number_theory.pythagorean_triplesMathlib.NumberTheory.PythagoreanTriples

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(algebra/divisibility/basic): Dot notation aliases (#18698)

A few convenience shortcuts for dvd along with some simple nat lemmas. Also

  • Drop neg_dvd_of_dvd/dvd_of_neg_dvd/dvd_neg_of_dvd/dvd_of_dvd_neg in favor of the aforementioned shortcuts.
  • Remove explicit arguments to dvd_neg/neg_dvd.
  • Drop int.of_nat_dvd_of_dvd_nat_abs/int.dvd_nat_abs_of_of_nat_dvd because they are the two directions of int.coe_nat_dvd_left.
  • Move group_with_zero.to_cancel_monoid_with_zero from algebra.group_with_zero.units.basic back to algebra.group_with_zero.basic. It was erroneously moved during the Great Splits.
Diff
@@ -129,8 +129,8 @@ begin
   { -- x even, y even
     exfalso,
     apply nat.not_coprime_of_dvd_of_dvd (dec_trivial : 1 < 2) _ _ hc,
-    { apply int.dvd_nat_abs_of_of_nat_dvd, apply int.dvd_of_mod_eq_zero hx },
-    { apply int.dvd_nat_abs_of_of_nat_dvd, apply int.dvd_of_mod_eq_zero hy } },
+    { apply int.coe_nat_dvd_left.1, apply int.dvd_of_mod_eq_zero hx },
+    { apply int.coe_nat_dvd_left.1, apply int.dvd_of_mod_eq_zero hy } },
   { left, exact ⟨hx, hy⟩ },  -- x even, y odd
   { right, exact ⟨hx, hy⟩ }, -- x odd, y even
   { -- x odd, y odd
@@ -334,8 +334,7 @@ begin
     apply mt (int.dvd_gcd (int.coe_nat_dvd_left.mpr hpm)) hnp,
     apply (or_self _).mp, apply int.prime.dvd_mul' hp,
     rw (by ring : n * n = - (m ^ 2 - n ^ 2) + m * m),
-    apply dvd_add (dvd_neg_of_dvd hp1),
-    exact dvd_mul_of_dvd_left (int.coe_nat_dvd_left.mpr hpm) m },
+    exact hp1.neg_right.add ((int.coe_nat_dvd_left.2 hpm).mul_right _) },
   rw int.gcd_comm at hnp,
   apply mt (int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp,
   apply (or_self _).mp, apply int.prime.dvd_mul' hp,

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -43,7 +43,7 @@ theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
   by
   suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
-  rw [← ZMod.int_cast_eq_int_cast_iff']
+  rw [← ZMod.intCast_eq_intCast_iff']
   simpa using sq_ne_two_fin_zmod_four _
 #align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
 -/
Diff
@@ -9,7 +9,7 @@ import Tactic.Ring
 import Tactic.RingExp
 import Tactic.FieldSimp
 import Data.Int.NatPrime
-import Data.Zmod.Basic
+import Data.ZMod.Basic
 
 #align_import number_theory.pythagorean_triples from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"
 
