number_theory.padics.hensel
⟷
Mathlib.NumberTheory.Padics.Hensel
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Y. Lewis
-/
import Analysis.SpecificLimits.Basic
-import Data.Polynomial.Identities
+import Algebra.Polynomial.Identities
import NumberTheory.Padics.PadicIntegers
import Topology.Algebra.Polynomial
import Topology.MetricSpace.CauSeqFilter
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -144,7 +144,7 @@ private def ih (n : ℕ) (z : ℤ_[p]) : Prop :=
‖F.derivative.eval z‖ = ‖F.derivative.eval a‖ ∧ ‖F.eval z‖ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n
private theorem ih_0 : ih 0 a :=
- ⟨rfl, by simp [T_def, mul_div_cancel' _ (ne_of_gt (deriv_sq_norm_pos hnorm))]⟩
+ ⟨rfl, by simp [T_def, mul_div_cancel₀ _ (ne_of_gt (deriv_sq_norm_pos hnorm))]⟩
private theorem calc_norm_le_one {n : ℕ} {z : ℤ_[p]} (hz : ih n z) :
‖(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)‖ ≤ 1 :=
@@ -188,7 +188,7 @@ private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n
_ = -(F.derivative.eval z * ⟨↑(F.eval z) / ↑(F.derivative.eval z), h1⟩) := (mul_neg _ _)
_ = -⟨↑(F.derivative.eval z) * (↑(F.eval z) / ↑(F.derivative.eval z)), this⟩ :=
(Subtype.ext <| by simp only [PadicInt.coe_neg, PadicInt.coe_mul, Subtype.coe_mk])
- _ = -F.eval z := by simp only [mul_div_cancel' _ hdzne', Subtype.coe_eta]
+ _ = -F.eval z := by simp only [mul_div_cancel₀ _ hdzne', Subtype.coe_eta]
exact ⟨q, by simpa only [sub_eq_add_neg, this, hz', add_right_neg, neg_sq, zero_add] using hq⟩
private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F.eval z' = q * z1 ^ 2)
@@ -204,9 +204,9 @@ private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F
_ = (‖F.derivative.eval a‖ ^ 2) ^ 2 * (T ^ 2 ^ n) ^ 2 / ‖F.derivative.eval a‖ ^ 2 := by
simp only [mul_pow]
_ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := (div_sq_cancel _ _)
- _ = ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) := by rw [← pow_mul, pow_succ' 2]
+ _ = ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) := by rw [← pow_mul, pow_succ 2]
-/- ./././Mathport/Syntax/Translate/Basic.lean:339:40: warning: unsupported option eqn_compiler.zeta -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:340:40: warning: unsupported option eqn_compiler.zeta -/
set_option eqn_compiler.zeta true
/-- Given `z : ℤ_[p]` satisfying `ih n z`, construct `z' : ℤ_[p]` satisfying `ih (n+1) z'`. We need
@@ -228,7 +228,7 @@ private def ih_n {n : ℕ} {z : ℤ_[p]} (hz : ih n z) : { z' : ℤ_[p] // ih (n
calc_eval_z'_norm hz HEq h1 rfl
⟨hfeq, hnle⟩⟩
-/- ./././Mathport/Syntax/Translate/Basic.lean:339:40: warning: unsupported option eqn_compiler.zeta -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:340:40: warning: unsupported option eqn_compiler.zeta -/
set_option eqn_compiler.zeta false
-- why doesn't "noncomputable theory" stick here?
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -220,9 +220,9 @@ private def ih_n {n : ℕ} {z : ℤ_[p]} (hz : ih n z) : { z' : ℤ_[p] // ih (n
calc_deriv_dist rfl (by simp [z1, hz.1]) hz
have hfeq : ‖F.derivative.eval z'‖ = ‖F.derivative.eval a‖ :=
by
- rw [sub_eq_add_neg, ← hz.1, ← norm_neg (F.derivative.eval z)] at hdist
+ rw [sub_eq_add_neg, ← hz.1, ← norm_neg (F.derivative.eval z)] at hdist
have := PadicInt.norm_eq_of_norm_add_lt_right hdist
- rwa [norm_neg, hz.1] at this
+ rwa [norm_neg, hz.1] at this
let ⟨q, HEq⟩ := calc_eval_z' rfl hz h1 rfl
have hnle : ‖F.eval z'‖ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) :=
calc_eval_z'_norm hz HEq h1 rfl
@@ -344,7 +344,7 @@ private theorem bound :
∀ {ε}, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → ‖F.derivative.eval a‖ * T ^ 2 ^ n < ε :=
by
have := bound' hnorm hnsol
- simp [tendsto, nhds] at this
+ simp [tendsto, nhds] at this
intro ε hε
cases' this (ball 0 ε) (mem_ball_self hε) is_open_ball with N hN
exists N; intro n hn
@@ -400,7 +400,7 @@ private theorem soln_dist_to_a : ‖soln - a‖ = ‖F.eval a‖ / ‖F.derivati
private theorem soln_dist_to_a_lt_deriv : ‖soln - a‖ < ‖F.derivative.eval a‖ :=
by
rw [soln_dist_to_a, div_lt_iff]
- · rwa [sq] at hnorm
+ · rwa [sq] at hnorm
· apply deriv_norm_pos; assumption
private theorem eval_soln : F.eval soln = 0 :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -337,7 +337,7 @@ private theorem bound' : Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ * T ^
rw [← MulZeroClass.mul_zero ‖F.derivative.eval a‖]
exact
tendsto_const_nhds.mul
- (tendsto.comp (tendsto_pow_atTop_nhds_0_of_lt_1 (norm_nonneg _) (T_lt_one hnorm))
+ (tendsto.comp (tendsto_pow_atTop_nhds_zero_of_lt_one (norm_nonneg _) (T_lt_one hnorm))
(Nat.tendsto_pow_atTop_atTop_of_one_lt (by norm_num)))
private theorem bound :
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -200,7 +200,7 @@ private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F
(mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (pow_nonneg (norm_nonneg _) _))
_ = ‖F.eval z‖ ^ 2 / ‖F.derivative.eval a‖ ^ 2 := by simp [hzeq, hz.1, div_pow]
_ ≤ (‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n) ^ 2 / ‖F.derivative.eval a‖ ^ 2 :=
- ((div_le_div_right deriv_sq_norm_pos).2 (pow_le_pow_of_le_left (norm_nonneg _) hz.2 _))
+ ((div_le_div_right deriv_sq_norm_pos).2 (pow_le_pow_left (norm_nonneg _) hz.2 _))
_ = (‖F.derivative.eval a‖ ^ 2) ^ 2 * (T ^ 2 ^ n) ^ 2 / ‖F.derivative.eval a‖ ^ 2 := by
simp only [mul_pow]
_ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := (div_sq_cancel _ _)
@@ -271,7 +271,7 @@ private theorem newton_seq_succ_dist_weak (n : ℕ) :
‖newton_seq (n + 2) - newton_seq (n + 1)‖ < ‖F.eval a‖ / ‖F.derivative.eval a‖ :=
have : 2 ≤ 2 ^ (n + 1) :=
by
- have := pow_le_pow (by norm_num : 1 ≤ 2) (Nat.le_add_left _ _ : 1 ≤ n + 1)
+ have := pow_le_pow_right (by norm_num : 1 ≤ 2) (Nat.le_add_left _ _ : 1 ≤ n + 1)
simpa using this
calc
‖newton_seq (n + 2) - newton_seq (n + 1)‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ (n + 1) :=
@@ -280,7 +280,8 @@ private theorem newton_seq_succ_dist_weak (n : ℕ) :
(mul_le_mul_of_nonneg_left (pow_le_pow_of_le_one (norm_nonneg _) (le_of_lt T_lt_one) this)
(norm_nonneg _))
_ < ‖F.derivative.eval a‖ * T ^ 1 :=
- (mul_lt_mul_of_pos_left (pow_lt_pow_of_lt_one T_pos T_lt_one (by norm_num)) deriv_norm_pos)
+ (mul_lt_mul_of_pos_left (pow_lt_pow_right_of_lt_one T_pos T_lt_one (by norm_num))
+ deriv_norm_pos)
_ = ‖F.eval a‖ / ‖F.derivative.eval a‖ :=
by
rw [T, sq, pow_one, norm_div, ← mul_div_assoc, padicNormE.mul]
@@ -291,7 +292,7 @@ private theorem newton_seq_dist_aux (n : ℕ) :
∀ k : ℕ, ‖newton_seq (n + k) - newton_seq n‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ n
| 0 => by simp [T_pow_nonneg hnorm, mul_nonneg]
| k + 1 =>
- have : 2 ^ n ≤ 2 ^ (n + k) := by apply pow_le_pow; norm_num; apply Nat.le_add_right
+ have : 2 ^ n ≤ 2 ^ (n + k) := by apply pow_le_pow_right; norm_num; apply Nat.le_add_right
calc
‖newton_seq (n + (k + 1)) - newton_seq n‖ = ‖newton_seq (n + k + 1) - newton_seq n‖ := by
rw [add_assoc]
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,11 +3,11 @@ Copyright (c) 2018 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Y. Lewis
-/
-import Mathbin.Analysis.SpecificLimits.Basic
-import Mathbin.Data.Polynomial.Identities
-import Mathbin.NumberTheory.Padics.PadicIntegers
-import Mathbin.Topology.Algebra.Polynomial
-import Mathbin.Topology.MetricSpace.CauSeqFilter
+import Analysis.SpecificLimits.Basic
+import Data.Polynomial.Identities
+import NumberTheory.Padics.PadicIntegers
+import Topology.Algebra.Polynomial
+import Topology.MetricSpace.CauSeqFilter
#align_import number_theory.padics.hensel from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
@@ -206,7 +206,7 @@ private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F
_ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := (div_sq_cancel _ _)
_ = ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) := by rw [← pow_mul, pow_succ' 2]
-/- ./././Mathport/Syntax/Translate/Basic.lean:334:40: warning: unsupported option eqn_compiler.zeta -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:339:40: warning: unsupported option eqn_compiler.zeta -/
set_option eqn_compiler.zeta true
/-- Given `z : ℤ_[p]` satisfying `ih n z`, construct `z' : ℤ_[p]` satisfying `ih (n+1) z'`. We need
@@ -228,7 +228,7 @@ private def ih_n {n : ℕ} {z : ℤ_[p]} (hz : ih n z) : { z' : ℤ_[p] // ih (n
calc_eval_z'_norm hz HEq h1 rfl
⟨hfeq, hnle⟩⟩
-/- ./././Mathport/Syntax/Translate/Basic.lean:334:40: warning: unsupported option eqn_compiler.zeta -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:339:40: warning: unsupported option eqn_compiler.zeta -/
set_option eqn_compiler.zeta false
-- why doesn't "noncomputable theory" stick here?
mathlib commit https://github.com/leanprover-community/mathlib/commit/442a83d738cb208d3600056c489be16900ba701d
@@ -83,7 +83,7 @@ parameter {p : ℕ} [Fact p.Prime] {ncs : CauSeq ℤ_[p] norm} {F : Polynomial
(hnorm : Tendsto (fun i => ‖F.eval (ncs i)‖) atTop (𝓝 0))
private theorem tendsto_zero_of_norm_tendsto_zero : Tendsto (fun i => F.eval (ncs i)) atTop (𝓝 0) :=
- tendsto_iff_norm_tendsto_zero.2 (by simpa using hnorm)
+ tendsto_iff_norm_sub_tendsto_zero.2 (by simpa using hnorm)
#print limit_zero_of_norm_tendsto_zero /-
theorem limit_zero_of_norm_tendsto_zero : F.eval ncs.limUnder = 0 :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -423,7 +423,7 @@ private theorem soln_unique (z : ℤ_[p]) (hev : F.eval z = 0)
have : h = 0 :=
by_contradiction fun hne =>
have : F.derivative.eval soln + q * h = 0 :=
- (eq_zero_or_eq_zero_of_mul_eq_zero this).resolve_right hne
+ (eq_zero_or_eq_zero_of_hMul_eq_zero this).resolve_right hne
have : F.derivative.eval soln = -q * h := by simpa using eq_neg_of_add_eq_zero_left this
lt_irrefl ‖F.derivative.eval soln‖
(calc
@@ -452,7 +452,7 @@ private theorem a_soln_is_unique (ha : F.eval a = 0) (z' : ℤ_[p]) (hz' : F.eva
have : h = 0 :=
by_contradiction fun hne =>
have : F.derivative.eval a + q * h = 0 :=
- (eq_zero_or_eq_zero_of_mul_eq_zero this).resolve_right hne
+ (eq_zero_or_eq_zero_of_hMul_eq_zero this).resolve_right hne
have : F.derivative.eval a = -q * h := by simpa using eq_neg_of_add_eq_zero_left this
lt_irrefl ‖F.derivative.eval a‖
(calc
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,11 +2,6 @@
Copyright (c) 2018 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Y. Lewis
-
-! This file was ported from Lean 3 source module number_theory.padics.hensel
-! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.SpecificLimits.Basic
import Mathbin.Data.Polynomial.Identities
@@ -14,6 +9,8 @@ import Mathbin.NumberTheory.Padics.PadicIntegers
import Mathbin.Topology.Algebra.Polynomial
import Mathbin.Topology.MetricSpace.CauSeqFilter
+#align_import number_theory.padics.hensel from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
+
/-!
