apply, hv₁ hs, hv₂ hs, zero_sub, neg_zero]
 #align measure_theory.vector_measure.absolutely_continuous.sub MeasureTheory.VectorMeasure.AbsolutelyContinuous.sub
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.smul /-
 theorem smul {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M] {r : R}
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ≪ᵥ w) : r • v ≪ᵥ w := fun s hs => by
   rw [smul_apply, h hs, smul_zero]
 #align measure_theory.vector_measure.absolutely_continuous.smul MeasureTheory.VectorMeasure.AbsolutelyContinuous.smul
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.map /-
 theorem map [MeasureSpace β] (h : v ≪ᵥ w) (f : α → β) : v.map f ≪ᵥ w.map f :=
   by
   by_cases hf : Measurable f
@@ -1220,7 +1385,9 @@ theorem map [MeasureSpace β] (h : v ≪ᵥ w) (f : α → β) : v.map f ≪ᵥ
   · intro s hs
     rw [map_not_measurable v hf, zero_apply]
 #align measure_theory.vector_measure.absolutely_continuous.map MeasureTheory.VectorMeasure.AbsolutelyContinuous.map
+-/
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous.ennrealToMeasure /-
 theorem ennrealToMeasure {μ : VectorMeasure α ℝ≥0∞} :
     (∀ ⦃s : Set α⦄, μ.ennrealToMeasure s = 0 → v s = 0) ↔ v ≪ᵥ μ :=
   by
@@ -1233,6 +1400,7 @@ theorem ennrealToMeasure {μ : VectorMeasure α ℝ≥0∞} :
       exact h hs
     · exact not_measurable v hmeas
 #align measure_theory.vector_measure.absolutely_continuous.ennreal_to_measure MeasureTheory.VectorMeasure.AbsolutelyContinuous.ennrealToMeasure
+-/
 
 end AbsolutelyContinuous
 
@@ -1251,7 +1419,6 @@ def MutuallySingular (v : VectorMeasure α M) (w : VectorMeasure α N) : Prop :=
 #align measure_theory.vector_measure.mutually_singular MeasureTheory.VectorMeasure.MutuallySingular
 -/
 
--- mathport name: vector_measure.mutually_singular
 scoped[MeasureTheory] infixl:60 " ⟂ᵥ " => MeasureTheory.VectorMeasure.MutuallySingular
 
 namespace MutuallySingular
@@ -1260,6 +1427,7 @@ variable {v v₁ v₂ : VectorMeasure α M} {w w₁ w₂ : VectorMeasure α N}
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+#print MeasureTheory.VectorMeasure.MutuallySingular.mk /-
 theorem mk (s : Set α) (hs : MeasurableSet s) (h₁ : ∀ (t) (_ : t ⊆ s), MeasurableSet t → v t = 0)
     (h₂ : ∀ (t) (_ : t ⊆ sᶜ), MeasurableSet t → w t = 0) : v ⟂ᵥ w :=
   by
@@ -1269,21 +1437,29 @@ theorem mk (s : Set α) (hs : MeasurableSet s) (h₁ : ∀ (t) (_ : t ⊆ s), Me
   · exact h₂ t hst ht
   · exact not_measurable w ht
 #align measure_theory.vector_measure.mutually_singular.mk MeasureTheory.VectorMeasure.MutuallySingular.mk
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.symm /-
 theorem symm (h : v ⟂ᵥ w) : w ⟂ᵥ v :=
   let ⟨s, hmeas, hs₁, hs₂⟩ := h
   ⟨sᶜ, hmeas.compl, hs₂, fun t ht => hs₁ _ (compl_compl s ▸ ht : t ⊆ s)⟩
 #align measure_theory.vector_measure.mutually_singular.symm MeasureTheory.VectorMeasure.MutuallySingular.symm
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.zero_right /-
 theorem zero_right : v ⟂ᵥ (0 : VectorMeasure α N) :=
   ⟨∅, MeasurableSet.empty, fun t ht => (subset_empty_iff.1 ht).symm ▸ v.Empty, fun _ _ =>
     zero_apply _⟩
 #align measure_theory.vector_measure.mutually_singular.zero_right MeasureTheory.VectorMeasure.MutuallySingular.zero_right
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.zero_left /-
 theorem zero_left : (0 : VectorMeasure α M) ⟂ᵥ w :=
   zero_right.symm
 #align measure_theory.vector_measure.mutually_singular.zero_left MeasureTheory.VectorMeasure.MutuallySingular.zero_left
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.add_left /-
 theorem add_left [T2Space N] [ContinuousAdd M] (h₁ : v₁ ⟂ᵥ w) (h₂ : v₂ ⟂ᵥ w) : v₁ + v₂ ⟂ᵥ w :=
   by
   obtain ⟨u, hmu, hu₁, hu₂⟩ := h₁
@@ -1304,22 +1480,30 @@ theorem add_left [T2Space N] [ContinuousAdd M] (h₁ : v₁ ⟂ᵥ w) (h₂ : v
         exacts [False.elim (hxu' hxu), Or.inr ⟨⟨hxv, hxu'⟩, hx⟩]
       · rcases hx with ⟨⟩ <;> exact hx.2
 #align measure_theory.vector_measure.mutually_singular.add_left MeasureTheory.VectorMeasure.MutuallySingular.add_left
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.add_right /-
 theorem add_right [T2Space M] [ContinuousAdd N] (h₁ : v ⟂ᵥ w₁) (h₂ : v ⟂ᵥ w₂) : v ⟂ᵥ w₁ + w₂ :=
   (add_left h₁.symm h₂.symm).symm
 #align measure_theory.vector_measure.mutually_singular.add_right MeasureTheory.VectorMeasure.MutuallySingular.add_right
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.smul_right /-
 theorem smul_right {R : Type _} [Semiring R] [DistribMulAction R N] [ContinuousConstSMul R N]
     (r : R) (h : v ⟂ᵥ w) : v ⟂ᵥ r • w :=
   let ⟨s, hmeas, hs₁, hs₂⟩ := h
   ⟨s, hmeas, hs₁, fun t ht => by simp only [coe_smul, Pi.smul_apply, hs₂ t ht, smul_zero]⟩
 #align measure_theory.vector_measure.mutually_singular.smul_right MeasureTheory.VectorMeasure.MutuallySingular.smul_right
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.smul_left /-
 theorem smul_left {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M] (r : R)
     (h : v ⟂ᵥ w) : r • v ⟂ᵥ w :=
   (smul_right r h.symm).symm
 #align measure_theory.vector_measure.mutually_singular.smul_left MeasureTheory.VectorMeasure.MutuallySingular.smul_left
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.neg_left /-
 theorem neg_left {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ⟂ᵥ w) : -v ⟂ᵥ w :=
   by
@@ -1328,30 +1512,35 @@ theorem neg_left {M : Type _} [AddCommGroup M] [TopologicalSpace M] [Topological
   rw [neg_apply v s, neg_eq_zero]
   exact hu₁ s hs
 #align measure_theory.vector_measure.mutually_singular.neg_left MeasureTheory.VectorMeasure.MutuallySingular.neg_left
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.neg_right /-
 theorem neg_right {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ⟂ᵥ w) : v ⟂ᵥ -w :=
   h.symm.neg_left.symm
 #align measure_theory.vector_measure.mutually_singular.neg_right MeasureTheory.VectorMeasure.MutuallySingular.neg_right
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.neg_left_iff /-
 @[simp]
 theorem neg_left_iff {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v : VectorMeasure α M} {w : VectorMeasure α N} : -v ⟂ᵥ w ↔ v ⟂ᵥ w :=
   ⟨fun h => neg_neg v ▸ h.neg_left, neg_left⟩
 #align measure_theory.vector_measure.mutually_singular.neg_left_iff MeasureTheory.VectorMeasure.MutuallySingular.neg_left_iff
+-/
 
+#print MeasureTheory.VectorMeasure.MutuallySingular.neg_right_iff /-
 @[simp]
 theorem neg_right_iff {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
     {v : VectorMeasure α M} {w : VectorMeasure α N} : v ⟂ᵥ -w ↔ v ⟂ᵥ w :=
   ⟨fun h => neg_neg w ▸ h.neg_right, neg_right⟩
 #align measure_theory.vector_measure.mutually_singular.neg_right_iff MeasureTheory.VectorMeasure.MutuallySingular.neg_right_iff
+-/
 
 end MutuallySingular
 
 section Trim
 
-omit m
-
 #print MeasureTheory.VectorMeasure.trim /-
 /-- Restriction of a vector measure onto a sub-σ-algebra. -/
 @[simps]
@@ -1371,23 +1560,30 @@ def trim {m n : MeasurableSpace α} (v : VectorMeasure α M) (hle : m ≤ n) : @
 
 variable {n : MeasurableSpace α} {v : VectorMeasure α M}
 
+#print MeasureTheory.VectorMeasure.trim_eq_self /-
 theorem trim_eq_self : v.trim le_rfl = v := by
   ext1 i hi
   exact if_pos hi
 #align measure_theory.vector_measure.trim_eq_self MeasureTheory.VectorMeasure.trim_eq_self
+-/
 
+#print MeasureTheory.VectorMeasure.zero_trim /-
 @[simp]
 theorem zero_trim (hle : m ≤ n) : (0 : VectorMeasure α M).trim hle = 0 :=
   by
   ext1 i hi
   exact if_pos hi
 #align measure_theory.vector_measure.zero_trim MeasureTheory.VectorMeasure.zero_trim
+-/
 
+#print MeasureTheory.VectorMeasure.trim_measurableSet_eq /-
 theorem trim_measurableSet_eq (hle : m ≤ n) {i : Set α} (hi : measurable_set[m] i) :
     v.trim hle i = v i :=
   if_pos hi
 #align measure_theory.vector_measure.trim_measurable_set_eq MeasureTheory.VectorMeasure.trim_measurableSet_eq
+-/
 
+#print MeasureTheory.VectorMeasure.restrict_trim /-
 theorem restrict_trim (hle : m ≤ n) {i : Set α} (hi : measurable_set[m] i) :
     @VectorMeasure.restrict α m M _ _ (v.trim hle) i = (v.restrict i).trim hle :=
   by
@@ -1395,6 +1591,7 @@ theorem restrict_trim (hle : m ≤ n) {i : Set α} (hi : measurable_set[m] i) :
   rw [restrict_apply, trim_measurable_set_eq hle hj, restrict_apply, trim_measurable_set_eq]
   all_goals measurability
 #align measure_theory.vector_measure.restrict_trim MeasureTheory.VectorMeasure.restrict_trim
+-/
 
 end Trim
 
@@ -1408,14 +1605,15 @@ open VectorMeasure
 
 open scoped MeasureTheory
 
-include m
-
+#print MeasureTheory.SignedMeasure.toMeasureOfZeroLE' /-
 /-- The underlying function for `signed_measure.to_measure_of_zero_le`. -/
 def toMeasureOfZeroLE' (s : SignedMeasure α) (i : Set α) (hi : 0 ≤[i] s) (j : Set α)
     (hj : MeasurableSet j) : ℝ≥0∞ :=
   @coe ℝ≥0 ℝ≥0∞ _ ⟨s.restrict i j, le_trans (by simp) (hi j hj)⟩
 #align measure_theory.signed_measure.to_measure_of_zero_le' MeasureTheory.SignedMeasure.toMeasureOfZeroLE'
+-/
 
+#print MeasureTheory.SignedMeasure.toMeasureOfZeroLE /-
 /-- Given a signed measure `s` and a positive measurable set `i`, `to_measure_of_zero_le`
 provides the measure, mapping measurable sets `j` to `s (i ∩ j)`. -/
 def toMeasureOfZeroLE (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet i) (hi₂ : 0 ≤[i] s) :
@@ -1442,9 +1640,11 @@ def toMeasureOfZeroLE (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet
         simp_rw [s.restrict_apply hi₁ (hf₁ n), Set.inter_comm]
       · exact (NNReal.summable_mk h).2 (s.m_Union h₁ h₂).Summable)
 #align measure_theory.signed_measure.to_measure_of_zero_le MeasureTheory.SignedMeasure.toMeasureOfZeroLE
+-/
 
 variable (s : SignedMeasure α) {i j : Set α}
 
+#print MeasureTheory.SignedMeasure.toMeasureOfZeroLE_apply /-
 theorem toMeasureOfZeroLE_apply (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) (hj₁ : MeasurableSet j) :
     s.toMeasureOfZeroLE i hi₁ hi j =
       @coe ℝ≥0 ℝ≥0∞ _
@@ -1455,14 +1655,18 @@ theorem toMeasureOfZeroLE_apply (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) (hj
   simp_rw [to_measure_of_zero_le, measure.of_measurable_apply _ hj₁, to_measure_of_zero_le',
     s.restrict_apply hi₁ hj₁, Set.inter_comm]
 #align measure_theory.signed_measure.to_measure_of_zero_le_apply MeasureTheory.SignedMeasure.toMeasureOfZeroLE_apply
+-/
 
+#print MeasureTheory.SignedMeasure.toMeasureOfLEZero /-
 /-- Given a signed measure `s` and a negative measurable set `i`, `to_measure_of_le_zero`
 provides the measure, mapping measurable sets `j` to `-s (i ∩ j)`. -/
 def toMeasureOfLEZero (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet i) (hi₂ : s ≤[i] 0) :
     Measure α :=
   toMeasureOfZeroLE (-s) i hi₁ <| @neg_zero (VectorMeasure α ℝ) _ ▸ neg_le_neg _ _ hi₁ hi₂
 #align measure_theory.signed_measure.to_measure_of_le_zero MeasureTheory.SignedMeasure.toMeasureOfLEZero
+-/
 
+#print MeasureTheory.SignedMeasure.toMeasureOfLEZero_apply /-
 theorem toMeasureOfLEZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj₁ : MeasurableSet j) :
     s.toMeasureOfLEZero i hi₁ hi j =
       @coe ℝ≥0 ℝ≥0∞ _
@@ -1476,7 +1680,9 @@ theorem toMeasureOfLEZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj
   · simp
   · assumption
 #align measure_theory.signed_measure.to_measure_of_le_zero_apply MeasureTheory.SignedMeasure.toMeasureOfLEZero_apply
+-/
 
+#print MeasureTheory.SignedMeasure.toMeasureOfZeroLE_finite /-
 /-- `signed_measure.to_measure_of_zero_le` is a finite measure. -/
 instance toMeasureOfZeroLE_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
     IsFiniteMeasure (s.toMeasureOfZeroLE i hi₁ hi)
@@ -1485,7 +1691,9 @@ instance toMeasureOfZeroLE_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
     rw [to_measure_of_zero_le_apply s hi hi₁ MeasurableSet.univ]
     exact ENNReal.coe_lt_top
 #align measure_theory.signed_measure.to_measure_of_zero_le_finite MeasureTheory.SignedMeasure.toMeasureOfZeroLE_finite
+-/
 
+#print MeasureTheory.SignedMeasure.toMeasureOfLEZero_finite /-
 /-- `signed_measure.to_measure_of_le_zero` is a finite measure. -/
 instance toMeasureOfLEZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
     IsFiniteMeasure (s.toMeasureOfLEZero i hi₁ hi)
@@ -1494,20 +1702,25 @@ instance toMeasureOfLEZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
     rw [to_measure_of_le_zero_apply s hi hi₁ MeasurableSet.univ]
     exact ENNReal.coe_lt_top
 #align measure_theory.signed_measure.to_measure_of_le_zero_finite MeasureTheory.SignedMeasure.toMeasureOfLEZero_finite
+-/
 
+#print MeasureTheory.SignedMeasure.toMeasureOfZeroLE_toSignedMeasure /-
 theorem toMeasureOfZeroLE_toSignedMeasure (hs : 0 ≤[univ] s) :
     (s.toMeasureOfZeroLE univ MeasurableSet.univ hs).toSignedMeasure = s :=
   by
   ext (i hi)
   simp [measure.to_signed_measure_apply_measurable hi, to_measure_of_zero_le_apply _ _ _ hi]
 #align measure_theory.signed_measure.to_measure_of_zero_le_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfZeroLE_toSignedMeasure
+-/
 
+#print MeasureTheory.SignedMeasure.toMeasureOfLEZero_toSignedMeasure /-
 theorem toMeasureOfLEZero_toSignedMeasure (hs : s ≤[univ] 0) :
     (s.toMeasureOfLEZero univ MeasurableSet.univ hs).toSignedMeasure = -s :=
   by
   ext (i hi)
   simp [measure.to_signed_measure_apply_measurable hi, to_measure_of_le_zero_apply _ _ _ hi]
 #align measure_theory.signed_measure.to_measure_of_le_zero_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfLEZero_toSignedMeasure
+-/
 
 end SignedMeasure
 
@@ -1517,6 +1730,7 @@ open VectorMeasure
 
 variable (μ : Measure α) [IsFiniteMeasure μ]
 
+#print MeasureTheory.Measure.zero_le_toSignedMeasure /-
 theorem zero_le_toSignedMeasure : 0 ≤ μ.toSignedMeasure :=
   by
   rw [← le_restrict_univ_iff_le]
@@ -1524,6 +1738,7 @@ theorem zero_le_toSignedMeasure : 0 ≤ μ.toSignedMeasure :=
   simp only [measure.to_signed_measure_apply_measurable hj₁, coe_zero, Pi.zero_apply,
     ENNReal.toReal_nonneg, vector_measure.coe_zero]
 #align measure_theory.measure.zero_le_to_signed_measure MeasureTheory.Measure.zero_le_toSignedMeasure
+-/
 
 #print MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLE /-
 theorem toSignedMeasure_toMeasureOfZeroLE :
Diff
@@ -231,7 +231,6 @@ theorem of_diff_of_diff_eq_zero {A B : Set α} (hA : MeasurableSet A) (hB : Meas
       · exact hA.inter hB
       · exact hB.diff hA
     _ = v (A \ B) + v B := by rw [Set.union_comm, Set.inter_comm, Set.diff_union_inter]
-    
 #align measure_theory.vector_measure.of_diff_of_diff_eq_zero MeasureTheory.VectorMeasure.of_diff_of_diff_eq_zero
 
 theorem of_iUnion_nonneg {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
Diff
@@ -1237,8 +1237,8 @@ theorem ennrealToMeasure {μ : VectorMeasure α ℝ≥0∞} :
 
 end AbsolutelyContinuous
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
 #print MeasureTheory.VectorMeasure.MutuallySingular /-
 /-- Two vector measures `v` and `w` are said to be mutually singular if there exists a measurable
 set `s`, such that for all `t ⊆ s`, `v t = 0` and for all `t ⊆ sᶜ`, `w t = 0`.
@@ -1259,8 +1259,8 @@ namespace MutuallySingular
 
 variable {v v₁ v₂ : VectorMeasure α M} {w w₁ w₂ : VectorMeasure α N}
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
 theorem mk (s : Set α) (hs : MeasurableSet s) (h₁ : ∀ (t) (_ : t ⊆ s), MeasurableSet t → v t = 0)
     (h₂ : ∀ (t) (_ : t ⊆ sᶜ), MeasurableSet t → w t = 0) : v ⟂ᵥ w :=
   by
Diff
@@ -532,7 +532,7 @@ theorem toSignedMeasure_smul (μ : Measure α) [IsFiniteMeasure μ] (r : ℝ≥0
 
 /-- A measure is a vector measure over `ℝ≥0∞`. -/
 @[simps]
-def toEnnrealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞
+def toENNRealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞
     where
   measureOf' := fun i : Set α => if MeasurableSet i then μ i else 0
   empty' := by simp [μ.empty]
@@ -541,28 +541,28 @@ def toEnnrealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞
     rw [Summable.hasSum_iff ENNReal.summable]
     · rw [if_pos (MeasurableSet.iUnion hf₁), MeasureTheory.measure_iUnion hf₂ hf₁]
       exact tsum_congr fun n => if_pos (hf₁ n)
-#align measure_theory.measure.to_ennreal_vector_measure MeasureTheory.Measure.toEnnrealVectorMeasure
+#align measure_theory.measure.to_ennreal_vector_measure MeasureTheory.Measure.toENNRealVectorMeasure
 
-#print MeasureTheory.Measure.toEnnrealVectorMeasure_apply_measurable /-
-theorem toEnnrealVectorMeasure_apply_measurable {μ : Measure α} {i : Set α} (hi : MeasurableSet i) :
-    μ.toEnnrealVectorMeasure i = μ i :=
+#print MeasureTheory.Measure.toENNRealVectorMeasure_apply_measurable /-
+theorem toENNRealVectorMeasure_apply_measurable {μ : Measure α} {i : Set α} (hi : MeasurableSet i) :
+    μ.toENNRealVectorMeasure i = μ i :=
   if_pos hi
-#align measure_theory.measure.to_ennreal_vector_measure_apply_measurable MeasureTheory.Measure.toEnnrealVectorMeasure_apply_measurable
+#align measure_theory.measure.to_ennreal_vector_measure_apply_measurable MeasureTheory.Measure.toENNRealVectorMeasure_apply_measurable
 -/
 
 @[simp]
-theorem toEnnrealVectorMeasure_zero : (0 : Measure α).toEnnrealVectorMeasure = 0 := by ext (i hi);
+theorem toENNRealVectorMeasure_zero : (0 : Measure α).toENNRealVectorMeasure = 0 := by ext (i hi);
   simp
-#align measure_theory.measure.to_ennreal_vector_measure_zero MeasureTheory.Measure.toEnnrealVectorMeasure_zero
+#align measure_theory.measure.to_ennreal_vector_measure_zero MeasureTheory.Measure.toENNRealVectorMeasure_zero
 
 @[simp]
-theorem toEnnrealVectorMeasure_add (μ ν : Measure α) :
-    (μ + ν).toEnnrealVectorMeasure = μ.toEnnrealVectorMeasure + ν.toEnnrealVectorMeasure :=
+theorem toENNRealVectorMeasure_add (μ ν : Measure α) :
+    (μ + ν).toENNRealVectorMeasure = μ.toENNRealVectorMeasure + ν.toENNRealVectorMeasure :=
   by
   refine' MeasureTheory.VectorMeasure.ext fun i hi => _
   rw [to_ennreal_vector_measure_apply_measurable hi, add_apply, vector_measure.add_apply,
     to_ennreal_vector_measure_apply_measurable hi, to_ennreal_vector_measure_apply_measurable hi]
-#align measure_theory.measure.to_ennreal_vector_measure_add MeasureTheory.Measure.toEnnrealVectorMeasure_add
+#align measure_theory.measure.to_ennreal_vector_measure_add MeasureTheory.Measure.toENNRealVectorMeasure_add
 
 theorem toSignedMeasure_sub_apply {μ ν : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν]
     {i : Set α} (hi : MeasurableSet i) :
@@ -596,7 +596,7 @@ theorem ennrealToMeasure_apply {m : MeasurableSpace α} {v : VectorMeasure α 
 def equivMeasure [MeasurableSpace α] : VectorMeasure α ℝ≥0∞ ≃ Measure α
     where
   toFun := ennrealToMeasure
-  invFun := toEnnrealVectorMeasure
+  invFun := toENNRealVectorMeasure
   left_inv _ :=
     ext fun s hs => by
       rw [to_ennreal_vector_measure_apply_measurable hs, ennreal_to_measure_apply hs]
Diff
@@ -449,7 +449,7 @@ include m
 #print MeasureTheory.Measure.toSignedMeasure /-
 /-- A finite measure coerced into a real function is a signed measure. -/
 @[simps]
-def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure α
+def toSignedMeasure (μ : Measure α) [hμ : IsFiniteMeasure μ] : SignedMeasure α
     where
   measureOf' := fun i : Set α => if MeasurableSet i then (μ.measureOf i).toReal else 0
   empty' := by simp [μ.empty]
@@ -473,7 +473,7 @@ def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure 
 -/
 
 #print MeasureTheory.Measure.toSignedMeasure_apply_measurable /-
-theorem toSignedMeasure_apply_measurable {μ : Measure α} [FiniteMeasure μ] {i : Set α}
+theorem toSignedMeasure_apply_measurable {μ : Measure α} [IsFiniteMeasure μ] {i : Set α}
     (hi : MeasurableSet i) : μ.toSignedMeasure i = (μ i).toReal :=
   if_pos hi
 #align measure_theory.measure.to_signed_measure_apply_measurable MeasureTheory.Measure.toSignedMeasure_apply_measurable
@@ -482,14 +482,14 @@ theorem toSignedMeasure_apply_measurable {μ : Measure α} [FiniteMeasure μ] {i
 #print MeasureTheory.Measure.toSignedMeasure_congr /-
 -- Without this lemma, `singular_part_neg` in `measure_theory.decomposition.lebesgue` is
 -- extremely slow
-theorem toSignedMeasure_congr {μ ν : Measure α} [FiniteMeasure μ] [FiniteMeasure ν] (h : μ = ν) :
-    μ.toSignedMeasure = ν.toSignedMeasure := by congr; exact h
+theorem toSignedMeasure_congr {μ ν : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν]
+    (h : μ = ν) : μ.toSignedMeasure = ν.toSignedMeasure := by congr; exact h
 #align measure_theory.measure.to_signed_measure_congr MeasureTheory.Measure.toSignedMeasure_congr
 -/
 
 #print MeasureTheory.Measure.toSignedMeasure_eq_toSignedMeasure_iff /-
-theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [FiniteMeasure μ]
-    [FiniteMeasure ν] : μ.toSignedMeasure = ν.toSignedMeasure ↔ μ = ν :=
+theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [IsFiniteMeasure μ]
+    [IsFiniteMeasure ν] : μ.toSignedMeasure = ν.toSignedMeasure ↔ μ = ν :=
   by
   refine' ⟨fun h => _, fun h => _⟩
   · ext1 i hi
@@ -509,7 +509,7 @@ theorem toSignedMeasure_zero : (0 : Measure α).toSignedMeasure = 0 := by ext (i
 
 #print MeasureTheory.Measure.toSignedMeasure_add /-
 @[simp]
-theorem toSignedMeasure_add (μ ν : Measure α) [FiniteMeasure μ] [FiniteMeasure ν] :
+theorem toSignedMeasure_add (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
     (μ + ν).toSignedMeasure = μ.toSignedMeasure + ν.toSignedMeasure :=
   by
   ext (i hi)
@@ -522,7 +522,7 @@ theorem toSignedMeasure_add (μ ν : Measure α) [FiniteMeasure μ] [FiniteMeasu
 -/
 