@@ -158,15 +158,17 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
   by
   cases' Int.emod_two_eq_zero_or_one x with hx hx <;>
     cases' Int.emod_two_eq_zero_or_one y with hy hy
-  · exfalso
+  · -- x even, y even
+    exfalso
     apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
-    · apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hx
-    · apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hy
+    · apply Int.natCast_dvd.1; apply Int.dvd_of_emod_eq_zero hx
+    · apply Int.natCast_dvd.1; apply Int.dvd_of_emod_eq_zero hy
   · left; exact ⟨hx, hy⟩
   -- x even, y odd
   · right; exact ⟨hx, hy⟩
   -- x odd, y even
-  · exfalso
+  · -- x odd, y odd
+    exfalso
     obtain ⟨x0, y0, rfl, rfl⟩ : ∃ x0 y0, x = x0 * 2 + 1 ∧ y = y0 * 2 + 1 :=
       by
       cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) with x0 hx2
@@ -277,7 +279,7 @@ theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 :=
   rw [← hc]
   apply Nat.dvd_gcd (Int.Prime.dvd_natAbs_of_coe_dvd_sq hp _ _) hpy
   rw [sq, eq_sub_of_add_eq h]
-  rw [← Int.coe_nat_dvd_left] at hpy hpz
+  rw [← Int.natCast_dvd] at hpy hpz
   exact dvd_sub (hpz.mul_right _) (hpy.mul_right _)
 #align pythagorean_triple.coprime_of_coprime PythagoreanTriple.coprime_of_coprime
 -/
@@ -310,7 +312,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
   left_inv x := by
     have h2 : (1 + 1 : K) = 2 := rfl
     have h3 : (2 : K) ≠ 0 := by convert hk 1; rw [one_pow 2, h2]
-    field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm]
+    field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel, mul_comm]
   right_inv := fun ⟨⟨x, y⟩, hxy, hy⟩ =>
     by
     change x ^ 2 + y ^ 2 = 1 at hxy
@@ -349,7 +351,7 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
   by
   by_contra H
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2
+  rw [← Int.natCast_dvd] at hp1 hp2
   have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by convert dvd_add hp2 hp1; ring
   have h2n : (p : ℤ) ∣ 2 * n ^ 2 := by convert dvd_sub hp2 hp1; ring
   have hmc : p = 2 ∨ p ∣ Int.natAbs m := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2m
@@ -374,7 +376,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
   by
   by_contra H
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2
+  rw [← Int.natCast_dvd] at hp1 hp2
   have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by rw [h]; norm_cast;
     exact mt nat.dvd_one.mp (Nat.Prime.ne_one hp)
   cases' Int.Prime.dvd_mul hp hp2 with hp2m hpn
@@ -387,7 +389,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
     apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpm)) hnp
     apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
     rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
-    exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
+    exact hp1.neg_right.add ((Int.natCast_dvd.2 hpm).mul_right _)
   rw [Int.gcd_comm] at hnp
   apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp
   apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
@@ -431,7 +433,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp h4
   apply hp.not_dvd_one
   rw [← h]
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2
+  rw [← Int.natCast_dvd] at hp1 hp2
   apply Nat.dvd_gcd
   · apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
     convert dvd_add hp1 hp2; ring
@@ -505,7 +507,8 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
   have hmncp : Int.gcd m n = 1 := by rw [Int.gcd_comm]; exact hnmcp
   cases' Int.emod_two_eq_zero_or_one m with hm2 hm2 <;>
     cases' Int.emod_two_eq_zero_or_one n with hn2 hn2
-  · exfalso
+  · -- m even, n even
+    exfalso
     have h1 : 2 ∣ (Int.gcd n m : ℤ) :=
       Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
     rw [hnmcp] at h1; revert h1; norm_num
@@ -517,7 +520,8 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
     apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
     · apply Or.intro_right; exact And.intro hm2 hn2
     apply coprime_sq_sub_sq_add_of_odd_even hmncp hm2 hn2
-  · exfalso
+  · -- m odd, n odd
+    exfalso
     have h1 :
       2 ∣ m ^ 2 + n ^ 2 ∧
         2 ∣ m ^ 2 - n ^ 2 ∧
Diff
@@ -34,7 +34,7 @@ the bulk of the proof below.
 #print sq_ne_two_fin_zmod_four /-
 theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
   by
-  change Fin 4 at z 
+  change Fin 4 at z
   fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
 #align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
 -/
@@ -42,7 +42,7 @@ theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
 #print Int.sq_ne_two_mod_four /-
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
   by
-  suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this 
+  suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
   rw [← ZMod.int_cast_eq_int_cast_iff']
   simpa using sq_ne_two_fin_zmod_four _
 #align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
@@ -158,8 +158,7 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
   by
   cases' Int.emod_two_eq_zero_or_one x with hx hx <;>
     cases' Int.emod_two_eq_zero_or_one y with hy hy
-  · -- x even, y even
-    exfalso
+  · exfalso
     apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
     · apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hx
     · apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hy
@@ -167,13 +166,12 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
   -- x even, y odd
   · right; exact ⟨hx, hy⟩
   -- x odd, y even
-  · -- x odd, y odd
-    exfalso
+  · exfalso
     obtain ⟨x0, y0, rfl, rfl⟩ : ∃ x0 y0, x = x0 * 2 + 1 ∧ y = y0 * 2 + 1 :=
       by
       cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) with x0 hx2
       cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hy) with y0 hy2
-      rw [sub_eq_iff_eq_add] at hx2 hy2 ; exact ⟨x0, y0, hx2, hy2⟩
+      rw [sub_eq_iff_eq_add] at hx2 hy2; exact ⟨x0, y0, hx2, hy2⟩
     apply Int.sq_ne_two_mod_four z
     rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2 by rw [← h.eq]; ring]
     norm_num [Int.add_emod]
@@ -214,9 +212,9 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
   obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
     ∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
     Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
-  have hk : (k : ℤ) ≠ 0 := by norm_cast; rwa [pos_iff_ne_zero] at k0 
+  have hk : (k : ℤ) ≠ 0 := by norm_cast; rwa [pos_iff_ne_zero] at k0
   rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h ⊢
-  rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h 
+  rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
   rwa [Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel_left _ hk]
 #align pythagorean_triple.normalize PythagoreanTriple.normalize
 -/
@@ -249,7 +247,7 @@ theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrim
 #print PythagoreanTriple.ne_zero_of_coprime /-
 theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
   by
-  suffices 0 < z * z by rintro rfl; norm_num at this 
+  suffices 0 < z * z by rintro rfl; norm_num at this
   rw [← h.eq, ← sq, ← sq]
   have hc' : Int.gcd x y ≠ 0 := by rw [hc]; exact one_ne_zero
   cases' Int.ne_zero_of_gcd hc' with hxz hyz
@@ -262,8 +260,8 @@ theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
 theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx : x = 0) :
     h.IsPrimitiveClassified := by
   subst x
-  change Nat.gcd 0 (Int.natAbs y) = 1 at hc 
-  rw [Nat.gcd_zero_left (Int.natAbs y)] at hc 
+  change Nat.gcd 0 (Int.natAbs y) = 1 at hc
+  rw [Nat.gcd_zero_left (Int.natAbs y)] at hc
   cases' Int.natAbs_eq y with hy hy
   · use 1, 0; rw [hy, hc, Int.gcd_zero_right]; norm_num
   · use 0, 1; rw [hy, hc, Int.gcd_zero_left]; norm_num