# Hensel's lemma on ℤ_p
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -44,6 +44,7 @@ noncomputable section
open scoped Classical Topology
+#print padic_polynomial_dist /-
-- We begin with some general lemmas that are used below in the computation.
theorem padic_polynomial_dist {p : ℕ} [Fact p.Prime] (F : Polynomial ℤ_[p]) (x y : ℤ_[p]) :
‖F.eval x - F.eval y‖ ≤ ‖x - y‖ :=
@@ -53,6 +54,7 @@ theorem padic_polynomial_dist {p : ℕ} [Fact p.Prime] (F : Polynomial ℤ_[p])
_ ≤ 1 * ‖x - y‖ := (mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (norm_nonneg _))
_ = ‖x - y‖ := by simp
#align padic_polynomial_dist padic_polynomial_dist
+-/
open Filter Metric
@@ -65,8 +67,6 @@ section
parameter {p : ℕ} [Fact p.Prime] {ncs : CauSeq ℤ_[p] norm} {F : Polynomial ℤ_[p]} {a : ℤ_[p]}
(ncs_der_val : ∀ n, ‖F.derivative.eval (ncs n)‖ = ‖F.derivative.eval a‖)
-include ncs_der_val
-
private theorem ncs_tendsto_const :
Tendsto (fun i => ‖F.derivative.eval (ncs i)‖) atTop (𝓝 ‖F.derivative.eval a‖) := by
convert tendsto_const_nhds <;> ext <;> rw [ncs_der_val]
@@ -85,14 +85,14 @@ section
parameter {p : ℕ} [Fact p.Prime] {ncs : CauSeq ℤ_[p] norm} {F : Polynomial ℤ_[p]}
(hnorm : Tendsto (fun i => ‖F.eval (ncs i)‖) atTop (𝓝 0))
-include hnorm
-
private theorem tendsto_zero_of_norm_tendsto_zero : Tendsto (fun i => F.eval (ncs i)) atTop (𝓝 0) :=
tendsto_iff_norm_tendsto_zero.2 (by simpa using hnorm)
+#print limit_zero_of_norm_tendsto_zero /-
theorem limit_zero_of_norm_tendsto_zero : F.eval ncs.limUnder = 0 :=
tendsto_nhds_unique (comp_tendsto_lim _) tendsto_zero_of_norm_tendsto_zero
#align limit_zero_of_norm_tendsto_zero limit_zero_of_norm_tendsto_zero
+-/
end
@@ -103,8 +103,6 @@ open Nat
parameter {p : ℕ} [Fact p.Prime] {F : Polynomial ℤ_[p]} {a : ℤ_[p]}
(hnorm : ‖F.eval a‖ < ‖F.derivative.eval a‖ ^ 2) (hnsol : F.eval a ≠ 0)
-include hnorm
-
/-- `T` is an auxiliary value that is used to control the behavior of the polynomial `F`. -/
private def T : ℝ :=
‖(F.eval a / F.derivative.eval a ^ 2 : ℚ_[p])‖
@@ -268,8 +266,6 @@ private theorem newton_seq_succ_dist (n : ℕ) :
((div_le_div_right deriv_norm_pos).2 (newton_seq_norm_le _))
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := div_sq_cancel _ _
-include hnsol
-
private theorem T_pos : T > 0 := by
rw [T_def]
exact div_pos (norm_pos_iff.2 hnsol) (deriv_sq_norm_pos hnorm)
@@ -470,8 +466,6 @@ private theorem a_soln_is_unique (ha : F.eval a = 0) (z' : ℤ_[p]) (hz' : F.eva
variable (hnorm : ‖F.eval a‖ < ‖F.derivative.eval a‖ ^ 2)
-include hnorm
-
private theorem a_is_soln (ha : F.eval a = 0) :
F.eval a = 0 ∧
‖a - a‖ < ‖F.derivative.eval a‖ ∧
@@ -479,6 +473,7 @@ private theorem a_is_soln (ha : F.eval a = 0) :
∀ z', F.eval z' = 0 → ‖z' - a‖ < ‖F.derivative.eval a‖ → z' = a :=
⟨ha, by simp [deriv_ne_zero hnorm], rfl, a_soln_is_unique ha⟩
+#print hensels_lemma /-
theorem hensels_lemma :
∃ z : ℤ_[p],
F.eval z = 0 ∧
@@ -492,4 +487,5 @@ theorem hensels_lemma :
soln_unique _ _⟩ <;>
assumption
#align hensels_lemma hensels_lemma
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -52,7 +52,6 @@ theorem padic_polynomial_dist {p : ℕ} [Fact p.Prime] (F : Polynomial ℤ_[p])
‖F.eval x - F.eval y‖ = ‖z‖ * ‖x - y‖ := by simp [hz]
_ ≤ 1 * ‖x - y‖ := (mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (norm_nonneg _))
_ = ‖x - y‖ := by simp
-
#align padic_polynomial_dist padic_polynomial_dist
open Filter Metric
@@ -163,7 +162,6 @@ private theorem calc_norm_le_one {n : ℕ} {z : ℤ_[p]} (hz : ih n z) :
((div_le_div_right deriv_norm_pos).2 hz.2)
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := (div_sq_cancel _ _)
_ ≤ 1 := mul_le_one (PadicInt.norm_le_one _) (T_pow_nonneg _) (le_of_lt (T_pow' _))
-
private theorem calc_deriv_dist {z z' z1 : ℤ_[p]} (hz' : z' = z - z1)
(hz1 : ‖z1‖ = ‖F.eval z‖ / ‖F.derivative.eval a‖) {n} (hz : ih n z) :
@@ -176,7 +174,6 @@ private theorem calc_deriv_dist {z z' z1 : ℤ_[p]} (hz' : z' = z - z1)
((div_le_div_right deriv_norm_pos).2 hz.2)
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := (div_sq_cancel _ _)
_ < ‖F.derivative.eval a‖ := (mul_lt_iff_lt_one_right deriv_norm_pos).2 (T_pow' _)
-
private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n z)
(h1 : ‖(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)‖ ≤ 1) (hzeq : z1 = ⟨_, h1⟩) :
@@ -197,7 +194,6 @@ private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n
_ = -⟨↑(F.derivative.eval z) * (↑(F.eval z) / ↑(F.derivative.eval z)), this⟩ :=
(Subtype.ext <| by simp only [PadicInt.coe_neg, PadicInt.coe_mul, Subtype.coe_mk])
_ = -F.eval z := by simp only [mul_div_cancel' _ hdzne', Subtype.coe_eta]
-
exact ⟨q, by simpa only [sub_eq_add_neg, this, hz', add_right_neg, neg_sq, zero_add] using hq⟩
private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F.eval z' = q * z1 ^ 2)
@@ -214,7 +210,6 @@ private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F
simp only [mul_pow]
_ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := (div_sq_cancel _ _)
_ = ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) := by rw [← pow_mul, pow_succ' 2]
-
/- ./././Mathport/Syntax/Translate/Basic.lean:334:40: warning: unsupported option eqn_compiler.zeta -/
set_option eqn_compiler.zeta true
@@ -272,7 +267,6 @@ private theorem newton_seq_succ_dist (n : ℕ) :
_ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n / ‖F.derivative.eval a‖ :=
((div_le_div_right deriv_norm_pos).2 (newton_seq_norm_le _))
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := div_sq_cancel _ _
-
include hnsol
@@ -299,7 +293,6 @@ private theorem newton_seq_succ_dist_weak (n : ℕ) :
rw [T, sq, pow_one, norm_div, ← mul_div_assoc, padicNormE.mul]
apply mul_div_mul_left
apply deriv_norm_ne_zero <;> assumption
-
private theorem newton_seq_dist_aux (n : ℕ) :
∀ k : ℕ, ‖newton_seq (n + k) - newton_seq n‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ n
@@ -319,7 +312,6 @@ private theorem newton_seq_dist_aux (n : ℕ) :
max_eq_right <|
mul_le_mul_of_nonneg_left (pow_le_pow_of_le_one (norm_nonneg _) (le_of_lt T_lt_one) this)
(norm_nonneg _)
-
private theorem newton_seq_dist {n k : ℕ} (hnk : n ≤ k) :
‖newton_seq k - newton_seq n‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ n :=
@@ -345,7 +337,6 @@ private theorem newton_seq_dist_to_a :
_ = ‖newton_seq (k + 1) - a‖ := (max_eq_right_of_lt hlt)
_ = ‖Polynomial.eval a F‖ / ‖Polynomial.eval a (Polynomial.derivative F)‖ :=
newton_seq_dist_to_a (k + 1) (succ_pos _)
-
private theorem bound' : Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ * T ^ 2 ^ n) atTop (𝓝 0) :=
by
@@ -428,7 +419,6 @@ private theorem soln_unique (z : ℤ_[p]) (hev : F.eval z = 0)
‖z - soln‖ = ‖z - a + (a - soln)‖ := by rw [sub_add_sub_cancel]
_ ≤ max ‖z - a‖ ‖a - soln‖ := (PadicInt.nonarchimedean _ _)
_ < ‖F.derivative.eval a‖ := max_lt hnlt (norm_sub_rev soln a ▸ soln_dist_to_a_lt_deriv)
-
let h := z - soln
let ⟨q, hq⟩ := F.binomExpansion soln h
have : (F.derivative.eval soln + q * h) * h = 0 :=
@@ -436,8 +426,7 @@ private theorem soln_unique (z : ℤ_[p]) (hev : F.eval z = 0)
(calc
0 = F.eval (soln + h) := by simp [hev, h]
_ = F.derivative.eval soln * h + q * h ^ 2 := by rw [hq, eval_soln, zero_add]
- _ = (F.derivative.eval soln + q * h) * h := by rw [sq, right_distrib, mul_assoc]
- )
+ _ = (F.derivative.eval soln + q * h) * h := by rw [sq, right_distrib, mul_assoc])
have : h = 0 :=
by_contradiction fun hne =>
have : F.derivative.eval soln + q * h = 0 :=
@@ -450,8 +439,7 @@ private theorem soln_unique (z : ℤ_[p]) (hev : F.eval z = 0)
rw [PadicInt.norm_mul]
exact mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (norm_nonneg _)
_ = ‖z - soln‖ := by simp [h]
- _ < ‖F.derivative.eval soln‖ := by rw [soln_deriv_norm] <;> apply soln_dist
- )
+ _ < ‖F.derivative.eval soln‖ := by rw [soln_deriv_norm] <;> apply soln_dist)
eq_of_sub_eq_zero (by rw [← this] <;> rfl)
end Hensel
@@ -467,8 +455,7 @@ private theorem a_soln_is_unique (ha : F.eval a = 0) (z' : ℤ_[p]) (hz' : F.eva
(calc
0 = F.eval (a + h) := show 0 = F.eval (a + (z' - a)) by rw [add_comm] <;> simp [hz']
_ = F.derivative.eval a * h + q * h ^ 2 := by rw [hq, ha, zero_add]
- _ = (F.derivative.eval a + q * h) * h := by rw [sq, right_distrib, mul_assoc]
- )
+ _ = (F.derivative.eval a + q * h) * h := by rw [sq, right_distrib, mul_assoc])
have : h = 0 :=
by_contradiction fun hne =>
have : F.derivative.eval a + q * h = 0 :=
@@ -478,8 +465,7 @@ private theorem a_soln_is_unique (ha : F.eval a = 0) (z' : ℤ_[p]) (hz' : F.eva
(calc
‖F.derivative.eval a‖ = ‖q‖ * ‖h‖ := by simp [this]
_ ≤ 1 * ‖h‖ := (mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (norm_nonneg _))
- _ < ‖F.derivative.eval a‖ := by simpa [h]
- )
+ _ < ‖F.derivative.eval a‖ := by simpa [h])
eq_of_sub_eq_zero (by rw [← this] <;> rfl)
variable (hnorm : ‖F.eval a‖ < ‖F.derivative.eval a‖ ^ 2)
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -63,14 +63,8 @@ private theorem comp_tendsto_lim {p : ℕ} [Fact p.Prime] {F : Polynomial ℤ_[p
section
-parameter
- {p :
- ℕ}[Fact
- p.Prime]{ncs :
- CauSeq ℤ_[p]
- norm}{F :
- Polynomial
- ℤ_[p]}{a : ℤ_[p]}(ncs_der_val : ∀ n, ‖F.derivative.eval (ncs n)‖ = ‖F.derivative.eval a‖)
+parameter {p : ℕ} [Fact p.Prime] {ncs : CauSeq ℤ_[p] norm} {F : Polynomial ℤ_[p]} {a : ℤ_[p]}
+ (ncs_der_val : ∀ n, ‖F.derivative.eval (ncs n)‖ = ‖F.derivative.eval a‖)
include ncs_der_val
@@ -89,12 +83,8 @@ end
section
-parameter
- {p :
- ℕ}[Fact
- p.Prime]{ncs :
- CauSeq ℤ_[p]
- norm}{F : Polynomial ℤ_[p]}(hnorm : Tendsto (fun i => ‖F.eval (ncs i)‖) atTop (𝓝 0))
+parameter {p : ℕ} [Fact p.Prime] {ncs : CauSeq ℤ_[p] norm} {F : Polynomial ℤ_[p]}
+ (hnorm : Tendsto (fun i => ‖F.eval (ncs i)‖) atTop (𝓝 0))
include hnorm
@@ -111,12 +101,8 @@ section Hensel
open Nat
-parameter
- {p :
- ℕ}[Fact
- p.Prime]{F :
- Polynomial
- ℤ_[p]}{a : ℤ_[p]}(hnorm : ‖F.eval a‖ < ‖F.derivative.eval a‖ ^ 2)(hnsol : F.eval a ≠ 0)
+parameter {p : ℕ} [Fact p.Prime] {F : Polynomial ℤ_[p]} {a : ℤ_[p]}
+ (hnorm : ‖F.eval a‖ < ‖F.derivative.eval a‖ ^ 2) (hnsol : F.eval a ≠ 0)
include hnorm
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -244,9 +244,9 @@ private def ih_n {n : ℕ} {z : ℤ_[p]} (hz : ih n z) : { z' : ℤ_[p] // ih (n
calc_deriv_dist rfl (by simp [z1, hz.1]) hz
have hfeq : ‖F.derivative.eval z'‖ = ‖F.derivative.eval a‖ :=
by
- rw [sub_eq_add_neg, ← hz.1, ← norm_neg (F.derivative.eval z)] at hdist
+ rw [sub_eq_add_neg, ← hz.1, ← norm_neg (F.derivative.eval z)] at hdist
have := PadicInt.norm_eq_of_norm_add_lt_right hdist
- rwa [norm_neg, hz.1] at this
+ rwa [norm_neg, hz.1] at this
let ⟨q, HEq⟩ := calc_eval_z' rfl hz h1 rfl
have hnle : ‖F.eval z'‖ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) :=
calc_eval_z'_norm hz HEq h1 rfl
@@ -373,7 +373,7 @@ private theorem bound :
∀ {ε}, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → ‖F.derivative.eval a‖ * T ^ 2 ^ n < ε :=
by
have := bound' hnorm hnsol
- simp [tendsto, nhds] at this
+ simp [tendsto, nhds] at this
intro ε hε
cases' this (ball 0 ε) (mem_ball_self hε) is_open_ball with N hN
exists N; intro n hn
@@ -429,7 +429,7 @@ private theorem soln_dist_to_a : ‖soln - a‖ = ‖F.eval a‖ / ‖F.derivati
private theorem soln_dist_to_a_lt_deriv : ‖soln - a‖ < ‖F.derivative.eval a‖ :=
by
rw [soln_dist_to_a, div_lt_iff]
- · rwa [sq] at hnorm
+ · rwa [sq] at hnorm
· apply deriv_norm_pos; assumption
private theorem eval_soln : F.eval soln = 0 :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -42,7 +42,7 @@ p-adic, p adic, padic, p-adic integer
noncomputable section
-open Classical Topology
+open scoped Classical Topology
-- We begin with some general lemmas that are used below in the computation.