 @[simp]
-theorem toSignedMeasure_smul (μ : Measure α) [FiniteMeasure μ] (r : ℝ≥0) :
+theorem toSignedMeasure_smul (μ : Measure α) [IsFiniteMeasure μ] (r : ℝ≥0) :
     (r • μ).toSignedMeasure = r • μ.toSignedMeasure :=
   by
   ext (i hi)
@@ -564,8 +564,8 @@ theorem toEnnrealVectorMeasure_add (μ ν : Measure α) :
     to_ennreal_vector_measure_apply_measurable hi, to_ennreal_vector_measure_apply_measurable hi]
 #align measure_theory.measure.to_ennreal_vector_measure_add MeasureTheory.Measure.toEnnrealVectorMeasure_add
 
-theorem toSignedMeasure_sub_apply {μ ν : Measure α} [FiniteMeasure μ] [FiniteMeasure ν] {i : Set α}
-    (hi : MeasurableSet i) :
+theorem toSignedMeasure_sub_apply {μ ν : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν]
+    {i : Set α} (hi : MeasurableSet i) :
     (μ.toSignedMeasure - ν.toSignedMeasure) i = (μ i).toReal - (ν i).toReal := by
   rw [vector_measure.sub_apply, to_signed_measure_apply_measurable hi,
     measure.to_signed_measure_apply_measurable hi, sub_eq_add_neg]
@@ -730,7 +730,8 @@ def restrict (v : VectorMeasure α M) (i : Set α) : VectorMeasure α M :=
       not_measurable' := fun i hi => if_neg hi
       m_iUnion' := by
         intro f hf₁ hf₂
-        convert v.m_Union (fun n => (hf₁ n).inter hi)
+        convert
+          v.m_Union (fun n => (hf₁ n).inter hi)
             (hf₂.mono fun i j => Disjoint.mono inf_le_left inf_le_left)
         · ext n; rw [if_pos (hf₁ n)]
         · rw [Union_inter, if_pos (MeasurableSet.iUnion hf₁)] }
@@ -1112,7 +1113,7 @@ theorem exists_pos_measure_of_not_restrict_le_zero (hi : ¬v ≤[i] 0) :
   by
   have hi₁ : MeasurableSet i := measurable_of_not_restrict_le_zero _ hi
   rw [restrict_le_restrict_iff _ _ hi₁] at hi 
-  push_neg  at hi 
+  push_neg at hi 
   obtain ⟨j, hj₁, hj₂, hj⟩ := hi
   exact ⟨j, hj₁, hj₂, hj⟩
 #align measure_theory.vector_measure.exists_pos_measure_of_not_restrict_le_zero MeasureTheory.VectorMeasure.exists_pos_measure_of_not_restrict_le_zero
@@ -1479,7 +1480,7 @@ theorem toMeasureOfLEZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj
 
 /-- `signed_measure.to_measure_of_zero_le` is a finite measure. -/
 instance toMeasureOfZeroLE_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
-    FiniteMeasure (s.toMeasureOfZeroLE i hi₁ hi)
+    IsFiniteMeasure (s.toMeasureOfZeroLE i hi₁ hi)
     where measure_univ_lt_top :=
     by
     rw [to_measure_of_zero_le_apply s hi hi₁ MeasurableSet.univ]
@@ -1488,7 +1489,7 @@ instance toMeasureOfZeroLE_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
 
 /-- `signed_measure.to_measure_of_le_zero` is a finite measure. -/
 instance toMeasureOfLEZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
-    FiniteMeasure (s.toMeasureOfLEZero i hi₁ hi)
+    IsFiniteMeasure (s.toMeasureOfLEZero i hi₁ hi)
     where measure_univ_lt_top :=
     by
     rw [to_measure_of_le_zero_apply s hi hi₁ MeasurableSet.univ]
@@ -1515,7 +1516,7 @@ namespace Measure
 
 open VectorMeasure
 
-variable (μ : Measure α) [FiniteMeasure μ]
+variable (μ : Measure α) [IsFiniteMeasure μ]
 
 theorem zero_le_toSignedMeasure : 0 ≤ μ.toSignedMeasure :=
   by
Diff
@@ -61,7 +61,7 @@ variable {α β : Type _} {m : MeasurableSpace α}
 /-- A vector measure on a measurable space `α` is a σ-additive `M`-valued function (for some `M`
 an add monoid) such that the empty set and non-measurable sets are mapped to zero. -/
 structure VectorMeasure (α : Type _) [MeasurableSpace α] (M : Type _) [AddCommMonoid M]
-  [TopologicalSpace M] where
+    [TopologicalSpace M] where
   measureOf' : Set α → M
   empty' : measure_of' ∅ = 0
   not_measurable' ⦃i : Set α⦄ : ¬MeasurableSet i → measure_of' i = 0
@@ -162,16 +162,16 @@ theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : 
     MeasurableSet.iUnion fun b => MeasurableSet.iUnion fun _ => hf₁ b
   have hg₂ : Pairwise (Disjoint on g) := Encodable.iUnion_decode₂_disjoint_on hf₂
   have := v.of_disjoint_Union_nat hg₁ hg₂
-  rw [hg, Encodable.iUnion_decode₂] at this
+  rw [hg, Encodable.iUnion_decode₂] at this 
   have hg₃ : (fun i : β => v (f i)) = fun i => v (g (Encodable.encode i)) :=
     by
     ext; rw [hg]; simp only
-    congr ; ext y; simp only [exists_prop, mem_Union, Option.mem_def]
+    congr; ext y; simp only [exists_prop, mem_Union, Option.mem_def]
     constructor
     · intro hy
       refine' ⟨x, (Encodable.decode₂_is_partial_inv _ _).2 rfl, hy⟩
     · rintro ⟨b, hb₁, hb₂⟩
-      rw [Encodable.decode₂_is_partial_inv _ _] at hb₁
+      rw [Encodable.decode₂_is_partial_inv _ _] at hb₁ 
       rwa [← Encodable.encode_injective hb₁]
   rw [Summable.hasSum_iff, this, ← tsum_iUnion_decode₂]
   · exact v.empty
@@ -180,7 +180,7 @@ theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : 
     · exact (v.m_Union hg₁ hg₂).Summable
     · intro x hx
       convert v.empty
-      simp only [Union_eq_empty, Option.mem_def, not_exists, mem_range] at hx⊢
+      simp only [Union_eq_empty, Option.mem_def, not_exists, mem_range] at hx ⊢
       intro i hi
       exact False.elim ((hx i) ((Encodable.decode₂_is_partial_inv _ _).1 hi))
 #align measure_theory.vector_measure.has_sum_of_disjoint_Union MeasureTheory.VectorMeasure.hasSum_of_disjoint_iUnion
@@ -194,7 +194,7 @@ theorem of_union {A B : Set α} (h : Disjoint A B) (hA : MeasurableSet A) (hB :
     v (A ∪ B) = v A + v B :=
   by
   rw [union_eq_Union, of_disjoint_Union, tsum_fintype, Fintype.sum_bool, cond, cond]
-  exacts[fun b => Bool.casesOn b hB hA, pairwise_disjoint_on_bool.2 h]
+  exacts [fun b => Bool.casesOn b hB hA, pairwise_disjoint_on_bool.2 h]
 #align measure_theory.vector_measure.of_union MeasureTheory.VectorMeasure.of_union
 
 theorem of_add_of_diff {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet B) (h : A ⊆ B) :
@@ -250,7 +250,7 @@ theorem of_nonneg_disjoint_union_eq_zero {s : SignedMeasure α} {A B : Set α} (
     (hA₁ : MeasurableSet A) (hB₁ : MeasurableSet B) (hA₂ : 0 ≤ s A) (hB₂ : 0 ≤ s B)
     (hAB : s (A ∪ B) = 0) : s A = 0 :=
   by
-  rw [of_union h hA₁ hB₁] at hAB
+  rw [of_union h hA₁ hB₁] at hAB 
   linarith
   infer_instance
 #align measure_theory.vector_measure.of_nonneg_disjoint_union_eq_zero MeasureTheory.VectorMeasure.of_nonneg_disjoint_union_eq_zero
@@ -259,7 +259,7 @@ theorem of_nonpos_disjoint_union_eq_zero {s : SignedMeasure α} {A B : Set α} (
     (hA₁ : MeasurableSet A) (hB₁ : MeasurableSet B) (hA₂ : s A ≤ 0) (hB₂ : s B ≤ 0)
     (hAB : s (A ∪ B) = 0) : s A = 0 :=
   by
-  rw [of_union h hA₁ hB₁] at hAB
+  rw [of_union h hA₁ hB₁] at hAB 
   linarith
   infer_instance
 #align measure_theory.vector_measure.of_nonpos_disjoint_union_eq_zero MeasureTheory.VectorMeasure.of_nonpos_disjoint_union_eq_zero
@@ -458,12 +458,12 @@ def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure 
     intro _ hf₁ hf₂
     rw [μ.m_Union hf₁ hf₂, ENNReal.tsum_toReal_eq, if_pos (MeasurableSet.iUnion hf₁),
       Summable.hasSum_iff]
-    · congr ; ext n; rw [if_pos (hf₁ n)]
+    · congr; ext n; rw [if_pos (hf₁ n)]
     · refine' @summable_of_nonneg_of_le _ (ENNReal.toReal ∘ μ ∘ f) _ _ _ _
-      · intro ; split_ifs
-        exacts[ENNReal.toReal_nonneg, le_rfl]
-      · intro ; split_ifs
-        exacts[le_rfl, ENNReal.toReal_nonneg]
+      · intro; split_ifs
+        exacts [ENNReal.toReal_nonneg, le_rfl]
+      · intro; split_ifs
+        exacts [le_rfl, ENNReal.toReal_nonneg]
       exact summable_measure_to_real hf₁ hf₂
     · intro a ha
       apply ne_of_lt hμ.measure_univ_lt_top
@@ -483,7 +483,7 @@ theorem toSignedMeasure_apply_measurable {μ : Measure α} [FiniteMeasure μ] {i
 -- Without this lemma, `singular_part_neg` in `measure_theory.decomposition.lebesgue` is
 -- extremely slow
 theorem toSignedMeasure_congr {μ ν : Measure α} [FiniteMeasure μ] [FiniteMeasure ν] (h : μ = ν) :
-    μ.toSignedMeasure = ν.toSignedMeasure := by congr ; exact h
+    μ.toSignedMeasure = ν.toSignedMeasure := by congr; exact h
 #align measure_theory.measure.to_signed_measure_congr MeasureTheory.Measure.toSignedMeasure_congr
 -/
 
@@ -495,9 +495,9 @@ theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [FiniteMeasu
   · ext1 i hi
     have : μ.to_signed_measure i = ν.to_signed_measure i := by rw [h]
     rwa [to_signed_measure_apply_measurable hi, to_signed_measure_apply_measurable hi,
-        ENNReal.toReal_eq_toReal] at this <;>
+        ENNReal.toReal_eq_toReal] at this  <;>
       · exact measure_ne_top _ _
-  · congr ; assumption
+  · congr; assumption
 #align measure_theory.measure.to_signed_measure_eq_to_signed_measure_iff MeasureTheory.Measure.toSignedMeasure_eq_toSignedMeasure_iff
 -/
 
@@ -714,7 +714,7 @@ def mapRangeₗ (f : M →ₗ[R] N) (hf : Continuous f) : VectorMeasure α M →
     where
   toFun v := v.map_range f.toAddMonoidHom hf
   map_add' _ _ := mapRange_add hf
-  map_smul' := by intros ; ext; simp
+  map_smul' := by intros; ext; simp
 #align measure_theory.vector_measure.map_rangeₗ MeasureTheory.VectorMeasure.mapRangeₗ
 
 end Module
@@ -965,7 +965,7 @@ theorem le_restrict_univ_iff_le : v ≤[univ] w ↔ v ≤ w :=
   · intro h s hs
     have := h s hs
     rwa [restrict_apply _ MeasurableSet.univ hs, inter_univ, restrict_apply _ MeasurableSet.univ hs,
-      inter_univ] at this
+      inter_univ] at this 
   · intro h s hs
     rw [restrict_apply _ MeasurableSet.univ hs, inter_univ, restrict_apply _ MeasurableSet.univ hs,
       inter_univ]
@@ -1111,8 +1111,8 @@ theorem exists_pos_measure_of_not_restrict_le_zero (hi : ¬v ≤[i] 0) :
     ∃ j : Set α, MeasurableSet j ∧ j ⊆ i ∧ 0 < v j :=
   by
   have hi₁ : MeasurableSet i := measurable_of_not_restrict_le_zero _ hi
-  rw [restrict_le_restrict_iff _ _ hi₁] at hi
-  push_neg  at hi
+  rw [restrict_le_restrict_iff _ _ hi₁] at hi 
+  push_neg  at hi 
   obtain ⟨j, hj₁, hj₂, hj⟩ := hi
   exact ⟨j, hj₁, hj₂, hj⟩
 #align measure_theory.vector_measure.exists_pos_measure_of_not_restrict_le_zero MeasureTheory.VectorMeasure.exists_pos_measure_of_not_restrict_le_zero
@@ -1193,7 +1193,7 @@ theorem neg_right {N : Type _} [AddCommGroup N] [TopologicalSpace N] [Topologica
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ≪ᵥ w) : v ≪ᵥ -w :=
   by
   intro s hs
-  rw [neg_apply, neg_eq_zero] at hs
+  rw [neg_apply, neg_eq_zero] at hs 
   exact h hs
 #align measure_theory.vector_measure.absolutely_continuous.neg_right MeasureTheory.VectorMeasure.AbsolutelyContinuous.neg_right
 
@@ -1215,7 +1215,7 @@ theorem map [MeasureSpace β] (h : v ≪ᵥ w) (f : α → β) : v.map f ≪ᵥ
   by
   by_cases hf : Measurable f
   · refine' mk fun s hs hws => _
-    rw [map_apply _ hf hs] at hws⊢
+    rw [map_apply _ hf hs] at hws ⊢
     exact h hws
   · intro s hs
     rw [map_not_measurable v hf, zero_apply]
@@ -1229,7 +1229,7 @@ theorem ennrealToMeasure {μ : VectorMeasure α ℝ≥0∞} :
     rw [← hs, ennreal_to_measure_apply hmeas]
   · intro s hs
     by_cases hmeas : MeasurableSet s
-    · rw [ennreal_to_measure_apply hmeas] at hs
+    · rw [ennreal_to_measure_apply hmeas] at hs 
       exact h hs
     · exact not_measurable v hmeas
 #align measure_theory.vector_measure.absolutely_continuous.ennreal_to_measure MeasureTheory.VectorMeasure.AbsolutelyContinuous.ennrealToMeasure
@@ -1290,7 +1290,7 @@ theorem add_left [T2Space N] [ContinuousAdd M] (h₁ : v₁ ⟂ᵥ w) (h₂ : v
   obtain ⟨v, hmv, hv₁, hv₂⟩ := h₂
   refine' mk (u ∩ v) (hmu.inter hmv) (fun t ht hmt => _) fun t ht hmt => _
   · rw [add_apply, hu₁ _ (subset_inter_iff.1 ht).1, hv₁ _ (subset_inter_iff.1 ht).2, zero_add]
-  · rw [compl_inter] at ht
+  · rw [compl_inter] at ht 
     rw [(_ : t = uᶜ ∩ t ∪ vᶜ \ uᶜ ∩ t),
       of_union _ (hmu.compl.inter hmt) ((hmv.compl.diff hmu.compl).inter hmt), hu₂, hv₂, add_zero]
     · exact subset.trans (inter_subset_left _ _) (diff_subset _ _)
@@ -1301,7 +1301,7 @@ theorem add_left [T2Space N] [ContinuousAdd M] (h₁ : v₁ ⟂ᵥ w) (h₂ : v
       · by_cases hxu' : x ∈ uᶜ
         · exact Or.inl ⟨hxu', hx⟩
         rcases ht hx with (hxu | hxv)
-        exacts[False.elim (hxu' hxu), Or.inr ⟨⟨hxv, hxu'⟩, hx⟩]
+        exacts [False.elim (hxu' hxu), Or.inr ⟨⟨hxv, hxu'⟩, hx⟩]
       · rcases hx with ⟨⟩ <;> exact hx.2
 #align measure_theory.vector_measure.mutually_singular.add_left MeasureTheory.VectorMeasure.MutuallySingular.add_left
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kexing Ying
 
 ! This file was ported from Lean 3 source module measure_theory.measure.vector_measure
-! leanprover-community/mathlib commit 70a4f2197832bceab57d7f41379b2592d1110570
+! leanprover-community/mathlib commit f60c6087a7275b72d5db3c5a1d0e19e35a429c0a
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Analysis.Complex.Basic
 
 # Vector valued measures
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 This file defines vector valued measures, which are σ-additive functions from a set to a add monoid
 `M` such that it maps the empty set and non-measurable sets to zero. In the case
 that `M = ℝ`, we called the vector measure a signed measure and write `signed_measure α`.
@@ -54,6 +57,7 @@ namespace MeasureTheory
 
 variable {α β : Type _} {m : MeasurableSpace α}
 
+#print MeasureTheory.VectorMeasure /-
 /-- A vector measure on a measurable space `α` is a σ-additive `M`-valued function (for some `M`
 an add monoid) such that the empty set and non-measurable sets are mapped to zero. -/
 structure VectorMeasure (α : Type _) [MeasurableSpace α] (M : Type _) [AddCommMonoid M]
@@ -61,20 +65,25 @@ structure VectorMeasure (α : Type _) [MeasurableSpace α] (M : Type _) [AddComm
   measureOf' : Set α → M
   empty' : measure_of' ∅ = 0
   not_measurable' ⦃i : Set α⦄ : ¬MeasurableSet i → measure_of' i = 0
-  m_Union' ⦃f : ℕ → Set α⦄ :
+  m_iUnion' ⦃f : ℕ → Set α⦄ :
     (∀ i, MeasurableSet (f i)) →
       Pairwise (Disjoint on f) → HasSum (fun i => measure_of' (f i)) (measure_of' (⋃ i, f i))
 #align measure_theory.vector_measure MeasureTheory.VectorMeasure
+-/
 
+#print MeasureTheory.SignedMeasure /-
 /-- A `signed_measure` is a `ℝ`-vector measure. -/
 abbrev SignedMeasure (α : Type _) [MeasurableSpace α] :=
   VectorMeasure α ℝ
 #align measure_theory.signed_measure MeasureTheory.SignedMeasure
+-/
 
+#print MeasureTheory.ComplexMeasure /-
 /-- A `complex_measure` is a `ℂ`-vector_measure. -/
 abbrev ComplexMeasure (α : Type _) [MeasurableSpace α] :=
   VectorMeasure α ℂ
 #align measure_theory.complex_measure MeasureTheory.ComplexMeasure
+-/
 
 open Set MeasureTheory
 
@@ -107,7 +116,7 @@ theorem not_measurable (v : VectorMeasure α M) {i : Set α} (hi : ¬MeasurableS
 
 theorem m_iUnion (v : VectorMeasure α M) {f : ℕ → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) : HasSum (fun i => v (f i)) (v (⋃ i, f i)) :=
-  v.m_Union' hf₁ hf₂
+  v.m_iUnion' hf₁ hf₂
 #align measure_theory.vector_measure.m_Union MeasureTheory.VectorMeasure.m_iUnion
 
 theorem of_disjoint_iUnion_nat [T2Space M] (v : VectorMeasure α M) {f : ℕ → Set α}
@@ -116,9 +125,11 @@ theorem of_disjoint_iUnion_nat [T2Space M] (v : VectorMeasure α M) {f : ℕ →
   (v.m_iUnion hf₁ hf₂).tsum_eq.symm
 #align measure_theory.vector_measure.of_disjoint_Union_nat MeasureTheory.VectorMeasure.of_disjoint_iUnion_nat
 
+#print MeasureTheory.VectorMeasure.coe_injective /-
 theorem coe_injective : @Function.Injective (VectorMeasure α M) (Set α → M) coeFn := fun v w h => by
   cases v; cases w; congr
 #align measure_theory.vector_measure.coe_injective MeasureTheory.VectorMeasure.coe_injective
+-/
 
 theorem ext_iff' (v w : VectorMeasure α M) : v = w ↔ ∀ i : Set α, v i = w i := by
   rw [← coe_injective.eq_iff, Function.funext_iff]
@@ -270,7 +281,7 @@ def smul (r : R) (v : VectorMeasure α M) : VectorMeasure α M
   measureOf' := r • v
   empty' := by rw [Pi.smul_apply, Empty, smul_zero]
   not_measurable' _ hi := by rw [Pi.smul_apply, v.not_measurable hi, smul_zero]
-  m_Union' _ hf₁ hf₂ := HasSum.const_smul _ (v.m_iUnion hf₁ hf₂)
+  m_iUnion' _ hf₁ hf₂ := HasSum.const_smul _ (v.m_iUnion hf₁ hf₂)
 #align measure_theory.vector_measure.smul MeasureTheory.VectorMeasure.smul
 
 instance : SMul R (VectorMeasure α M) :=
@@ -316,7 +327,7 @@ def add (v w : VectorMeasure α M) : VectorMeasure α M
   measureOf' := v + w
   empty' := by simp
   not_measurable' _ hi := by simp [v.not_measurable hi, w.not_measurable hi]
-  m_Union' f hf₁ hf₂ := HasSum.add (v.m_iUnion hf₁ hf₂) (w.m_iUnion hf₁ hf₂)
+  m_iUnion' f hf₁ hf₂ := HasSum.add (v.m_iUnion hf₁ hf₂) (w.m_iUnion hf₁ hf₂)
 #align measure_theory.vector_measure.add MeasureTheory.VectorMeasure.add
 
 instance : Add (VectorMeasure α M) :=
@@ -351,14 +362,16 @@ variable {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup
 
 include m
 
+#print MeasureTheory.VectorMeasure.neg /-
 /-- The negative of a vector measure is a vector measure. -/
 def neg (v : VectorMeasure α M) : VectorMeasure α M
     where
   measureOf' := -v
   empty' := by simp
   not_measurable' _ hi := by simp [v.not_measurable hi]
-  m_Union' f hf₁ hf₂ := HasSum.neg <| v.m_iUnion hf₁ hf₂
+  m_iUnion' f hf₁ hf₂ := HasSum.neg <| v.m_iUnion hf₁ hf₂
 #align measure_theory.vector_measure.neg MeasureTheory.VectorMeasure.neg
+-/
 
 instance : Neg (VectorMeasure α M) :=
   ⟨neg⟩
@@ -372,14 +385,16 @@ theorem neg_apply (v : VectorMeasure α M) (i : Set α) : (-v) i = -v i :=
   rfl
 #align measure_theory.vector_measure.neg_apply MeasureTheory.VectorMeasure.neg_apply
 
+#print MeasureTheory.VectorMeasure.sub /-
 /-- The difference of two vector measure is a vector measure. -/
 def sub (v w : VectorMeasure α M) : VectorMeasure α M
     where
   measureOf' := v - w
   empty' := by simp
   not_measurable' _ hi := by simp [v.not_measurable hi, w.not_measurable hi]
-  m_Union' f hf₁ hf₂ := HasSum.sub (v.m_iUnion hf₁ hf₂) (w.m_iUnion hf₁ hf₂)
+  m_iUnion' f hf₁ hf₂ := HasSum.sub (v.m_iUnion hf₁ hf₂) (w.m_iUnion hf₁ hf₂)
 #align measure_theory.vector_measure.sub MeasureTheory.VectorMeasure.sub
+-/
 
 instance : Sub (VectorMeasure α M) :=
   ⟨sub⟩
@@ -431,6 +446,7 @@ namespace Measure
 
 include m
 
+#print MeasureTheory.Measure.toSignedMeasure /-
 /-- A finite measure coerced into a real function is a signed measure. -/
 @[simps]
 def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure α
@@ -438,7 +454,7 @@ def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure 
   measureOf' := fun i : Set α => if MeasurableSet i then (μ.measureOf i).toReal else 0
   empty' := by simp [μ.empty]
   not_measurable' _ hi := if_neg hi
-  m_Union' := by
+  m_iUnion' := by
     intro _ hf₁ hf₂
     rw [μ.m_Union hf₁ hf₂, ENNReal.tsum_toReal_eq, if_pos (MeasurableSet.iUnion hf₁),
       Summable.hasSum_iff]
@@ -454,18 +470,24 @@ def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure 
       rw [eq_top_iff, ← ha, outer_measure.measure_of_eq_coe, coe_to_outer_measure]
       exact measure_mono (Set.subset_univ _)
 #align measure_theory.measure.to_signed_measure MeasureTheory.Measure.toSignedMeasure
+-/
 
+#print MeasureTheory.Measure.toSignedMeasure_apply_measurable /-
 theorem toSignedMeasure_apply_measurable {μ : Measure α} [FiniteMeasure μ] {i : Set α}
     (hi : MeasurableSet i) : μ.toSignedMeasure i = (μ i).toReal :=
   if_pos hi
 #align measure_theory.measure.to_signed_measure_apply_measurable MeasureTheory.Measure.toSignedMeasure_apply_measurable
+-/
 
+#print MeasureTheory.Measure.toSignedMeasure_congr /-
 -- Without this lemma, `singular_part_neg` in `measure_theory.decomposition.lebesgue` is
 -- extremely slow
 theorem toSignedMeasure_congr {μ ν : Measure α} [FiniteMeasure μ] [FiniteMeasure ν] (h : μ = ν) :
     μ.toSignedMeasure = ν.toSignedMeasure := by congr ; exact h
 #align measure_theory.measure.to_signed_measure_congr MeasureTheory.Measure.toSignedMeasure_congr
+-/
 
+#print MeasureTheory.Measure.toSignedMeasure_eq_toSignedMeasure_iff /-
 theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [FiniteMeasure μ]
     [FiniteMeasure ν] : μ.toSignedMeasure = ν.toSignedMeasure ↔ μ = ν :=
   by
@@ -477,11 +499,15 @@ theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [FiniteMeasu
       · exact measure_ne_top _ _
   · congr ; assumption
 #align measure_theory.measure.to_signed_measure_eq_to_signed_measure_iff MeasureTheory.Measure.toSignedMeasure_eq_toSignedMeasure_iff
+-/
 
+#print MeasureTheory.Measure.toSignedMeasure_zero /-
 @[simp]
 theorem toSignedMeasure_zero : (0 : Measure α).toSignedMeasure = 0 := by ext (i hi); simp
 #align measure_theory.measure.to_signed_measure_zero MeasureTheory.Measure.toSignedMeasure_zero
+-/
 
+#print MeasureTheory.Measure.toSignedMeasure_add /-
 @[simp]
 theorem toSignedMeasure_add (μ ν : Measure α) [FiniteMeasure μ] [FiniteMeasure ν] :
     (μ + ν).toSignedMeasure = μ.toSignedMeasure + ν.toSignedMeasure :=
@@ -493,6 +519,7 @@ theorem toSignedMeasure_add (μ ν : Measure α) [FiniteMeasure μ] [FiniteMeasu
     to_signed_measure_apply_measurable hi]
   all_goals infer_instance
 #align measure_theory.measure.to_signed_measure_add MeasureTheory.Measure.toSignedMeasure_add
+-/
 