@@ -279,7 +277,7 @@ theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 :=
   rw [← hc]
   apply Nat.dvd_gcd (Int.Prime.dvd_natAbs_of_coe_dvd_sq hp _ _) hpy
   rw [sq, eq_sub_of_add_eq h]
-  rw [← Int.coe_nat_dvd_left] at hpy hpz 
+  rw [← Int.coe_nat_dvd_left] at hpy hpz
   exact dvd_sub (hpz.mul_right _) (hpy.mul_right _)
 #align pythagorean_triple.coprime_of_coprime PythagoreanTriple.coprime_of_coprime
 -/
@@ -315,7 +313,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
     field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm]
   right_inv := fun ⟨⟨x, y⟩, hxy, hy⟩ =>
     by
-    change x ^ 2 + y ^ 2 = 1 at hxy 
+    change x ^ 2 + y ^ 2 = 1 at hxy
     have h2 : y + 1 ≠ 0 := mt eq_neg_of_add_eq_zero_left hy
     have h3 : (y + 1) ^ 2 + x ^ 2 = 2 * (y + 1) := by
       rw [(add_neg_eq_iff_eq_add.mpr hxy.symm).symm]; ring
@@ -351,15 +349,15 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
   by
   by_contra H
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2 
+  rw [← Int.coe_nat_dvd_left] at hp1 hp2
   have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by convert dvd_add hp2 hp1; ring
   have h2n : (p : ℤ) ∣ 2 * n ^ 2 := by convert dvd_sub hp2 hp1; ring
   have hmc : p = 2 ∨ p ∣ Int.natAbs m := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2m
   have hnc : p = 2 ∨ p ∣ Int.natAbs n := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2n
   by_cases h2 : p = 2
   · have h3 : (m ^ 2 + n ^ 2) % 2 = 1 := by norm_num [sq, Int.add_emod, Int.mul_emod, hm, hn]
-    have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by apply Int.emod_eq_zero_of_dvd; rwa [h2] at hp2 
-    rw [h4] at h3 ; exact zero_ne_one h3
+    have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by apply Int.emod_eq_zero_of_dvd; rwa [h2] at hp2
+    rw [h4] at h3; exact zero_ne_one h3
   · apply hp.not_dvd_one
     rw [← h]
     exact Nat.dvd_gcd (Or.resolve_left hmc h2) (Or.resolve_left hnc h2)
@@ -376,11 +374,11 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
   by
   by_contra H
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2 
+  rw [← Int.coe_nat_dvd_left] at hp1 hp2
   have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by rw [h]; norm_cast;
     exact mt nat.dvd_one.mp (Nat.Prime.ne_one hp)
   cases' Int.Prime.dvd_mul hp hp2 with hp2m hpn
-  · rw [Int.natAbs_mul] at hp2m 
+  · rw [Int.natAbs_mul] at hp2m
     cases' (Nat.Prime.dvd_mul hp).mp hp2m with hp2 hpm
     · have hp2' : p = 2 := (Nat.le_of_dvd zero_lt_two hp2).antisymm hp.two_le
       revert hp1; rw [hp2']
@@ -390,7 +388,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
     apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
     rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
     exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
-  rw [Int.gcd_comm] at hnp 
+  rw [Int.gcd_comm] at hnp
   apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp
   apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
   rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
@@ -420,7 +418,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
   by
   cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hm) with m0 hm2
   cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hn) with n0 hn2
-  rw [sub_eq_iff_eq_add] at hm2 hn2 ; subst m; subst n
+  rw [sub_eq_iff_eq_add] at hm2 hn2; subst m; subst n
   have h1 : (m0 * 2 + 1) ^ 2 + (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 + n0 ^ 2 + m0 + n0) + 1) := by
     ring
   have h2 : (m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 - n0 ^ 2 + m0 - n0)) := by ring
@@ -433,7 +431,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp h4
   apply hp.not_dvd_one
   rw [← h]
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2 
+  rw [← Int.coe_nat_dvd_left] at hp1 hp2
   apply Nat.dvd_gcd
   · apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
     convert dvd_add hp1 hp2; ring
@@ -474,7 +472,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
   have hvz : v ≠ 0 := by field_simp [hz]; exact h0
   have hw1 : w ≠ -1 := by
     contrapose! hvz with hw1
-    rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq 
+    rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq
     exact pow_eq_zero hq
   have hQ : ∀ x : ℚ, 1 + x ^ 2 ≠ 0 := by intro q; apply ne_of_gt;
     exact lt_add_of_pos_of_le zero_lt_one (sq_nonneg q)
@@ -507,11 +505,10 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
   have hmncp : Int.gcd m n = 1 := by rw [Int.gcd_comm]; exact hnmcp
   cases' Int.emod_two_eq_zero_or_one m with hm2 hm2 <;>
     cases' Int.emod_two_eq_zero_or_one n with hn2 hn2
-  · -- m even, n even
-    exfalso
+  · exfalso
     have h1 : 2 ∣ (Int.gcd n m : ℤ) :=
       Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
-    rw [hnmcp] at h1 ; revert h1; norm_num
+    rw [hnmcp] at h1; revert h1; norm_num
   · -- m even, n odd
     apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
     · apply Or.intro_left; exact And.intro hm2 hn2
@@ -520,8 +517,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
     apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
     · apply Or.intro_right; exact And.intro hm2 hn2
     apply coprime_sq_sub_sq_add_of_odd_even hmncp hm2 hn2
-  · -- m odd, n odd
-    exfalso
+  · exfalso
     have h1 :
       2 ∣ m ^ 2 + n ^ 2 ∧
         2 ∣ m ^ 2 - n ^ 2 ∧
@@ -534,7 +530,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
         rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]; norm_cast
       · apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp
         rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]; exact hm2n2
-    rw [h2.1, h1.2.2.1] at hyo 
+    rw [h2.1, h1.2.2.1] at hyo
     revert hyo
     norm_num
 #align pythagorean_triple.is_primitive_classified_of_coprime_of_odd_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos
@@ -546,7 +542,7 @@ theorem isPrimitiveClassified_of_coprime_of_pos (hc : Int.gcd x y = 1) (hzpos :
   by
   cases' h.even_odd_of_coprime hc with h1 h2
   · exact h.is_primitive_classified_of_coprime_of_odd_of_pos hc h1.right hzpos
-  rw [Int.gcd_comm] at hc 
+  rw [Int.gcd_comm] at hc
   obtain ⟨m, n, H⟩ := h.symm.is_primitive_classified_of_coprime_of_odd_of_pos hc h2.left hzpos
   use m, n; tauto
 #align pythagorean_triple.is_primitive_classified_of_coprime_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_pos
@@ -628,7 +624,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
         exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
     exfalso
     rcases h_even with ⟨rfl, -⟩
-    rw [mul_assoc, Int.mul_emod_right] at h_parity 
+    rw [mul_assoc, Int.mul_emod_right] at h_parity
     exact zero_ne_one h_parity
   · use-m, -n
     cases' ht1 with h_odd h_even
@@ -646,7 +642,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
         exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
     exfalso
     rcases h_even with ⟨rfl, -⟩
-    rw [mul_assoc, Int.mul_emod_right] at h_parity 
+    rw [mul_assoc, Int.mul_emod_right] at h_parity
     exact zero_ne_one h_parity
 #align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'
 -/
Diff
@@ -3,13 +3,13 @@ Copyright (c) 2020 Paul van Wamelen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Paul van Wamelen
 -/
-import Mathbin.Algebra.Field.Basic
-import Mathbin.RingTheory.Int.Basic
-import Mathbin.Tactic.Ring
-import Mathbin.Tactic.RingExp
-import Mathbin.Tactic.FieldSimp
-import Mathbin.Data.Int.NatPrime
-import Mathbin.Data.Zmod.Basic
+import Algebra.Field.Basic
+import RingTheory.Int.Basic
+import Tactic.Ring
+import Tactic.RingExp
+import Tactic.FieldSimp
+import Data.Int.NatPrime
+import Data.Zmod.Basic
 