theorem padic_polynomial_dist {p : ℕ} [Fact p.Prime] (F : Polynomial ℤ_[p]) (x y : ℤ_[p]) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -44,12 +44,6 @@ noncomputable section
open Classical Topology
-/- warning: padic_polynomial_dist -> padic_polynomial_dist is a dubious translation:
-lean 3 declaration is
- forall {p : Nat} [_inst_1 : Fact (Nat.Prime p)] (F : Polynomial.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))))) (x : PadicInt p _inst_1) (y : PadicInt p _inst_1), LE.le.{0} Real Real.hasLe (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1) (HSub.hSub.{0, 0, 0} (PadicInt p _inst_1) (PadicInt p _inst_1) (PadicInt p _inst_1) (instHSub.{0} (PadicInt p _inst_1) (PadicInt.hasSub p _inst_1)) (Polynomial.eval.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1)))) x F) (Polynomial.eval.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1)))) y F))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1) (HSub.hSub.{0, 0, 0} (PadicInt p _inst_1) (PadicInt p _inst_1) (PadicInt p _inst_1) (instHSub.{0} (PadicInt p _inst_1) (PadicInt.hasSub p _inst_1)) x y))
-but is expected to have type
- forall {p : Nat} [_inst_1 : Fact (Nat.Prime p)] (F : Polynomial.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1)))) (x : PadicInt p _inst_1) (y : PadicInt p _inst_1), LE.le.{0} Real Real.instLEReal (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1) (HSub.hSub.{0, 0, 0} (PadicInt p _inst_1) (PadicInt p _inst_1) (PadicInt p _inst_1) (instHSub.{0} (PadicInt p _inst_1) (PadicInt.instSubPadicInt p _inst_1)) (Polynomial.eval.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1))) x F) (Polynomial.eval.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1))) y F))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1) (HSub.hSub.{0, 0, 0} (PadicInt p _inst_1) (PadicInt p _inst_1) (PadicInt p _inst_1) (instHSub.{0} (PadicInt p _inst_1) (PadicInt.instSubPadicInt p _inst_1)) x y))
-Case conversion may be inaccurate. Consider using '#align padic_polynomial_dist padic_polynomial_distₓ'. -/
-- We begin with some general lemmas that are used below in the computation.
theorem padic_polynomial_dist {p : ℕ} [Fact p.Prime] (F : Polynomial ℤ_[p]) (x y : ℤ_[p]) :
‖F.eval x - F.eval y‖ ≤ ‖x - y‖ :=
@@ -107,12 +101,6 @@ include hnorm
private theorem tendsto_zero_of_norm_tendsto_zero : Tendsto (fun i => F.eval (ncs i)) atTop (𝓝 0) :=
tendsto_iff_norm_tendsto_zero.2 (by simpa using hnorm)
-/- warning: limit_zero_of_norm_tendsto_zero -> limit_zero_of_norm_tendsto_zero is a dubious translation:
-lean 3 declaration is
- forall {p : Nat} [_inst_1 : Fact (Nat.Prime p)] {ncs : CauSeq.{0, 0} Real Real.linearOrderedField (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1))} {F : Polynomial.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))))}, (Filter.Tendsto.{0, 0} Nat Real (fun (i : Nat) => Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1) (Polynomial.eval.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1)))) (coeFn.{1, 1} (CauSeq.{0, 0} Real Real.linearOrderedField (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1))) (fun (_x : CauSeq.{0, 0} Real Real.linearOrderedField (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1))) => Nat -> (PadicInt p _inst_1)) (CauSeq.hasCoeToFun.{0, 0} Real (PadicInt p _inst_1) Real.linearOrderedField (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1))) ncs i) F)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))) -> (Eq.{1} (PadicInt p _inst_1) (Polynomial.eval.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1)))) (CauSeq.lim.{0, 0} Real Real.linearOrderedField (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1)) (PadicInt.isAbsoluteValue p _inst_1) (PadicInt.complete p _inst_1) ncs) F) (OfNat.ofNat.{0} (PadicInt p _inst_1) 0 (OfNat.mk.{0} (PadicInt p _inst_1) 0 (Zero.zero.{0} (PadicInt p _inst_1) (PadicInt.hasZero p _inst_1)))))
-but is expected to have type
- forall {p : Nat} [_inst_1 : Fact (Nat.Prime p)] {ncs : CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.instNormedCommRingPadicInt p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1))} {F : Polynomial.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1)))}, (Filter.Tendsto.{0, 0} Nat Real (fun (i : Nat) => Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1) (Polynomial.eval.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1))) (Subtype.val.{1} (Nat -> (PadicInt p _inst_1)) (fun (f : Nat -> (PadicInt p _inst_1)) => IsCauSeq.{0, 0} Real Real.instLinearOrderedFieldReal (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.instNormedCommRingPadicInt p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1)) f) ncs i) F)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))) -> (Eq.{1} (PadicInt p _inst_1) (Polynomial.eval.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1))) (CauSeq.lim.{0, 0} Real Real.instLinearOrderedFieldReal (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.instNormedCommRingPadicInt p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1)) (PadicInt.isAbsoluteValue p _inst_1) (PadicInt.complete p _inst_1) ncs) F) (OfNat.ofNat.{0} (PadicInt p _inst_1) 0 (Zero.toOfNat0.{0} (PadicInt p _inst_1) (PadicInt.instZeroPadicInt p _inst_1))))
-Case conversion may be inaccurate. Consider using '#align limit_zero_of_norm_tendsto_zero limit_zero_of_norm_tendsto_zeroₓ'. -/
theorem limit_zero_of_norm_tendsto_zero : F.eval ncs.limUnder = 0 :=
tendsto_nhds_unique (comp_tendsto_lim _) tendsto_zero_of_norm_tendsto_zero
#align limit_zero_of_norm_tendsto_zero limit_zero_of_norm_tendsto_zero
@@ -519,9 +507,6 @@ private theorem a_is_soln (ha : F.eval a = 0) :
∀ z', F.eval z' = 0 → ‖z' - a‖ < ‖F.derivative.eval a‖ → z' = a :=
⟨ha, by simp [deriv_ne_zero hnorm], rfl, a_soln_is_unique ha⟩
-/- warning: hensels_lemma -> hensels_lemma is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align hensels_lemma hensels_lemmaₓ'. -/
theorem hensels_lemma :
∃ z : ℤ_[p],
F.eval z = 0 ∧
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -212,10 +212,8 @@ private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n
mt norm_eq_zero.2 (by rw [hz.1] <;> apply deriv_norm_ne_zero <;> assumption)
have hdzne' : (↑(F.derivative.eval z) : ℚ_[p]) ≠ 0 := fun h => hdzne (Subtype.ext_iff_val.2 h)
obtain ⟨q, hq⟩ := F.binom_expansion z (-z1)
- have : ‖(↑(F.derivative.eval z) * (↑(F.eval z) / ↑(F.derivative.eval z)) : ℚ_[p])‖ ≤ 1 :=
- by
- rw [padicNormE.mul]
- exact mul_le_one (PadicInt.norm_le_one _) (norm_nonneg _) h1
+ have : ‖(↑(F.derivative.eval z) * (↑(F.eval z) / ↑(F.derivative.eval z)) : ℚ_[p])‖ ≤ 1 := by
+ rw [padicNormE.mul]; exact mul_le_one (PadicInt.norm_le_one _) (norm_nonneg _) h1
have : F.derivative.eval z * -z1 = -F.eval z := by
calc
F.derivative.eval z * -z1 =
@@ -333,10 +331,7 @@ private theorem newton_seq_dist_aux (n : ℕ) :
∀ k : ℕ, ‖newton_seq (n + k) - newton_seq n‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ n
| 0 => by simp [T_pow_nonneg hnorm, mul_nonneg]
| k + 1 =>
- have : 2 ^ n ≤ 2 ^ (n + k) := by
- apply pow_le_pow
- norm_num
- apply Nat.le_add_right
+ have : 2 ^ n ≤ 2 ^ (n + k) := by apply pow_le_pow; norm_num; apply Nat.le_add_right
calc
‖newton_seq (n + (k + 1)) - newton_seq n‖ = ‖newton_seq (n + k + 1) - newton_seq n‖ := by
rw [add_assoc]
@@ -403,8 +398,7 @@ private theorem bound'_sq :
simp only [mul_assoc]
apply tendsto.mul
· apply tendsto_const_nhds
- · apply bound'
- assumption
+ · apply bound'; assumption
private theorem newton_seq_is_cauchy : IsCauSeq norm newton_seq :=
by
@@ -413,10 +407,8 @@ private theorem newton_seq_is_cauchy : IsCauSeq norm newton_seq :=
exists N
intro j hj
apply lt_of_le_of_lt
- · apply newton_seq_dist _ _ hj
- assumption
- · apply hN
- exact le_rfl
+ · apply newton_seq_dist _ _ hj; assumption
+ · apply hN; exact le_rfl
private def newton_cau_seq : CauSeq ℤ_[p] norm :=
⟨_, newton_seq_is_cauchy⟩
@@ -450,8 +442,7 @@ private theorem soln_dist_to_a_lt_deriv : ‖soln - a‖ < ‖F.derivative.eval
by
rw [soln_dist_to_a, div_lt_iff]
· rwa [sq] at hnorm
- · apply deriv_norm_pos
- assumption
+ · apply deriv_norm_pos; assumption
private theorem eval_soln : F.eval soln = 0 :=
limit_zero_of_norm_tendsto_zero newton_seq_norm_tendsto_zero
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Y. Lewis
! This file was ported from Lean 3 source module number_theory.padics.hensel
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -17,6 +17,9 @@ import Mathbin.Topology.MetricSpace.CauSeqFilter
/-!