 @[simp]
 theorem toSignedMeasure_smul (μ : Measure α) [FiniteMeasure μ] (r : ℝ≥0) :
@@ -510,16 +537,18 @@ def toEnnrealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞
   measureOf' := fun i : Set α => if MeasurableSet i then μ i else 0
   empty' := by simp [μ.empty]
   not_measurable' _ hi := if_neg hi
-  m_Union' _ hf₁ hf₂ := by
+  m_iUnion' _ hf₁ hf₂ := by
     rw [Summable.hasSum_iff ENNReal.summable]
     · rw [if_pos (MeasurableSet.iUnion hf₁), MeasureTheory.measure_iUnion hf₂ hf₁]
       exact tsum_congr fun n => if_pos (hf₁ n)
 #align measure_theory.measure.to_ennreal_vector_measure MeasureTheory.Measure.toEnnrealVectorMeasure
 
+#print MeasureTheory.Measure.toEnnrealVectorMeasure_apply_measurable /-
 theorem toEnnrealVectorMeasure_apply_measurable {μ : Measure α} {i : Set α} (hi : MeasurableSet i) :
     μ.toEnnrealVectorMeasure i = μ i :=
   if_pos hi
 #align measure_theory.measure.to_ennreal_vector_measure_apply_measurable MeasureTheory.Measure.toEnnrealVectorMeasure_apply_measurable
+-/
 
 @[simp]
 theorem toEnnrealVectorMeasure_zero : (0 : Measure α).toEnnrealVectorMeasure = 0 := by ext (i hi);
@@ -586,19 +615,21 @@ variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
 
 variable (v : VectorMeasure α M)
 
+#print MeasureTheory.VectorMeasure.map /-
 /-- The pushforward of a vector measure along a function. -/
 def map (v : VectorMeasure α M) (f : α → β) : VectorMeasure β M :=
   if hf : Measurable f then
     { measureOf' := fun s => if MeasurableSet s then v (f ⁻¹' s) else 0
       empty' := by simp
       not_measurable' := fun i hi => if_neg hi
-      m_Union' := by
+      m_iUnion' := by
         intro g hg₁ hg₂
         convert v.m_Union (fun i => hf (hg₁ i)) fun i j hij => (hg₂ hij).Preimage _
         · ext i; rw [if_pos (hg₁ i)]
         · rw [preimage_Union, if_pos (MeasurableSet.iUnion hg₁)] }
   else 0
 #align measure_theory.vector_measure.map MeasureTheory.VectorMeasure.map
+-/
 
 theorem map_not_measurable {f : α → β} (hf : ¬Measurable f) : v.map f = 0 :=
   dif_neg hf
@@ -633,7 +664,7 @@ def mapRange (v : VectorMeasure α M) (f : M →+ N) (hf : Continuous f) : Vecto
   measureOf' s := f (v s)
   empty' := by rw [Empty, AddMonoidHom.map_zero]
   not_measurable' i hi := by rw [not_measurable v hi, AddMonoidHom.map_zero]
-  m_Union' g hg₁ hg₂ := HasSum.map (v.m_iUnion hg₁ hg₂) f hf
+  m_iUnion' g hg₁ hg₂ := HasSum.map (v.m_iUnion hg₁ hg₂) f hf
 #align measure_theory.vector_measure.map_range MeasureTheory.VectorMeasure.mapRange
 
 @[simp]
@@ -690,13 +721,14 @@ end Module
 
 end
 
+#print MeasureTheory.VectorMeasure.restrict /-
 /-- The restriction of a vector measure on some set. -/
 def restrict (v : VectorMeasure α M) (i : Set α) : VectorMeasure α M :=
   if hi : MeasurableSet i then
     { measureOf' := fun s => if MeasurableSet s then v (s ∩ i) else 0
       empty' := by simp
       not_measurable' := fun i hi => if_neg hi
-      m_Union' := by
+      m_iUnion' := by
         intro f hf₁ hf₂
         convert v.m_Union (fun n => (hf₁ n).inter hi)
             (hf₂.mono fun i j => Disjoint.mono inf_le_left inf_le_left)
@@ -704,6 +736,7 @@ def restrict (v : VectorMeasure α M) (i : Set α) : VectorMeasure α M :=
         · rw [Union_inter, if_pos (MeasurableSet.iUnion hf₁)] }
   else 0
 #align measure_theory.vector_measure.restrict MeasureTheory.VectorMeasure.restrict
+-/
 
 theorem restrict_not_measurable {i : Set α} (hi : ¬MeasurableSet i) : v.restrict i = 0 :=
   dif_neg hi
@@ -1109,11 +1142,13 @@ variable [AddCommMonoid L] [TopologicalSpace L] [AddCommMonoid M] [TopologicalSp
 
 include m
 
+#print MeasureTheory.VectorMeasure.AbsolutelyContinuous /-
 /-- A vector measure `v` is absolutely continuous with respect to a measure `μ` if for all sets
 `s`, `μ s = 0`, we have `v s = 0`. -/
 def AbsolutelyContinuous (v : VectorMeasure α M) (w : VectorMeasure α N) :=
   ∀ ⦃s : Set α⦄, w s = 0 → v s = 0
 #align measure_theory.vector_measure.absolutely_continuous MeasureTheory.VectorMeasure.AbsolutelyContinuous
+-/
 
 -- mathport name: vector_measure.absolutely_continuous
 scoped[MeasureTheory] infixl:50 " ≪ᵥ " => MeasureTheory.VectorMeasure.AbsolutelyContinuous
@@ -1149,18 +1184,18 @@ theorem zero (v : VectorMeasure α N) : (0 : VectorMeasure α M) ≪ᵥ v := fun
   VectorMeasure.zero_apply s
 #align measure_theory.vector_measure.absolutely_continuous.zero MeasureTheory.VectorMeasure.AbsolutelyContinuous.zero
 
-theorem negLeft {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
+theorem neg_left {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ≪ᵥ w) : -v ≪ᵥ w := fun s hs => by
   rw [neg_apply, h hs, neg_zero]
-#align measure_theory.vector_measure.absolutely_continuous.neg_left MeasureTheory.VectorMeasure.AbsolutelyContinuous.negLeft
+#align measure_theory.vector_measure.absolutely_continuous.neg_left MeasureTheory.VectorMeasure.AbsolutelyContinuous.neg_left
 
-theorem negRight {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
+theorem neg_right {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ≪ᵥ w) : v ≪ᵥ -w :=
   by
   intro s hs
   rw [neg_apply, neg_eq_zero] at hs
   exact h hs
-#align measure_theory.vector_measure.absolutely_continuous.neg_right MeasureTheory.VectorMeasure.AbsolutelyContinuous.negRight
+#align measure_theory.vector_measure.absolutely_continuous.neg_right MeasureTheory.VectorMeasure.AbsolutelyContinuous.neg_right
 
 theorem add [ContinuousAdd M] {v₁ v₂ : VectorMeasure α M} {w : VectorMeasure α N} (hv₁ : v₁ ≪ᵥ w)
     (hv₂ : v₂ ≪ᵥ w) : v₁ + v₂ ≪ᵥ w := fun s hs => by rw [add_apply, hv₁ hs, hv₂ hs, zero_add]
@@ -1203,6 +1238,7 @@ end AbsolutelyContinuous
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+#print MeasureTheory.VectorMeasure.MutuallySingular /-
 /-- Two vector measures `v` and `w` are said to be mutually singular if there exists a measurable
 set `s`, such that for all `t ⊆ s`, `v t = 0` and for all `t ⊆ sᶜ`, `w t = 0`.
 
@@ -1213,6 +1249,7 @@ to use. This is equivalent to the definition which requires measurability. To pr
 def MutuallySingular (v : VectorMeasure α M) (w : VectorMeasure α N) : Prop :=
   ∃ s : Set α, MeasurableSet s ∧ (∀ (t) (_ : t ⊆ s), v t = 0) ∧ ∀ (t) (_ : t ⊆ sᶜ), w t = 0
 #align measure_theory.vector_measure.mutually_singular MeasureTheory.VectorMeasure.MutuallySingular
+-/
 
 -- mathport name: vector_measure.mutually_singular
 scoped[MeasureTheory] infixl:60 " ⟂ᵥ " => MeasureTheory.VectorMeasure.MutuallySingular
@@ -1238,16 +1275,16 @@ theorem symm (h : v ⟂ᵥ w) : w ⟂ᵥ v :=
   ⟨sᶜ, hmeas.compl, hs₂, fun t ht => hs₁ _ (compl_compl s ▸ ht : t ⊆ s)⟩
 #align measure_theory.vector_measure.mutually_singular.symm MeasureTheory.VectorMeasure.MutuallySingular.symm
 
-theorem zeroRight : v ⟂ᵥ (0 : VectorMeasure α N) :=
+theorem zero_right : v ⟂ᵥ (0 : VectorMeasure α N) :=
   ⟨∅, MeasurableSet.empty, fun t ht => (subset_empty_iff.1 ht).symm ▸ v.Empty, fun _ _ =>
     zero_apply _⟩
-#align measure_theory.vector_measure.mutually_singular.zero_right MeasureTheory.VectorMeasure.MutuallySingular.zeroRight
+#align measure_theory.vector_measure.mutually_singular.zero_right MeasureTheory.VectorMeasure.MutuallySingular.zero_right
 
-theorem zeroLeft : (0 : VectorMeasure α M) ⟂ᵥ w :=
-  zeroRight.symm
-#align measure_theory.vector_measure.mutually_singular.zero_left MeasureTheory.VectorMeasure.MutuallySingular.zeroLeft
+theorem zero_left : (0 : VectorMeasure α M) ⟂ᵥ w :=
+  zero_right.symm
+#align measure_theory.vector_measure.mutually_singular.zero_left MeasureTheory.VectorMeasure.MutuallySingular.zero_left
 
-theorem addLeft [T2Space N] [ContinuousAdd M] (h₁ : v₁ ⟂ᵥ w) (h₂ : v₂ ⟂ᵥ w) : v₁ + v₂ ⟂ᵥ w :=
+theorem add_left [T2Space N] [ContinuousAdd M] (h₁ : v₁ ⟂ᵥ w) (h₂ : v₂ ⟂ᵥ w) : v₁ + v₂ ⟂ᵥ w :=
   by
   obtain ⟨u, hmu, hu₁, hu₂⟩ := h₁
   obtain ⟨v, hmv, hv₁, hv₂⟩ := h₂
@@ -1266,47 +1303,47 @@ theorem addLeft [T2Space N] [ContinuousAdd M] (h₁ : v₁ ⟂ᵥ w) (h₂ : v
         rcases ht hx with (hxu | hxv)
         exacts[False.elim (hxu' hxu), Or.inr ⟨⟨hxv, hxu'⟩, hx⟩]
       · rcases hx with ⟨⟩ <;> exact hx.2
-#align measure_theory.vector_measure.mutually_singular.add_left MeasureTheory.VectorMeasure.MutuallySingular.addLeft
+#align measure_theory.vector_measure.mutually_singular.add_left MeasureTheory.VectorMeasure.MutuallySingular.add_left
 
-theorem addRight [T2Space M] [ContinuousAdd N] (h₁ : v ⟂ᵥ w₁) (h₂ : v ⟂ᵥ w₂) : v ⟂ᵥ w₁ + w₂ :=
-  (addLeft h₁.symm h₂.symm).symm
-#align measure_theory.vector_measure.mutually_singular.add_right MeasureTheory.VectorMeasure.MutuallySingular.addRight
+theorem add_right [T2Space M] [ContinuousAdd N] (h₁ : v ⟂ᵥ w₁) (h₂ : v ⟂ᵥ w₂) : v ⟂ᵥ w₁ + w₂ :=
+  (add_left h₁.symm h₂.symm).symm
+#align measure_theory.vector_measure.mutually_singular.add_right MeasureTheory.VectorMeasure.MutuallySingular.add_right
 
-theorem smulRight {R : Type _} [Semiring R] [DistribMulAction R N] [ContinuousConstSMul R N] (r : R)
-    (h : v ⟂ᵥ w) : v ⟂ᵥ r • w :=
+theorem smul_right {R : Type _} [Semiring R] [DistribMulAction R N] [ContinuousConstSMul R N]
+    (r : R) (h : v ⟂ᵥ w) : v ⟂ᵥ r • w :=
   let ⟨s, hmeas, hs₁, hs₂⟩ := h
   ⟨s, hmeas, hs₁, fun t ht => by simp only [coe_smul, Pi.smul_apply, hs₂ t ht, smul_zero]⟩
-#align measure_theory.vector_measure.mutually_singular.smul_right MeasureTheory.VectorMeasure.MutuallySingular.smulRight
+#align measure_theory.vector_measure.mutually_singular.smul_right MeasureTheory.VectorMeasure.MutuallySingular.smul_right
 
-theorem smulLeft {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M] (r : R)
+theorem smul_left {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M] (r : R)
     (h : v ⟂ᵥ w) : r • v ⟂ᵥ w :=
-  (smulRight r h.symm).symm
-#align measure_theory.vector_measure.mutually_singular.smul_left MeasureTheory.VectorMeasure.MutuallySingular.smulLeft
+  (smul_right r h.symm).symm
+#align measure_theory.vector_measure.mutually_singular.smul_left MeasureTheory.VectorMeasure.MutuallySingular.smul_left
 
-theorem negLeft {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
+theorem neg_left {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ⟂ᵥ w) : -v ⟂ᵥ w :=
   by
   obtain ⟨u, hmu, hu₁, hu₂⟩ := h
   refine' ⟨u, hmu, fun s hs => _, hu₂⟩
   rw [neg_apply v s, neg_eq_zero]
   exact hu₁ s hs
-#align measure_theory.vector_measure.mutually_singular.neg_left MeasureTheory.VectorMeasure.MutuallySingular.negLeft
+#align measure_theory.vector_measure.mutually_singular.neg_left MeasureTheory.VectorMeasure.MutuallySingular.neg_left
 
-theorem negRight {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
+theorem neg_right {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ⟂ᵥ w) : v ⟂ᵥ -w :=
   h.symm.neg_left.symm
-#align measure_theory.vector_measure.mutually_singular.neg_right MeasureTheory.VectorMeasure.MutuallySingular.negRight
+#align measure_theory.vector_measure.mutually_singular.neg_right MeasureTheory.VectorMeasure.MutuallySingular.neg_right
 
 @[simp]
 theorem neg_left_iff {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v : VectorMeasure α M} {w : VectorMeasure α N} : -v ⟂ᵥ w ↔ v ⟂ᵥ w :=
-  ⟨fun h => neg_neg v ▸ h.neg_left, negLeft⟩
+  ⟨fun h => neg_neg v ▸ h.neg_left, neg_left⟩
 #align measure_theory.vector_measure.mutually_singular.neg_left_iff MeasureTheory.VectorMeasure.MutuallySingular.neg_left_iff
 
 @[simp]
 theorem neg_right_iff {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
     {v : VectorMeasure α M} {w : VectorMeasure α N} : v ⟂ᵥ -w ↔ v ⟂ᵥ w :=
-  ⟨fun h => neg_neg w ▸ h.neg_right, negRight⟩
+  ⟨fun h => neg_neg w ▸ h.neg_right, neg_right⟩
 #align measure_theory.vector_measure.mutually_singular.neg_right_iff MeasureTheory.VectorMeasure.MutuallySingular.neg_right_iff
 
 end MutuallySingular
@@ -1315,6 +1352,7 @@ section Trim
 
 omit m
 
+#print MeasureTheory.VectorMeasure.trim /-
 /-- Restriction of a vector measure onto a sub-σ-algebra. -/
 @[simps]
 def trim {m n : MeasurableSpace α} (v : VectorMeasure α M) (hle : m ≤ n) : @VectorMeasure α m M _ _
@@ -1322,13 +1360,14 @@ def trim {m n : MeasurableSpace α} (v : VectorMeasure α M) (hle : m ≤ n) : @
   measureOf' i := if measurable_set[m] i then v i else 0
   empty' := by rw [if_pos MeasurableSet.empty, v.empty]
   not_measurable' i hi := by rw [if_neg hi]
-  m_Union' f hf₁ hf₂ :=
+  m_iUnion' f hf₁ hf₂ :=
     by
     have hf₁' : ∀ k, measurable_set[n] (f k) := fun k => hle _ (hf₁ k)
     convert v.m_Union hf₁' hf₂
     · ext n; rw [if_pos (hf₁ n)]
     · rw [if_pos (@MeasurableSet.iUnion _ _ m _ _ hf₁)]
 #align measure_theory.vector_measure.trim MeasureTheory.VectorMeasure.trim
+-/
 
 variable {n : MeasurableSpace α} {v : VectorMeasure α M}
 
@@ -1372,16 +1411,16 @@ open scoped MeasureTheory
 include m
 
 /-- The underlying function for `signed_measure.to_measure_of_zero_le`. -/
-def toMeasureOfZeroLe' (s : SignedMeasure α) (i : Set α) (hi : 0 ≤[i] s) (j : Set α)
+def toMeasureOfZeroLE' (s : SignedMeasure α) (i : Set α) (hi : 0 ≤[i] s) (j : Set α)
     (hj : MeasurableSet j) : ℝ≥0∞ :=
   @coe ℝ≥0 ℝ≥0∞ _ ⟨s.restrict i j, le_trans (by simp) (hi j hj)⟩
-#align measure_theory.signed_measure.to_measure_of_zero_le' MeasureTheory.SignedMeasure.toMeasureOfZeroLe'
+#align measure_theory.signed_measure.to_measure_of_zero_le' MeasureTheory.SignedMeasure.toMeasureOfZeroLE'
 
 /-- Given a signed measure `s` and a positive measurable set `i`, `to_measure_of_zero_le`
 provides the measure, mapping measurable sets `j` to `s (i ∩ j)`. -/
-def toMeasureOfZeroLe (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet i) (hi₂ : 0 ≤[i] s) :
+def toMeasureOfZeroLE (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet i) (hi₂ : 0 ≤[i] s) :
     Measure α :=
-  Measure.ofMeasurable (s.toMeasureOfZeroLe' i hi₂)
+  Measure.ofMeasurable (s.toMeasureOfZeroLE' i hi₂)
     (by
       simp_rw [to_measure_of_zero_le', s.restrict_apply hi₁ MeasurableSet.empty, Set.empty_inter i,
         s.empty]
@@ -1402,12 +1441,12 @@ def toMeasureOfZeroLe (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet
       · refine' tsum_congr fun n => _
         simp_rw [s.restrict_apply hi₁ (hf₁ n), Set.inter_comm]
       · exact (NNReal.summable_mk h).2 (s.m_Union h₁ h₂).Summable)
-#align measure_theory.signed_measure.to_measure_of_zero_le MeasureTheory.SignedMeasure.toMeasureOfZeroLe
+#align measure_theory.signed_measure.to_measure_of_zero_le MeasureTheory.SignedMeasure.toMeasureOfZeroLE
 
 variable (s : SignedMeasure α) {i j : Set α}
 
-theorem toMeasureOfZeroLe_apply (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) (hj₁ : MeasurableSet j) :
-    s.toMeasureOfZeroLe i hi₁ hi j =
+theorem toMeasureOfZeroLE_apply (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) (hj₁ : MeasurableSet j) :
+    s.toMeasureOfZeroLE i hi₁ hi j =
       @coe ℝ≥0 ℝ≥0∞ _
         ⟨s (i ∩ j),
           nonneg_of_zero_le_restrict s
@@ -1415,17 +1454,17 @@ theorem toMeasureOfZeroLe_apply (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) (hj
   by
   simp_rw [to_measure_of_zero_le, measure.of_measurable_apply _ hj₁, to_measure_of_zero_le',
     s.restrict_apply hi₁ hj₁, Set.inter_comm]
-#align measure_theory.signed_measure.to_measure_of_zero_le_apply MeasureTheory.SignedMeasure.toMeasureOfZeroLe_apply
+#align measure_theory.signed_measure.to_measure_of_zero_le_apply MeasureTheory.SignedMeasure.toMeasureOfZeroLE_apply
 
 /-- Given a signed measure `s` and a negative measurable set `i`, `to_measure_of_le_zero`
 provides the measure, mapping measurable sets `j` to `-s (i ∩ j)`. -/
-def toMeasureOfLeZero (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet i) (hi₂ : s ≤[i] 0) :
+def toMeasureOfLEZero (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet i) (hi₂ : s ≤[i] 0) :
     Measure α :=
-  toMeasureOfZeroLe (-s) i hi₁ <| @neg_zero (VectorMeasure α ℝ) _ ▸ neg_le_neg _ _ hi₁ hi₂
-#align measure_theory.signed_measure.to_measure_of_le_zero MeasureTheory.SignedMeasure.toMeasureOfLeZero
+  toMeasureOfZeroLE (-s) i hi₁ <| @neg_zero (VectorMeasure α ℝ) _ ▸ neg_le_neg _ _ hi₁ hi₂
+#align measure_theory.signed_measure.to_measure_of_le_zero MeasureTheory.SignedMeasure.toMeasureOfLEZero
 
-theorem toMeasureOfLeZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj₁ : MeasurableSet j) :
-    s.toMeasureOfLeZero i hi₁ hi j =
+theorem toMeasureOfLEZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj₁ : MeasurableSet j) :
+    s.toMeasureOfLEZero i hi₁ hi j =
       @coe ℝ≥0 ℝ≥0∞ _
         ⟨-s (i ∩ j),
           neg_apply s (i ∩ j) ▸
@@ -1436,39 +1475,39 @@ theorem toMeasureOfLeZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj
   erw [to_measure_of_zero_le_apply]
   · simp
   · assumption
-#align measure_theory.signed_measure.to_measure_of_le_zero_apply MeasureTheory.SignedMeasure.toMeasureOfLeZero_apply
+#align measure_theory.signed_measure.to_measure_of_le_zero_apply MeasureTheory.SignedMeasure.toMeasureOfLEZero_apply
 
 /-- `signed_measure.to_measure_of_zero_le` is a finite measure. -/
-instance toMeasureOfZeroLe_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
-    FiniteMeasure (s.toMeasureOfZeroLe i hi₁ hi)
+instance toMeasureOfZeroLE_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
+    FiniteMeasure (s.toMeasureOfZeroLE i hi₁ hi)
     where measure_univ_lt_top :=
     by
     rw [to_measure_of_zero_le_apply s hi hi₁ MeasurableSet.univ]
     exact ENNReal.coe_lt_top
-#align measure_theory.signed_measure.to_measure_of_zero_le_finite MeasureTheory.SignedMeasure.toMeasureOfZeroLe_finite
+#align measure_theory.signed_measure.to_measure_of_zero_le_finite MeasureTheory.SignedMeasure.toMeasureOfZeroLE_finite
 
 /-- `signed_measure.to_measure_of_le_zero` is a finite measure. -/
-instance toMeasureOfLeZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
-    FiniteMeasure (s.toMeasureOfLeZero i hi₁ hi)
+instance toMeasureOfLEZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
+    FiniteMeasure (s.toMeasureOfLEZero i hi₁ hi)
     where measure_univ_lt_top :=
     by
     rw [to_measure_of_le_zero_apply s hi hi₁ MeasurableSet.univ]
     exact ENNReal.coe_lt_top
-#align measure_theory.signed_measure.to_measure_of_le_zero_finite MeasureTheory.SignedMeasure.toMeasureOfLeZero_finite
+#align measure_theory.signed_measure.to_measure_of_le_zero_finite MeasureTheory.SignedMeasure.toMeasureOfLEZero_finite
 
-theorem toMeasureOfZeroLe_toSignedMeasure (hs : 0 ≤[univ] s) :
-    (s.toMeasureOfZeroLe univ MeasurableSet.univ hs).toSignedMeasure = s :=
+theorem toMeasureOfZeroLE_toSignedMeasure (hs : 0 ≤[univ] s) :
+    (s.toMeasureOfZeroLE univ MeasurableSet.univ hs).toSignedMeasure = s :=
   by
   ext (i hi)
   simp [measure.to_signed_measure_apply_measurable hi, to_measure_of_zero_le_apply _ _ _ hi]
-#align measure_theory.signed_measure.to_measure_of_zero_le_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfZeroLe_toSignedMeasure
+#align measure_theory.signed_measure.to_measure_of_zero_le_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfZeroLE_toSignedMeasure
 
-theorem toMeasureOfLeZero_toSignedMeasure (hs : s ≤[univ] 0) :
-    (s.toMeasureOfLeZero univ MeasurableSet.univ hs).toSignedMeasure = -s :=
+theorem toMeasureOfLEZero_toSignedMeasure (hs : s ≤[univ] 0) :
+    (s.toMeasureOfLEZero univ MeasurableSet.univ hs).toSignedMeasure = -s :=
   by
   ext (i hi)
   simp [measure.to_signed_measure_apply_measurable hi, to_measure_of_le_zero_apply _ _ _ hi]
-#align measure_theory.signed_measure.to_measure_of_le_zero_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfLeZero_toSignedMeasure
+#align measure_theory.signed_measure.to_measure_of_le_zero_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfLEZero_toSignedMeasure
 
 end SignedMeasure
 
@@ -1486,8 +1525,9 @@ theorem zero_le_toSignedMeasure : 0 ≤ μ.toSignedMeasure :=
     ENNReal.toReal_nonneg, vector_measure.coe_zero]
 #align measure_theory.measure.zero_le_to_signed_measure MeasureTheory.Measure.zero_le_toSignedMeasure
 
-theorem toSignedMeasure_toMeasureOfZeroLe :
-    μ.toSignedMeasure.toMeasureOfZeroLe univ MeasurableSet.univ
+#print MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLE /-
+theorem toSignedMeasure_toMeasureOfZeroLE :
+    μ.toSignedMeasure.toMeasureOfZeroLE univ MeasurableSet.univ
         ((le_restrict_univ_iff_le _ _).2 (zero_le_toSignedMeasure μ)) =
       μ :=
   by
@@ -1495,7 +1535,8 @@ theorem toSignedMeasure_toMeasureOfZeroLe :
   lift μ i to ℝ≥0 using (measure_lt_top _ _).Ne with m hm
   simp [signed_measure.to_measure_of_zero_le_apply _ _ _ hi,
     measure.to_signed_measure_apply_measurable hi, ← hm]
-#align measure_theory.measure.to_signed_measure_to_measure_of_zero_le MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLe
+#align measure_theory.measure.to_signed_measure_to_measure_of_zero_le MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLE
+-/
 
 end Measure
 
Diff
@@ -48,7 +48,7 @@ vector measure, signed measure, complex measure
 
 noncomputable section
 
-open Classical BigOperators NNReal ENNReal MeasureTheory
+open scoped Classical BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
@@ -1118,7 +1118,7 @@ def AbsolutelyContinuous (v : VectorMeasure α M) (w : VectorMeasure α N) :=
 -- mathport name: vector_measure.absolutely_continuous
 scoped[MeasureTheory] infixl:50 " ≪ᵥ " => MeasureTheory.VectorMeasure.AbsolutelyContinuous
 