 #align_import number_theory.pythagorean_triples from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"
 
@@ -461,7 +461,7 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
 #align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_aux
 -/
 
-/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([2, 3]) } -/
+/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:133:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([2, 3]) } -/
 #print PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos /-
 theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (hyo : y % 2 = 1)
     (hzpos : 0 < z) : h.IsPrimitiveClassified :=
Diff
@@ -630,7 +630,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
     rcases h_even with ⟨rfl, -⟩
     rw [mul_assoc, Int.mul_emod_right] at h_parity 
     exact zero_ne_one h_parity
-  · use -m, -n
+  · use-m, -n
     cases' ht1 with h_odd h_even
     · rw [neg_sq m]
       rw [neg_sq n]
Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2020 Paul van Wamelen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Paul van Wamelen
-
-! This file was ported from Lean 3 source module number_theory.pythagorean_triples
-! leanprover-community/mathlib commit e8638a0fcaf73e4500469f368ef9494e495099b3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.Field.Basic
 import Mathbin.RingTheory.Int.Basic
@@ -16,6 +11,8 @@ import Mathbin.Tactic.FieldSimp
 import Mathbin.Data.Int.NatPrime
 import Mathbin.Data.Zmod.Basic
 
+#align_import number_theory.pythagorean_triples from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"
+
 /-!
 # Pythagorean Triples
 
Diff
@@ -34,11 +34,13 @@ the bulk of the proof below.
 -/
 
 
+#print sq_ne_two_fin_zmod_four /-
 theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
   by
   change Fin 4 at z 
   fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
 #align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
+-/
 
 #print Int.sq_ne_two_mod_four /-
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
@@ -79,8 +81,6 @@ namespace PythagoreanTriple
 
 variable {x y z : ℤ} (h : PythagoreanTriple x y z)
 
-include h
-
 #print PythagoreanTriple.eq /-
 theorem eq : x * x + y * y = z * z :=
   h
@@ -104,8 +104,6 @@ theorem mul (k : ℤ) : PythagoreanTriple (k * x) (k * y) (k * z) :=
 #align pythagorean_triple.mul PythagoreanTriple.mul
 -/
 
-omit h
-
 #print PythagoreanTriple.mul_iff /-
 /-- `(k*x, k*y, k*z)` is a Pythagorean triple if and only if
 `(x, y, z)` is also a triple. -/
@@ -120,8 +118,6 @@ theorem mul_iff (k : ℤ) (hk : k ≠ 0) :
 #align pythagorean_triple.mul_iff PythagoreanTriple.mul_iff
 -/
 
-include h
-
 #print PythagoreanTriple.IsClassified /-
 /-- A Pythagorean triple `x, y, z` is “classified” if there exist integers `k, m, n` such that
 either
@@ -187,6 +183,7 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
 #align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
 -/
 
+#print PythagoreanTriple.gcd_dvd /-
 theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
   by
   by_cases h0 : Int.gcd x y = 0
@@ -204,6 +201,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
   rw [(by ring : x0 * k * (x0 * k) + y0 * k * (y0 * k) = k ^ 2 * (x0 * x0 + y0 * y0))]
   exact dvd_mul_right _ _
 #align pythagorean_triple.gcd_dvd PythagoreanTriple.gcd_dvd
+-/
 
 #print PythagoreanTriple.normalize /-
 theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / Int.gcd x y) :=
@@ -302,6 +300,7 @@ For the classification of pythogorean triples, we will use a parametrization of
 
 variable {K : Type _} [Field K]
 
+#print circleEquivGen /-
 /-- A parameterization of the unit circle that is useful for classifying Pythagorean triples.
  (To be applied in the case where `K = ℚ`.) -/
 def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
@@ -329,19 +328,24 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
     · field_simp [h3]; ring
     · field_simp [h3]; rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]; ring
 #align circle_equiv_gen circleEquivGen
+-/
 
+#print circleEquivGen_apply /-
 @[simp]
 theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
     (circleEquivGen hk x : K × K) = ⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩ :=
   rfl
 #align circle_equiv_apply circleEquivGen_apply
+-/
 
+#print circleEquivGen_symm_apply /-
 @[simp]
 theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
     (v : { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }) :
     (circleEquivGen hk).symm v = (v : K × K).1 / ((v : K × K).2 + 1) :=
   rfl
 #align circle_equiv_symm_apply circleEquivGen_symm_apply
+-/
 
 end circleEquivGen
 
@@ -443,8 +447,7 @@ namespace PythagoreanTriple
 
 variable {x y z : ℤ} (h : PythagoreanTriple x y z)
 
-include h
-
+#print PythagoreanTriple.isPrimitiveClassified_aux /-
 theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
     (hm2n2 : 0 < m ^ 2 + n ^ 2) (hv2 : (x : ℚ) / z = 2 * m * n / (m ^ 2 + n ^ 2))
     (hw2 : (y : ℚ) / z = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2))
@@ -459,6 +462,7 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
   rw [← Rat.coe_int_inj _ _, ← div_left_inj' ((mt (Rat.coe_int_inj z 0).mp) hz), hv2, h2.right]
   norm_cast
 #align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_aux
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([2, 3]) } -/
 #print PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos /-
@@ -576,8 +580,7 @@ theorem classified : h.IsClassified :=
 #align pythagorean_triple.classified PythagoreanTriple.classified
 -/
 