# Hensel's lemma on ℤ_p
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file proves Hensel's lemma on ℤ_p, roughly following Keith Conrad's writeup:
<http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/hensel.pdf>
@@ -41,6 +44,12 @@ noncomputable section
open Classical Topology
+/- warning: padic_polynomial_dist -> padic_polynomial_dist is a dubious translation:
+lean 3 declaration is
+ forall {p : Nat} [_inst_1 : Fact (Nat.Prime p)] (F : Polynomial.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))))) (x : PadicInt p _inst_1) (y : PadicInt p _inst_1), LE.le.{0} Real Real.hasLe (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1) (HSub.hSub.{0, 0, 0} (PadicInt p _inst_1) (PadicInt p _inst_1) (PadicInt p _inst_1) (instHSub.{0} (PadicInt p _inst_1) (PadicInt.hasSub p _inst_1)) (Polynomial.eval.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1)))) x F) (Polynomial.eval.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1)))) y F))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1) (HSub.hSub.{0, 0, 0} (PadicInt p _inst_1) (PadicInt p _inst_1) (PadicInt p _inst_1) (instHSub.{0} (PadicInt p _inst_1) (PadicInt.hasSub p _inst_1)) x y))
+but is expected to have type
+ forall {p : Nat} [_inst_1 : Fact (Nat.Prime p)] (F : Polynomial.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1)))) (x : PadicInt p _inst_1) (y : PadicInt p _inst_1), LE.le.{0} Real Real.instLEReal (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1) (HSub.hSub.{0, 0, 0} (PadicInt p _inst_1) (PadicInt p _inst_1) (PadicInt p _inst_1) (instHSub.{0} (PadicInt p _inst_1) (PadicInt.instSubPadicInt p _inst_1)) (Polynomial.eval.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1))) x F) (Polynomial.eval.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1))) y F))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1) (HSub.hSub.{0, 0, 0} (PadicInt p _inst_1) (PadicInt p _inst_1) (PadicInt p _inst_1) (instHSub.{0} (PadicInt p _inst_1) (PadicInt.instSubPadicInt p _inst_1)) x y))
+Case conversion may be inaccurate. Consider using '#align padic_polynomial_dist padic_polynomial_distₓ'. -/
-- We begin with some general lemmas that are used below in the computation.
theorem padic_polynomial_dist {p : ℕ} [Fact p.Prime] (F : Polynomial ℤ_[p]) (x y : ℤ_[p]) :
‖F.eval x - F.eval y‖ ≤ ‖x - y‖ :=
@@ -57,7 +66,6 @@ open Filter Metric
private theorem comp_tendsto_lim {p : ℕ} [Fact p.Prime] {F : Polynomial ℤ_[p]}
(ncs : CauSeq ℤ_[p] norm) : Tendsto (fun i => F.eval (ncs i)) atTop (𝓝 (F.eval ncs.limUnder)) :=
F.ContinuousAt.Tendsto.comp ncs.tendsto_limit
-#align comp_tendsto_lim comp_tendsto_lim
section
@@ -75,16 +83,13 @@ include ncs_der_val
private theorem ncs_tendsto_const :
Tendsto (fun i => ‖F.derivative.eval (ncs i)‖) atTop (𝓝 ‖F.derivative.eval a‖) := by
convert tendsto_const_nhds <;> ext <;> rw [ncs_der_val]
-#align ncs_tendsto_const ncs_tendsto_const
private theorem ncs_tendsto_lim :
Tendsto (fun i => ‖F.derivative.eval (ncs i)‖) atTop (𝓝 ‖F.derivative.eval ncs.limUnder‖) :=
Tendsto.comp (continuous_iff_continuousAt.1 continuous_norm _) (comp_tendsto_lim _)
-#align ncs_tendsto_lim ncs_tendsto_lim
private theorem norm_deriv_eq : ‖F.derivative.eval ncs.limUnder‖ = ‖F.derivative.eval a‖ :=
tendsto_nhds_unique ncs_tendsto_lim ncs_tendsto_const
-#align norm_deriv_eq norm_deriv_eq
end
@@ -101,8 +106,13 @@ include hnorm
private theorem tendsto_zero_of_norm_tendsto_zero : Tendsto (fun i => F.eval (ncs i)) atTop (𝓝 0) :=
tendsto_iff_norm_tendsto_zero.2 (by simpa using hnorm)
-#align tendsto_zero_of_norm_tendsto_zero tendsto_zero_of_norm_tendsto_zero
+/- warning: limit_zero_of_norm_tendsto_zero -> limit_zero_of_norm_tendsto_zero is a dubious translation:
+lean 3 declaration is
+ forall {p : Nat} [_inst_1 : Fact (Nat.Prime p)] {ncs : CauSeq.{0, 0} Real Real.linearOrderedField (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1))} {F : Polynomial.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))))}, (Filter.Tendsto.{0, 0} Nat Real (fun (i : Nat) => Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1) (Polynomial.eval.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1)))) (coeFn.{1, 1} (CauSeq.{0, 0} Real Real.linearOrderedField (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1))) (fun (_x : CauSeq.{0, 0} Real Real.linearOrderedField (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1))) => Nat -> (PadicInt p _inst_1)) (CauSeq.hasCoeToFun.{0, 0} Real (PadicInt p _inst_1) Real.linearOrderedField (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1))) ncs i) F)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))) -> (Eq.{1} (PadicInt p _inst_1) (Polynomial.eval.{0} (PadicInt p _inst_1) (Ring.toSemiring.{0} (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1)))) (CauSeq.lim.{0, 0} Real Real.linearOrderedField (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.normedCommRing p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.hasNorm p _inst_1)) (PadicInt.isAbsoluteValue p _inst_1) (PadicInt.complete p _inst_1) ncs) F) (OfNat.ofNat.{0} (PadicInt p _inst_1) 0 (OfNat.mk.{0} (PadicInt p _inst_1) 0 (Zero.zero.{0} (PadicInt p _inst_1) (PadicInt.hasZero p _inst_1)))))
+but is expected to have type
+ forall {p : Nat} [_inst_1 : Fact (Nat.Prime p)] {ncs : CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.instNormedCommRingPadicInt p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1))} {F : Polynomial.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1)))}, (Filter.Tendsto.{0, 0} Nat Real (fun (i : Nat) => Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1) (Polynomial.eval.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1))) (Subtype.val.{1} (Nat -> (PadicInt p _inst_1)) (fun (f : Nat -> (PadicInt p _inst_1)) => IsCauSeq.{0, 0} Real Real.instLinearOrderedFieldReal (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.instNormedCommRingPadicInt p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1)) f) ncs i) F)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))) -> (Eq.{1} (PadicInt p _inst_1) (Polynomial.eval.{0} (PadicInt p _inst_1) (CommSemiring.toSemiring.{0} (PadicInt p _inst_1) (CommRing.toCommSemiring.{0} (PadicInt p _inst_1) (PadicInt.instCommRingPadicInt p _inst_1))) (CauSeq.lim.{0, 0} Real Real.instLinearOrderedFieldReal (PadicInt p _inst_1) (NormedRing.toRing.{0} (PadicInt p _inst_1) (NormedCommRing.toNormedRing.{0} (PadicInt p _inst_1) (PadicInt.instNormedCommRingPadicInt p _inst_1))) (Norm.norm.{0} (PadicInt p _inst_1) (PadicInt.instNormPadicInt p _inst_1)) (PadicInt.isAbsoluteValue p _inst_1) (PadicInt.complete p _inst_1) ncs) F) (OfNat.ofNat.{0} (PadicInt p _inst_1) 0 (Zero.toOfNat0.{0} (PadicInt p _inst_1) (PadicInt.instZeroPadicInt p _inst_1))))
+Case conversion may be inaccurate. Consider using '#align limit_zero_of_norm_tendsto_zero limit_zero_of_norm_tendsto_zeroₓ'. -/
theorem limit_zero_of_norm_tendsto_zero : F.eval ncs.limUnder = 0 :=
tendsto_nhds_unique (comp_tendsto_lim _) tendsto_zero_of_norm_tendsto_zero
#align limit_zero_of_norm_tendsto_zero limit_zero_of_norm_tendsto_zero
@@ -125,62 +135,48 @@ include hnorm
/-- `T` is an auxiliary value that is used to control the behavior of the polynomial `F`. -/
private def T : ℝ :=
‖(F.eval a / F.derivative.eval a ^ 2 : ℚ_[p])‖
-#align T T
private theorem deriv_sq_norm_pos : 0 < ‖F.derivative.eval a‖ ^ 2 :=
lt_of_le_of_lt (norm_nonneg _) hnorm
-#align deriv_sq_norm_pos deriv_sq_norm_pos
private theorem deriv_sq_norm_ne_zero : ‖F.derivative.eval a‖ ^ 2 ≠ 0 :=
ne_of_gt deriv_sq_norm_pos
-#align deriv_sq_norm_ne_zero deriv_sq_norm_ne_zero
private theorem deriv_norm_ne_zero : ‖F.derivative.eval a‖ ≠ 0 := fun h =>
deriv_sq_norm_ne_zero (by simp [*, sq])
-#align deriv_norm_ne_zero deriv_norm_ne_zero
private theorem deriv_norm_pos : 0 < ‖F.derivative.eval a‖ :=
lt_of_le_of_ne (norm_nonneg _) (Ne.symm deriv_norm_ne_zero)
-#align deriv_norm_pos deriv_norm_pos
private theorem deriv_ne_zero : F.derivative.eval a ≠ 0 :=
mt norm_eq_zero.2 deriv_norm_ne_zero
-#align deriv_ne_zero deriv_ne_zero
private theorem T_def : T = ‖F.eval a‖ / ‖F.derivative.eval a‖ ^ 2 := by
simp [T, ← PadicInt.norm_def]
-#align T_def T_def
private theorem T_lt_one : T < 1 :=
by
let h := (div_lt_one deriv_sq_norm_pos).2 hnorm
rw [T_def] <;> apply h
-#align T_lt_one T_lt_one
private theorem T_nonneg : 0 ≤ T :=
norm_nonneg _
-#align T_nonneg T_nonneg
private theorem T_pow_nonneg (n : ℕ) : 0 ≤ T ^ n :=
pow_nonneg T_nonneg _
-#align T_pow_nonneg T_pow_nonneg
private theorem T_pow {n : ℕ} (hn : n ≠ 0) : T ^ n < 1 :=
pow_lt_one T_nonneg T_lt_one hn
-#align T_pow T_pow
private theorem T_pow' (n : ℕ) : T ^ 2 ^ n < 1 :=
T_pow (pow_ne_zero _ two_ne_zero)
-#align T_pow' T_pow'
/-- We will construct a sequence of elements of ℤ_p satisfying successive values of `ih`. -/
private def ih (n : ℕ) (z : ℤ_[p]) : Prop :=
‖F.derivative.eval z‖ = ‖F.derivative.eval a‖ ∧ ‖F.eval z‖ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n
-#align ih ih
private theorem ih_0 : ih 0 a :=
⟨rfl, by simp [T_def, mul_div_cancel' _ (ne_of_gt (deriv_sq_norm_pos hnorm))]⟩
-#align ih_0 ih_0
private theorem calc_norm_le_one {n : ℕ} {z : ℤ_[p]} (hz : ih n z) :
‖(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)‖ ≤ 1 :=
@@ -194,7 +190,6 @@ private theorem calc_norm_le_one {n : ℕ} {z : ℤ_[p]} (hz : ih n z) :
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := (div_sq_cancel _ _)
_ ≤ 1 := mul_le_one (PadicInt.norm_le_one _) (T_pow_nonneg _) (le_of_lt (T_pow' _))
-#align calc_norm_le_one calc_norm_le_one
private theorem calc_deriv_dist {z z' z1 : ℤ_[p]} (hz' : z' = z - z1)
(hz1 : ‖z1‖ = ‖F.eval z‖ / ‖F.derivative.eval a‖) {n} (hz : ih n z) :
@@ -208,7 +203,6 @@ private theorem calc_deriv_dist {z z' z1 : ℤ_[p]} (hz' : z' = z - z1)
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := (div_sq_cancel _ _)
_ < ‖F.derivative.eval a‖ := (mul_lt_iff_lt_one_right deriv_norm_pos).2 (T_pow' _)
-#align calc_deriv_dist calc_deriv_dist
private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n z)
(h1 : ‖(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)‖ ≤ 1) (hzeq : z1 = ⟨_, h1⟩) :