-open MeasureTheory
+open scoped MeasureTheory
 
 namespace AbsolutelyContinuous
 
@@ -1367,7 +1367,7 @@ namespace SignedMeasure
 
 open VectorMeasure
 
-open MeasureTheory
+open scoped MeasureTheory
 
 include m
 
Diff
@@ -116,11 +116,8 @@ theorem of_disjoint_iUnion_nat [T2Space M] (v : VectorMeasure α M) {f : ℕ →
   (v.m_iUnion hf₁ hf₂).tsum_eq.symm
 #align measure_theory.vector_measure.of_disjoint_Union_nat MeasureTheory.VectorMeasure.of_disjoint_iUnion_nat
 
-theorem coe_injective : @Function.Injective (VectorMeasure α M) (Set α → M) coeFn := fun v w h =>
-  by
-  cases v
-  cases w
-  congr
+theorem coe_injective : @Function.Injective (VectorMeasure α M) (Set α → M) coeFn := fun v w h => by
+  cases v; cases w; congr
 #align measure_theory.vector_measure.coe_injective MeasureTheory.VectorMeasure.coe_injective
 
 theorem ext_iff' (v w : VectorMeasure α M) : v = w ↔ ∀ i : Set α, v i = w i := by
@@ -130,8 +127,7 @@ theorem ext_iff' (v w : VectorMeasure α M) : v = w ↔ ∀ i : Set α, v i = w
 theorem ext_iff (v w : VectorMeasure α M) : v = w ↔ ∀ i : Set α, MeasurableSet i → v i = w i :=
   by
   constructor
-  · rintro rfl _ _
-    rfl
+  · rintro rfl _ _; rfl
   · rw [ext_iff']
     intro h i
     by_cases hi : MeasurableSet i
@@ -158,12 +154,8 @@ theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : 
   rw [hg, Encodable.iUnion_decode₂] at this
   have hg₃ : (fun i : β => v (f i)) = fun i => v (g (Encodable.encode i)) :=
     by
-    ext
-    rw [hg]
-    simp only
-    congr
-    ext y
-    simp only [exists_prop, mem_Union, Option.mem_def]
+    ext; rw [hg]; simp only
+    congr ; ext y; simp only [exists_prop, mem_Union, Option.mem_def]
     constructor
     · intro hy
       refine' ⟨x, (Encodable.decode₂_is_partial_inv _ _).2 rfl, hy⟩
@@ -172,8 +164,7 @@ theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : 
       rwa [← Encodable.encode_injective hb₁]
   rw [Summable.hasSum_iff, this, ← tsum_iUnion_decode₂]
   · exact v.empty
-  · rw [hg₃]
-    change Summable ((fun i => v (g i)) ∘ Encodable.encode)
+  · rw [hg₃]; change Summable ((fun i => v (g i)) ∘ Encodable.encode)
     rw [Function.Injective.summable_iff Encodable.encode_injective]
     · exact (v.m_Union hg₁ hg₂).Summable
     · intro x hx
@@ -451,15 +442,11 @@ def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure 
     intro _ hf₁ hf₂
     rw [μ.m_Union hf₁ hf₂, ENNReal.tsum_toReal_eq, if_pos (MeasurableSet.iUnion hf₁),
       Summable.hasSum_iff]
-    · congr
-      ext n
-      rw [if_pos (hf₁ n)]
+    · congr ; ext n; rw [if_pos (hf₁ n)]
     · refine' @summable_of_nonneg_of_le _ (ENNReal.toReal ∘ μ ∘ f) _ _ _ _
-      · intro
-        split_ifs
+      · intro ; split_ifs
         exacts[ENNReal.toReal_nonneg, le_rfl]
-      · intro
-        split_ifs
+      · intro ; split_ifs
         exacts[le_rfl, ENNReal.toReal_nonneg]
       exact summable_measure_to_real hf₁ hf₂
     · intro a ha
@@ -476,9 +463,7 @@ theorem toSignedMeasure_apply_measurable {μ : Measure α} [FiniteMeasure μ] {i
 -- Without this lemma, `singular_part_neg` in `measure_theory.decomposition.lebesgue` is
 -- extremely slow
 theorem toSignedMeasure_congr {μ ν : Measure α} [FiniteMeasure μ] [FiniteMeasure ν] (h : μ = ν) :
-    μ.toSignedMeasure = ν.toSignedMeasure := by
-  congr
-  exact h
+    μ.toSignedMeasure = ν.toSignedMeasure := by congr ; exact h
 #align measure_theory.measure.to_signed_measure_congr MeasureTheory.Measure.toSignedMeasure_congr
 
 theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [FiniteMeasure μ]
@@ -490,15 +475,11 @@ theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [FiniteMeasu
     rwa [to_signed_measure_apply_measurable hi, to_signed_measure_apply_measurable hi,
         ENNReal.toReal_eq_toReal] at this <;>
       · exact measure_ne_top _ _
-  · congr
-    assumption
+  · congr ; assumption
 #align measure_theory.measure.to_signed_measure_eq_to_signed_measure_iff MeasureTheory.Measure.toSignedMeasure_eq_toSignedMeasure_iff
 
 @[simp]
-theorem toSignedMeasure_zero : (0 : Measure α).toSignedMeasure = 0 :=
-  by
-  ext (i hi)
-  simp
+theorem toSignedMeasure_zero : (0 : Measure α).toSignedMeasure = 0 := by ext (i hi); simp
 #align measure_theory.measure.to_signed_measure_zero MeasureTheory.Measure.toSignedMeasure_zero
 
 @[simp]
@@ -541,9 +522,7 @@ theorem toEnnrealVectorMeasure_apply_measurable {μ : Measure α} {i : Set α} (
 #align measure_theory.measure.to_ennreal_vector_measure_apply_measurable MeasureTheory.Measure.toEnnrealVectorMeasure_apply_measurable
 
 @[simp]
-theorem toEnnrealVectorMeasure_zero : (0 : Measure α).toEnnrealVectorMeasure = 0 :=
-  by
-  ext (i hi)
+theorem toEnnrealVectorMeasure_zero : (0 : Measure α).toEnnrealVectorMeasure = 0 := by ext (i hi);
   simp
 #align measure_theory.measure.to_ennreal_vector_measure_zero MeasureTheory.Measure.toEnnrealVectorMeasure_zero
 
@@ -616,8 +595,7 @@ def map (v : VectorMeasure α M) (f : α → β) : VectorMeasure β M :=
       m_Union' := by
         intro g hg₁ hg₂
         convert v.m_Union (fun i => hf (hg₁ i)) fun i j hij => (hg₂ hij).Preimage _
-        · ext i
-          rw [if_pos (hg₁ i)]
+        · ext i; rw [if_pos (hg₁ i)]
         · rw [preimage_Union, if_pos (MeasurableSet.iUnion hg₁)] }
   else 0
 #align measure_theory.vector_measure.map MeasureTheory.VectorMeasure.map
@@ -627,9 +605,7 @@ theorem map_not_measurable {f : α → β} (hf : ¬Measurable f) : v.map f = 0 :
 #align measure_theory.vector_measure.map_not_measurable MeasureTheory.VectorMeasure.map_not_measurable
 
 theorem map_apply {f : α → β} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
-    v.map f s = v (f ⁻¹' s) := by
-  rw [map, dif_pos hf]
-  exact if_pos hs
+    v.map f s = v (f ⁻¹' s) := by rw [map, dif_pos hf]; exact if_pos hs
 #align measure_theory.vector_measure.map_apply MeasureTheory.VectorMeasure.map_apply
 
 @[simp]
@@ -667,18 +643,12 @@ theorem mapRange_apply {f : M →+ N} (hf : Continuous f) {s : Set α} :
 #align measure_theory.vector_measure.map_range_apply MeasureTheory.VectorMeasure.mapRange_apply
 
 @[simp]
-theorem mapRange_id : v.map_range (AddMonoidHom.id M) continuous_id = v :=
-  by
-  ext
-  rfl
+theorem mapRange_id : v.map_range (AddMonoidHom.id M) continuous_id = v := by ext; rfl
 #align measure_theory.vector_measure.map_range_id MeasureTheory.VectorMeasure.mapRange_id
 
 @[simp]
 theorem mapRange_zero {f : M →+ N} (hf : Continuous f) :
-    mapRange (0 : VectorMeasure α M) f hf = 0 :=
-  by
-  ext
-  simp
+    mapRange (0 : VectorMeasure α M) f hf = 0 := by ext; simp
 #align measure_theory.vector_measure.map_range_zero MeasureTheory.VectorMeasure.mapRange_zero
 
 section ContinuousAdd
@@ -687,10 +657,7 @@ variable [ContinuousAdd M] [ContinuousAdd N]
 
 @[simp]
 theorem mapRange_add {v w : VectorMeasure α M} {f : M →+ N} (hf : Continuous f) :
-    (v + w).map_range f hf = v.map_range f hf + w.map_range f hf :=
-  by
-  ext
-  simp
+    (v + w).map_range f hf = v.map_range f hf + w.map_range f hf := by ext; simp
 #align measure_theory.vector_measure.map_range_add MeasureTheory.VectorMeasure.mapRange_add
 
 /-- Given a continuous add_monoid_hom `f : M → N`, `map_range_hom` is the add_monoid_hom mapping the
@@ -716,10 +683,7 @@ def mapRangeₗ (f : M →ₗ[R] N) (hf : Continuous f) : VectorMeasure α M →
     where
   toFun v := v.map_range f.toAddMonoidHom hf
   map_add' _ _ := mapRange_add hf
-  map_smul' := by
-    intros
-    ext
-    simp
+  map_smul' := by intros ; ext; simp
 #align measure_theory.vector_measure.map_rangeₗ MeasureTheory.VectorMeasure.mapRangeₗ
 
 end Module
@@ -736,8 +700,7 @@ def restrict (v : VectorMeasure α M) (i : Set α) : VectorMeasure α M :=
         intro f hf₁ hf₂
         convert v.m_Union (fun n => (hf₁ n).inter hi)
             (hf₂.mono fun i j => Disjoint.mono inf_le_left inf_le_left)
-        · ext n
-          rw [if_pos (hf₁ n)]
+        · ext n; rw [if_pos (hf₁ n)]
         · rw [Union_inter, if_pos (MeasurableSet.iUnion hf₁)] }
   else 0
 #align measure_theory.vector_measure.restrict MeasureTheory.VectorMeasure.restrict
@@ -747,9 +710,7 @@ theorem restrict_not_measurable {i : Set α} (hi : ¬MeasurableSet i) : v.restri
 #align measure_theory.vector_measure.restrict_not_measurable MeasureTheory.VectorMeasure.restrict_not_measurable
 
 theorem restrict_apply {i : Set α} (hi : MeasurableSet i) {j : Set α} (hj : MeasurableSet j) :
-    v.restrict i j = v (j ∩ i) := by
-  rw [restrict, dif_pos hi]
-  exact if_pos hj
+    v.restrict i j = v (j ∩ i) := by rw [restrict, dif_pos hi]; exact if_pos hj
 #align measure_theory.vector_measure.restrict_apply MeasureTheory.VectorMeasure.restrict_apply
 
 theorem restrict_eq_self {i : Set α} (hi : MeasurableSet i) {j : Set α} (hj : MeasurableSet j)
@@ -771,9 +732,7 @@ theorem restrict_univ : v.restrict univ = v :=
 theorem restrict_zero {i : Set α} : (0 : VectorMeasure α M).restrict i = 0 :=
   by
   by_cases hi : MeasurableSet i
-  · ext (j hj)
-    rw [restrict_apply 0 hi hj]
-    rfl
+  · ext (j hj); rw [restrict_apply 0 hi hj]; rfl
   · exact dif_neg hi
 #align measure_theory.vector_measure.restrict_zero MeasureTheory.VectorMeasure.restrict_zero
 
@@ -838,7 +797,7 @@ theorem map_smul {v : VectorMeasure α M} {f : α → β} (c : R) : (c • v).ma
     simp [map_apply _ hf hi]
   · simp only [map, dif_neg hf]
     -- `smul_zero` does not work since we do not require `has_continuous_add`
-    ext (i hi)
+    ext (i hi);
     simp
 #align measure_theory.vector_measure.map_smul MeasureTheory.VectorMeasure.map_smul
 
@@ -851,7 +810,7 @@ theorem restrict_smul {v : VectorMeasure α M} {i : Set α} (c : R) :
     simp [restrict_apply _ hi hj]
   · simp only [restrict_not_measurable _ hi]
     -- `smul_zero` does not work since we do not require `has_continuous_add`
-    ext (j hj)
+    ext (j hj);
     simp
 #align measure_theory.vector_measure.restrict_smul MeasureTheory.VectorMeasure.restrict_smul
 
@@ -1028,8 +987,7 @@ theorem restrict_le_restrict_iUnion {f : ℕ → Set α} (hf₁ : ∀ n, Measura
   · refine' (w.m_Union (fun n => _) _).Summable
     · exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
     · exact (disjoint_disjointed _).mono fun i j => Disjoint.mono inf_le_right inf_le_right
-  · intro n
-    exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
+  · intro n; exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
   · exact fun n => ha₁.inter (MeasurableSet.disjointed hf₁ n)
 #align measure_theory.vector_measure.restrict_le_restrict_Union MeasureTheory.VectorMeasure.restrict_le_restrict_iUnion
 
@@ -1039,8 +997,7 @@ theorem restrict_le_restrict_countable_iUnion [Countable β] {f : β → Set α}
   cases nonempty_encodable β
   rw [← Encodable.iUnion_decode₂]
   refine' restrict_le_restrict_Union v w _ _
-  · intro n
-    measurability
+  · intro n; measurability
   · intro n
     cases' Encodable.decode₂ β n with b
     · simp
@@ -1369,8 +1326,7 @@ def trim {m n : MeasurableSpace α} (v : VectorMeasure α M) (hle : m ≤ n) : @
     by
     have hf₁' : ∀ k, measurable_set[n] (f k) := fun k => hle _ (hf₁ k)
     convert v.m_Union hf₁' hf₂
-    · ext n
-      rw [if_pos (hf₁ n)]
+    · ext n; rw [if_pos (hf₁ n)]
     · rw [if_pos (@MeasurableSet.iUnion _ _ m _ _ hf₁)]
 #align measure_theory.vector_measure.trim MeasureTheory.VectorMeasure.trim
 
Diff
@@ -1536,7 +1536,7 @@ theorem toSignedMeasure_toMeasureOfZeroLe :
       μ :=
   by
   refine' measure.ext fun i hi => _
-  lift μ i to ℝ≥0 using (measure_lt_top _ _).Ne
+  lift μ i to ℝ≥0 using (measure_lt_top _ _).Ne with m hm
   simp [signed_measure.to_measure_of_zero_le_apply _ _ _ hi,
     measure.to_signed_measure_apply_measurable hi, ← hm]
 #align measure_theory.measure.to_signed_measure_to_measure_of_zero_le MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLe
Diff
@@ -1536,7 +1536,7 @@ theorem toSignedMeasure_toMeasureOfZeroLe :
       μ :=
   by
   refine' measure.ext fun i hi => _
-  lift μ i to ℝ≥0 using (measure_lt_top _ _).Ne with m hm
+  lift μ i to ℝ≥0 using (measure_lt_top _ _).Ne
   simp [signed_measure.to_measure_of_zero_le_apply _ _ _ hi,
     measure.to_signed_measure_apply_measurable hi, ← hm]
 #align measure_theory.measure.to_signed_measure_to_measure_of_zero_le MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLe
Diff
@@ -105,16 +105,16 @@ theorem not_measurable (v : VectorMeasure α M) {i : Set α} (hi : ¬MeasurableS
   v.not_measurable' hi
 #align measure_theory.vector_measure.not_measurable MeasureTheory.VectorMeasure.not_measurable
 
-theorem m_unionᵢ (v : VectorMeasure α M) {f : ℕ → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
+theorem m_iUnion (v : VectorMeasure α M) {f : ℕ → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) : HasSum (fun i => v (f i)) (v (⋃ i, f i)) :=
   v.m_Union' hf₁ hf₂
-#align measure_theory.vector_measure.m_Union MeasureTheory.VectorMeasure.m_unionᵢ
+#align measure_theory.vector_measure.m_Union MeasureTheory.VectorMeasure.m_iUnion
 
-theorem of_disjoint_unionᵢ_nat [T2Space M] (v : VectorMeasure α M) {f : ℕ → Set α}
+theorem of_disjoint_iUnion_nat [T2Space M] (v : VectorMeasure α M) {f : ℕ → Set α}
     (hf₁ : ∀ i, MeasurableSet (f i)) (hf₂ : Pairwise (Disjoint on f)) :
     v (⋃ i, f i) = ∑' i, v (f i) :=
-  (v.m_unionᵢ hf₁ hf₂).tsum_eq.symm
-#align measure_theory.vector_measure.of_disjoint_Union_nat MeasureTheory.VectorMeasure.of_disjoint_unionᵢ_nat
+  (v.m_iUnion hf₁ hf₂).tsum_eq.symm
+#align measure_theory.vector_measure.of_disjoint_Union_nat MeasureTheory.VectorMeasure.of_disjoint_iUnion_nat
 
 theorem coe_injective : @Function.Injective (VectorMeasure α M) (Set α → M) coeFn := fun v w h =>
   by
@@ -146,16 +146,16 @@ theorem ext {s t : VectorMeasure α M} (h : ∀ i : Set α, MeasurableSet i →
 
 variable [T2Space M] {v : VectorMeasure α M} {f : ℕ → Set α}
 
-theorem hasSum_of_disjoint_unionᵢ [Countable β] {f : β → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
+theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) : HasSum (fun i => v (f i)) (v (⋃ i, f i)) :=
   by
   cases nonempty_encodable β
   set g := fun i : ℕ => ⋃ (b : β) (H : b ∈ Encodable.decode₂ β i), f b with hg
   have hg₁ : ∀ i, MeasurableSet (g i) := fun _ =>
-    MeasurableSet.unionᵢ fun b => MeasurableSet.unionᵢ fun _ => hf₁ b
-  have hg₂ : Pairwise (Disjoint on g) := Encodable.unionᵢ_decode₂_disjoint_on hf₂
+    MeasurableSet.iUnion fun b => MeasurableSet.iUnion fun _ => hf₁ b
+  have hg₂ : Pairwise (Disjoint on g) := Encodable.iUnion_decode₂_disjoint_on hf₂
   have := v.of_disjoint_Union_nat hg₁ hg₂
-  rw [hg, Encodable.unionᵢ_decode₂] at this
+  rw [hg, Encodable.iUnion_decode₂] at this
   have hg₃ : (fun i : β => v (f i)) = fun i => v (g (Encodable.encode i)) :=
     by
     ext
@@ -170,7 +170,7 @@ theorem hasSum_of_disjoint_unionᵢ [Countable β] {f : β → Set α} (hf₁ :
     · rintro ⟨b, hb₁, hb₂⟩
       rw [Encodable.decode₂_is_partial_inv _ _] at hb₁
       rwa [← Encodable.encode_injective hb₁]
-  rw [Summable.hasSum_iff, this, ← tsum_unionᵢ_decode₂]
+  rw [Summable.hasSum_iff, this, ← tsum_iUnion_decode₂]
   · exact v.empty
   · rw [hg₃]
     change Summable ((fun i => v (g i)) ∘ Encodable.encode)
@@ -181,12 +181,12 @@ theorem hasSum_of_disjoint_unionᵢ [Countable β] {f : β → Set α} (hf₁ :
       simp only [Union_eq_empty, Option.mem_def, not_exists, mem_range] at hx⊢
       intro i hi
       exact False.elim ((hx i) ((Encodable.decode₂_is_partial_inv _ _).1 hi))
-#align measure_theory.vector_measure.has_sum_of_disjoint_Union MeasureTheory.VectorMeasure.hasSum_of_disjoint_unionᵢ
+#align measure_theory.vector_measure.has_sum_of_disjoint_Union MeasureTheory.VectorMeasure.hasSum_of_disjoint_iUnion
 
-theorem of_disjoint_unionᵢ [Countable β] {f : β → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
+theorem of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) : v (⋃ i, f i) = ∑' i, v (f i) :=
-  (hasSum_of_disjoint_unionᵢ hf₁ hf₂).tsum_eq.symm
-#align measure_theory.vector_measure.of_disjoint_Union MeasureTheory.VectorMeasure.of_disjoint_unionᵢ
+  (hasSum_of_disjoint_iUnion hf₁ hf₂).tsum_eq.symm
+#align measure_theory.vector_measure.of_disjoint_Union MeasureTheory.VectorMeasure.of_disjoint_iUnion
 
 theorem of_union {A B : Set α} (h : Disjoint A B) (hA : MeasurableSet A) (hB : MeasurableSet B) :
     v (A ∪ B) = v A + v B :=
@@ -232,17 +232,17 @@ theorem of_diff_of_diff_eq_zero {A B : Set α} (hA : MeasurableSet A) (hB : Meas
     
 #align measure_theory.vector_measure.of_diff_of_diff_eq_zero MeasureTheory.VectorMeasure.of_diff_of_diff_eq_zero
 
-theorem of_unionᵢ_nonneg {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
+theorem of_iUnion_nonneg {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
     [OrderClosedTopology M] {v : VectorMeasure α M} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) (hf₃ : ∀ i, 0 ≤ v (f i)) : 0 ≤ v (⋃ i, f i) :=
-  (v.of_disjoint_unionᵢ_nat hf₁ hf₂).symm ▸ tsum_nonneg hf₃
-#align measure_theory.vector_measure.of_Union_nonneg MeasureTheory.VectorMeasure.of_unionᵢ_nonneg
+  (v.of_disjoint_iUnion_nat hf₁ hf₂).symm ▸ tsum_nonneg hf₃
+#align measure_theory.vector_measure.of_Union_nonneg MeasureTheory.VectorMeasure.of_iUnion_nonneg
 
-theorem of_unionᵢ_nonpos {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
+theorem of_iUnion_nonpos {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
     [OrderClosedTopology M] {v : VectorMeasure α M} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) (hf₃ : ∀ i, v (f i) ≤ 0) : v (⋃ i, f i) ≤ 0 :=
-  (v.of_disjoint_unionᵢ_nat hf₁ hf₂).symm ▸ tsum_nonpos hf₃
-#align measure_theory.vector_measure.of_Union_nonpos MeasureTheory.VectorMeasure.of_unionᵢ_nonpos
+  (v.of_disjoint_iUnion_nat hf₁ hf₂).symm ▸ tsum_nonpos hf₃
+#align measure_theory.vector_measure.of_Union_nonpos MeasureTheory.VectorMeasure.of_iUnion_nonpos
 
 theorem of_nonneg_disjoint_union_eq_zero {s : SignedMeasure α} {A B : Set α} (h : Disjoint A B)
     (hA₁ : MeasurableSet A) (hB₁ : MeasurableSet B) (hA₂ : 0 ≤ s A) (hB₂ : 0 ≤ s B)
@@ -279,7 +279,7 @@ def smul (r : R) (v : VectorMeasure α M) : VectorMeasure α M
   measureOf' := r • v
   empty' := by rw [Pi.smul_apply, Empty, smul_zero]
   not_measurable' _ hi := by rw [Pi.smul_apply, v.not_measurable hi, smul_zero]
-  m_Union' _ hf₁ hf₂ := HasSum.const_smul _ (v.m_unionᵢ hf₁ hf₂)
+  m_Union' _ hf₁ hf₂ := HasSum.const_smul _ (v.m_iUnion hf₁ hf₂)
 #align measure_theory.vector_measure.smul MeasureTheory.VectorMeasure.smul
 
 instance : SMul R (VectorMeasure α M) :=
@@ -325,7 +325,7 @@ def add (v w : VectorMeasure α M) : VectorMeasure α M
   measureOf' := v + w
   empty' := by simp
   not_measurable' _ hi := by simp [v.not_measurable hi, w.not_measurable hi]
-  m_Union' f hf₁ hf₂ := HasSum.add (v.m_unionᵢ hf₁ hf₂) (w.m_unionᵢ hf₁ hf₂)
+  m_Union' f hf₁ hf₂ := HasSum.add (v.m_iUnion hf₁ hf₂) (w.m_iUnion hf₁ hf₂)
 #align measure_theory.vector_measure.add MeasureTheory.VectorMeasure.add
 
 instance : Add (VectorMeasure α M) :=
@@ -366,7 +366,7 @@ def neg (v : VectorMeasure α M) : VectorMeasure α M
   measureOf' := -v
   empty' := by simp
   not_measurable' _ hi := by simp [v.not_measurable hi]
-  m_Union' f hf₁ hf₂ := HasSum.neg <| v.m_unionᵢ hf₁ hf₂
+  m_Union' f hf₁ hf₂ := HasSum.neg <| v.m_iUnion hf₁ hf₂
 #align measure_theory.vector_measure.neg MeasureTheory.VectorMeasure.neg
 
 instance : Neg (VectorMeasure α M) :=
@@ -387,7 +387,7 @@ def sub (v w : VectorMeasure α M) : VectorMeasure α M
   measureOf' := v - w
   empty' := by simp
   not_measurable' _ hi := by simp [v.not_measurable hi, w.not_measurable hi]
-  m_Union' f hf₁ hf₂ := HasSum.sub (v.m_unionᵢ hf₁ hf₂) (w.m_unionᵢ hf₁ hf₂)
+  m_Union' f hf₁ hf₂ := HasSum.sub (v.m_iUnion hf₁ hf₂) (w.m_iUnion hf₁ hf₂)
 #align measure_theory.vector_measure.sub MeasureTheory.VectorMeasure.sub
 
 instance : Sub (VectorMeasure α M) :=
@@ -449,7 +449,7 @@ def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure 
   not_measurable' _ hi := if_neg hi
   m_Union' := by
     intro _ hf₁ hf₂
-    rw [μ.m_Union hf₁ hf₂, ENNReal.tsum_toReal_eq, if_pos (MeasurableSet.unionᵢ hf₁),
+    rw [μ.m_Union hf₁ hf₂, ENNReal.tsum_toReal_eq, if_pos (MeasurableSet.iUnion hf₁),
       Summable.hasSum_iff]
     · congr
       ext n
@@ -531,7 +531,7 @@ def toEnnrealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞
   not_measurable' _ hi := if_neg hi
   m_Union' _ hf₁ hf₂ := by
     rw [Summable.hasSum_iff ENNReal.summable]
-    · rw [if_pos (MeasurableSet.unionᵢ hf₁), MeasureTheory.measure_unionᵢ hf₂ hf₁]
+    · rw [if_pos (MeasurableSet.iUnion hf₁), MeasureTheory.measure_iUnion hf₂ hf₁]
       exact tsum_congr fun n => if_pos (hf₁ n)
 #align measure_theory.measure.to_ennreal_vector_measure MeasureTheory.Measure.toEnnrealVectorMeasure
 