-omit h
-
+#print PythagoreanTriple.coprime_classification /-
 theorem coprime_classification :
     PythagoreanTriple x y z ∧ Int.gcd x y = 1 ↔
       ∃ m n,
@@ -602,7 +605,9 @@ theorem coprime_classification :
       | · constructor; · ring; exact coprime_sq_sub_mul co pp
       | · constructor; · ring; rw [Int.gcd_comm]; exact coprime_sq_sub_mul co pp
 #align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classification
+-/
 
+#print PythagoreanTriple.coprime_classification' /-
 /-- by assuming `x` is odd and `z` is positive we get a slightly more precise classification of
 the pythagorean triple `x ^ 2 + y ^ 2 = z ^ 2`-/
 theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
@@ -647,7 +652,9 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
     rw [mul_assoc, Int.mul_emod_right] at h_parity 
     exact zero_ne_one h_parity
 #align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'
+-/
 
+#print PythagoreanTriple.classification /-
 /-- **Formula for Pythagorean Triples** -/
 theorem classification :
     PythagoreanTriple x y z ↔
@@ -669,6 +676,7 @@ theorem classification :
       simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this
   · rintro ⟨k, m, n, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl | rfl⟩ <;> delta PythagoreanTriple <;> ring
 #align pythagorean_triple.classification PythagoreanTriple.classification
+-/
 
 end PythagoreanTriple
 
Diff
@@ -101,7 +101,6 @@ theorem mul (k : ℤ) : PythagoreanTriple (k * x) (k * y) (k * z) :=
     k * x * (k * x) + k * y * (k * y) = k ^ 2 * (x * x + y * y) := by ring
     _ = k ^ 2 * (z * z) := by rw [h.eq]
     _ = k * z * (k * z) := by ring
-    
 #align pythagorean_triple.mul PythagoreanTriple.mul
 -/
 
Diff
@@ -242,7 +242,8 @@ theorem isClassified_of_isPrimitiveClassified (hp : h.IsPrimitiveClassified) : h
 theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrimitiveClassified) :
     h.IsClassified :=
   by
-  convert h.normalize.mul_is_classified (Int.gcd x y)
+  convert
+      h.normalize.mul_is_classified (Int.gcd x y)
         (is_classified_of_is_primitive_classified h.normalize hc) <;>
     rw [Int.mul_ediv_cancel']
   · exact Int.gcd_dvd_left x y
@@ -477,7 +478,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
     exact pow_eq_zero hq
   have hQ : ∀ x : ℚ, 1 + x ^ 2 ≠ 0 := by intro q; apply ne_of_gt;
     exact lt_add_of_pos_of_le zero_lt_one (sq_nonneg q)
-  have hp : (⟨v, w⟩ : ℚ × ℚ) ∈ { p : ℚ × ℚ | p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 } := ⟨hq, hw1⟩
+  have hp : (⟨v, w⟩ : ℚ × ℚ) ∈ {p : ℚ × ℚ | p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1} := ⟨hq, hw1⟩
   let q := (circleEquivGen hQ).symm ⟨⟨v, w⟩, hp⟩
   have ht4 : v = 2 * q / (1 + q ^ 2) ∧ w = (1 - q ^ 2) / (1 + q ^ 2) :=
     by
Diff
@@ -36,14 +36,14 @@ the bulk of the proof below.
 
 theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
   by
-  change Fin 4 at z
+  change Fin 4 at z 
   fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
 #align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
 