@@ -233,7 +227,6 @@ private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n
_ = -F.eval z := by simp only [mul_div_cancel' _ hdzne', Subtype.coe_eta]
exact ⟨q, by simpa only [sub_eq_add_neg, this, hz', add_right_neg, neg_sq, zero_add] using hq⟩
-#align calc_eval_z' calc_eval_z'
private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F.eval z' = q * z1 ^ 2)
(h1 : ‖(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)‖ ≤ 1) (hzeq : z1 = ⟨_, h1⟩) :
@@ -250,7 +243,6 @@ private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F
_ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := (div_sq_cancel _ _)
_ = ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) := by rw [← pow_mul, pow_succ' 2]
-#align calc_eval_z'_norm calc_eval_z'_norm
/- ./././Mathport/Syntax/Translate/Basic.lean:334:40: warning: unsupported option eqn_compiler.zeta -/
set_option eqn_compiler.zeta true
@@ -273,7 +265,6 @@ private def ih_n {n : ℕ} {z : ℤ_[p]} (hz : ih n z) : { z' : ℤ_[p] // ih (n
have hnle : ‖F.eval z'‖ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) :=
calc_eval_z'_norm hz HEq h1 rfl
⟨hfeq, hnle⟩⟩
-#align ih_n ih_n
/- ./././Mathport/Syntax/Translate/Basic.lean:334:40: warning: unsupported option eqn_compiler.zeta -/
set_option eqn_compiler.zeta false
@@ -282,27 +273,22 @@ set_option eqn_compiler.zeta false
private noncomputable def newton_seq_aux : ∀ n : ℕ, { z : ℤ_[p] // ih n z }
| 0 => ⟨a, ih_0⟩
| k + 1 => ih_n (newton_seq_aux k).2
-#align newton_seq_aux newton_seq_aux
private def newton_seq (n : ℕ) : ℤ_[p] :=
(newton_seq_aux n).1
-#align newton_seq newton_seq
private theorem newton_seq_deriv_norm (n : ℕ) :
‖F.derivative.eval (newton_seq n)‖ = ‖F.derivative.eval a‖ :=
(newton_seq_aux n).2.1
-#align newton_seq_deriv_norm newton_seq_deriv_norm
private theorem newton_seq_norm_le (n : ℕ) :
‖F.eval (newton_seq n)‖ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n :=
(newton_seq_aux n).2.2
-#align newton_seq_norm_le newton_seq_norm_le
private theorem newton_seq_norm_eq (n : ℕ) :
‖newton_seq (n + 1) - newton_seq n‖ =
‖F.eval (newton_seq n)‖ / ‖F.derivative.eval (newton_seq n)‖ :=
by simp [newton_seq, newton_seq_aux, ih_n, sub_eq_add_neg, add_comm]
-#align newton_seq_norm_eq newton_seq_norm_eq
private theorem newton_seq_succ_dist (n : ℕ) :
‖newton_seq (n + 1) - newton_seq n‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ n :=
@@ -315,14 +301,12 @@ private theorem newton_seq_succ_dist (n : ℕ) :
((div_le_div_right deriv_norm_pos).2 (newton_seq_norm_le _))
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := div_sq_cancel _ _
-#align newton_seq_succ_dist newton_seq_succ_dist
include hnsol
private theorem T_pos : T > 0 := by
rw [T_def]
exact div_pos (norm_pos_iff.2 hnsol) (deriv_sq_norm_pos hnorm)
-#align T_pos T_pos
private theorem newton_seq_succ_dist_weak (n : ℕ) :
‖newton_seq (n + 2) - newton_seq (n + 1)‖ < ‖F.eval a‖ / ‖F.derivative.eval a‖ :=
@@ -344,7 +328,6 @@ private theorem newton_seq_succ_dist_weak (n : ℕ) :
apply mul_div_mul_left
apply deriv_norm_ne_zero <;> assumption
-#align newton_seq_succ_dist_weak newton_seq_succ_dist_weak
private theorem newton_seq_dist_aux (n : ℕ) :
∀ k : ℕ, ‖newton_seq (n + k) - newton_seq n‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ n
@@ -368,7 +351,6 @@ private theorem newton_seq_dist_aux (n : ℕ) :
mul_le_mul_of_nonneg_left (pow_le_pow_of_le_one (norm_nonneg _) (le_of_lt T_lt_one) this)
(norm_nonneg _)
-#align newton_seq_dist_aux newton_seq_dist_aux
private theorem newton_seq_dist {n k : ℕ} (hnk : n ≤ k) :
‖newton_seq k - newton_seq n‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ n :=
@@ -376,7 +358,6 @@ private theorem newton_seq_dist {n k : ℕ} (hnk : n ≤ k) :
have hex : ∃ m, k = n + m := exists_eq_add_of_le hnk
let ⟨_, hex'⟩ := hex
rw [hex'] <;> apply newton_seq_dist_aux <;> assumption
-#align newton_seq_dist newton_seq_dist
private theorem newton_seq_dist_to_a :
∀ n : ℕ, 0 < n → ‖newton_seq n - a‖ = ‖F.eval a‖ / ‖F.derivative.eval a‖
@@ -396,7 +377,6 @@ private theorem newton_seq_dist_to_a :
_ = ‖Polynomial.eval a F‖ / ‖Polynomial.eval a (Polynomial.derivative F)‖ :=
newton_seq_dist_to_a (k + 1) (succ_pos _)
-#align newton_seq_dist_to_a newton_seq_dist_to_a
private theorem bound' : Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ * T ^ 2 ^ n) atTop (𝓝 0) :=
by
@@ -405,7 +385,6 @@ private theorem bound' : Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ * T ^
tendsto_const_nhds.mul
(tendsto.comp (tendsto_pow_atTop_nhds_0_of_lt_1 (norm_nonneg _) (T_lt_one hnorm))
(Nat.tendsto_pow_atTop_atTop_of_one_lt (by norm_num)))
-#align bound' bound'
private theorem bound :
∀ {ε}, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → ‖F.derivative.eval a‖ * T ^ 2 ^ n < ε :=
@@ -416,7 +395,6 @@ private theorem bound :
cases' this (ball 0 ε) (mem_ball_self hε) is_open_ball with N hN
exists N; intro n hn
simpa [abs_of_nonneg (T_nonneg _)] using hN _ hn
-#align bound bound
private theorem bound'_sq :
Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n) atTop (𝓝 0) :=
@@ -427,7 +405,6 @@ private theorem bound'_sq :
· apply tendsto_const_nhds
· apply bound'
assumption
-#align bound'_sq bound'_sq
private theorem newton_seq_is_cauchy : IsCauSeq norm newton_seq :=
by
@@ -440,43 +417,34 @@ private theorem newton_seq_is_cauchy : IsCauSeq norm newton_seq :=
assumption
· apply hN
exact le_rfl
-#align newton_seq_is_cauchy newton_seq_is_cauchy
private def newton_cau_seq : CauSeq ℤ_[p] norm :=
⟨_, newton_seq_is_cauchy⟩
-#align newton_cau_seq newton_cau_seq
private def soln : ℤ_[p] :=
newton_cau_seq.limUnder
-#align soln soln
private theorem soln_spec {ε : ℝ} (hε : ε > 0) :
∃ N : ℕ, ∀ {i : ℕ}, i ≥ N → ‖soln - newton_cau_seq i‖ < ε :=
Setoid.symm (CauSeq.equiv_lim newton_cau_seq) _ hε
-#align soln_spec soln_spec
private theorem soln_deriv_norm : ‖F.derivative.eval soln‖ = ‖F.derivative.eval a‖ :=
norm_deriv_eq newton_seq_deriv_norm
-#align soln_deriv_norm soln_deriv_norm
private theorem newton_seq_norm_tendsto_zero :
Tendsto (fun i => ‖F.eval (newton_cau_seq i)‖) atTop (𝓝 0) :=
squeeze_zero (fun _ => norm_nonneg _) newton_seq_norm_le bound'_sq
-#align newton_seq_norm_tendsto_zero newton_seq_norm_tendsto_zero
private theorem newton_seq_dist_tendsto :
Tendsto (fun n => ‖newton_cau_seq n - a‖) atTop (𝓝 (‖F.eval a‖ / ‖F.derivative.eval a‖)) :=
tendsto_const_nhds.congr' <| eventually_atTop.2 ⟨1, fun _ hx => (newton_seq_dist_to_a _ hx).symm⟩
-#align newton_seq_dist_tendsto newton_seq_dist_tendsto
private theorem newton_seq_dist_tendsto' :
Tendsto (fun n => ‖newton_cau_seq n - a‖) atTop (𝓝 ‖soln - a‖) :=
(continuous_norm.Tendsto _).comp (newton_cau_seq.tendsto_limit.sub tendsto_const_nhds)
-#align newton_seq_dist_tendsto' newton_seq_dist_tendsto'
private theorem soln_dist_to_a : ‖soln - a‖ = ‖F.eval a‖ / ‖F.derivative.eval a‖ :=
tendsto_nhds_unique newton_seq_dist_tendsto' newton_seq_dist_tendsto
-#align soln_dist_to_a soln_dist_to_a
private theorem soln_dist_to_a_lt_deriv : ‖soln - a‖ < ‖F.derivative.eval a‖ :=
by
@@ -484,11 +452,9 @@ private theorem soln_dist_to_a_lt_deriv : ‖soln - a‖ < ‖F.derivative.eval
· rwa [sq] at hnorm
· apply deriv_norm_pos
assumption
-#align soln_dist_to_a_lt_deriv soln_dist_to_a_lt_deriv
private theorem eval_soln : F.eval soln = 0 :=
limit_zero_of_norm_tendsto_zero newton_seq_norm_tendsto_zero
-#align eval_soln eval_soln
private theorem soln_unique (z : ℤ_[p]) (hev : F.eval z = 0)
(hnlt : ‖z - a‖ < ‖F.derivative.eval a‖) : z = soln :=
@@ -522,7 +488,6 @@ private theorem soln_unique (z : ℤ_[p]) (hev : F.eval z = 0)
_ < ‖F.derivative.eval soln‖ := by rw [soln_deriv_norm] <;> apply soln_dist
)
eq_of_sub_eq_zero (by rw [← this] <;> rfl)
-#align soln_unique soln_unique
end Hensel
@@ -551,7 +516,6 @@ private theorem a_soln_is_unique (ha : F.eval a = 0) (z' : ℤ_[p]) (hz' : F.eva
_ < ‖F.derivative.eval a‖ := by simpa [h]
)
eq_of_sub_eq_zero (by rw [← this] <;> rfl)
-#align a_soln_is_unique a_soln_is_unique
variable (hnorm : ‖F.eval a‖ < ‖F.derivative.eval a‖ ^ 2)
@@ -563,8 +527,10 @@ private theorem a_is_soln (ha : F.eval a = 0) :
‖F.derivative.eval a‖ = ‖F.derivative.eval a‖ ∧
∀ z', F.eval z' = 0 → ‖z' - a‖ < ‖F.derivative.eval a‖ → z' = a :=
⟨ha, by simp [deriv_ne_zero hnorm], rfl, a_soln_is_unique ha⟩
-#align a_is_soln a_is_soln
+/- warning: hensels_lemma -> hensels_lemma is a dubious translation:
+<too large>
+Case conversion may be inaccurate. Consider using '#align hensels_lemma hensels_lemmaₓ'. -/
theorem hensels_lemma :
∃ z : ℤ_[p],
F.eval z = 0 ∧
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -400,7 +400,7 @@ private theorem newton_seq_dist_to_a :
private theorem bound' : Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ * T ^ 2 ^ n) atTop (𝓝 0) :=
by
- rw [← mul_zero ‖F.derivative.eval a‖]
+ rw [← MulZeroClass.mul_zero ‖F.derivative.eval a‖]
exact
tendsto_const_nhds.mul
(tendsto.comp (tendsto_pow_atTop_nhds_0_of_lt_1 (norm_nonneg _) (T_lt_one hnorm))
@@ -421,7 +421,7 @@ private theorem bound :
private theorem bound'_sq :
Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n) atTop (𝓝 0) :=
by
- rw [← mul_zero ‖F.derivative.eval a‖, sq]
+ rw [← MulZeroClass.mul_zero ‖F.derivative.eval a‖, sq]
simp only [mul_assoc]
apply tendsto.mul
· apply tendsto_const_nhds
mathlib commit https://github.com/leanprover-community/mathlib/commit/4c586d291f189eecb9d00581aeb3dd998ac34442
@@ -47,7 +47,7 @@ theorem padic_polynomial_dist {p : ℕ} [Fact p.Prime] (F : Polynomial ℤ_[p])
let ⟨z, hz⟩ := F.evalSubFactor x y
calc
‖F.eval x - F.eval y‖ = ‖z‖ * ‖x - y‖ := by simp [hz]
- _ ≤ 1 * ‖x - y‖ := mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (norm_nonneg _)
+ _ ≤ 1 * ‖x - y‖ := (mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (norm_nonneg _))
_ = ‖x - y‖ := by simp
#align padic_polynomial_dist padic_polynomial_dist
@@ -190,8 +190,8 @@ private theorem calc_norm_le_one {n : ℕ} {z : ℤ_[p]} (hz : ih n z) :
norm_div _ _
_ = ‖F.eval z‖ / ‖F.derivative.eval a‖ := by simp [hz.1]
_ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n / ‖F.derivative.eval a‖ :=