@@ -573,7 +573,7 @@ section
 
 /-- A vector measure over `ℝ≥0∞` is a measure. -/
 def ennrealToMeasure {m : MeasurableSpace α} (v : VectorMeasure α ℝ≥0∞) : Measure α :=
-  ofMeasurable (fun s _ => v s) v.Empty fun f hf₁ hf₂ => v.of_disjoint_unionᵢ_nat hf₁ hf₂
+  ofMeasurable (fun s _ => v s) v.Empty fun f hf₁ hf₂ => v.of_disjoint_iUnion_nat hf₁ hf₂
 #align measure_theory.vector_measure.ennreal_to_measure MeasureTheory.VectorMeasure.ennrealToMeasure
 
 theorem ennrealToMeasure_apply {m : MeasurableSpace α} {v : VectorMeasure α ℝ≥0∞} {s : Set α}
@@ -618,7 +618,7 @@ def map (v : VectorMeasure α M) (f : α → β) : VectorMeasure β M :=
         convert v.m_Union (fun i => hf (hg₁ i)) fun i j hij => (hg₂ hij).Preimage _
         · ext i
           rw [if_pos (hg₁ i)]
-        · rw [preimage_Union, if_pos (MeasurableSet.unionᵢ hg₁)] }
+        · rw [preimage_Union, if_pos (MeasurableSet.iUnion hg₁)] }
   else 0
 #align measure_theory.vector_measure.map MeasureTheory.VectorMeasure.map
 
@@ -657,7 +657,7 @@ def mapRange (v : VectorMeasure α M) (f : M →+ N) (hf : Continuous f) : Vecto
   measureOf' s := f (v s)
   empty' := by rw [Empty, AddMonoidHom.map_zero]
   not_measurable' i hi := by rw [not_measurable v hi, AddMonoidHom.map_zero]
-  m_Union' g hg₁ hg₂ := HasSum.map (v.m_unionᵢ hg₁ hg₂) f hf
+  m_Union' g hg₁ hg₂ := HasSum.map (v.m_iUnion hg₁ hg₂) f hf
 #align measure_theory.vector_measure.map_range MeasureTheory.VectorMeasure.mapRange
 
 @[simp]
@@ -738,7 +738,7 @@ def restrict (v : VectorMeasure α M) (i : Set α) : VectorMeasure α M :=
             (hf₂.mono fun i j => Disjoint.mono inf_le_left inf_le_left)
         · ext n
           rw [if_pos (hf₁ n)]
-        · rw [Union_inter, if_pos (MeasurableSet.unionᵢ hf₁)] }
+        · rw [Union_inter, if_pos (MeasurableSet.iUnion hf₁)] }
   else 0
 #align measure_theory.vector_measure.restrict MeasureTheory.VectorMeasure.restrict
 
@@ -1010,12 +1010,12 @@ variable {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M] [OrderClosed
 
 variable (v w : VectorMeasure α M) {i j : Set α}
 
-theorem restrict_le_restrict_unionᵢ {f : ℕ → Set α} (hf₁ : ∀ n, MeasurableSet (f n))
+theorem restrict_le_restrict_iUnion {f : ℕ → Set α} (hf₁ : ∀ n, MeasurableSet (f n))
     (hf₂ : ∀ n, v ≤[f n] w) : v ≤[⋃ n, f n] w :=
   by
   refine' restrict_le_restrict_of_subset_le v w fun a ha₁ ha₂ => _
   have ha₃ : (⋃ n, a ∩ disjointed f n) = a := by
-    rwa [← inter_Union, unionᵢ_disjointed, inter_eq_left_iff_subset]
+    rwa [← inter_Union, iUnion_disjointed, inter_eq_left_iff_subset]
   have ha₄ : Pairwise (Disjoint on fun n => a ∩ disjointed f n) :=
     (disjoint_disjointed _).mono fun i j => Disjoint.mono inf_le_right inf_le_right
   rw [← ha₃, v.of_disjoint_Union_nat _ ha₄, w.of_disjoint_Union_nat _ ha₄]
@@ -1031,13 +1031,13 @@ theorem restrict_le_restrict_unionᵢ {f : ℕ → Set α} (hf₁ : ∀ n, Measu
   · intro n
     exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
   · exact fun n => ha₁.inter (MeasurableSet.disjointed hf₁ n)
-#align measure_theory.vector_measure.restrict_le_restrict_Union MeasureTheory.VectorMeasure.restrict_le_restrict_unionᵢ
+#align measure_theory.vector_measure.restrict_le_restrict_Union MeasureTheory.VectorMeasure.restrict_le_restrict_iUnion
 
-theorem restrict_le_restrict_countable_unionᵢ [Countable β] {f : β → Set α}
+theorem restrict_le_restrict_countable_iUnion [Countable β] {f : β → Set α}
     (hf₁ : ∀ b, MeasurableSet (f b)) (hf₂ : ∀ b, v ≤[f b] w) : v ≤[⋃ b, f b] w :=
   by
   cases nonempty_encodable β
-  rw [← Encodable.unionᵢ_decode₂]
+  rw [← Encodable.iUnion_decode₂]
   refine' restrict_le_restrict_Union v w _ _
   · intro n
     measurability
@@ -1045,7 +1045,7 @@ theorem restrict_le_restrict_countable_unionᵢ [Countable β] {f : β → Set 
     cases' Encodable.decode₂ β n with b
     · simp
     · simp [hf₂ b]
-#align measure_theory.vector_measure.restrict_le_restrict_countable_Union MeasureTheory.VectorMeasure.restrict_le_restrict_countable_unionᵢ
+#align measure_theory.vector_measure.restrict_le_restrict_countable_Union MeasureTheory.VectorMeasure.restrict_le_restrict_countable_iUnion
 
 theorem restrict_le_restrict_union (hi₁ : MeasurableSet i) (hi₂ : v ≤[i] w) (hj₁ : MeasurableSet j)
     (hj₂ : v ≤[j] w) : v ≤[i ∪ j] w := by
@@ -1371,7 +1371,7 @@ def trim {m n : MeasurableSpace α} (v : VectorMeasure α M) (hle : m ≤ n) : @
     convert v.m_Union hf₁' hf₂
     · ext n
       rw [if_pos (hf₁ n)]
-    · rw [if_pos (@MeasurableSet.unionᵢ _ _ m _ _ hf₁)]
+    · rw [if_pos (@MeasurableSet.iUnion _ _ m _ _ hf₁)]
 #align measure_theory.vector_measure.trim MeasureTheory.VectorMeasure.trim
 
 variable {n : MeasurableSpace α} {v : VectorMeasure α M}
@@ -1437,8 +1437,8 @@ def toMeasureOfZeroLe (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet
         by
         intro n m hnm
         exact ((hf₂ hnm).inf_left' i).inf_right' i
-      simp only [to_measure_of_zero_le', s.restrict_apply hi₁ (MeasurableSet.unionᵢ hf₁),
-        Set.inter_comm, Set.inter_unionᵢ, s.of_disjoint_Union_nat h₁ h₂, ENNReal.some_eq_coe,
+      simp only [to_measure_of_zero_le', s.restrict_apply hi₁ (MeasurableSet.iUnion hf₁),
+        Set.inter_comm, Set.inter_iUnion, s.of_disjoint_Union_nat h₁ h₂, ENNReal.some_eq_coe,
         id.def]
       have h : ∀ n, 0 ≤ s (i ∩ f n) := fun n =>
         s.nonneg_of_zero_le_restrict (s.zero_le_restrict_subset hi₁ (inter_subset_left _ _) hi₂)
Diff
@@ -442,7 +442,7 @@ include m
 
 /-- A finite measure coerced into a real function is a signed measure. -/
 @[simps]
-def toSignedMeasure (μ : Measure α) [hμ : IsFiniteMeasure μ] : SignedMeasure α
+def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure α
     where
   measureOf' := fun i : Set α => if MeasurableSet i then (μ.measureOf i).toReal else 0
   empty' := by simp [μ.empty]
@@ -468,22 +468,21 @@ def toSignedMeasure (μ : Measure α) [hμ : IsFiniteMeasure μ] : SignedMeasure
       exact measure_mono (Set.subset_univ _)
 #align measure_theory.measure.to_signed_measure MeasureTheory.Measure.toSignedMeasure
 
-theorem toSignedMeasure_apply_measurable {μ : Measure α} [IsFiniteMeasure μ] {i : Set α}
+theorem toSignedMeasure_apply_measurable {μ : Measure α} [FiniteMeasure μ] {i : Set α}
     (hi : MeasurableSet i) : μ.toSignedMeasure i = (μ i).toReal :=
   if_pos hi
 #align measure_theory.measure.to_signed_measure_apply_measurable MeasureTheory.Measure.toSignedMeasure_apply_measurable
 
 -- Without this lemma, `singular_part_neg` in `measure_theory.decomposition.lebesgue` is
 -- extremely slow
-theorem toSignedMeasure_congr {μ ν : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν]
-    (h : μ = ν) : μ.toSignedMeasure = ν.toSignedMeasure :=
-  by
+theorem toSignedMeasure_congr {μ ν : Measure α} [FiniteMeasure μ] [FiniteMeasure ν] (h : μ = ν) :
+    μ.toSignedMeasure = ν.toSignedMeasure := by
   congr
   exact h
 #align measure_theory.measure.to_signed_measure_congr MeasureTheory.Measure.toSignedMeasure_congr
 
-theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [IsFiniteMeasure μ]
-    [IsFiniteMeasure ν] : μ.toSignedMeasure = ν.toSignedMeasure ↔ μ = ν :=
+theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [FiniteMeasure μ]
+    [FiniteMeasure ν] : μ.toSignedMeasure = ν.toSignedMeasure ↔ μ = ν :=
   by
   refine' ⟨fun h => _, fun h => _⟩
   · ext1 i hi
@@ -503,7 +502,7 @@ theorem toSignedMeasure_zero : (0 : Measure α).toSignedMeasure = 0 :=
 #align measure_theory.measure.to_signed_measure_zero MeasureTheory.Measure.toSignedMeasure_zero
 
 @[simp]
-theorem toSignedMeasure_add (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
+theorem toSignedMeasure_add (μ ν : Measure α) [FiniteMeasure μ] [FiniteMeasure ν] :
     (μ + ν).toSignedMeasure = μ.toSignedMeasure + ν.toSignedMeasure :=
   by
   ext (i hi)
@@ -515,7 +514,7 @@ theorem toSignedMeasure_add (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteM
 #align measure_theory.measure.to_signed_measure_add MeasureTheory.Measure.toSignedMeasure_add
 
 @[simp]
-theorem toSignedMeasure_smul (μ : Measure α) [IsFiniteMeasure μ] (r : ℝ≥0) :
+theorem toSignedMeasure_smul (μ : Measure α) [FiniteMeasure μ] (r : ℝ≥0) :
     (r • μ).toSignedMeasure = r • μ.toSignedMeasure :=
   by
   ext (i hi)
@@ -557,8 +556,8 @@ theorem toEnnrealVectorMeasure_add (μ ν : Measure α) :
     to_ennreal_vector_measure_apply_measurable hi, to_ennreal_vector_measure_apply_measurable hi]
 #align measure_theory.measure.to_ennreal_vector_measure_add MeasureTheory.Measure.toEnnrealVectorMeasure_add
 
-theorem toSignedMeasure_sub_apply {μ ν : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν]
-    {i : Set α} (hi : MeasurableSet i) :
+theorem toSignedMeasure_sub_apply {μ ν : Measure α} [FiniteMeasure μ] [FiniteMeasure ν] {i : Set α}
+    (hi : MeasurableSet i) :
     (μ.toSignedMeasure - ν.toSignedMeasure) i = (μ i).toReal - (ν i).toReal := by
   rw [vector_measure.sub_apply, to_signed_measure_apply_measurable hi,
     measure.to_signed_measure_apply_measurable hi, sub_eq_add_neg]
@@ -1485,7 +1484,7 @@ theorem toMeasureOfLeZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj
 
 /-- `signed_measure.to_measure_of_zero_le` is a finite measure. -/
 instance toMeasureOfZeroLe_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
-    IsFiniteMeasure (s.toMeasureOfZeroLe i hi₁ hi)
+    FiniteMeasure (s.toMeasureOfZeroLe i hi₁ hi)
     where measure_univ_lt_top :=
     by
     rw [to_measure_of_zero_le_apply s hi hi₁ MeasurableSet.univ]
@@ -1494,7 +1493,7 @@ instance toMeasureOfZeroLe_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
 
 /-- `signed_measure.to_measure_of_le_zero` is a finite measure. -/
 instance toMeasureOfLeZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
-    IsFiniteMeasure (s.toMeasureOfLeZero i hi₁ hi)
+    FiniteMeasure (s.toMeasureOfLeZero i hi₁ hi)
     where measure_univ_lt_top :=
     by
     rw [to_measure_of_le_zero_apply s hi hi₁ MeasurableSet.univ]
@@ -1521,7 +1520,7 @@ namespace Measure
 
 open VectorMeasure
 
-variable (μ : Measure α) [IsFiniteMeasure μ]
+variable (μ : Measure α) [FiniteMeasure μ]
 
 theorem zero_le_toSignedMeasure : 0 ≤ μ.toSignedMeasure :=
   by
Diff
@@ -1484,22 +1484,22 @@ theorem toMeasureOfLeZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj
 #align measure_theory.signed_measure.to_measure_of_le_zero_apply MeasureTheory.SignedMeasure.toMeasureOfLeZero_apply
 
 /-- `signed_measure.to_measure_of_zero_le` is a finite measure. -/
-instance toMeasureOfZeroLeFinite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
+instance toMeasureOfZeroLe_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
     IsFiniteMeasure (s.toMeasureOfZeroLe i hi₁ hi)
     where measure_univ_lt_top :=
     by
     rw [to_measure_of_zero_le_apply s hi hi₁ MeasurableSet.univ]
     exact ENNReal.coe_lt_top
-#align measure_theory.signed_measure.to_measure_of_zero_le_finite MeasureTheory.SignedMeasure.toMeasureOfZeroLeFinite
+#align measure_theory.signed_measure.to_measure_of_zero_le_finite MeasureTheory.SignedMeasure.toMeasureOfZeroLe_finite
 
 /-- `signed_measure.to_measure_of_le_zero` is a finite measure. -/
-instance toMeasureOfLeZeroFinite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
+instance toMeasureOfLeZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
     IsFiniteMeasure (s.toMeasureOfLeZero i hi₁ hi)
     where measure_univ_lt_top :=
     by
     rw [to_measure_of_le_zero_apply s hi hi₁ MeasurableSet.univ]
     exact ENNReal.coe_lt_top
-#align measure_theory.signed_measure.to_measure_of_le_zero_finite MeasureTheory.SignedMeasure.toMeasureOfLeZeroFinite
+#align measure_theory.signed_measure.to_measure_of_le_zero_finite MeasureTheory.SignedMeasure.toMeasureOfLeZero_finite
 
 theorem toMeasureOfZeroLe_toSignedMeasure (hs : 0 ≤[univ] s) :
     (s.toMeasureOfZeroLe univ MeasurableSet.univ hs).toSignedMeasure = s :=
Diff
@@ -735,8 +735,7 @@ def restrict (v : VectorMeasure α M) (i : Set α) : VectorMeasure α M :=
       not_measurable' := fun i hi => if_neg hi
       m_Union' := by
         intro f hf₁ hf₂
-        convert
-          v.m_Union (fun n => (hf₁ n).inter hi)
+        convert v.m_Union (fun n => (hf₁ n).inter hi)
             (hf₂.mono fun i j => Disjoint.mono inf_le_left inf_le_left)
         · ext n
           rw [if_pos (hf₁ n)]
Diff
@@ -1447,7 +1447,7 @@ def toMeasureOfZeroLe (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet
       rw [NNReal.coe_tsum_of_nonneg h, ENNReal.coe_tsum]
       · refine' tsum_congr fun n => _
         simp_rw [s.restrict_apply hi₁ (hf₁ n), Set.inter_comm]
-      · exact (NNReal.summable_coe_of_nonneg h).2 (s.m_Union h₁ h₂).Summable)
+      · exact (NNReal.summable_mk h).2 (s.m_Union h₁ h₂).Summable)
 #align measure_theory.signed_measure.to_measure_of_zero_le MeasureTheory.SignedMeasure.toMeasureOfZeroLe
 
 variable (s : SignedMeasure α) {i j : Set α}
Diff
@@ -1246,8 +1246,8 @@ theorem ennrealToMeasure {μ : VectorMeasure α ℝ≥0∞} :
 
 end AbsolutelyContinuous
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (t «expr ⊆ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
 /-- Two vector measures `v` and `w` are said to be mutually singular if there exists a measurable
 set `s`, such that for all `t ⊆ s`, `v t = 0` and for all `t ⊆ sᶜ`, `w t = 0`.
 
@@ -1266,8 +1266,8 @@ namespace MutuallySingular
 
 variable {v v₁ v₂ : VectorMeasure α M} {w w₁ w₂ : VectorMeasure α N}
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (t «expr ⊆ » s) -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (t «expr ⊆ » «expr ᶜ»(s)) -/
 theorem mk (s : Set α) (hs : MeasurableSet s) (h₁ : ∀ (t) (_ : t ⊆ s), MeasurableSet t → v t = 0)
     (h₂ : ∀ (t) (_ : t ⊆ sᶜ), MeasurableSet t → w t = 0) : v ⟂ᵥ w :=
   by
Diff
@@ -48,7 +48,7 @@ vector measure, signed measure, complex measure
 
 noncomputable section
 
-open Classical BigOperators NNReal Ennreal MeasureTheory
+open Classical BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
@@ -449,18 +449,18 @@ def toSignedMeasure (μ : Measure α) [hμ : IsFiniteMeasure μ] : SignedMeasure
   not_measurable' _ hi := if_neg hi
   m_Union' := by
     intro _ hf₁ hf₂
-    rw [μ.m_Union hf₁ hf₂, Ennreal.tsum_toReal_eq, if_pos (MeasurableSet.unionᵢ hf₁),
+    rw [μ.m_Union hf₁ hf₂, ENNReal.tsum_toReal_eq, if_pos (MeasurableSet.unionᵢ hf₁),
       Summable.hasSum_iff]
     · congr
       ext n
       rw [if_pos (hf₁ n)]
-    · refine' @summable_of_nonneg_of_le _ (Ennreal.toReal ∘ μ ∘ f) _ _ _ _
+    · refine' @summable_of_nonneg_of_le _ (ENNReal.toReal ∘ μ ∘ f) _ _ _ _
       · intro
         split_ifs
-        exacts[Ennreal.toReal_nonneg, le_rfl]
+        exacts[ENNReal.toReal_nonneg, le_rfl]
       · intro
         split_ifs
-        exacts[le_rfl, Ennreal.toReal_nonneg]
+        exacts[le_rfl, ENNReal.toReal_nonneg]
       exact summable_measure_to_real hf₁ hf₂
     · intro a ha
       apply ne_of_lt hμ.measure_univ_lt_top
@@ -489,7 +489,7 @@ theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [IsFiniteMea
   · ext1 i hi
     have : μ.to_signed_measure i = ν.to_signed_measure i := by rw [h]
     rwa [to_signed_measure_apply_measurable hi, to_signed_measure_apply_measurable hi,
-        Ennreal.toReal_eq_toReal] at this <;>
+        ENNReal.toReal_eq_toReal] at this <;>
       · exact measure_ne_top _ _
   · congr
     assumption
@@ -508,7 +508,7 @@ theorem toSignedMeasure_add (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteM
   by
   ext (i hi)
   rw [to_signed_measure_apply_measurable hi, add_apply,
-    Ennreal.toReal_add (ne_of_lt (measure_lt_top _ _)) (ne_of_lt (measure_lt_top _ _)),
+    ENNReal.toReal_add (ne_of_lt (measure_lt_top _ _)) (ne_of_lt (measure_lt_top _ _)),
     vector_measure.add_apply, to_signed_measure_apply_measurable hi,
     to_signed_measure_apply_measurable hi]
   all_goals infer_instance
@@ -520,7 +520,7 @@ theorem toSignedMeasure_smul (μ : Measure α) [IsFiniteMeasure μ] (r : ℝ≥0
   by
   ext (i hi)
   rw [to_signed_measure_apply_measurable hi, vector_measure.smul_apply,
-    to_signed_measure_apply_measurable hi, coe_smul, Pi.smul_apply, Ennreal.toReal_smul]
+    to_signed_measure_apply_measurable hi, coe_smul, Pi.smul_apply, ENNReal.toReal_smul]
 #align measure_theory.measure.to_signed_measure_smul MeasureTheory.Measure.toSignedMeasure_smul
 
 /-- A measure is a vector measure over `ℝ≥0∞`. -/
@@ -531,7 +531,7 @@ def toEnnrealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞
   empty' := by simp [μ.empty]
   not_measurable' _ hi := if_neg hi
   m_Union' _ hf₁ hf₂ := by
-    rw [Summable.hasSum_iff Ennreal.summable]
+    rw [Summable.hasSum_iff ENNReal.summable]
     · rw [if_pos (MeasurableSet.unionᵢ hf₁), MeasureTheory.measure_unionᵢ hf₂ hf₁]
       exact tsum_congr fun n => if_pos (hf₁ n)
 #align measure_theory.measure.to_ennreal_vector_measure MeasureTheory.Measure.toEnnrealVectorMeasure
@@ -1440,11 +1440,11 @@ def toMeasureOfZeroLe (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet
         intro n m hnm
         exact ((hf₂ hnm).inf_left' i).inf_right' i
       simp only [to_measure_of_zero_le', s.restrict_apply hi₁ (MeasurableSet.unionᵢ hf₁),
-        Set.inter_comm, Set.inter_unionᵢ, s.of_disjoint_Union_nat h₁ h₂, Ennreal.some_eq_coe,
+        Set.inter_comm, Set.inter_unionᵢ, s.of_disjoint_Union_nat h₁ h₂, ENNReal.some_eq_coe,
         id.def]
       have h : ∀ n, 0 ≤ s (i ∩ f n) := fun n =>
         s.nonneg_of_zero_le_restrict (s.zero_le_restrict_subset hi₁ (inter_subset_left _ _) hi₂)
-      rw [NNReal.coe_tsum_of_nonneg h, Ennreal.coe_tsum]
+      rw [NNReal.coe_tsum_of_nonneg h, ENNReal.coe_tsum]
       · refine' tsum_congr fun n => _
         simp_rw [s.restrict_apply hi₁ (hf₁ n), Set.inter_comm]
       · exact (NNReal.summable_coe_of_nonneg h).2 (s.m_Union h₁ h₂).Summable)
@@ -1490,7 +1490,7 @@ instance toMeasureOfZeroLeFinite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
     where measure_univ_lt_top :=
     by
     rw [to_measure_of_zero_le_apply s hi hi₁ MeasurableSet.univ]
-    exact Ennreal.coe_lt_top
+    exact ENNReal.coe_lt_top
 #align measure_theory.signed_measure.to_measure_of_zero_le_finite MeasureTheory.SignedMeasure.toMeasureOfZeroLeFinite
 
 /-- `signed_measure.to_measure_of_le_zero` is a finite measure. -/
@@ -1499,7 +1499,7 @@ instance toMeasureOfLeZeroFinite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
     where measure_univ_lt_top :=
     by
     rw [to_measure_of_le_zero_apply s hi hi₁ MeasurableSet.univ]
-    exact Ennreal.coe_lt_top
+    exact ENNReal.coe_lt_top
 #align measure_theory.signed_measure.to_measure_of_le_zero_finite MeasureTheory.SignedMeasure.toMeasureOfLeZeroFinite
 
 theorem toMeasureOfZeroLe_toSignedMeasure (hs : 0 ≤[univ] s) :
@@ -1529,7 +1529,7 @@ theorem zero_le_toSignedMeasure : 0 ≤ μ.toSignedMeasure :=
   rw [← le_restrict_univ_iff_le]
   refine' restrict_le_restrict_of_subset_le _ _ fun j hj₁ _ => _
   simp only [measure.to_signed_measure_apply_measurable hj₁, coe_zero, Pi.zero_apply,
-    Ennreal.toReal_nonneg, vector_measure.coe_zero]
+    ENNReal.toReal_nonneg, vector_measure.coe_zero]
 #align measure_theory.measure.zero_le_to_signed_measure MeasureTheory.Measure.zero_le_toSignedMeasure
 
 theorem toSignedMeasure_toMeasureOfZeroLe :

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 1 (#12338)

A PR accompanying #12339.