 #print Int.sq_ne_two_mod_four /-
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
   by
-  suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
+  suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this 
   rw [← ZMod.int_cast_eq_int_cast_iff']
   simpa using sq_ne_two_fin_zmod_four _
 #align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
@@ -181,7 +181,7 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
       by
       cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) with x0 hx2
       cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hy) with y0 hy2
-      rw [sub_eq_iff_eq_add] at hx2 hy2; exact ⟨x0, y0, hx2, hy2⟩
+      rw [sub_eq_iff_eq_add] at hx2 hy2 ; exact ⟨x0, y0, hx2, hy2⟩
     apply Int.sq_ne_two_mod_four z
     rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2 by rw [← h.eq]; ring]
     norm_num [Int.add_emod]
@@ -198,7 +198,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
         or_self_iff] using h
     simp only [hz, dvd_zero]
   obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
-    ∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
+    ∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
     Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
   rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul]
   rw [← Int.pow_dvd_pow_iff zero_lt_two, sq z, ← h.eq]
@@ -218,11 +218,11 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
     simp only [hx, hy, hz, Int.zero_div]; exact zero
   rcases h.gcd_dvd with ⟨z0, rfl⟩
   obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
-    ∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
+    ∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
     Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
-  have hk : (k : ℤ) ≠ 0 := by norm_cast; rwa [pos_iff_ne_zero] at k0
-  rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h⊢
-  rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
+  have hk : (k : ℤ) ≠ 0 := by norm_cast; rwa [pos_iff_ne_zero] at k0 
+  rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h ⊢
+  rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h 
   rwa [Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel_left _ hk]
 #align pythagorean_triple.normalize PythagoreanTriple.normalize
 -/
@@ -254,7 +254,7 @@ theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrim
 #print PythagoreanTriple.ne_zero_of_coprime /-
 theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
   by
-  suffices 0 < z * z by rintro rfl; norm_num at this
+  suffices 0 < z * z by rintro rfl; norm_num at this 
   rw [← h.eq, ← sq, ← sq]
   have hc' : Int.gcd x y ≠ 0 := by rw [hc]; exact one_ne_zero
   cases' Int.ne_zero_of_gcd hc' with hxz hyz
@@ -267,8 +267,8 @@ theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
 theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx : x = 0) :
     h.IsPrimitiveClassified := by
   subst x
-  change Nat.gcd 0 (Int.natAbs y) = 1 at hc
-  rw [Nat.gcd_zero_left (Int.natAbs y)] at hc
+  change Nat.gcd 0 (Int.natAbs y) = 1 at hc 
+  rw [Nat.gcd_zero_left (Int.natAbs y)] at hc 
   cases' Int.natAbs_eq y with hy hy
   · use 1, 0; rw [hy, hc, Int.gcd_zero_right]; norm_num
   · use 0, 1; rw [hy, hc, Int.gcd_zero_left]; norm_num
@@ -284,7 +284,7 @@ theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 :=
   rw [← hc]
   apply Nat.dvd_gcd (Int.Prime.dvd_natAbs_of_coe_dvd_sq hp _ _) hpy
   rw [sq, eq_sub_of_add_eq h]
-  rw [← Int.coe_nat_dvd_left] at hpy hpz
+  rw [← Int.coe_nat_dvd_left] at hpy hpz 
   exact dvd_sub (hpz.mul_right _) (hpy.mul_right _)
 #align pythagorean_triple.coprime_of_coprime PythagoreanTriple.coprime_of_coprime
 -/
@@ -308,7 +308,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
     K ≃ { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }
     where
   toFun x :=
-    ⟨⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩, by field_simp [hk x, div_pow] ; ring,
+    ⟨⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩, by field_simp [hk x, div_pow]; ring,
       by
       simp only [Ne.def, div_eq_iff (hk x), neg_mul, one_mul, neg_add, sub_eq_add_neg, add_left_inj]
       simpa only [eq_neg_iff_add_eq_zero, one_pow] using hk 1⟩
@@ -319,15 +319,15 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
     field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm]
   right_inv := fun ⟨⟨x, y⟩, hxy, hy⟩ =>
     by
-    change x ^ 2 + y ^ 2 = 1 at hxy
+    change x ^ 2 + y ^ 2 = 1 at hxy 
     have h2 : y + 1 ≠ 0 := mt eq_neg_of_add_eq_zero_left hy
     have h3 : (y + 1) ^ 2 + x ^ 2 = 2 * (y + 1) := by
       rw [(add_neg_eq_iff_eq_add.mpr hxy.symm).symm]; ring
     have h4 : (2 : K) ≠ 0 := by convert hk 1; rw [one_pow 2]; rfl
     simp only [Prod.mk.inj_iff, Subtype.mk_eq_mk]
     constructor
-    · field_simp [h3] ; ring
-    · field_simp [h3] ; rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]; ring
+    · field_simp [h3]; ring
+    · field_simp [h3]; rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]; ring
 #align circle_equiv_gen circleEquivGen
 
 @[simp]
@@ -350,15 +350,15 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
   by
   by_contra H
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2
+  rw [← Int.coe_nat_dvd_left] at hp1 hp2 
   have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by convert dvd_add hp2 hp1; ring
   have h2n : (p : ℤ) ∣ 2 * n ^ 2 := by convert dvd_sub hp2 hp1; ring
   have hmc : p = 2 ∨ p ∣ Int.natAbs m := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2m
   have hnc : p = 2 ∨ p ∣ Int.natAbs n := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2n
   by_cases h2 : p = 2
   · have h3 : (m ^ 2 + n ^ 2) % 2 = 1 := by norm_num [sq, Int.add_emod, Int.mul_emod, hm, hn]
-    have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by apply Int.emod_eq_zero_of_dvd; rwa [h2] at hp2
-    rw [h4] at h3; exact zero_ne_one h3
+    have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by apply Int.emod_eq_zero_of_dvd; rwa [h2] at hp2 
+    rw [h4] at h3 ; exact zero_ne_one h3
   · apply hp.not_dvd_one
     rw [← h]
     exact Nat.dvd_gcd (Or.resolve_left hmc h2) (Or.resolve_left hnc h2)
@@ -375,11 +375,11 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
   by
   by_contra H
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2
+  rw [← Int.coe_nat_dvd_left] at hp1 hp2 
   have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by rw [h]; norm_cast;
     exact mt nat.dvd_one.mp (Nat.Prime.ne_one hp)
   cases' Int.Prime.dvd_mul hp hp2 with hp2m hpn
-  · rw [Int.natAbs_mul] at hp2m
+  · rw [Int.natAbs_mul] at hp2m 
     cases' (Nat.Prime.dvd_mul hp).mp hp2m with hp2 hpm
     · have hp2' : p = 2 := (Nat.le_of_dvd zero_lt_two hp2).antisymm hp.two_le
       revert hp1; rw [hp2']
@@ -389,7 +389,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
     apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
     rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
     exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
-  rw [Int.gcd_comm] at hnp
+  rw [Int.gcd_comm] at hnp 
   apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp
   apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
   rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
@@ -419,7 +419,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
   by
   cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hm) with m0 hm2
   cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hn) with n0 hn2
-  rw [sub_eq_iff_eq_add] at hm2 hn2; subst m; subst n
+  rw [sub_eq_iff_eq_add] at hm2 hn2 ; subst m; subst n
   have h1 : (m0 * 2 + 1) ^ 2 + (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 + n0 ^ 2 + m0 + n0) + 1) := by
     ring
   have h2 : (m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 - n0 ^ 2 + m0 - n0)) := by ring
@@ -432,7 +432,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp h4
   apply hp.not_dvd_one
   rw [← h]
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2
+  rw [← Int.coe_nat_dvd_left] at hp1 hp2 
   apply Nat.dvd_gcd
   · apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
     convert dvd_add hp1 hp2; ring
@@ -469,11 +469,11 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
   let v := (x : ℚ) / z
   let w := (y : ℚ) / z
   have hz : z ≠ 0; apply ne_of_gt hzpos
-  have hq : v ^ 2 + w ^ 2 = 1 := by field_simp [hz, sq] ; norm_cast; exact h
-  have hvz : v ≠ 0 := by field_simp [hz] ; exact h0
+  have hq : v ^ 2 + w ^ 2 = 1 := by field_simp [hz, sq]; norm_cast; exact h
+  have hvz : v ≠ 0 := by field_simp [hz]; exact h0
   have hw1 : w ≠ -1 := by
     contrapose! hvz with hw1
-    rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq
+    rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq 
     exact pow_eq_zero hq
   have hQ : ∀ x : ℚ, 1 + x ^ 2 ≠ 0 := by intro q; apply ne_of_gt;
     exact lt_add_of_pos_of_le zero_lt_one (sq_nonneg q)
@@ -510,7 +510,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
     exfalso
     have h1 : 2 ∣ (Int.gcd n m : ℤ) :=
       Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
-    rw [hnmcp] at h1; revert h1; norm_num
+    rw [hnmcp] at h1 ; revert h1; norm_num
   · -- m even, n odd
     apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
     · apply Or.intro_left; exact And.intro hm2 hn2
@@ -533,7 +533,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
         rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]; norm_cast
       · apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp
         rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]; exact hm2n2
-    rw [h2.1, h1.2.2.1] at hyo
+    rw [h2.1, h1.2.2.1] at hyo 
     revert hyo
     norm_num
 #align pythagorean_triple.is_primitive_classified_of_coprime_of_odd_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos
@@ -545,7 +545,7 @@ theorem isPrimitiveClassified_of_coprime_of_pos (hc : Int.gcd x y = 1) (hzpos :
   by
   cases' h.even_odd_of_coprime hc with h1 h2
   · exact h.is_primitive_classified_of_coprime_of_odd_of_pos hc h1.right hzpos
-  rw [Int.gcd_comm] at hc
+  rw [Int.gcd_comm] at hc 
   obtain ⟨m, n, H⟩ := h.symm.is_primitive_classified_of_coprime_of_odd_of_pos hc h2.left hzpos
   use m, n; tauto
 #align pythagorean_triple.is_primitive_classified_of_coprime_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_pos
@@ -599,10 +599,8 @@ theorem coprime_classification :
   · delta PythagoreanTriple
     rintro ⟨m, n, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl | rfl, co, pp⟩ <;>
       first
-        |· constructor; · ring;
-          exact
-            coprime_sq_sub_mul co
-              pp|· constructor; · ring; rw [Int.gcd_comm]; exact coprime_sq_sub_mul co pp
+      | · constructor; · ring; exact coprime_sq_sub_mul co pp
+      | · constructor; · ring; rw [Int.gcd_comm]; exact coprime_sq_sub_mul co pp
 #align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classification
 