- (div_le_div_right deriv_norm_pos).2 hz.2
- _ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := div_sq_cancel _ _
+ ((div_le_div_right deriv_norm_pos).2 hz.2)
+ _ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := (div_sq_cancel _ _)
_ ≤ 1 := mul_le_one (PadicInt.norm_le_one _) (T_pow_nonneg _) (le_of_lt (T_pow' _))
#align calc_norm_le_one calc_norm_le_one
@@ -204,8 +204,8 @@ private theorem calc_deriv_dist {z z' z1 : ℤ_[p]} (hz' : z' = z - z1)
_ = ‖z1‖ := by simp only [sub_eq_add_neg, add_assoc, hz', add_add_neg_cancel'_right, norm_neg]
_ = ‖F.eval z‖ / ‖F.derivative.eval a‖ := hz1
_ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n / ‖F.derivative.eval a‖ :=
- (div_le_div_right deriv_norm_pos).2 hz.2
- _ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := div_sq_cancel _ _
+ ((div_le_div_right deriv_norm_pos).2 hz.2)
+ _ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := (div_sq_cancel _ _)
_ < ‖F.derivative.eval a‖ := (mul_lt_iff_lt_one_right deriv_norm_pos).2 (T_pow' _)
#align calc_deriv_dist calc_deriv_dist
@@ -227,9 +227,9 @@ private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n
F.derivative.eval z * -z1 =
F.derivative.eval z * -⟨↑(F.eval z) / ↑(F.derivative.eval z), h1⟩ :=
by rw [hzeq]
- _ = -(F.derivative.eval z * ⟨↑(F.eval z) / ↑(F.derivative.eval z), h1⟩) := mul_neg _ _
+ _ = -(F.derivative.eval z * ⟨↑(F.eval z) / ↑(F.derivative.eval z), h1⟩) := (mul_neg _ _)
_ = -⟨↑(F.derivative.eval z) * (↑(F.eval z) / ↑(F.derivative.eval z)), this⟩ :=
- Subtype.ext <| by simp only [PadicInt.coe_neg, PadicInt.coe_mul, Subtype.coe_mk]
+ (Subtype.ext <| by simp only [PadicInt.coe_neg, PadicInt.coe_mul, Subtype.coe_mk])
_ = -F.eval z := by simp only [mul_div_cancel' _ hdzne', Subtype.coe_eta]
exact ⟨q, by simpa only [sub_eq_add_neg, this, hz', add_right_neg, neg_sq, zero_add] using hq⟩
@@ -241,13 +241,13 @@ private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F
calc
‖F.eval z'‖ = ‖q‖ * ‖z1‖ ^ 2 := by simp [HEq]
_ ≤ 1 * ‖z1‖ ^ 2 :=
- mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (pow_nonneg (norm_nonneg _) _)
+ (mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (pow_nonneg (norm_nonneg _) _))
_ = ‖F.eval z‖ ^ 2 / ‖F.derivative.eval a‖ ^ 2 := by simp [hzeq, hz.1, div_pow]
_ ≤ (‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n) ^ 2 / ‖F.derivative.eval a‖ ^ 2 :=
- (div_le_div_right deriv_sq_norm_pos).2 (pow_le_pow_of_le_left (norm_nonneg _) hz.2 _)
+ ((div_le_div_right deriv_sq_norm_pos).2 (pow_le_pow_of_le_left (norm_nonneg _) hz.2 _))
_ = (‖F.derivative.eval a‖ ^ 2) ^ 2 * (T ^ 2 ^ n) ^ 2 / ‖F.derivative.eval a‖ ^ 2 := by
simp only [mul_pow]
- _ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := div_sq_cancel _ _
+ _ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := (div_sq_cancel _ _)
_ = ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) := by rw [← pow_mul, pow_succ' 2]
#align calc_eval_z'_norm calc_eval_z'_norm
@@ -312,7 +312,7 @@ private theorem newton_seq_succ_dist (n : ℕ) :
newton_seq_norm_eq _
_ = ‖F.eval (newton_seq n)‖ / ‖F.derivative.eval a‖ := by rw [newton_seq_deriv_norm]
_ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n / ‖F.derivative.eval a‖ :=
- (div_le_div_right deriv_norm_pos).2 (newton_seq_norm_le _)
+ ((div_le_div_right deriv_norm_pos).2 (newton_seq_norm_le _))
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := div_sq_cancel _ _
#align newton_seq_succ_dist newton_seq_succ_dist
@@ -334,10 +334,10 @@ private theorem newton_seq_succ_dist_weak (n : ℕ) :
‖newton_seq (n + 2) - newton_seq (n + 1)‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ (n + 1) :=
newton_seq_succ_dist _
_ ≤ ‖F.derivative.eval a‖ * T ^ 2 :=
- mul_le_mul_of_nonneg_left (pow_le_pow_of_le_one (norm_nonneg _) (le_of_lt T_lt_one) this)
- (norm_nonneg _)
+ (mul_le_mul_of_nonneg_left (pow_le_pow_of_le_one (norm_nonneg _) (le_of_lt T_lt_one) this)
+ (norm_nonneg _))
_ < ‖F.derivative.eval a‖ * T ^ 1 :=
- mul_lt_mul_of_pos_left (pow_lt_pow_of_lt_one T_pos T_lt_one (by norm_num)) deriv_norm_pos
+ (mul_lt_mul_of_pos_left (pow_lt_pow_of_lt_one T_pos T_lt_one (by norm_num)) deriv_norm_pos)
_ = ‖F.eval a‖ / ‖F.derivative.eval a‖ :=
by
rw [T, sq, pow_one, norm_div, ← mul_div_assoc, padicNormE.mul]
@@ -360,9 +360,9 @@ private theorem newton_seq_dist_aux (n : ℕ) :
_ = ‖newton_seq (n + k + 1) - newton_seq (n + k) + (newton_seq (n + k) - newton_seq n)‖ := by
rw [← sub_add_sub_cancel]
_ ≤ max ‖newton_seq (n + k + 1) - newton_seq (n + k)‖ ‖newton_seq (n + k) - newton_seq n‖ :=
- PadicInt.nonarchimedean _ _
+ (PadicInt.nonarchimedean _ _)
_ ≤ max (‖F.derivative.eval a‖ * T ^ 2 ^ (n + k)) (‖F.derivative.eval a‖ * T ^ 2 ^ n) :=
- max_le_max (newton_seq_succ_dist _) (newton_seq_dist_aux _)
+ (max_le_max (newton_seq_succ_dist _) (newton_seq_dist_aux _))
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n :=
max_eq_right <|
mul_le_mul_of_nonneg_left (pow_le_pow_of_le_one (norm_nonneg _) (le_of_lt T_lt_one) this)
@@ -391,8 +391,8 @@ private theorem newton_seq_dist_to_a :
‖newton_seq (k + 2) - newton_seq (k + 1) + (newton_seq (k + 1) - a)‖ :=
by rw [← sub_add_sub_cancel]
_ = max ‖newton_seq (k + 2) - newton_seq (k + 1)‖ ‖newton_seq (k + 1) - a‖ :=
- PadicInt.norm_add_eq_max_of_ne hne'
- _ = ‖newton_seq (k + 1) - a‖ := max_eq_right_of_lt hlt
+ (PadicInt.norm_add_eq_max_of_ne hne')
+ _ = ‖newton_seq (k + 1) - a‖ := (max_eq_right_of_lt hlt)
_ = ‖Polynomial.eval a F‖ / ‖Polynomial.eval a (Polynomial.derivative F)‖ :=
newton_seq_dist_to_a (k + 1) (succ_pos _)
@@ -495,7 +495,7 @@ private theorem soln_unique (z : ℤ_[p]) (hev : F.eval z = 0)
have soln_dist : ‖z - soln‖ < ‖F.derivative.eval a‖ :=
calc
‖z - soln‖ = ‖z - a + (a - soln)‖ := by rw [sub_add_sub_cancel]
- _ ≤ max ‖z - a‖ ‖a - soln‖ := PadicInt.nonarchimedean _ _
+ _ ≤ max ‖z - a‖ ‖a - soln‖ := (PadicInt.nonarchimedean _ _)
_ < ‖F.derivative.eval a‖ := max_lt hnlt (norm_sub_rev soln a ▸ soln_dist_to_a_lt_deriv)
let h := z - soln
@@ -547,7 +547,7 @@ private theorem a_soln_is_unique (ha : F.eval a = 0) (z' : ℤ_[p]) (hz' : F.eva
lt_irrefl ‖F.derivative.eval a‖
(calc
‖F.derivative.eval a‖ = ‖q‖ * ‖h‖ := by simp [this]
- _ ≤ 1 * ‖h‖ := mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (norm_nonneg _)
+ _ ≤ 1 * ‖h‖ := (mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (norm_nonneg _))
_ < ‖F.derivative.eval a‖ := by simpa [h]
)
eq_of_sub_eq_zero (by rw [← this] <;> rfl)
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -156,7 +156,7 @@ private theorem calc_norm_le_one {n : ℕ} {z : ℤ_[p]} (hz : ih n z) :
_ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n / ‖F.derivative.eval a‖ := by
gcongr
apply hz.2
- _ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := (div_sq_cancel _ _)
+ _ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := div_sq_cancel _ _
_ ≤ 1 := mul_le_one (PadicInt.norm_le_one _) (T_pow_nonneg _) (le_of_lt (T_pow' hnorm _))
@@ -170,7 +170,7 @@ private theorem calc_deriv_dist {z z' z1 : ℤ_[p]} (hz' : z' = z - z1)
_ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n / ‖F.derivative.eval a‖ := by
gcongr
apply hz.2
- _ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := (div_sq_cancel _ _)
+ _ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := div_sq_cancel _ _
_ < ‖F.derivative.eval a‖ := (mul_lt_iff_lt_one_right (deriv_norm_pos hnorm)).2
(T_pow' hnorm _)
@@ -190,7 +190,7 @@ private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n
F.derivative.eval z * -z1 =
F.derivative.eval z * -⟨↑(F.eval z) / ↑(F.derivative.eval z), h1⟩ :=
by rw [hzeq]
- _ = -(F.derivative.eval z * ⟨↑(F.eval z) / ↑(F.derivative.eval z), h1⟩) := (mul_neg _ _)
+ _ = -(F.derivative.eval z * ⟨↑(F.eval z) / ↑(F.derivative.eval z), h1⟩) := mul_neg _ _
_ = -⟨F.derivative.eval z * (F.eval z / (F.derivative.eval z : ℤ_[p]) : ℚ_[p]), this⟩ :=
(Subtype.ext <| by simp only [PadicInt.coe_neg, PadicInt.coe_mul, Subtype.coe_mk])
_ = -F.eval z := by simp only [mul_div_cancel₀ _ hdzne', Subtype.coe_eta]
@@ -210,7 +210,7 @@ private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F
exact hz.2
_ = (‖F.derivative.eval a‖ ^ 2) ^ 2 * (T ^ 2 ^ n) ^ 2 / ‖F.derivative.eval a‖ ^ 2 := by
simp only [mul_pow]
- _ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := (div_sq_cancel _ _)
+ _ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := div_sq_cancel _ _
_ = ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) := by rw [← pow_mul, pow_succ 2]
@@ -340,7 +340,7 @@ private theorem newton_seq_dist_to_a :
by rw [← sub_add_sub_cancel]
_ = max ‖newton_seq (k + 2) - newton_seq (k + 1)‖ ‖newton_seq (k + 1) - a‖ :=
(PadicInt.norm_add_eq_max_of_ne hne')
- _ = ‖newton_seq (k + 1) - a‖ := (max_eq_right_of_lt hlt)
+ _ = ‖newton_seq (k + 1) - a‖ := max_eq_right_of_lt hlt
_ = ‖Polynomial.eval a F‖ / ‖Polynomial.eval a (Polynomial.derivative F)‖ :=
newton_seq_dist_to_a (k + 1) (succ_pos _)
@@ -409,7 +409,7 @@ private theorem soln_unique (z : ℤ_[p]) (hev : F.eval z = 0)
have soln_dist : ‖z - soln‖ < ‖F.derivative.eval a‖ :=
calc
‖z - soln‖ = ‖z - a + (a - soln)‖ := by rw [sub_add_sub_cancel]
- _ ≤ max ‖z - a‖ ‖a - soln‖ := (PadicInt.nonarchimedean _ _)
+ _ ≤ max ‖z - a‖ ‖a - soln‖ := PadicInt.nonarchimedean _ _
_ < ‖F.derivative.eval a‖ :=
max_lt hnlt ((norm_sub_rev soln a ▸ (soln_dist_to_a_lt_deriv hnorm)) hnsol)
Data
(#11751)
Polynomial
and MvPolynomial
are algebraic objects, hence should be under Algebra
(or at least not under Data
)
@@ -3,8 +3,8 @@ Copyright (c) 2018 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Y. Lewis
-/
+import Mathlib.Algebra.Polynomial.Identities
import Mathlib.Analysis.SpecificLimits.Basic
-import Mathlib.Data.Polynomial.Identities
import Mathlib.NumberTheory.Padics.PadicIntegers
import Mathlib.Topology.Algebra.Polynomial
import Mathlib.Topology.MetricSpace.CauSeqFilter
We change the following field in the definition of an additive commutative monoid:
nsmul_succ : ∀ (n : ℕ) (x : G),
- AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+ AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
where the latter is more natural
We adjust the definitions of ^
in monoids, groups, etc.