Zulip discussion

Diff
@@ -920,15 +920,15 @@ theorem restrict_le_restrict_iUnion {f : ℕ → Set α} (hf₁ : ∀ n, Measura
   have ha₄ : Pairwise (Disjoint on fun n => a ∩ disjointed f n) :=
     (disjoint_disjointed _).mono fun i j => Disjoint.mono inf_le_right inf_le_right
   rw [← ha₃, v.of_disjoint_iUnion_nat _ ha₄, w.of_disjoint_iUnion_nat _ ha₄]
-  refine' tsum_le_tsum (fun n => (restrict_le_restrict_iff v w (hf₁ n)).1 (hf₂ n) _ _) _ _
-  · exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
-  · exact Set.Subset.trans (Set.inter_subset_right _ _) (disjointed_subset _ _)
-  · refine' (v.m_iUnion (fun n => _) _).summable
+  · refine' tsum_le_tsum (fun n => (restrict_le_restrict_iff v w (hf₁ n)).1 (hf₂ n) _ _) _ _
     · exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
-    · exact (disjoint_disjointed _).mono fun i j => Disjoint.mono inf_le_right inf_le_right
-  · refine' (w.m_iUnion (fun n => _) _).summable
-    · exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
-    · exact (disjoint_disjointed _).mono fun i j => Disjoint.mono inf_le_right inf_le_right
+    · exact Set.Subset.trans (Set.inter_subset_right _ _) (disjointed_subset _ _)
+    · refine' (v.m_iUnion (fun n => _) _).summable
+      · exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
+      · exact (disjoint_disjointed _).mono fun i j => Disjoint.mono inf_le_right inf_le_right
+    · refine' (w.m_iUnion (fun n => _) _).summable
+      · exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
+      · exact (disjoint_disjointed _).mono fun i j => Disjoint.mono inf_le_right inf_le_right
   · intro n
     exact ha₁.inter (MeasurableSet.disjointed hf₁ n)
   · exact fun n => ha₁.inter (MeasurableSet.disjointed hf₁ n)
chore: avoid id.def (adaptation for nightly-2024-03-27) (#11829)

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -1310,7 +1310,7 @@ def toMeasureOfZeroLE (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet
       intro n m hnm
       exact ((hf₂ hnm).inf_left' i).inf_right' i
     simp only [toMeasureOfZeroLE', s.restrict_apply hi₁ (MeasurableSet.iUnion hf₁), Set.inter_comm,
-      Set.inter_iUnion, s.of_disjoint_iUnion_nat h₁ h₂, ENNReal.some_eq_coe, id.def]
+      Set.inter_iUnion, s.of_disjoint_iUnion_nat h₁ h₂, ENNReal.some_eq_coe, id]
     have h : ∀ n, 0 ≤ s (i ∩ f n) := fun n =>
       s.nonneg_of_zero_le_restrict (s.zero_le_restrict_subset hi₁ (Set.inter_subset_left _ _) hi₂)
     rw [NNReal.coe_tsum_of_nonneg h, ENNReal.coe_tsum]
chore: remove mathport name: <expression> lines (#11928)

Quoting [@digama0](https://github.com/digama0):

These were actually never meant to go in the file, they are basically debugging information and only useful on significantly broken mathport files. You can safely remove all of them.

Diff
@@ -830,7 +830,6 @@ theorem le_iff' : v ≤ w ↔ ∀ i, v i ≤ w i := by
 
 end
 
--- mathport name: vector_measure.restrict
 set_option quotPrecheck false in -- Porting note: error message suggested to do this
 scoped[MeasureTheory]
   notation:50 v " ≤[" i:50 "] " w:50 =>
@@ -1042,7 +1041,6 @@ def AbsolutelyContinuous (v : VectorMeasure α M) (w : VectorMeasure α N) :=
   ∀ ⦃s : Set α⦄, w s = 0 → v s = 0
 #align measure_theory.vector_measure.absolutely_continuous MeasureTheory.VectorMeasure.AbsolutelyContinuous
 
--- mathport name: vector_measure.absolutely_continuous
 @[inherit_doc VectorMeasure.AbsolutelyContinuous]
 scoped[MeasureTheory] infixl:50 " ≪ᵥ " => MeasureTheory.VectorMeasure.AbsolutelyContinuous
 
chore: Rename mul-div cancellation lemmas (#11530)

Lemma names around cancellation of multiplication and division are a mess.

This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero lemma name, the Group lemma, the AddGroup lemma name).

| Statement | New name | Old name | |

Diff
@@ -197,7 +197,7 @@ theorem of_add_of_diff {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet
 theorem of_diff {M : Type*} [AddCommGroup M] [TopologicalSpace M] [T2Space M]
     {v : VectorMeasure α M} {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet B)
     (h : A ⊆ B) : v (B \ A) = v B - v A := by
-  rw [← of_add_of_diff hA hB h, add_sub_cancel']
+  rw [← of_add_of_diff hA hB h, add_sub_cancel_left]
 #align measure_theory.vector_measure.of_diff MeasureTheory.VectorMeasure.of_diff
 
 theorem of_diff_of_diff_eq_zero {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet B)
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -250,7 +250,6 @@ end
 section SMul
 
 variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
-
 variable {R : Type*} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
 
 /-- Given a real number `r` and a signed measure `s`, `smul r s` is the signed
@@ -381,7 +380,6 @@ end AddCommGroup
 section DistribMulAction
 
 variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
-
 variable {R : Type*} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
 
 instance instDistribMulAction [ContinuousAdd M] : DistribMulAction R (VectorMeasure α M) :=
@@ -393,7 +391,6 @@ end DistribMulAction
 section Module
 
 variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
-
 variable {R : Type*} [Semiring R] [Module R M] [ContinuousConstSMul R M]
 
 instance instModule [ContinuousAdd M] : Module R (VectorMeasure α M) :=
@@ -549,9 +546,7 @@ end
 section
 
 variable [MeasurableSpace α] [MeasurableSpace β]
-
 variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
-
 variable (v : VectorMeasure α M)
 
 /-- The pushforward of a vector measure along a function. -/
@@ -647,7 +642,6 @@ end ContinuousAdd
 section Module
 
 variable {R : Type*} [Semiring R] [Module R M] [Module R N]
-
 variable [ContinuousAdd M] [ContinuousAdd N] [ContinuousConstSMul R M] [ContinuousConstSMul R N]
 
 /-- Given a continuous linear map `f : M → N`, `mapRangeₗ` is the linear map mapping the
@@ -757,9 +751,7 @@ end
 section
 
 variable [MeasurableSpace β]
-
 variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
-
 variable {R : Type*} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
 
 @[simp]
@@ -790,9 +782,7 @@ end
 section
 
 variable [MeasurableSpace β]
-
 variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
-
 variable {R : Type*} [Semiring R] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M]
 
 /-- `VectorMeasure.map` as a linear map. -/
@@ -849,7 +839,6 @@ scoped[MeasureTheory]
 section
 
 variable {M : Type*} [TopologicalSpace M] [AddCommMonoid M] [PartialOrder M]
-
 variable (v w : VectorMeasure α M)
 
 theorem restrict_le_restrict_iff {i : Set α} (hi : MeasurableSet i) :
@@ -902,7 +891,6 @@ end
 section
 
 variable {M : Type*} [TopologicalSpace M] [OrderedAddCommGroup M] [TopologicalAddGroup M]
-
 variable (v w : VectorMeasure α M)
 
 nonrec theorem neg_le_neg {i : Set α} (hi : MeasurableSet i) (h : v ≤[i] w) : -w ≤[i] -v := by
@@ -923,7 +911,6 @@ end
 section
 
 variable {M : Type*} [TopologicalSpace M] [OrderedAddCommMonoid M] [OrderClosedTopology M]
-
 variable (v w : VectorMeasure α M) {i j : Set α}
 
 theorem restrict_le_restrict_iUnion {f : ℕ → Set α} (hf₁ : ∀ n, MeasurableSet (f n))
@@ -974,7 +961,6 @@ end
 section
 
 variable {M : Type*} [TopologicalSpace M] [OrderedAddCommMonoid M]
-
 variable (v w : VectorMeasure α M) {i j : Set α}
 
 theorem nonneg_of_zero_le_restrict (hi₂ : 0 ≤[i] v) : 0 ≤ v i := by
@@ -1020,7 +1006,6 @@ end
 section
 
 variable {M : Type*} [TopologicalSpace M] [LinearOrderedAddCommMonoid M]
-
 variable (v w : VectorMeasure α M) {i j : Set α}
 
 theorem exists_pos_measure_of_not_restrict_le_zero (hi : ¬v ≤[i] 0) :
@@ -1048,7 +1033,6 @@ end
 section
 
 variable {L M N : Type*}
-
 variable [AddCommMonoid L] [TopologicalSpace L] [AddCommMonoid M] [TopologicalSpace M]
   [AddCommMonoid N] [TopologicalSpace N]
 
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -45,7 +45,8 @@ vector measure, signed measure, complex measure
 
 noncomputable section
 
-open Classical BigOperators NNReal ENNReal MeasureTheory
+open scoped Classical
+open BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
chore: more backporting of simp changes from #10995 (#11001)

Co-authored-by: Patrick Massot <patrickmassot@free.fr> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -172,7 +172,7 @@ theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : 
     · exact (v.m_iUnion hg₁ hg₂).summable
     · intro x hx
       convert v.empty
-      simp only [Set.iUnion_eq_empty, Option.mem_def, not_exists, Set.mem_range] at hx ⊢
+      simp only [g, Set.iUnion_eq_empty, Option.mem_def, not_exists, Set.mem_range] at hx ⊢
       intro i hi
       exact False.elim ((hx i) ((Encodable.decode₂_is_partial_inv _ _).1 hi))
 #align measure_theory.vector_measure.has_sum_of_disjoint_Union MeasureTheory.VectorMeasure.hasSum_of_disjoint_iUnion
chore: remove terminal, terminal refines (#10762)

I replaced a few "terminal" refine/refine's with exact.

The strategy was very simple-minded: essentially any refine whose following line had smaller indentation got replaced by exact and then I cleaned up the mess.

This PR certainly leaves some further terminal refines, but maybe the current change is beneficial.

Diff
@@ -160,7 +160,7 @@ theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : 
     simp only [exists_prop, Set.mem_iUnion, Option.mem_def]
     constructor
     · intro hy
-      refine' ⟨x, (Encodable.decode₂_is_partial_inv _ _).2 rfl, hy⟩
+      exact ⟨x, (Encodable.decode₂_is_partial_inv _ _).2 rfl, hy⟩
     · rintro ⟨b, hb₁, hb₂⟩
       rw [Encodable.decode₂_is_partial_inv _ _] at hb₁
       rwa [← Encodable.encode_injective hb₁]
chore: Remove unnecessary "rw"s (#10704)

Remove unnecessary "rw"s.

Diff
@@ -500,7 +500,7 @@ theorem toSignedMeasure_sub_apply {μ ν : Measure α} [IsFiniteMeasure μ] [IsF
     {i : Set α} (hi : MeasurableSet i) :
     (μ.toSignedMeasure - ν.toSignedMeasure) i = (μ i).toReal - (ν i).toReal := by
   rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi,
-    Measure.toSignedMeasure_apply_measurable hi, sub_eq_add_neg]
+    Measure.toSignedMeasure_apply_measurable hi]
 #align measure_theory.measure.to_signed_measure_sub_apply MeasureTheory.Measure.toSignedMeasure_sub_apply
 
 end Measure
feat: Complete NNReal coercion lemmas (#10214)

Add a few missing lemmas about the coercion NNReal → Real. Remove a bunch of protected on the existing coercion lemmas (so that it matches the convention for other coercions). Rename NNReal.coe_eq to NNReal.coe_inj

From LeanAPAP

Diff
@@ -1409,7 +1409,7 @@ theorem toSignedMeasure_toMeasureOfZeroLE :
       ((le_restrict_univ_iff_le _ _).2 (zero_le_toSignedMeasure μ)) = μ := by
   refine' Measure.ext fun i hi => _
   lift μ i to ℝ≥0 using (measure_lt_top _ _).ne with m hm
-  rw [SignedMeasure.toMeasureOfZeroLE_apply _ _ _ hi, coe_inj]
+  rw [SignedMeasure.toMeasureOfZeroLE_apply _ _ _ hi, ENNReal.coe_inj]
   congr
   simp [hi, ← hm]
 #align measure_theory.measure.to_signed_measure_to_measure_of_zero_le MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLE
feat: Make the coercion ℝ≥0 → ℝ≥0∞ commute defeqly with nsmul and pow (#10225)

by tweaking the definition of the AddMonoid and MonoidWithZero instances for WithTop. Also unprotect ENNReal.coe_injective and rename ENNReal.coe_eq_coe → ENNReal.coe_inj.

From LeanAPAP

Diff
@@ -1409,7 +1409,7 @@ theorem toSignedMeasure_toMeasureOfZeroLE :
       ((le_restrict_univ_iff_le _ _).2 (zero_le_toSignedMeasure μ)) = μ := by
   refine' Measure.ext fun i hi => _
   lift μ i to ℝ≥0 using (measure_lt_top _ _).ne with m hm
-  rw [SignedMeasure.toMeasureOfZeroLE_apply _ _ _ hi, coe_eq_coe]
+  rw [SignedMeasure.toMeasureOfZeroLE_apply _ _ _ hi, coe_inj]
   congr
   simp [hi, ← hm]
 #align measure_theory.measure.to_signed_measure_to_measure_of_zero_le MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLE
chore(*): use ∀ s ⊆ t, _ etc (#9276)

Changes in this PR shouldn't change the public API. The only changes about ∃ x ∈ s, _ is inside a proof.

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -1167,7 +1167,7 @@ namespace MutuallySingular
 variable {v v₁ v₂ : VectorMeasure α M} {w w₁ w₂ : VectorMeasure α N}
 
 theorem mk (s : Set α) (hs : MeasurableSet s) (h₁ : ∀ t ⊆ s, MeasurableSet t → v t = 0)
-    (h₂ : ∀ (t) (_ : t ⊆ sᶜ), MeasurableSet t → w t = 0) : v ⟂ᵥ w := by
+    (h₂ : ∀ t ⊆ sᶜ, MeasurableSet t → w t = 0) : v ⟂ᵥ w := by
   refine' ⟨s, hs, fun t hst => _, fun t hst => _⟩ <;> by_cases ht : MeasurableSet t
   · exact h₁ t hst ht
   · exact not_measurable v ht
chore(*): use ∃ x ∈ s, _ instead of ∃ (x) (_ : x ∈ s), _ (#9215)

Follow-up #9184

Diff
@@ -1156,7 +1156,7 @@ to use. This is equivalent to the definition which requires measurability. To pr
 `MutuallySingular` with the measurability condition, use
 `MeasureTheory.VectorMeasure.MutuallySingular.mk`. -/
 def MutuallySingular (v : VectorMeasure α M) (w : VectorMeasure α N) : Prop :=
-  ∃ s : Set α, MeasurableSet s ∧ (∀ t ⊆ s, v t = 0) ∧ ∀ (t) (_ : t ⊆ sᶜ), w t = 0
+  ∃ s : Set α, MeasurableSet s ∧ (∀ t ⊆ s, v t = 0) ∧ ∀ t ⊆ sᶜ, w t = 0
 #align measure_theory.vector_measure.mutually_singular MeasureTheory.VectorMeasure.MutuallySingular
 
 @[inherit_doc VectorMeasure.MutuallySingular]
chore(*): use ∃ x ∈ s, _ instead of ∃ (x) (_ : x ∈ s), _ (#9184)

Search for [∀∃].*(_ and manually replace some occurrences with more readable versions. In case of , the new expressions are defeq to the old ones. In case of , they differ by exists_prop.

In some rare cases, golf proofs that needed fixing.

Diff
@@ -1156,7 +1156,7 @@ to use. This is equivalent to the definition which requires measurability. To pr
 `MutuallySingular` with the measurability condition, use
 `MeasureTheory.VectorMeasure.MutuallySingular.mk`. -/
 def MutuallySingular (v : VectorMeasure α M) (w : VectorMeasure α N) : Prop :=
-  ∃ s : Set α, MeasurableSet s ∧ (∀ (t) (_ : t ⊆ s), v t = 0) ∧ ∀ (t) (_ : t ⊆ sᶜ), w t = 0
+  ∃ s : Set α, MeasurableSet s ∧ (∀ t ⊆ s, v t = 0) ∧ ∀ (t) (_ : t ⊆ sᶜ), w t = 0
 #align measure_theory.vector_measure.mutually_singular MeasureTheory.VectorMeasure.MutuallySingular
 
 @[inherit_doc VectorMeasure.MutuallySingular]
@@ -1166,7 +1166,7 @@ namespace MutuallySingular
 
 variable {v v₁ v₂ : VectorMeasure α M} {w w₁ w₂ : VectorMeasure α N}
 
-theorem mk (s : Set α) (hs : MeasurableSet s) (h₁ : ∀ (t) (_ : t ⊆ s), MeasurableSet t → v t = 0)
+theorem mk (s : Set α) (hs : MeasurableSet s) (h₁ : ∀ t ⊆ s, MeasurableSet t → v t = 0)
     (h₂ : ∀ (t) (_ : t ⊆ sᶜ), MeasurableSet t → w t = 0) : v ⟂ᵥ w := by
   refine' ⟨s, hs, fun t hst => _, fun t hst => _⟩ <;> by_cases ht : MeasurableSet t
   · exact h₁ t hst ht
chore: tidy various files (#9016)
Diff
@@ -521,6 +521,17 @@ theorem ennrealToMeasure_apply {m : MeasurableSpace α} {v : VectorMeasure α 
   rw [ennrealToMeasure, ofMeasurable_apply _ hs]
 #align measure_theory.vector_measure.ennreal_to_measure_apply MeasureTheory.VectorMeasure.ennrealToMeasure_apply
 
+@[simp]
+theorem _root_.MeasureTheory.Measure.toENNRealVectorMeasure_ennrealToMeasure
+    (μ : VectorMeasure α ℝ≥0∞) :
+    toENNRealVectorMeasure (ennrealToMeasure μ) = μ := ext fun s hs => by
+  rw [toENNRealVectorMeasure_apply_measurable hs, ennrealToMeasure_apply hs]
+
+@[simp]
+theorem ennrealToMeasure_toENNRealVectorMeasure (μ : Measure α) :
+    ennrealToMeasure (toENNRealVectorMeasure μ) = μ := Measure.ext fun s hs => by
+  rw [ennrealToMeasure_apply hs, toENNRealVectorMeasure_apply_measurable hs]
+
 /-- The equiv between `VectorMeasure α ℝ≥0∞` and `Measure α` formed by
 `MeasureTheory.VectorMeasure.ennrealToMeasure` and
 `MeasureTheory.Measure.toENNRealVectorMeasure`. -/
@@ -528,10 +539,8 @@ theorem ennrealToMeasure_apply {m : MeasurableSpace α} {v : VectorMeasure α 
 def equivMeasure [MeasurableSpace α] : VectorMeasure α ℝ≥0∞ ≃ Measure α where
   toFun := ennrealToMeasure
   invFun := toENNRealVectorMeasure
-  left_inv _ := ext fun s hs => by
-    rw [toENNRealVectorMeasure_apply_measurable hs, ennrealToMeasure_apply hs]
-  right_inv _ := Measure.ext fun s hs => by
-    rw [ennrealToMeasure_apply hs, toENNRealVectorMeasure_apply_measurable hs]
+  left_inv := toENNRealVectorMeasure_ennrealToMeasure
+  right_inv := ennrealToMeasure_toENNRealVectorMeasure
 #align measure_theory.vector_measure.equiv_measure MeasureTheory.VectorMeasure.equivMeasure
 
 end
chore: tidy various files (#8409)
Diff
@@ -54,7 +54,7 @@ variable {α β : Type*} {m : MeasurableSpace α}
 /-- A vector measure on a measurable space `α` is a σ-additive `M`-valued function (for some `M`
 an add monoid) such that the empty set and non-measurable sets are mapped to zero. -/
 structure VectorMeasure (α : Type*) [MeasurableSpace α] (M : Type*) [AddCommMonoid M]
-  [TopologicalSpace M] where
+    [TopologicalSpace M] where
   measureOf' : Set α → M
   empty' : measureOf' ∅ = 0
   not_measurable' ⦃i : Set α⦄ : ¬MeasurableSet i → measureOf' i = 0
@@ -701,8 +701,7 @@ theorem restrict_univ : v.restrict Set.univ = v :=
 theorem restrict_zero {i : Set α} : (0 : VectorMeasure α M).restrict i = 0 := by
   by_cases hi : MeasurableSet i
   · ext j hj
-    rw [restrict_apply 0 hi hj]
-    rfl
+    rw [restrict_apply 0 hi hj, zero_apply, zero_apply]
   · exact dif_neg hi
 #align measure_theory.vector_measure.restrict_zero MeasureTheory.VectorMeasure.restrict_zero
 
@@ -1151,7 +1150,6 @@ def MutuallySingular (v : VectorMeasure α M) (w : VectorMeasure α N) : Prop :=
   ∃ s : Set α, MeasurableSet s ∧ (∀ (t) (_ : t ⊆ s), v t = 0) ∧ ∀ (t) (_ : t ⊆ sᶜ), w t = 0
 #align measure_theory.vector_measure.mutually_singular MeasureTheory.VectorMeasure.MutuallySingular
 
--- mathport name: vector_measure.mutually_singular
 @[inherit_doc VectorMeasure.MutuallySingular]
 scoped[MeasureTheory] infixl:60 " ⟂ᵥ " => MeasureTheory.VectorMeasure.MutuallySingular
 
chore: split MeasureSpace.lean into 3 files (#8389)

The original file MeasureSpace.lean is a mess of 4580 lines, with a lot of changes of namespaces, active variables, and so on. We split it into three files:

  • MeasureSpace, with 2095 lines left (some stuff could still be moved to other files, but it already makes much more sense)
  • Restrict, with everything on restriction of measures (1100 lines)
  • Typeclasses, defining finite measures, sigma-finite measures, and so on (1443 lines)

The new files are still large, but less so. This is 99% moving around and ensuring that variables and namespaces remain the same (#align statements have been very useful for this), and 1% adding classical in proofs and [Decidable ...] assumptions in statements, as I haven't opened Classical in the new files.

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Kexing Ying. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kexing Ying
 -/
-import Mathlib.MeasureTheory.Measure.MeasureSpace
+import Mathlib.MeasureTheory.Measure.Typeclasses
 import Mathlib.Analysis.Complex.Basic
 
 #align_import measure_theory.measure.vector_measure from "leanprover-community/mathlib"@"70a4f2197832bceab57d7f41379b2592d1110570"
chore(InfiniteSum): use dot notation (#8358)

Rename

  • summable_of_norm_bounded -> Summable.of_norm_bounded;
  • summable_of_norm_bounded_eventually -> Summable.of_norm_bounded_eventually;
  • summable_of_nnnorm_bounded -> Summable.of_nnnorm_bounded;
  • summable_of_summable_norm -> Summable.of_norm;
  • summable_of_summable_nnnorm -> Summable.of_nnnorm;

New lemmas

  • Summable.of_norm_bounded_eventually_nat
  • Summable.norm

Misc changes

  • Golf a few proofs.
Diff
@@ -412,24 +412,9 @@ def toSignedMeasure (μ : Measure α) [hμ : IsFiniteMeasure μ] : SignedMeasure
   empty' := by simp [μ.empty]
   not_measurable' _ hi := if_neg hi
   m_iUnion' f hf₁ hf₂ := by
-    simp only
-    rw [μ.m_iUnion hf₁ hf₂, ENNReal.tsum_toReal_eq, if_pos (MeasurableSet.iUnion hf₁),
-      Summable.hasSum_iff]
-    · congr
-      ext n
-      rw [if_pos (hf₁ n)]
-    · refine' @summable_of_nonneg_of_le _ (ENNReal.toReal ∘ μ ∘ f) _ _ _ _
-      · intro
-        split_ifs
-        exacts [ENNReal.toReal_nonneg, le_rfl]
-      · intro
-        split_ifs
-        exacts [le_rfl, ENNReal.toReal_nonneg]
-      exact summable_measure_toReal hf₁ hf₂
-    · intro a ha
-      apply ne_of_lt hμ.measure_univ_lt_top
-      rw [eq_top_iff, ← ha]
-      exact measure_mono (Set.subset_univ _)
+    simp only [*, MeasurableSet.iUnion hf₁, if_true, measure_iUnion hf₂ hf₁]
+    rw [ENNReal.tsum_toReal_eq]
+    exacts [(summable_measure_toReal hf₁ hf₂).hasSum, fun _ ↦ measure_ne_top _ _]
 #align measure_theory.measure.to_signed_measure MeasureTheory.Measure.toSignedMeasure
 
 theorem toSignedMeasure_apply_measurable {μ : Measure α} [IsFiniteMeasure μ] {i : Set α}
chore: Make Set/Finset lemmas match lattice lemma names (#7378)

Rename union_eq_left_iff_subset to union_eq_left to match sup_eq_left. Similarly for the right and inter versions.