 /-- by assuming `x` is odd and `z` is positive we get a slightly more precise classification of
@@ -628,7 +626,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
         exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
     exfalso
     rcases h_even with ⟨rfl, -⟩
-    rw [mul_assoc, Int.mul_emod_right] at h_parity
+    rw [mul_assoc, Int.mul_emod_right] at h_parity 
     exact zero_ne_one h_parity
   · use -m, -n
     cases' ht1 with h_odd h_even
@@ -646,7 +644,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
         exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
     exfalso
     rcases h_even with ⟨rfl, -⟩
-    rw [mul_assoc, Int.mul_emod_right] at h_parity
+    rw [mul_assoc, Int.mul_emod_right] at h_parity 
     exact zero_ne_one h_parity
 #align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'
 
Diff
@@ -51,7 +51,7 @@ theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
 
 noncomputable section
 
-open Classical
+open scoped Classical
 
 #print PythagoreanTriple /-
 /-- Three integers `x`, `y`, and `z` form a Pythagorean triple if `x * x + y * y = z * z`. -/
Diff
@@ -34,12 +34,6 @@ the bulk of the proof below.
 -/
 
 
-/- warning: sq_ne_two_fin_zmod_four -> sq_ne_two_fin_zmod_four is a dubious translation:
-lean 3 declaration is
-  forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddCommGroupWithOne.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toAddCommGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
-but is expected to have type
-  forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (Semiring.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommSemiring.toSemiring.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toCommSemiring.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
-Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_fourₓ'. -/
 theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
   by
   change Fin 4 at z
@@ -194,12 +188,6 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
 #align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
 -/
 
-/- warning: pythagorean_triple.gcd_dvd -> PythagoreanTriple.gcd_dvd is a dubious translation:
-lean 3 declaration is
-  forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Dvd.Dvd.{0} Int (semigroupDvd.{0} Int Int.semigroup) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) (Int.gcd x y)) z)
-but is expected to have type
-  forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Dvd.dvd.{0} Int Int.instDvdInt (Nat.cast.{0} Int instNatCastInt (Int.gcd x y)) z)
-Case conversion may be inaccurate. Consider using '#align pythagorean_triple.gcd_dvd PythagoreanTriple.gcd_dvdₓ'. -/
 theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
   by
   by_cases h0 : Int.gcd x y = 0
@@ -314,12 +302,6 @@ For the classification of pythogorean triples, we will use a parametrization of
 
 variable {K : Type _} [Field K]
 
-/- warning: circle_equiv_gen -> circleEquivGen is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))))
-Case conversion may be inaccurate. Consider using '#align circle_equiv_gen circleEquivGenₓ'. -/
 /-- A parameterization of the unit circle that is useful for classifying Pythagorean triples.
  (To be applied in the case where `K = ℚ`.) -/
 def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
@@ -348,18 +330,12 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
     · field_simp [h3] ; rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]; ring
 #align circle_equiv_gen circleEquivGen
 
-/- warning: circle_equiv_apply -> circleEquivGen_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circleEquivGen_applyₓ'. -/
 @[simp]
 theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
     (circleEquivGen hk x : K × K) = ⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩ :=
   rfl
 #align circle_equiv_apply circleEquivGen_apply
 