Originally there was a warning comment about why this natural order was preferred
use
x * npowRec n x
and notnpowRec n x * x
in the definition to make sure that definitional unfolding ofnpowRec
is blocked, to avoid deep recursion issues.
but it seems to no longer apply.
Remarks on the PR :
pow_succ
and pow_succ'
have switched their meanings.Ideal.IsPrime.mul_mem_pow
which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul
.@@ -211,7 +211,7 @@ private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F
_ = (‖F.derivative.eval a‖ ^ 2) ^ 2 * (T ^ 2 ^ n) ^ 2 / ‖F.derivative.eval a‖ ^ 2 := by
simp only [mul_pow]
_ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := (div_sq_cancel _ _)
- _ = ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) := by rw [← pow_mul, pow_succ' 2]
+ _ = ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) := by rw [← pow_mul, pow_succ 2]
-- Porting note: unsupported option eqn_compiler.zeta
mul
-div
cancellation lemmas (#11530)
Lemma names around cancellation of multiplication and division are a mess.
This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero
lemma name, the Group
lemma, the AddGroup
lemma name).
| Statement | New name | Old name | |
@@ -144,7 +144,7 @@ private def ih_gen (n : ℕ) (z : ℤ_[p]) : Prop :=
local notation "ih" => @ih_gen p _ F a
private theorem ih_0 : ih 0 a :=
- ⟨rfl, by simp [T_def, mul_div_cancel' _ (ne_of_gt (deriv_sq_norm_pos hnorm))]⟩
+ ⟨rfl, by simp [T_def, mul_div_cancel₀ _ (ne_of_gt (deriv_sq_norm_pos hnorm))]⟩
private theorem calc_norm_le_one {n : ℕ} {z : ℤ_[p]} (hz : ih n z) :
‖(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)‖ ≤ 1 :=
@@ -193,7 +193,7 @@ private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n
_ = -(F.derivative.eval z * ⟨↑(F.eval z) / ↑(F.derivative.eval z), h1⟩) := (mul_neg _ _)
_ = -⟨F.derivative.eval z * (F.eval z / (F.derivative.eval z : ℤ_[p]) : ℚ_[p]), this⟩ :=
(Subtype.ext <| by simp only [PadicInt.coe_neg, PadicInt.coe_mul, Subtype.coe_mk])
- _ = -F.eval z := by simp only [mul_div_cancel' _ hdzne', Subtype.coe_eta]
+ _ = -F.eval z := by simp only [mul_div_cancel₀ _ hdzne', Subtype.coe_eta]
exact ⟨q, by simpa only [sub_eq_add_neg, this, hz', add_right_neg, neg_sq, zero_add] using hq⟩
open Classical
(#11199)
We remove all but one open Classical
s, instead preferring to use open scoped Classical
. The only real side-effect this led to is moving a couple declarations to use Exists.choose
instead of Classical.choose
.
The first few commits are explicitly labelled regex replaces for ease of review.
@@ -36,7 +36,8 @@ p-adic, p adic, padic, p-adic integer
noncomputable section
-open Classical Topology
+open scoped Classical
+open Topology
-- We begin with some general lemmas that are used below in the computation.
theorem padic_polynomial_dist {p : ℕ} [Fact p.Prime] (F : Polynomial ℤ_[p]) (x y : ℤ_[p]) :
@@ -224,7 +224,7 @@ private def ih_n {n : ℕ} {z : ℤ_[p]} (hz : ih n z) : { z' : ℤ_[p] // ih (n
let z' : ℤ_[p] := z - z1
⟨z',
have hdist : ‖F.derivative.eval z' - F.derivative.eval z‖ < ‖F.derivative.eval a‖ :=
- calc_deriv_dist hnorm rfl (by simp [hz.1]) hz
+ calc_deriv_dist hnorm rfl (by simp [z1, hz.1]) hz
have hfeq : ‖F.derivative.eval z'‖ = ‖F.derivative.eval a‖ := by
rw [sub_eq_add_neg, ← hz.1, ← norm_neg (F.derivative.eval z)] at hdist
have := PadicInt.norm_eq_of_norm_add_lt_right hdist
@@ -417,7 +417,7 @@ private theorem soln_unique (z : ℤ_[p]) (hev : F.eval z = 0)
have : (F.derivative.eval soln + q * h) * h = 0 :=
Eq.symm
(calc
- 0 = F.eval (soln + h) := by simp [hev]
+ 0 = F.eval (soln + h) := by simp [h, hev]
_ = F.derivative.eval soln * h + q * h ^ 2 := by rw [hq, eval_soln, zero_add]
_ = (F.derivative.eval soln + q * h) * h := by rw [sq, right_distrib, mul_assoc]
)
@@ -321,7 +321,7 @@ private theorem newton_seq_dist_aux (n : ℕ) :
private theorem newton_seq_dist {n k : ℕ} (hnk : n ≤ k) :
‖newton_seq k - newton_seq n‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ n := by
- have hex : ∃ m, k = n + m := exists_eq_add_of_le hnk
+ have hex : ∃ m, k = n + m := Nat.exists_eq_add_of_le hnk
let ⟨_, hex'⟩ := hex
rw [hex']; apply newton_seq_dist_aux
@@ -347,7 +347,7 @@ private theorem bound' : Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ * T ^
rw [← mul_zero ‖F.derivative.eval a‖]
exact
tendsto_const_nhds.mul
- (Tendsto.comp (tendsto_pow_atTop_nhds_0_of_lt_1 (norm_nonneg _) (T_lt_one hnorm))
+ (Tendsto.comp (tendsto_pow_atTop_nhds_zero_of_lt_one (norm_nonneg _) (T_lt_one hnorm))
(Nat.tendsto_pow_atTop_atTop_of_one_lt (by norm_num)))
private theorem bound :
Motivated by @Ruben-VandeVelde's leanprover-community/mathlib#15206
@@ -351,15 +351,8 @@ private theorem bound' : Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ * T ^
(Nat.tendsto_pow_atTop_atTop_of_one_lt (by norm_num)))
private theorem bound :
- ∀ {ε}, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → ‖F.derivative.eval a‖ * T ^ 2 ^ n < ε := by
- have := bound' hnorm
- simp? [Tendsto, nhds] at this says
- simp only [Tendsto, nhds_def, Set.mem_setOf_eq, le_iInf_iff, le_principal_iff, mem_map,
- mem_atTop_sets, ge_iff_le, Set.mem_preimage, and_imp] at this
- intro ε hε
- cases' this (ball 0 ε) (mem_ball_self hε) isOpen_ball with N hN
- exists N; intro n hn
- simpa [abs_of_nonneg T_nonneg] using hN _ hn
+ ∀ {ε}, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → ‖F.derivative.eval a‖ * T ^ 2 ^ n < ε := fun hε ↦
+ eventually_atTop.1 <| (bound' hnorm).eventually <| gt_mem_nhds hε
private theorem bound'_sq :
Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n) atTop (𝓝 0) := by
@@ -370,15 +363,8 @@ private theorem bound'_sq :
· apply bound'
assumption
-private theorem newton_seq_is_cauchy : IsCauSeq norm newton_seq := by
- intro ε hε
- cases' bound hnorm hε with N hN
- exists N
- intro j hj
- apply lt_of_le_of_lt
- · apply newton_seq_dist hnorm hj
- · apply hN
- exact le_rfl
+private theorem newton_seq_is_cauchy : IsCauSeq norm newton_seq := fun _ε hε ↦
+ (bound hnorm hε).imp fun _N hN _j hj ↦ (newton_seq_dist hnorm hj).trans_lt <| hN le_rfl
private def newton_cau_seq : CauSeq ℤ_[p] norm := ⟨_, newton_seq_is_cauchy hnorm⟩
@@ -412,11 +398,7 @@ private theorem soln_dist_to_a : ‖soln - a‖ = ‖F.eval a‖ / ‖F.derivati
tendsto_nhds_unique (newton_seq_dist_tendsto' hnorm) (newton_seq_dist_tendsto hnorm hnsol)
private theorem soln_dist_to_a_lt_deriv : ‖soln - a‖ < ‖F.derivative.eval a‖ := by
- rw [soln_dist_to_a, div_lt_iff]
- · rwa [sq] at hnorm
- · apply deriv_norm_pos
- assumption
- · exact hnsol
+ rw [soln_dist_to_a, div_lt_iff (deriv_norm_pos _), ← sq] <;> assumption
private theorem eval_soln : F.eval soln = 0 :=
limit_zero_of_norm_tendsto_zero (newton_seq_norm_tendsto_zero hnorm)
bump/v4.5.0
branch. (#9188)
This PR:
v4.5.0-rc1
v4.5.0-rc1
bump/v4.5.0
branch
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -354,7 +354,7 @@ private theorem bound :
∀ {ε}, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → ‖F.derivative.eval a‖ * T ^ 2 ^ n < ε := by
have := bound' hnorm
simp? [Tendsto, nhds] at this says
- simp only [Tendsto, nhds_def, Set.mem_setOf_eq, not_and, le_iInf_iff, le_principal_iff, mem_map,
+ simp only [Tendsto, nhds_def, Set.mem_setOf_eq, le_iInf_iff, le_principal_iff, mem_map,
mem_atTop_sets, ge_iff_le, Set.mem_preimage, and_imp] at this
intro ε hε
cases' this (ball 0 ε) (mem_ball_self hε) isOpen_ball with N hN
The names for lemmas about monotonicity of (a ^ ·)
and (· ^ n)
were a mess. This PR tidies up everything related by following the naming convention for (a * ·)
and (· * b)
. Namely, (a ^ ·)
is pow_right
and (· ^ n)
is pow_left
in lemma names. All lemma renames follow the corresponding multiplication lemma names closely.