Diff
@@ -698,7 +698,7 @@ theorem restrict_apply {i : Set α} (hi : MeasurableSet i) {j : Set α} (hj : Me
 
 theorem restrict_eq_self {i : Set α} (hi : MeasurableSet i) {j : Set α} (hj : MeasurableSet j)
     (hij : j ⊆ i) : v.restrict i j = v j := by
-  rw [restrict_apply v hi hj, Set.inter_eq_left_iff_subset.2 hij]
+  rw [restrict_apply v hi hj, Set.inter_eq_left.2 hij]
 #align measure_theory.vector_measure.restrict_eq_self MeasureTheory.VectorMeasure.restrict_eq_self
 
 @[simp]
@@ -936,7 +936,7 @@ theorem restrict_le_restrict_iUnion {f : ℕ → Set α} (hf₁ : ∀ n, Measura
     (hf₂ : ∀ n, v ≤[f n] w) : v ≤[⋃ n, f n] w := by
   refine' restrict_le_restrict_of_subset_le v w fun a ha₁ ha₂ => _
   have ha₃ : ⋃ n, a ∩ disjointed f n = a := by
-    rwa [← Set.inter_iUnion, iUnion_disjointed, Set.inter_eq_left_iff_subset]
+    rwa [← Set.inter_iUnion, iUnion_disjointed, Set.inter_eq_left]
   have ha₄ : Pairwise (Disjoint on fun n => a ∩ disjointed f n) :=
     (disjoint_disjointed _).mono fun i j => Disjoint.mono inf_le_right inf_le_right
   rw [← ha₃, v.of_disjoint_iUnion_nat _ ha₄, w.of_disjoint_iUnion_nat _ ha₄]
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -49,11 +49,11 @@ open Classical BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
-variable {α β : Type _} {m : MeasurableSpace α}
+variable {α β : Type*} {m : MeasurableSpace α}
 
 /-- A vector measure on a measurable space `α` is a σ-additive `M`-valued function (for some `M`
 an add monoid) such that the empty set and non-measurable sets are mapped to zero. -/
-structure VectorMeasure (α : Type _) [MeasurableSpace α] (M : Type _) [AddCommMonoid M]
+structure VectorMeasure (α : Type*) [MeasurableSpace α] (M : Type*) [AddCommMonoid M]
   [TopologicalSpace M] where
   measureOf' : Set α → M
   empty' : measureOf' ∅ = 0
@@ -67,12 +67,12 @@ structure VectorMeasure (α : Type _) [MeasurableSpace α] (M : Type _) [AddComm
 #align measure_theory.vector_measure.m_Union' MeasureTheory.VectorMeasure.m_iUnion'
 
 /-- A `SignedMeasure` is an `ℝ`-vector measure. -/
-abbrev SignedMeasure (α : Type _) [MeasurableSpace α] :=
+abbrev SignedMeasure (α : Type*) [MeasurableSpace α] :=
   VectorMeasure α ℝ
 #align measure_theory.signed_measure MeasureTheory.SignedMeasure
 
 /-- A `ComplexMeasure` is a `ℂ`-vector measure. -/
-abbrev ComplexMeasure (α : Type _) [MeasurableSpace α] :=
+abbrev ComplexMeasure (α : Type*) [MeasurableSpace α] :=
   VectorMeasure α ℂ
 #align measure_theory.complex_measure MeasureTheory.ComplexMeasure
 
@@ -82,7 +82,7 @@ namespace VectorMeasure
 
 section
 
-variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
+variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
 
 attribute [coe] VectorMeasure.measureOf'
 
@@ -193,7 +193,7 @@ theorem of_add_of_diff {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet
   rw [← of_union (@Set.disjoint_sdiff_right _ A B) hA (hB.diff hA), Set.union_diff_cancel h]
 #align measure_theory.vector_measure.of_add_of_diff MeasureTheory.VectorMeasure.of_add_of_diff
 
-theorem of_diff {M : Type _} [AddCommGroup M] [TopologicalSpace M] [T2Space M]
+theorem of_diff {M : Type*} [AddCommGroup M] [TopologicalSpace M] [T2Space M]
     {v : VectorMeasure α M} {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet B)
     (h : A ⊆ B) : v (B \ A) = v B - v A := by
   rw [← of_add_of_diff hA hB h, add_sub_cancel']
@@ -218,13 +218,13 @@ theorem of_diff_of_diff_eq_zero {A B : Set α} (hA : MeasurableSet A) (hB : Meas
     _ = v (A \ B) + v B := by rw [Set.union_comm, Set.inter_comm, Set.diff_union_inter]
 #align measure_theory.vector_measure.of_diff_of_diff_eq_zero MeasureTheory.VectorMeasure.of_diff_of_diff_eq_zero
 
-theorem of_iUnion_nonneg {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
+theorem of_iUnion_nonneg {M : Type*} [TopologicalSpace M] [OrderedAddCommMonoid M]
     [OrderClosedTopology M] {v : VectorMeasure α M} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) (hf₃ : ∀ i, 0 ≤ v (f i)) : 0 ≤ v (⋃ i, f i) :=
   (v.of_disjoint_iUnion_nat hf₁ hf₂).symm ▸ tsum_nonneg hf₃
 #align measure_theory.vector_measure.of_Union_nonneg MeasureTheory.VectorMeasure.of_iUnion_nonneg
 
-theorem of_iUnion_nonpos {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
+theorem of_iUnion_nonpos {M : Type*} [TopologicalSpace M] [OrderedAddCommMonoid M]
     [OrderClosedTopology M] {v : VectorMeasure α M} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) (hf₃ : ∀ i, v (f i) ≤ 0) : v (⋃ i, f i) ≤ 0 :=
   (v.of_disjoint_iUnion_nat hf₁ hf₂).symm ▸ tsum_nonpos hf₃
@@ -248,9 +248,9 @@ end
 
 section SMul
 
-variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
+variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
 
-variable {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
+variable {R : Type*} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
 
 /-- Given a real number `r` and a signed measure `s`, `smul r s` is the signed
 measure corresponding to the function `r • s`. -/
@@ -276,7 +276,7 @@ end SMul
 
 section AddCommMonoid
 
-variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
+variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
 
 instance instZero : Zero (VectorMeasure α M) :=
   ⟨⟨0, rfl, fun _ _ => rfl, fun _ _ _ => hasSum_zero⟩⟩
@@ -330,7 +330,7 @@ end AddCommMonoid
 
 section AddCommGroup
 
-variable {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
+variable {M : Type*} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
 
 /-- The negative of a vector measure is a vector measure. -/
 def neg (v : VectorMeasure α M) : VectorMeasure α M where
@@ -379,9 +379,9 @@ end AddCommGroup
 
 section DistribMulAction
 
-variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
+variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
 
-variable {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
+variable {R : Type*} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
 
 instance instDistribMulAction [ContinuousAdd M] : DistribMulAction R (VectorMeasure α M) :=
   Function.Injective.distribMulAction coeFnAddMonoidHom coe_injective coe_smul
@@ -391,9 +391,9 @@ end DistribMulAction
 
 section Module
 
-variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
+variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
 
-variable {R : Type _} [Semiring R] [Module R M] [ContinuousConstSMul R M]
+variable {R : Type*} [Semiring R] [Module R M] [ContinuousConstSMul R M]
 
 instance instModule [ContinuousAdd M] : Module R (VectorMeasure α M) :=
   Function.Injective.module R coeFnAddMonoidHom coe_injective coe_smul
@@ -555,7 +555,7 @@ section
 
 variable [MeasurableSpace α] [MeasurableSpace β]
 
-variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
+variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
 
 variable (v : VectorMeasure α M)
 
@@ -599,7 +599,7 @@ theorem map_zero (f : α → β) : (0 : VectorMeasure α M).map f = 0 := by
 
 section
 
-variable {N : Type _} [AddCommMonoid N] [TopologicalSpace N]
+variable {N : Type*} [AddCommMonoid N] [TopologicalSpace N]
 
 /-- Given a vector measure `v` on `M` and a continuous `AddMonoidHom` `f : M → N`, `f ∘ v` is a
 vector measure on `N`. -/
@@ -651,7 +651,7 @@ end ContinuousAdd
 
 section Module
 
-variable {R : Type _} [Semiring R] [Module R M] [Module R N]
+variable {R : Type*} [Semiring R] [Module R M] [Module R N]
 
 variable [ContinuousAdd M] [ContinuousAdd N] [ContinuousConstSMul R M] [ContinuousConstSMul R N]
 
@@ -764,9 +764,9 @@ section
 
 variable [MeasurableSpace β]
 
-variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
+variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
 
-variable {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
+variable {R : Type*} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M]
 
 @[simp]
 theorem map_smul {v : VectorMeasure α M} {f : α → β} (c : R) : (c • v).map f = c • v.map f := by
@@ -797,9 +797,9 @@ section
 
 variable [MeasurableSpace β]
 
-variable {M : Type _} [AddCommMonoid M] [TopologicalSpace M]
+variable {M : Type*} [AddCommMonoid M] [TopologicalSpace M]
 
-variable {R : Type _} [Semiring R] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M]
+variable {R : Type*} [Semiring R] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M]
 
 /-- `VectorMeasure.map` as a linear map. -/
 @[simps]
@@ -821,7 +821,7 @@ end
 
 section
 
-variable {M : Type _} [TopologicalSpace M] [AddCommMonoid M] [PartialOrder M]
+variable {M : Type*} [TopologicalSpace M] [AddCommMonoid M] [PartialOrder M]
 
 /-- Vector measures over a partially ordered monoid is partially ordered.
 
@@ -854,7 +854,7 @@ scoped[MeasureTheory]
 
 section
 
-variable {M : Type _} [TopologicalSpace M] [AddCommMonoid M] [PartialOrder M]
+variable {M : Type*} [TopologicalSpace M] [AddCommMonoid M] [PartialOrder M]
 
 variable (v w : VectorMeasure α M)
 
@@ -907,7 +907,7 @@ end
 
 section
 
-variable {M : Type _} [TopologicalSpace M] [OrderedAddCommGroup M] [TopologicalAddGroup M]
+variable {M : Type*} [TopologicalSpace M] [OrderedAddCommGroup M] [TopologicalAddGroup M]
 
 variable (v w : VectorMeasure α M)
 
@@ -928,7 +928,7 @@ end
 
 section
 
-variable {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M] [OrderClosedTopology M]
+variable {M : Type*} [TopologicalSpace M] [OrderedAddCommMonoid M] [OrderClosedTopology M]
 
 variable (v w : VectorMeasure α M) {i j : Set α}
 
@@ -979,7 +979,7 @@ end
 
 section
 
-variable {M : Type _} [TopologicalSpace M] [OrderedAddCommMonoid M]
+variable {M : Type*} [TopologicalSpace M] [OrderedAddCommMonoid M]
 
 variable (v w : VectorMeasure α M) {i j : Set α}
 
@@ -1025,7 +1025,7 @@ end
 
 section
 
-variable {M : Type _} [TopologicalSpace M] [LinearOrderedAddCommMonoid M]
+variable {M : Type*} [TopologicalSpace M] [LinearOrderedAddCommMonoid M]
 
 variable (v w : VectorMeasure α M) {i j : Set α}
 
@@ -1041,7 +1041,7 @@ end
 
 section
 
-variable {M : Type _} [TopologicalSpace M] [AddCommMonoid M] [PartialOrder M]
+variable {M : Type*} [TopologicalSpace M] [AddCommMonoid M] [PartialOrder M]
   [CovariantClass M M (· + ·) (· ≤ ·)] [ContinuousAdd M]
 
 instance covariant_add_le :
@@ -1053,7 +1053,7 @@ end
 
 section
 
-variable {L M N : Type _}
+variable {L M N : Type*}
 
 variable [AddCommMonoid L] [TopologicalSpace L] [AddCommMonoid M] [TopologicalSpace M]
   [AddCommMonoid N] [TopologicalSpace N]
@@ -1100,13 +1100,13 @@ theorem zero (v : VectorMeasure α N) : (0 : VectorMeasure α M) ≪ᵥ v :=
   fun s _ => VectorMeasure.zero_apply s
 #align measure_theory.vector_measure.absolutely_continuous.zero MeasureTheory.VectorMeasure.AbsolutelyContinuous.zero
 
-theorem neg_left {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
+theorem neg_left {M : Type*} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ≪ᵥ w) : -v ≪ᵥ w := by
   intro s hs
   rw [neg_apply, h hs, neg_zero]
 #align measure_theory.vector_measure.absolutely_continuous.neg_left MeasureTheory.VectorMeasure.AbsolutelyContinuous.neg_left
 
-theorem neg_right {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
+theorem neg_right {N : Type*} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ≪ᵥ w) : v ≪ᵥ -w := by
   intro s hs
   rw [neg_apply, neg_eq_zero] at hs
@@ -1119,14 +1119,14 @@ theorem add [ContinuousAdd M] {v₁ v₂ : VectorMeasure α M} {w : VectorMeasur
   rw [add_apply, hv₁ hs, hv₂ hs, zero_add]
 #align measure_theory.vector_measure.absolutely_continuous.add MeasureTheory.VectorMeasure.AbsolutelyContinuous.add
 
-theorem sub {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
+theorem sub {M : Type*} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v₁ v₂ : VectorMeasure α M} {w : VectorMeasure α N} (hv₁ : v₁ ≪ᵥ w) (hv₂ : v₂ ≪ᵥ w) :
     v₁ - v₂ ≪ᵥ w := by
   intro s hs
   rw [sub_apply, hv₁ hs, hv₂ hs, zero_sub, neg_zero]
 #align measure_theory.vector_measure.absolutely_continuous.sub MeasureTheory.VectorMeasure.AbsolutelyContinuous.sub
 
-theorem smul {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M] {r : R}
+theorem smul {R : Type*} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M] {r : R}
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ≪ᵥ w) : r • v ≪ᵥ w := by
   intro s hs
   rw [smul_apply, h hs, smul_zero]
@@ -1221,18 +1221,18 @@ theorem add_right [T2Space M] [ContinuousAdd N] (h₁ : v ⟂ᵥ w₁) (h₂ : v
   (add_left h₁.symm h₂.symm).symm
 #align measure_theory.vector_measure.mutually_singular.add_right MeasureTheory.VectorMeasure.MutuallySingular.add_right
 
-theorem smul_right {R : Type _} [Semiring R] [DistribMulAction R N] [ContinuousConstSMul R N]
+theorem smul_right {R : Type*} [Semiring R] [DistribMulAction R N] [ContinuousConstSMul R N]
     (r : R) (h : v ⟂ᵥ w) : v ⟂ᵥ r • w :=
   let ⟨s, hmeas, hs₁, hs₂⟩ := h
   ⟨s, hmeas, hs₁, fun t ht => by simp only [coe_smul, Pi.smul_apply, hs₂ t ht, smul_zero]⟩
 #align measure_theory.vector_measure.mutually_singular.smul_right MeasureTheory.VectorMeasure.MutuallySingular.smul_right
 
-theorem smul_left {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M] (r : R)
+theorem smul_left {R : Type*} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R M] (r : R)
     (h : v ⟂ᵥ w) : r • v ⟂ᵥ w :=
   (smul_right r h.symm).symm
 #align measure_theory.vector_measure.mutually_singular.smul_left MeasureTheory.VectorMeasure.MutuallySingular.smul_left
 
-theorem neg_left {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
+theorem neg_left {M : Type*} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ⟂ᵥ w) : -v ⟂ᵥ w := by
   obtain ⟨u, hmu, hu₁, hu₂⟩ := h
   refine' ⟨u, hmu, fun s hs => _, hu₂⟩
@@ -1240,19 +1240,19 @@ theorem neg_left {M : Type _} [AddCommGroup M] [TopologicalSpace M] [Topological
   exact hu₁ s hs
 #align measure_theory.vector_measure.mutually_singular.neg_left MeasureTheory.VectorMeasure.MutuallySingular.neg_left
 
-theorem neg_right {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
+theorem neg_right {N : Type*} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
     {v : VectorMeasure α M} {w : VectorMeasure α N} (h : v ⟂ᵥ w) : v ⟂ᵥ -w :=
   h.symm.neg_left.symm
 #align measure_theory.vector_measure.mutually_singular.neg_right MeasureTheory.VectorMeasure.MutuallySingular.neg_right
 
 @[simp]
-theorem neg_left_iff {M : Type _} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
+theorem neg_left_iff {M : Type*} [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M]
     {v : VectorMeasure α M} {w : VectorMeasure α N} : -v ⟂ᵥ w ↔ v ⟂ᵥ w :=
   ⟨fun h => neg_neg v ▸ h.neg_left, neg_left⟩
 #align measure_theory.vector_measure.mutually_singular.neg_left_iff MeasureTheory.VectorMeasure.MutuallySingular.neg_left_iff
 
 @[simp]
-theorem neg_right_iff {N : Type _} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
+theorem neg_right_iff {N : Type*} [AddCommGroup N] [TopologicalSpace N] [TopologicalAddGroup N]
     {v : VectorMeasure α M} {w : VectorMeasure α N} : v ⟂ᵥ -w ↔ v ⟂ᵥ w :=
   ⟨fun h => neg_neg w ▸ h.neg_right, neg_right⟩
 #align measure_theory.vector_measure.mutually_singular.neg_right_iff MeasureTheory.VectorMeasure.MutuallySingular.neg_right_iff
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Kexing Ying. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kexing Ying
-
-! This file was ported from Lean 3 source module measure_theory.measure.vector_measure
-! leanprover-community/mathlib commit 70a4f2197832bceab57d7f41379b2592d1110570
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Measure.MeasureSpace
 import Mathlib.Analysis.Complex.Basic
 
+#align_import measure_theory.measure.vector_measure from "leanprover-community/mathlib"@"70a4f2197832bceab57d7f41379b2592d1110570"
+
 /-!
 
 # Vector valued measures
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -938,7 +938,7 @@ variable (v w : VectorMeasure α M) {i j : Set α}
 theorem restrict_le_restrict_iUnion {f : ℕ → Set α} (hf₁ : ∀ n, MeasurableSet (f n))
     (hf₂ : ∀ n, v ≤[f n] w) : v ≤[⋃ n, f n] w := by
   refine' restrict_le_restrict_of_subset_le v w fun a ha₁ ha₂ => _
-  have ha₃ : (⋃ n, a ∩ disjointed f n) = a := by
+  have ha₃ : ⋃ n, a ∩ disjointed f n = a := by
     rwa [← Set.inter_iUnion, iUnion_disjointed, Set.inter_eq_left_iff_subset]
   have ha₄ : Pairwise (Disjoint on fun n => a ∩ disjointed f n) :=
     (disjoint_disjointed _).mono fun i j => Disjoint.mono inf_le_right inf_le_right
feat: don't re-elaborate terms in set (#5386)

Fix the set tactic to not time out when dealing with slow to elaborate terms and many local hypotheses.

The root cause of this is that the rewrite [blah] at * tactic causes blah to be elaborated again and again for each local hypothesis, this is possibly a core issue that should be fixed separately, but in set we have the elaborated term already so we can just use it.

We also add some functionality to simply test / demonstrate failures when elaboration takes too long, namely sleepAtLeastHeartbeats and a sleep_heartbeats tactic.

@urkud was facing some slow running set's in https://github.com/leanprover-community/mathlib4/pull/4912, see https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Timeout.20in.20.60set.20.2E.2E.20with.60/near/367958828 that this issue was minimized from and should fix.

Some other linter failures show up due to changes to the set internals so fix these too.

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -148,7 +148,7 @@ variable [T2Space M] {v : VectorMeasure α M} {f : ℕ → Set α}
 theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : ∀ i, MeasurableSet (f i))
     (hf₂ : Pairwise (Disjoint on f)) : HasSum (fun i => v (f i)) (v (⋃ i, f i)) := by
   cases nonempty_encodable β
-  set g := fun i : ℕ => ⋃ (b : β) (H : b ∈ Encodable.decode₂ β i), f b with hg
+  set g := fun i : ℕ => ⋃ (b : β) (_ : b ∈ Encodable.decode₂ β i), f b with hg
   have hg₁ : ∀ i, MeasurableSet (g i) :=
     fun _ => MeasurableSet.iUnion fun b => MeasurableSet.iUnion fun _ => hf₁ b
   have hg₂ : Pairwise (Disjoint on g) := Encodable.iUnion_decode₂_disjoint_on hf₂
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -175,7 +175,7 @@ theorem hasSum_of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : 
     · exact (v.m_iUnion hg₁ hg₂).summable
     · intro x hx
       convert v.empty
-      simp only [Set.iUnion_eq_empty, Option.mem_def, not_exists, Set.mem_range] at hx⊢
+      simp only [Set.iUnion_eq_empty, Option.mem_def, not_exists, Set.mem_range] at hx ⊢
       intro i hi
       exact False.elim ((hx i) ((Encodable.decode₂_is_partial_inv _ _).1 hi))
 #align measure_theory.vector_measure.has_sum_of_disjoint_Union MeasureTheory.VectorMeasure.hasSum_of_disjoint_iUnion
@@ -1138,7 +1138,7 @@ theorem smul {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSM
 theorem map [MeasureSpace β] (h : v ≪ᵥ w) (f : α → β) : v.map f ≪ᵥ w.map f := by
   by_cases hf : Measurable f
   · refine' mk fun s hs hws => _
-    rw [map_apply _ hf hs] at hws⊢
+    rw [map_apply _ hf hs] at hws ⊢
     exact h hws
   · intro s _
     rw [map_not_measurable v hf, zero_apply]
chore: bump Std4 (#5219)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -467,8 +467,7 @@ theorem toSignedMeasure_zero : (0 : Measure α).toSignedMeasure = 0 := by
 @[simp]
 theorem toSignedMeasure_add (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
     (μ + ν).toSignedMeasure = μ.toSignedMeasure + ν.toSignedMeasure := by
-  ext i
-  intro hi
+  ext i hi
   rw [toSignedMeasure_apply_measurable hi, add_apply,
     ENNReal.toReal_add (ne_of_lt (measure_lt_top _ _)) (ne_of_lt (measure_lt_top _ _)),
     VectorMeasure.add_apply, toSignedMeasure_apply_measurable hi,
@@ -478,8 +477,7 @@ theorem toSignedMeasure_add (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteM
 @[simp]
 theorem toSignedMeasure_smul (μ : Measure α) [IsFiniteMeasure μ] (r : ℝ≥0) :
     (r • μ).toSignedMeasure = r • μ.toSignedMeasure := by
-  ext i
-  intro hi
+  ext i hi
   rw [toSignedMeasure_apply_measurable hi, VectorMeasure.smul_apply,
     toSignedMeasure_apply_measurable hi, coe_smul, Pi.smul_apply, ENNReal.toReal_smul]
 #align measure_theory.measure.to_signed_measure_smul MeasureTheory.Measure.toSignedMeasure_smul
@@ -597,8 +595,7 @@ theorem map_id : v.map id = v :=
 @[simp]
 theorem map_zero (f : α → β) : (0 : VectorMeasure α M).map f = 0 := by
   by_cases hf : Measurable f
-  · ext i
-    intro hi
+  · ext i hi
     rw [map_apply _ hf hi, zero_apply, zero_apply]
   · exact dif_neg hf
 #align measure_theory.vector_measure.map_zero MeasureTheory.VectorMeasure.map_zero
@@ -721,8 +718,7 @@ theorem restrict_univ : v.restrict Set.univ = v :=
 @[simp]
 theorem restrict_zero {i : Set α} : (0 : VectorMeasure α M).restrict i = 0 := by
   by_cases hi : MeasurableSet i
-  · ext j
-    intro hj
+  · ext j hj
     rw [restrict_apply 0 hi hj]
     rfl
   · exact dif_neg hi
@@ -734,8 +730,7 @@ variable [ContinuousAdd M]
 
 theorem map_add (v w : VectorMeasure α M) (f : α → β) : (v + w).map f = v.map f + w.map f := by
   by_cases hf : Measurable f
-  · ext i
-    intro hi
+  · ext i hi
     simp [map_apply _ hf hi]
   · simp [map, dif_neg hf]
 #align measure_theory.vector_measure.map_add MeasureTheory.VectorMeasure.map_add
@@ -751,8 +746,7 @@ def mapGm (f : α → β) : VectorMeasure α M →+ VectorMeasure β M where
 theorem restrict_add (v w : VectorMeasure α M) (i : Set α) :
     (v + w).restrict i = v.restrict i + w.restrict i := by
   by_cases hi : MeasurableSet i
-  · ext j
-    intro hj
+  · ext j hj
     simp [restrict_apply _ hi hj]
   · simp [restrict_not_measurable _ hi]
 #align measure_theory.vector_measure.restrict_add MeasureTheory.VectorMeasure.restrict_add
@@ -780,8 +774,7 @@ variable {R : Type _} [Semiring R] [DistribMulAction R M] [ContinuousConstSMul R
 @[simp]
 theorem map_smul {v : VectorMeasure α M} {f : α → β} (c : R) : (c • v).map f = c • v.map f := by
   by_cases hf : Measurable f
-  · ext i
-    intro hi
+  · ext i hi
     simp [map_apply _ hf hi]
   · simp only [map, dif_neg hf]
     -- `smul_zero` does not work since we do not require `ContinuousAdd`
@@ -793,8 +786,7 @@ theorem map_smul {v : VectorMeasure α M} {f : α → β} (c : R) : (c • v).ma
 theorem restrict_smul {v : VectorMeasure α M} {i : Set α} (c : R) :
     (c • v).restrict i = c • v.restrict i := by
   by_cases hi : MeasurableSet i
-  · ext j
-    intro hj
+  · ext j hj
     simp [restrict_apply _ hi hj]
   · simp only [restrict_not_measurable _ hi]
     -- `smul_zero` does not work since we do not require `ContinuousAdd`
@@ -1292,13 +1284,13 @@ def trim {m n : MeasurableSpace α} (v : VectorMeasure α M) (hle : m ≤ n) :
 variable {n : MeasurableSpace α} {v : VectorMeasure α M}
 
 theorem trim_eq_self : v.trim le_rfl = v := by
-  ext1 i hi
+  ext i hi
   exact if_pos hi
 #align measure_theory.vector_measure.trim_eq_self MeasureTheory.VectorMeasure.trim_eq_self
 
 @[simp]
 theorem zero_trim (hle : m ≤ n) : (0 : VectorMeasure α M).trim hle = 0 := by
-  ext1 i hi
+  ext i hi
   exact if_pos hi
 #align measure_theory.vector_measure.zero_trim MeasureTheory.VectorMeasure.zero_trim
 
@@ -1309,8 +1301,7 @@ theorem trim_measurableSet_eq (hle : m ≤ n) {i : Set α} (hi : MeasurableSet[m
 
 theorem restrict_trim (hle : m ≤ n) {i : Set α} (hi : MeasurableSet[m] i) :
     @VectorMeasure.restrict α m M _ _ (v.trim hle) i = (v.restrict i).trim hle := by
-  ext j
-  intro hj
+  ext j hj
   rw [@restrict_apply _ m, trim_measurableSet_eq hle hj, restrict_apply, trim_measurableSet_eq]
   all_goals measurability
 #align measure_theory.vector_measure.restrict_trim MeasureTheory.VectorMeasure.restrict_trim
@@ -1399,15 +1390,13 @@ instance toMeasureOfLEZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
 
 theorem toMeasureOfZeroLE_toSignedMeasure (hs : 0 ≤[Set.univ] s) :
     (s.toMeasureOfZeroLE Set.univ MeasurableSet.univ hs).toSignedMeasure = s := by
-  ext i
-  intro hi
+  ext i hi
   simp [hi, toMeasureOfZeroLE_apply _ _ _ hi]
 #align measure_theory.signed_measure.to_measure_of_zero_le_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfZeroLE_toSignedMeasure
 
 theorem toMeasureOfLEZero_toSignedMeasure (hs : s ≤[Set.univ] 0) :
     (s.toMeasureOfLEZero Set.univ MeasurableSet.univ hs).toSignedMeasure = -s := by
-  ext i
-  intro hi
+  ext i hi
   simp [hi, toMeasureOfLEZero_apply _ _ _ hi]
 #align measure_theory.signed_measure.to_measure_of_le_zero_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfLEZero_toSignedMeasure
 
chore: fix grammar 2/3 (#5002)

Part 2 of #5001

Diff
@@ -15,7 +15,7 @@ import Mathlib.Analysis.Complex.Basic
 
 # Vector valued measures
 
-This file defines vector valued measures, which are σ-additive functions from a set to a add monoid
+This file defines vector valued measures, which are σ-additive functions from a set to an add monoid
 `M` such that it maps the empty set and non-measurable sets to zero. In the case
 that `M = ℝ`, we called the vector measure a signed measure and write `SignedMeasure α`.
 Similarly, when `M = ℂ`, we call the measure a complex measure and write `ComplexMeasure α`.
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -38,7 +38,7 @@ We require all non-measurable sets to be mapped to zero in order for the extensi
 to only compare the underlying functions for measurable sets.
 
 We use `HasSum` instead of `tsum` in the definition of vector measures in comparison to `Measure`
-since this provides summablity.
+since this provides summability.
 