Algebra.GroupPower.Order
pow_mono
→ pow_right_mono
pow_le_pow
→ pow_le_pow_right
pow_le_pow_of_le_left
→ pow_le_pow_left
pow_lt_pow_of_lt_left
→ pow_lt_pow_left
strictMonoOn_pow
→ pow_left_strictMonoOn
pow_strictMono_right
→ pow_right_strictMono
pow_lt_pow
→ pow_lt_pow_right
pow_lt_pow_iff
→ pow_lt_pow_iff_right
pow_le_pow_iff
→ pow_le_pow_iff_right
self_lt_pow
→ lt_self_pow
strictAnti_pow
→ pow_right_strictAnti
pow_lt_pow_iff_of_lt_one
→ pow_lt_pow_iff_right_of_lt_one
pow_lt_pow_of_lt_one
→ pow_lt_pow_right_of_lt_one
lt_of_pow_lt_pow
→ lt_of_pow_lt_pow_left
le_of_pow_le_pow
→ le_of_pow_le_pow_left
pow_lt_pow₀
→ pow_lt_pow_right₀
Algebra.GroupPower.CovariantClass
pow_le_pow_of_le_left'
→ pow_le_pow_left'
nsmul_le_nsmul_of_le_right
→ nsmul_le_nsmul_right
pow_lt_pow'
→ pow_lt_pow_right'
nsmul_lt_nsmul
→ nsmul_lt_nsmul_left
pow_strictMono_left
→ pow_right_strictMono'
nsmul_strictMono_right
→ nsmul_left_strictMono
StrictMono.pow_right'
→ StrictMono.pow_const
StrictMono.nsmul_left
→ StrictMono.const_nsmul
pow_strictMono_right'
→ pow_left_strictMono
nsmul_strictMono_left
→ nsmul_right_strictMono
Monotone.pow_right
→ Monotone.pow_const
Monotone.nsmul_left
→ Monotone.const_nsmul
lt_of_pow_lt_pow'
→ lt_of_pow_lt_pow_left'
lt_of_nsmul_lt_nsmul
→ lt_of_nsmul_lt_nsmul_right
pow_le_pow'
→ pow_le_pow_right'
nsmul_le_nsmul
→ nsmul_le_nsmul_left
pow_le_pow_of_le_one'
→ pow_le_pow_right_of_le_one'
nsmul_le_nsmul_of_nonpos
→ nsmul_le_nsmul_left_of_nonpos
le_of_pow_le_pow'
→ le_of_pow_le_pow_left'
le_of_nsmul_le_nsmul'
→ le_of_nsmul_le_nsmul_right'
pow_le_pow_iff'
→ pow_le_pow_iff_right'
nsmul_le_nsmul_iff
→ nsmul_le_nsmul_iff_left
pow_lt_pow_iff'
→ pow_lt_pow_iff_right'
nsmul_lt_nsmul_iff
→ nsmul_lt_nsmul_iff_left
Data.Nat.Pow
Nat.pow_lt_pow_of_lt_left
→ Nat.pow_lt_pow_left
Nat.pow_le_iff_le_left
→ Nat.pow_le_pow_iff_left
Nat.pow_lt_iff_lt_left
→ Nat.pow_lt_pow_iff_left
pow_le_pow_iff_left
pow_lt_pow_iff_left
pow_right_injective
pow_right_inj
Nat.pow_le_pow_left
to have the correct name since Nat.pow_le_pow_of_le_left
is in Std.Nat.pow_le_pow_right
to have the correct name since Nat.pow_le_pow_of_le_right
is in Std.self_le_pow
was a duplicate of le_self_pow
.Nat.pow_lt_pow_of_lt_right
is defeq to pow_lt_pow_right
.Nat.pow_right_strictMono
is defeq to pow_right_strictMono
.Nat.pow_le_iff_le_right
is defeq to pow_le_pow_iff_right
.Nat.pow_lt_iff_lt_right
is defeq to pow_lt_pow_iff_right
.0 < n
or 1 ≤ n
to n ≠ 0
.Nat
lemmas have been protected
.@@ -279,7 +279,7 @@ private theorem T_pos : T > 0 := by
private theorem newton_seq_succ_dist_weak (n : ℕ) :
‖newton_seq (n + 2) - newton_seq (n + 1)‖ < ‖F.eval a‖ / ‖F.derivative.eval a‖ :=
have : 2 ≤ 2 ^ (n + 1) := by
- have := pow_le_pow (by norm_num : 1 ≤ 2) (Nat.le_add_left _ _ : 1 ≤ n + 1)
+ have := pow_le_pow_right (by norm_num : 1 ≤ 2) (Nat.le_add_left _ _ : 1 ≤ n + 1)
simpa using this
calc
‖newton_seq (n + 2) - newton_seq (n + 1)‖ ≤ ‖F.derivative.eval a‖ * T ^ 2 ^ (n + 1) :=
@@ -288,7 +288,7 @@ private theorem newton_seq_succ_dist_weak (n : ℕ) :
(mul_le_mul_of_nonneg_left (pow_le_pow_of_le_one (norm_nonneg _)
(le_of_lt (T_lt_one hnorm)) this) (norm_nonneg _))
_ < ‖F.derivative.eval a‖ * T ^ 1 :=
- (mul_lt_mul_of_pos_left (pow_lt_pow_of_lt_one (T_pos hnorm hnsol)
+ (mul_lt_mul_of_pos_left (pow_lt_pow_right_of_lt_one (T_pos hnorm hnsol)
(T_lt_one hnorm) (by norm_num)) (deriv_norm_pos hnorm))
_ = ‖F.eval a‖ / ‖F.derivative.eval a‖ := by
rw [T_gen, sq, pow_one, norm_div, ← mul_div_assoc, PadicInt.padic_norm_e_of_padicInt,
@@ -301,7 +301,7 @@ private theorem newton_seq_dist_aux (n : ℕ) :
| 0 => by simp [T_pow_nonneg, mul_nonneg]
| k + 1 =>
have : 2 ^ n ≤ 2 ^ (n + k) := by
- apply pow_le_pow
+ apply pow_le_pow_right
norm_num
apply Nat.le_add_right
calc
@@ -353,7 +353,9 @@ private theorem bound' : Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ * T ^
private theorem bound :
∀ {ε}, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → ‖F.derivative.eval a‖ * T ^ 2 ^ n < ε := by
have := bound' hnorm
- simp [Tendsto, nhds] at this
+ simp? [Tendsto, nhds] at this says
+ simp only [Tendsto, nhds_def, Set.mem_setOf_eq, not_and, le_iInf_iff, le_principal_iff, mem_map,
+ mem_atTop_sets, ge_iff_le, Set.mem_preimage, and_imp] at this
intro ε hε
cases' this (ball 0 ε) (mem_ball_self hε) isOpen_ball with N hN
exists N; intro n hn
Rename:
tendsto_iff_norm_tendsto_one
→
tendsto_iff_norm_div_tendsto_zero
;tendsto_iff_norm_tendsto_zero
→
tendsto_iff_norm_sub_tendsto_zero
;tendsto_one_iff_norm_tendsto_one
→
tendsto_one_iff_norm_tendsto_zero
;Filter.Tendsto.continuous_of_equicontinuous_at
→
Filter.Tendsto.continuous_of_equicontinuousAt
.@@ -81,7 +81,7 @@ variable {p : ℕ} [Fact p.Prime] {ncs : CauSeq ℤ_[p] norm} {F : Polynomial
(hnorm : Tendsto (fun i => ‖F.eval (ncs i)‖) atTop (𝓝 0))
private theorem tendsto_zero_of_norm_tendsto_zero : Tendsto (fun i => F.eval (ncs i)) atTop (𝓝 0) :=
- tendsto_iff_norm_tendsto_zero.2 (by simpa using hnorm)
+ tendsto_iff_norm_sub_tendsto_zero.2 (by simpa using hnorm)
theorem limit_zero_of_norm_tendsto_zero : F.eval ncs.lim = 0 :=
tendsto_nhds_unique (comp_tendsto_lim _) (tendsto_zero_of_norm_tendsto_zero hnorm)
MulZeroClass.
in mul_zero
/zero_mul
(#6682)
Search&replace MulZeroClass.mul_zero
-> mul_zero
, MulZeroClass.zero_mul
-> zero_mul
.
These were introduced by Mathport, as the full name of mul_zero
is actually MulZeroClass.mul_zero
(it's exported with the short name).
@@ -344,7 +344,7 @@ private theorem newton_seq_dist_to_a :
newton_seq_dist_to_a (k + 1) (succ_pos _)
private theorem bound' : Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ * T ^ 2 ^ n) atTop (𝓝 0) := by
- rw [← MulZeroClass.mul_zero ‖F.derivative.eval a‖]
+ rw [← mul_zero ‖F.derivative.eval a‖]
exact
tendsto_const_nhds.mul
(Tendsto.comp (tendsto_pow_atTop_nhds_0_of_lt_1 (norm_nonneg _) (T_lt_one hnorm))
@@ -361,7 +361,7 @@ private theorem bound :
private theorem bound'_sq :
Tendsto (fun n : ℕ => ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n) atTop (𝓝 0) := by
- rw [← MulZeroClass.mul_zero ‖F.derivative.eval a‖, sq]
+ rw [← mul_zero ‖F.derivative.eval a‖, sq]
simp only [mul_assoc]
apply Tendsto.mul
· apply tendsto_const_nhds
@@ -2,11 +2,6 @@
Copyright (c) 2018 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Y. Lewis
-
-! This file was ported from Lean 3 source module number_theory.padics.hensel
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.SpecificLimits.Basic
import Mathlib.Data.Polynomial.Identities
@@ -14,6 +9,8 @@ import Mathlib.NumberTheory.Padics.PadicIntegers
import Mathlib.Topology.Algebra.Polynomial
import Mathlib.Topology.MetricSpace.CauSeqFilter
+#align_import number_theory.padics.hensel from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
/-!
# Hensel's lemma on ℤ_p
@@ -47,7 +47,7 @@ theorem padic_polynomial_dist {p : ℕ} [Fact p.Prime] (F : Polynomial ℤ_[p])
let ⟨z, hz⟩ := F.evalSubFactor x y
calc
‖F.eval x - F.eval y‖ = ‖z‖ * ‖x - y‖ := by simp [hz]
- _ ≤ 1 * ‖x - y‖ := (mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (norm_nonneg _))
+ _ ≤ 1 * ‖x - y‖ := by gcongr; apply PadicInt.norm_le_one
_ = ‖x - y‖ := by simp
#align padic_polynomial_dist padic_polynomial_dist
@@ -155,8 +155,9 @@ private theorem calc_norm_le_one {n : ℕ} {z : ℤ_[p]} (hz : ih n z) :
‖(↑(F.eval z) : ℚ_[p])‖ / ‖(↑(F.derivative.eval z) : ℚ_[p])‖ :=
norm_div _ _
_ = ‖F.eval z‖ / ‖F.derivative.eval a‖ := by simp [hz.1]
- _ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n / ‖F.derivative.eval a‖ :=
- ((div_le_div_right (deriv_norm_pos hnorm)).2 hz.2)
+ _ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n / ‖F.derivative.eval a‖ := by
+ gcongr
+ apply hz.2
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := (div_sq_cancel _ _)
_ ≤ 1 := mul_le_one (PadicInt.norm_le_one _) (T_pow_nonneg _) (le_of_lt (T_pow' hnorm _))
@@ -168,8 +169,9 @@ private theorem calc_deriv_dist {z z' z1 : ℤ_[p]} (hz' : z' = z - z1)
‖F.derivative.eval z' - F.derivative.eval z‖ ≤ ‖z' - z‖ := padic_polynomial_dist _ _ _
_ = ‖z1‖ := by simp only [sub_eq_add_neg, add_assoc, hz', add_add_neg_cancel'_right, norm_neg]
_ = ‖F.eval z‖ / ‖F.derivative.eval a‖ := hz1
- _ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n / ‖F.derivative.eval a‖ :=
- ((div_le_div_right (deriv_norm_pos hnorm)).2 hz.2)
+ _ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n / ‖F.derivative.eval a‖ := by
+ gcongr
+ apply hz.2
_ = ‖F.derivative.eval a‖ * T ^ 2 ^ n := (div_sq_cancel _ _)
_ < ‖F.derivative.eval a‖ := (mul_lt_iff_lt_one_right (deriv_norm_pos hnorm)).2
(T_pow' hnorm _)
@@ -200,15 +202,14 @@ private def calc_eval_z' {z z' z1 : ℤ_[p]} (hz' : z' = z - z1) {n} (hz : ih n
private def calc_eval_z'_norm {z z' z1 : ℤ_[p]} {n} (hz : ih n z) {q} (heq : F.eval z' = q * z1 ^ 2)
(h1 : ‖(↑(F.eval z) : ℚ_[p]) / ↑(F.derivative.eval z)‖ ≤ 1) (hzeq : z1 = ⟨_, h1⟩) :
- ‖F.eval z'‖ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) :=
+ ‖F.eval z'‖ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) := by
calc
‖F.eval z'‖ = ‖q‖ * ‖z1‖ ^ 2 := by simp [heq]
- _ ≤ 1 * ‖z1‖ ^ 2 :=
- (mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (pow_nonneg (norm_nonneg _) _))
+ _ ≤ 1 * ‖z1‖ ^ 2 := by gcongr; apply PadicInt.norm_le_one
_ = ‖F.eval z‖ ^ 2 / ‖F.derivative.eval a‖ ^ 2 := by simp [hzeq, hz.1, div_pow]
- _ ≤ (‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n) ^ 2 / ‖F.derivative.eval a‖ ^ 2 :=
- ((div_le_div_right (deriv_sq_norm_pos hnorm)).2
- (pow_le_pow_of_le_left (norm_nonneg _) hz.2 _))
+ _ ≤ (‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ n) ^ 2 / ‖F.derivative.eval a‖ ^ 2 := by
+ gcongr
+ exact hz.2
_ = (‖F.derivative.eval a‖ ^ 2) ^ 2 * (T ^ 2 ^ n) ^ 2 / ‖F.derivative.eval a‖ ^ 2 := by
simp only [mul_pow]
_ = ‖F.derivative.eval a‖ ^ 2 * (T ^ 2 ^ n) ^ 2 := (div_sq_cancel _ _)
@@ -233,7 +234,7 @@ private def ih_n {n : ℕ} {z : ℤ_[p]} (hz : ih n z) : { z' : ℤ_[p] // ih (n
rwa [norm_neg, hz.1] at this
let ⟨q, heq⟩ := calc_eval_z' hnorm rfl hz h1 rfl
have hnle : ‖F.eval z'‖ ≤ ‖F.derivative.eval a‖ ^ 2 * T ^ 2 ^ (n + 1) :=
- calc_eval_z'_norm hnorm hz heq h1 rfl
+ calc_eval_z'_norm hz heq h1 rfl
⟨hfeq, hnle⟩⟩
-- Porting note: unsupported option eqn_compiler.zeta
@@ -478,7 +479,7 @@ private theorem a_soln_is_unique (ha : F.eval a = 0) (z' : ℤ_[p]) (hz' : F.eva
lt_irrefl ‖F.derivative.eval a‖
(calc
‖F.derivative.eval a‖ = ‖q‖ * ‖h‖ := by simp [this]
- _ ≤ 1 * ‖h‖ := (mul_le_mul_of_nonneg_right (PadicInt.norm_le_one _) (norm_nonneg _))
+ _ ≤ 1 * ‖h‖ := by gcongr; apply PadicInt.norm_le_one
_ < ‖F.derivative.eval a‖ := by simpa
)
eq_of_sub_eq_zero (by rw [← this])
The unported dependencies are
algebra.order.module
init.core
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file