 ## Tags
 
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -188,7 +188,7 @@ theorem of_disjoint_iUnion [Countable β] {f : β → Set α} (hf₁ : ∀ i, Me
 theorem of_union {A B : Set α} (h : Disjoint A B) (hA : MeasurableSet A) (hB : MeasurableSet B) :
     v (A ∪ B) = v A + v B := by
   rw [Set.union_eq_iUnion, of_disjoint_iUnion, tsum_fintype, Fintype.sum_bool, cond, cond]
-  exacts[fun b => Bool.casesOn b hB hA, pairwise_disjoint_on_bool.2 h]
+  exacts [fun b => Bool.casesOn b hB hA, pairwise_disjoint_on_bool.2 h]
 #align measure_theory.vector_measure.of_union MeasureTheory.VectorMeasure.of_union
 
 theorem of_add_of_diff {A B : Set α} (hA : MeasurableSet A) (hB : MeasurableSet B) (h : A ⊆ B) :
@@ -424,10 +424,10 @@ def toSignedMeasure (μ : Measure α) [hμ : IsFiniteMeasure μ] : SignedMeasure
     · refine' @summable_of_nonneg_of_le _ (ENNReal.toReal ∘ μ ∘ f) _ _ _ _
       · intro
         split_ifs
-        exacts[ENNReal.toReal_nonneg, le_rfl]
+        exacts [ENNReal.toReal_nonneg, le_rfl]
       · intro
         split_ifs
-        exacts[le_rfl, ENNReal.toReal_nonneg]
+        exacts [le_rfl, ENNReal.toReal_nonneg]
       exact summable_measure_toReal hf₁ hf₂
     · intro a ha
       apply ne_of_lt hμ.measure_univ_lt_top
@@ -1224,7 +1224,7 @@ theorem add_left [T2Space N] [ContinuousAdd M] (h₁ : v₁ ⟂ᵥ w) (h₂ : v
       · by_cases hxu' : x ∈ uᶜ
         · exact Or.inl ⟨hxu', hx⟩
         rcases ht hx with (hxu | hxv)
-        exacts[False.elim (hxu' hxu), Or.inr ⟨⟨hxv, hxu'⟩, hx⟩]
+        exacts [False.elim (hxu' hxu), Or.inr ⟨⟨hxv, hxu'⟩, hx⟩]
       · cases' hx with hx hx <;> exact hx.2
 #align measure_theory.vector_measure.mutually_singular.add_left MeasureTheory.VectorMeasure.MutuallySingular.add_left
 
feat: port MeasureTheory.Measure.WithDensityVectorMeasure (#4715)
Diff
@@ -486,7 +486,7 @@ theorem toSignedMeasure_smul (μ : Measure α) [IsFiniteMeasure μ] (r : ℝ≥0
 
 /-- A measure is a vector measure over `ℝ≥0∞`. -/
 @[simps]
-def toEnnrealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞ where
+def toENNRealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞ where
   measureOf' := fun i : Set α => if MeasurableSet i then μ i else 0
   empty' := by simp [μ.empty]
   not_measurable' _ hi := if_neg hi
@@ -495,26 +495,26 @@ def toEnnrealVectorMeasure (μ : Measure α) : VectorMeasure α ℝ≥0∞ where
     rw [Summable.hasSum_iff ENNReal.summable, if_pos (MeasurableSet.iUnion hf₁),
       MeasureTheory.measure_iUnion hf₂ hf₁]
     exact tsum_congr fun n => if_pos (hf₁ n)
-#align measure_theory.measure.to_ennreal_vector_measure MeasureTheory.Measure.toEnnrealVectorMeasure
+#align measure_theory.measure.to_ennreal_vector_measure MeasureTheory.Measure.toENNRealVectorMeasure
 
-theorem toEnnrealVectorMeasure_apply_measurable {μ : Measure α} {i : Set α} (hi : MeasurableSet i) :
-    μ.toEnnrealVectorMeasure i = μ i :=
+theorem toENNRealVectorMeasure_apply_measurable {μ : Measure α} {i : Set α} (hi : MeasurableSet i) :
+    μ.toENNRealVectorMeasure i = μ i :=
   if_pos hi
-#align measure_theory.measure.to_ennreal_vector_measure_apply_measurable MeasureTheory.Measure.toEnnrealVectorMeasure_apply_measurable
+#align measure_theory.measure.to_ennreal_vector_measure_apply_measurable MeasureTheory.Measure.toENNRealVectorMeasure_apply_measurable
 
 @[simp]
-theorem toEnnrealVectorMeasure_zero : (0 : Measure α).toEnnrealVectorMeasure = 0 := by
+theorem toENNRealVectorMeasure_zero : (0 : Measure α).toENNRealVectorMeasure = 0 := by
   ext i
   simp
-#align measure_theory.measure.to_ennreal_vector_measure_zero MeasureTheory.Measure.toEnnrealVectorMeasure_zero
+#align measure_theory.measure.to_ennreal_vector_measure_zero MeasureTheory.Measure.toENNRealVectorMeasure_zero
 
 @[simp]
-theorem toEnnrealVectorMeasure_add (μ ν : Measure α) :
-    (μ + ν).toEnnrealVectorMeasure = μ.toEnnrealVectorMeasure + ν.toEnnrealVectorMeasure := by
+theorem toENNRealVectorMeasure_add (μ ν : Measure α) :
+    (μ + ν).toENNRealVectorMeasure = μ.toENNRealVectorMeasure + ν.toENNRealVectorMeasure := by
   refine' MeasureTheory.VectorMeasure.ext fun i hi => _
-  rw [toEnnrealVectorMeasure_apply_measurable hi, add_apply, VectorMeasure.add_apply,
-    toEnnrealVectorMeasure_apply_measurable hi, toEnnrealVectorMeasure_apply_measurable hi]
-#align measure_theory.measure.to_ennreal_vector_measure_add MeasureTheory.Measure.toEnnrealVectorMeasure_add
+  rw [toENNRealVectorMeasure_apply_measurable hi, add_apply, VectorMeasure.add_apply,
+    toENNRealVectorMeasure_apply_measurable hi, toENNRealVectorMeasure_apply_measurable hi]
+#align measure_theory.measure.to_ennreal_vector_measure_add MeasureTheory.Measure.toENNRealVectorMeasure_add
 
 theorem toSignedMeasure_sub_apply {μ ν : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν]
     {i : Set α} (hi : MeasurableSet i) :
@@ -543,15 +543,15 @@ theorem ennrealToMeasure_apply {m : MeasurableSpace α} {v : VectorMeasure α 
 
 /-- The equiv between `VectorMeasure α ℝ≥0∞` and `Measure α` formed by
 `MeasureTheory.VectorMeasure.ennrealToMeasure` and
-`MeasureTheory.Measure.toEnnrealVectorMeasure`. -/
+`MeasureTheory.Measure.toENNRealVectorMeasure`. -/
 @[simps]
 def equivMeasure [MeasurableSpace α] : VectorMeasure α ℝ≥0∞ ≃ Measure α where
   toFun := ennrealToMeasure
-  invFun := toEnnrealVectorMeasure
+  invFun := toENNRealVectorMeasure
   left_inv _ := ext fun s hs => by
-    rw [toEnnrealVectorMeasure_apply_measurable hs, ennrealToMeasure_apply hs]
+    rw [toENNRealVectorMeasure_apply_measurable hs, ennrealToMeasure_apply hs]
   right_inv _ := Measure.ext fun s hs => by
-    rw [ennrealToMeasure_apply hs, toEnnrealVectorMeasure_apply_measurable hs]
+    rw [ennrealToMeasure_apply hs, toENNRealVectorMeasure_apply_measurable hs]
 #align measure_theory.vector_measure.equiv_measure MeasureTheory.VectorMeasure.equivMeasure
 
 end
style: recover Is of Foo which is ported from is_foo (#4639)

I have misported is_foo to Foo because I misunderstood the rule for IsLawfulFoo. This PR recover Is of Foo which is ported from is_foo. This PR also renames some misported theorems.

Diff
@@ -410,7 +410,7 @@ namespace Measure
 
 /-- A finite measure coerced into a real function is a signed measure. -/
 @[simps]
-def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure α where
+def toSignedMeasure (μ : Measure α) [hμ : IsFiniteMeasure μ] : SignedMeasure α where
   measureOf' := fun i : Set α => if MeasurableSet i then (μ.measureOf i).toReal else 0
   empty' := by simp [μ.empty]
   not_measurable' _ hi := if_neg hi
@@ -435,20 +435,20 @@ def toSignedMeasure (μ : Measure α) [hμ : FiniteMeasure μ] : SignedMeasure 
       exact measure_mono (Set.subset_univ _)
 #align measure_theory.measure.to_signed_measure MeasureTheory.Measure.toSignedMeasure
 
-theorem toSignedMeasure_apply_measurable {μ : Measure α} [FiniteMeasure μ] {i : Set α}
+theorem toSignedMeasure_apply_measurable {μ : Measure α} [IsFiniteMeasure μ] {i : Set α}
     (hi : MeasurableSet i) : μ.toSignedMeasure i = (μ i).toReal :=
   if_pos hi
 #align measure_theory.measure.to_signed_measure_apply_measurable MeasureTheory.Measure.toSignedMeasure_apply_measurable
 
 -- Without this lemma, `singularPart_neg` in `MeasureTheory.Decomposition.Lebesgue` is
 -- extremely slow
-theorem toSignedMeasure_congr {μ ν : Measure α} [FiniteMeasure μ] [FiniteMeasure ν] (h : μ = ν) :
-    μ.toSignedMeasure = ν.toSignedMeasure := by
+theorem toSignedMeasure_congr {μ ν : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν]
+    (h : μ = ν) : μ.toSignedMeasure = ν.toSignedMeasure := by
   congr
 #align measure_theory.measure.to_signed_measure_congr MeasureTheory.Measure.toSignedMeasure_congr
 
-theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [FiniteMeasure μ]
-    [FiniteMeasure ν] : μ.toSignedMeasure = ν.toSignedMeasure ↔ μ = ν := by
+theorem toSignedMeasure_eq_toSignedMeasure_iff {μ ν : Measure α} [IsFiniteMeasure μ]
+    [IsFiniteMeasure ν] : μ.toSignedMeasure = ν.toSignedMeasure ↔ μ = ν := by
   refine' ⟨fun h => _, fun h => _⟩
   · ext1 i hi
     have : μ.toSignedMeasure i = ν.toSignedMeasure i := by rw [h]
@@ -465,7 +465,7 @@ theorem toSignedMeasure_zero : (0 : Measure α).toSignedMeasure = 0 := by
 #align measure_theory.measure.to_signed_measure_zero MeasureTheory.Measure.toSignedMeasure_zero
 
 @[simp]
-theorem toSignedMeasure_add (μ ν : Measure α) [FiniteMeasure μ] [FiniteMeasure ν] :
+theorem toSignedMeasure_add (μ ν : Measure α) [IsFiniteMeasure μ] [IsFiniteMeasure ν] :
     (μ + ν).toSignedMeasure = μ.toSignedMeasure + ν.toSignedMeasure := by
   ext i
   intro hi
@@ -476,7 +476,7 @@ theorem toSignedMeasure_add (μ ν : Measure α) [FiniteMeasure μ] [FiniteMeasu
 #align measure_theory.measure.to_signed_measure_add MeasureTheory.Measure.toSignedMeasure_add
 
 @[simp]
-theorem toSignedMeasure_smul (μ : Measure α) [FiniteMeasure μ] (r : ℝ≥0) :
+theorem toSignedMeasure_smul (μ : Measure α) [IsFiniteMeasure μ] (r : ℝ≥0) :
     (r • μ).toSignedMeasure = r • μ.toSignedMeasure := by
   ext i
   intro hi
@@ -516,8 +516,8 @@ theorem toEnnrealVectorMeasure_add (μ ν : Measure α) :
     toEnnrealVectorMeasure_apply_measurable hi, toEnnrealVectorMeasure_apply_measurable hi]
 #align measure_theory.measure.to_ennreal_vector_measure_add MeasureTheory.Measure.toEnnrealVectorMeasure_add
 
-theorem toSignedMeasure_sub_apply {μ ν : Measure α} [FiniteMeasure μ] [FiniteMeasure ν] {i : Set α}
-    (hi : MeasurableSet i) :
+theorem toSignedMeasure_sub_apply {μ ν : Measure α} [IsFiniteMeasure μ] [IsFiniteMeasure ν]
+    {i : Set α} (hi : MeasurableSet i) :
     (μ.toSignedMeasure - ν.toSignedMeasure) i = (μ i).toReal - (ν i).toReal := by
   rw [VectorMeasure.sub_apply, toSignedMeasure_apply_measurable hi,
     Measure.toSignedMeasure_apply_measurable hi, sub_eq_add_neg]
@@ -1383,7 +1383,7 @@ theorem toMeasureOfLEZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj
 
 /-- `SignedMeasure.toMeasureOfZeroLE` is a finite measure. -/
 instance toMeasureOfZeroLE_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
-    FiniteMeasure (s.toMeasureOfZeroLE i hi₁ hi) where
+    IsFiniteMeasure (s.toMeasureOfZeroLE i hi₁ hi) where
   measure_univ_lt_top := by
     rw [toMeasureOfZeroLE_apply s hi hi₁ MeasurableSet.univ]
     exact ENNReal.coe_lt_top
@@ -1391,7 +1391,7 @@ instance toMeasureOfZeroLE_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
 
 /-- `SignedMeasure.toMeasureOfLEZero` is a finite measure. -/
 instance toMeasureOfLEZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
-    FiniteMeasure (s.toMeasureOfLEZero i hi₁ hi) where
+    IsFiniteMeasure (s.toMeasureOfLEZero i hi₁ hi) where
   measure_univ_lt_top := by
     rw [toMeasureOfLEZero_apply s hi hi₁ MeasurableSet.univ]
     exact ENNReal.coe_lt_top
@@ -1417,7 +1417,7 @@ namespace Measure
 
 open VectorMeasure
 
-variable (μ : Measure α) [FiniteMeasure μ]
+variable (μ : Measure α) [IsFiniteMeasure μ]
 
 theorem zero_le_toSignedMeasure : 0 ≤ μ.toSignedMeasure := by
   rw [← le_restrict_univ_iff_le]
feat: port MeasureTheory.Decomposition.Jordan (#4500)

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -1327,18 +1327,18 @@ open VectorMeasure
 
 open MeasureTheory
 
-/-- The underlying function for `SignedMeasure.toMeasureOfZeroLe`. -/
-def toMeasureOfZeroLe' (s : SignedMeasure α) (i : Set α) (hi : 0 ≤[i] s) (j : Set α)
+/-- The underlying function for `SignedMeasure.toMeasureOfZeroLE`. -/
+def toMeasureOfZeroLE' (s : SignedMeasure α) (i : Set α) (hi : 0 ≤[i] s) (j : Set α)
     (hj : MeasurableSet j) : ℝ≥0∞ :=
   ((↑) : ℝ≥0 → ℝ≥0∞) ⟨s.restrict i j, le_trans (by simp) (hi j hj)⟩
-#align measure_theory.signed_measure.to_measure_of_zero_le' MeasureTheory.SignedMeasure.toMeasureOfZeroLe'
+#align measure_theory.signed_measure.to_measure_of_zero_le' MeasureTheory.SignedMeasure.toMeasureOfZeroLE'
 
-/-- Given a signed measure `s` and a positive measurable set `i`, `toMeasureOfZeroLe`
+/-- Given a signed measure `s` and a positive measurable set `i`, `toMeasureOfZeroLE`
 provides the measure, mapping measurable sets `j` to `s (i ∩ j)`. -/
-def toMeasureOfZeroLe (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet i) (hi₂ : 0 ≤[i] s) :
+def toMeasureOfZeroLE (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet i) (hi₂ : 0 ≤[i] s) :
     Measure α := by
-  refine' Measure.ofMeasurable (s.toMeasureOfZeroLe' i hi₂) _ _
-  · simp_rw [toMeasureOfZeroLe', s.restrict_apply hi₁ MeasurableSet.empty, Set.empty_inter i,
+  refine' Measure.ofMeasurable (s.toMeasureOfZeroLE' i hi₂) _ _
+  · simp_rw [toMeasureOfZeroLE', s.restrict_apply hi₁ MeasurableSet.empty, Set.empty_inter i,
       s.empty]
     rfl
   · intro f hf₁ hf₂
@@ -1346,7 +1346,7 @@ def toMeasureOfZeroLe (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet
     have h₂ : Pairwise (Disjoint on fun n : ℕ => i ∩ f n) := by
       intro n m hnm
       exact ((hf₂ hnm).inf_left' i).inf_right' i
-    simp only [toMeasureOfZeroLe', s.restrict_apply hi₁ (MeasurableSet.iUnion hf₁), Set.inter_comm,
+    simp only [toMeasureOfZeroLE', s.restrict_apply hi₁ (MeasurableSet.iUnion hf₁), Set.inter_comm,
       Set.inter_iUnion, s.of_disjoint_iUnion_nat h₁ h₂, ENNReal.some_eq_coe, id.def]
     have h : ∀ n, 0 ≤ s (i ∩ f n) := fun n =>
       s.nonneg_of_zero_le_restrict (s.zero_le_restrict_subset hi₁ (Set.inter_subset_left _ _) hi₂)
@@ -1354,62 +1354,62 @@ def toMeasureOfZeroLe (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet
     · refine' tsum_congr fun n => _
       simp_rw [s.restrict_apply hi₁ (hf₁ n), Set.inter_comm]
     · exact (NNReal.summable_mk h).2 (s.m_iUnion h₁ h₂).summable
-#align measure_theory.signed_measure.to_measure_of_zero_le MeasureTheory.SignedMeasure.toMeasureOfZeroLe
+#align measure_theory.signed_measure.to_measure_of_zero_le MeasureTheory.SignedMeasure.toMeasureOfZeroLE
 
 variable (s : SignedMeasure α) {i j : Set α}
 
-theorem toMeasureOfZeroLe_apply (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) (hj₁ : MeasurableSet j) :
-    s.toMeasureOfZeroLe i hi₁ hi j = ((↑) : ℝ≥0 → ℝ≥0∞) ⟨s (i ∩ j), nonneg_of_zero_le_restrict
+theorem toMeasureOfZeroLE_apply (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) (hj₁ : MeasurableSet j) :
+    s.toMeasureOfZeroLE i hi₁ hi j = ((↑) : ℝ≥0 → ℝ≥0∞) ⟨s (i ∩ j), nonneg_of_zero_le_restrict
       s (zero_le_restrict_subset s hi₁ (Set.inter_subset_left _ _) hi)⟩ := by
-  simp_rw [toMeasureOfZeroLe, Measure.ofMeasurable_apply _ hj₁, toMeasureOfZeroLe',
+  simp_rw [toMeasureOfZeroLE, Measure.ofMeasurable_apply _ hj₁, toMeasureOfZeroLE',
     s.restrict_apply hi₁ hj₁, Set.inter_comm]
-#align measure_theory.signed_measure.to_measure_of_zero_le_apply MeasureTheory.SignedMeasure.toMeasureOfZeroLe_apply
+#align measure_theory.signed_measure.to_measure_of_zero_le_apply MeasureTheory.SignedMeasure.toMeasureOfZeroLE_apply
 
-/-- Given a signed measure `s` and a negative measurable set `i`, `toMeasureOfLeZero`
+/-- Given a signed measure `s` and a negative measurable set `i`, `toMeasureOfLEZero`
 provides the measure, mapping measurable sets `j` to `-s (i ∩ j)`. -/
-def toMeasureOfLeZero (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet i) (hi₂ : s ≤[i] 0) :
+def toMeasureOfLEZero (s : SignedMeasure α) (i : Set α) (hi₁ : MeasurableSet i) (hi₂ : s ≤[i] 0) :
     Measure α :=
-  toMeasureOfZeroLe (-s) i hi₁ <| @neg_zero (VectorMeasure α ℝ) _ ▸ neg_le_neg _ _ hi₁ hi₂
-#align measure_theory.signed_measure.to_measure_of_le_zero MeasureTheory.SignedMeasure.toMeasureOfLeZero
+  toMeasureOfZeroLE (-s) i hi₁ <| @neg_zero (VectorMeasure α ℝ) _ ▸ neg_le_neg _ _ hi₁ hi₂
+#align measure_theory.signed_measure.to_measure_of_le_zero MeasureTheory.SignedMeasure.toMeasureOfLEZero
 
-theorem toMeasureOfLeZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj₁ : MeasurableSet j) :
-    s.toMeasureOfLeZero i hi₁ hi j = ((↑) : ℝ≥0 → ℝ≥0∞) ⟨-s (i ∩ j), neg_apply s (i ∩ j) ▸
+theorem toMeasureOfLEZero_apply (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) (hj₁ : MeasurableSet j) :
+    s.toMeasureOfLEZero i hi₁ hi j = ((↑) : ℝ≥0 → ℝ≥0∞) ⟨-s (i ∩ j), neg_apply s (i ∩ j) ▸
       nonneg_of_zero_le_restrict _ (zero_le_restrict_subset _ hi₁ (Set.inter_subset_left _ _)
       (@neg_zero (VectorMeasure α ℝ) _ ▸ neg_le_neg _ _ hi₁ hi))⟩ := by
-  erw [toMeasureOfZeroLe_apply]
+  erw [toMeasureOfZeroLE_apply]
   · simp
   · assumption
-#align measure_theory.signed_measure.to_measure_of_le_zero_apply MeasureTheory.SignedMeasure.toMeasureOfLeZero_apply
+#align measure_theory.signed_measure.to_measure_of_le_zero_apply MeasureTheory.SignedMeasure.toMeasureOfLEZero_apply
 
-/-- `SignedMeasure.toMeasureOfZeroLe` is a finite measure. -/
-instance toMeasureOfZeroLe_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
-    FiniteMeasure (s.toMeasureOfZeroLe i hi₁ hi) where
+/-- `SignedMeasure.toMeasureOfZeroLE` is a finite measure. -/
+instance toMeasureOfZeroLE_finite (hi : 0 ≤[i] s) (hi₁ : MeasurableSet i) :
+    FiniteMeasure (s.toMeasureOfZeroLE i hi₁ hi) where
   measure_univ_lt_top := by
-    rw [toMeasureOfZeroLe_apply s hi hi₁ MeasurableSet.univ]
+    rw [toMeasureOfZeroLE_apply s hi hi₁ MeasurableSet.univ]
     exact ENNReal.coe_lt_top
-#align measure_theory.signed_measure.to_measure_of_zero_le_finite MeasureTheory.SignedMeasure.toMeasureOfZeroLe_finite
+#align measure_theory.signed_measure.to_measure_of_zero_le_finite MeasureTheory.SignedMeasure.toMeasureOfZeroLE_finite
 
-/-- `SignedMeasure.toMeasureOfLeZero` is a finite measure. -/
-instance toMeasureOfLeZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
-    FiniteMeasure (s.toMeasureOfLeZero i hi₁ hi) where
+/-- `SignedMeasure.toMeasureOfLEZero` is a finite measure. -/
+instance toMeasureOfLEZero_finite (hi : s ≤[i] 0) (hi₁ : MeasurableSet i) :
+    FiniteMeasure (s.toMeasureOfLEZero i hi₁ hi) where
   measure_univ_lt_top := by
-    rw [toMeasureOfLeZero_apply s hi hi₁ MeasurableSet.univ]
+    rw [toMeasureOfLEZero_apply s hi hi₁ MeasurableSet.univ]
     exact ENNReal.coe_lt_top
-#align measure_theory.signed_measure.to_measure_of_le_zero_finite MeasureTheory.SignedMeasure.toMeasureOfLeZero_finite
+#align measure_theory.signed_measure.to_measure_of_le_zero_finite MeasureTheory.SignedMeasure.toMeasureOfLEZero_finite
 
-theorem toMeasureOfZeroLe_toSignedMeasure (hs : 0 ≤[Set.univ] s) :
-    (s.toMeasureOfZeroLe Set.univ MeasurableSet.univ hs).toSignedMeasure = s := by
+theorem toMeasureOfZeroLE_toSignedMeasure (hs : 0 ≤[Set.univ] s) :
+    (s.toMeasureOfZeroLE Set.univ MeasurableSet.univ hs).toSignedMeasure = s := by
   ext i
   intro hi
-  simp [hi, toMeasureOfZeroLe_apply _ _ _ hi]
-#align measure_theory.signed_measure.to_measure_of_zero_le_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfZeroLe_toSignedMeasure
+  simp [hi, toMeasureOfZeroLE_apply _ _ _ hi]
+#align measure_theory.signed_measure.to_measure_of_zero_le_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfZeroLE_toSignedMeasure
 
-theorem toMeasureOfLeZero_toSignedMeasure (hs : s ≤[Set.univ] 0) :
-    (s.toMeasureOfLeZero Set.univ MeasurableSet.univ hs).toSignedMeasure = -s := by
+theorem toMeasureOfLEZero_toSignedMeasure (hs : s ≤[Set.univ] 0) :
+    (s.toMeasureOfLEZero Set.univ MeasurableSet.univ hs).toSignedMeasure = -s := by
   ext i
   intro hi
-  simp [hi, toMeasureOfLeZero_apply _ _ _ hi]
-#align measure_theory.signed_measure.to_measure_of_le_zero_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfLeZero_toSignedMeasure
+  simp [hi, toMeasureOfLEZero_apply _ _ _ hi]
+#align measure_theory.signed_measure.to_measure_of_le_zero_to_signed_measure MeasureTheory.SignedMeasure.toMeasureOfLEZero_toSignedMeasure
 
 end SignedMeasure
 
@@ -1426,15 +1426,15 @@ theorem zero_le_toSignedMeasure : 0 ≤ μ.toSignedMeasure := by
     ENNReal.toReal_nonneg, VectorMeasure.coe_zero]
 #align measure_theory.measure.zero_le_to_signed_measure MeasureTheory.Measure.zero_le_toSignedMeasure
 
-theorem toSignedMeasure_toMeasureOfZeroLe :
-    μ.toSignedMeasure.toMeasureOfZeroLe Set.univ MeasurableSet.univ
+theorem toSignedMeasure_toMeasureOfZeroLE :
+    μ.toSignedMeasure.toMeasureOfZeroLE Set.univ MeasurableSet.univ
       ((le_restrict_univ_iff_le _ _).2 (zero_le_toSignedMeasure μ)) = μ := by
   refine' Measure.ext fun i hi => _
   lift μ i to ℝ≥0 using (measure_lt_top _ _).ne with m hm
-  rw [SignedMeasure.toMeasureOfZeroLe_apply _ _ _ hi, coe_eq_coe]
+  rw [SignedMeasure.toMeasureOfZeroLE_apply _ _ _ hi, coe_eq_coe]
   congr
   simp [hi, ← hm]
-#align measure_theory.measure.to_signed_measure_to_measure_of_zero_le MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLe
+#align measure_theory.measure.to_signed_measure_to_measure_of_zero_le MeasureTheory.Measure.toSignedMeasure_toMeasureOfZeroLE
 
 end Measure
 
feat: port MeasureTheory.Measure.VectorMeasure (#4016)

Co-authored-by: Komyyy <pol_tta@outlook.jp>

Dependencies 12 + 715

716 files ported (98.4%)
319860 lines ported (98.3%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file