-/- warning: circle_equiv_symm_apply -> circleEquivGen_symm_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circleEquivGen_symm_applyₓ'. -/
 @[simp]
 theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
     (v : { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }) :
@@ -469,9 +445,6 @@ variable {x y z : ℤ} (h : PythagoreanTriple x y z)
 
 include h
 
-/- warning: pythagorean_triple.is_primitive_classified_aux -> PythagoreanTriple.isPrimitiveClassified_aux is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_auxₓ'. -/
 theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
     (hm2n2 : 0 < m ^ 2 + n ^ 2) (hv2 : (x : ℚ) / z = 2 * m * n / (m ^ 2 + n ^ 2))
     (hw2 : (y : ℚ) / z = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2))
@@ -605,12 +578,6 @@ theorem classified : h.IsClassified :=
 
 omit h
 
-/- warning: pythagorean_triple.coprime_classification -> PythagoreanTriple.coprime_classification is a dubious translation:
-lean 3 declaration is
-  forall {x : Int} {y : Int} {z : Int}, Iff (And (PythagoreanTriple x y z) (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)) (Eq.{1} Int y (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))) (And (Or (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (Eq.{1} Int z (Neg.neg.{0} Int Int.hasNeg (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))))))))
-but is expected to have type
-  forall {x : Int} {y : Int} {z : Int}, Iff (And (PythagoreanTriple x y z) (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)) (Eq.{1} Int y (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))) (And (Or (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (Eq.{1} Int z (Neg.neg.{0} Int Int.instNegInt (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))))))))
-Case conversion may be inaccurate. Consider using '#align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classificationₓ'. -/
 theorem coprime_classification :
     PythagoreanTriple x y z ∧ Int.gcd x y = 1 ↔
       ∃ m n,
@@ -638,12 +605,6 @@ theorem coprime_classification :
               pp|· constructor; · ring; rw [Int.gcd_comm]; exact coprime_sq_sub_mul co pp
 #align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classification
 
-/- warning: pythagorean_triple.coprime_classification' -> PythagoreanTriple.coprime_classification' is a dubious translation:
-lean 3 declaration is
-  forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) x (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) -> (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) z) -> (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (And (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)) (And (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (And (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))) (LE.le.{0} Int Int.hasLe (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) m))))))))
-but is expected to have type
-  forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) x (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) -> (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) z) -> (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (And (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)) (And (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (And (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))) (LE.le.{0} Int Int.instLEInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) m))))))))
-Case conversion may be inaccurate. Consider using '#align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'ₓ'. -/
 /-- by assuming `x` is odd and `z` is positive we get a slightly more precise classification of
 the pythagorean triple `x ^ 2 + y ^ 2 = z ^ 2`-/
 theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
@@ -689,12 +650,6 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
     exact zero_ne_one h_parity
 #align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'
 
-/- warning: pythagorean_triple.classification -> PythagoreanTriple.classification is a dubious translation:
-lean 3 declaration is
-  forall {x : Int} {y : Int} {z : Int}, Iff (PythagoreanTriple x y z) (Exists.{1} Int (fun (k : Int) => Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) (Or (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (Neg.neg.{0} Int Int.hasNeg k) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
-but is expected to have type
-  forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Iff (PythagoreanTriple x y z) (Exists.{1} Int (fun (k : Int) => Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))))) (Or (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (Neg.neg.{0} Int Int.instNegInt k) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))))))))
-Case conversion may be inaccurate. Consider using '#align pythagorean_triple.classification PythagoreanTriple.classificationₓ'. -/
 /-- **Formula for Pythagorean Triples** -/
 theorem classification :
     PythagoreanTriple x y z ↔
Diff
@@ -69,10 +69,8 @@ def PythagoreanTriple (x y z : ℤ) : Prop :=
 #print pythagoreanTriple_comm /-
 /-- Pythagorean triples are interchangable, i.e `x * x + y * y = y * y + x * x = z * z`.
 This comes from additive commutativity. -/
-theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ PythagoreanTriple y x z :=
-  by
-  delta PythagoreanTriple
-  rw [add_comm]
+theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ PythagoreanTriple y x z := by
+  delta PythagoreanTriple; rw [add_comm]
 #align pythagorean_triple_comm pythagoreanTriple_comm
 -/
 
@@ -163,14 +161,8 @@ def IsPrimitiveClassified :=
 theorem mul_isClassified (k : ℤ) (hc : h.IsClassified) : (h.mul k).IsClassified :=
   by
   obtain ⟨l, m, n, ⟨⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, co⟩⟩ := hc
-  · use k * l, m, n
-    apply And.intro _ co
-    left
-    constructor <;> ring
-  · use k * l, m, n
-    apply And.intro _ co
-    right
-    constructor <;> ring
+  · use k * l, m, n; apply And.intro _ co; left; constructor <;> ring
+  · use k * l, m, n; apply And.intro _ co; right; constructor <;> ring
 #align pythagorean_triple.mul_is_classified PythagoreanTriple.mul_isClassified
 -/
 
@@ -183,15 +175,11 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
   · -- x even, y even
     exfalso
     apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
-    · apply Int.coe_nat_dvd_left.1
-      apply Int.dvd_of_emod_eq_zero hx
-    · apply Int.coe_nat_dvd_left.1
-      apply Int.dvd_of_emod_eq_zero hy
-  · left
-    exact ⟨hx, hy⟩
+    · apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hx
+    · apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hy
+  · left; exact ⟨hx, hy⟩
   -- x even, y odd
-  · right
-    exact ⟨hx, hy⟩
+  · right; exact ⟨hx, hy⟩
   -- x odd, y even
   · -- x odd, y odd
     exfalso
@@ -199,13 +187,9 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
       by
       cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) with x0 hx2
       cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hy) with y0 hy2
-      rw [sub_eq_iff_eq_add] at hx2 hy2
-      exact ⟨x0, y0, hx2, hy2⟩
+      rw [sub_eq_iff_eq_add] at hx2 hy2; exact ⟨x0, y0, hx2, hy2⟩
     apply Int.sq_ne_two_mod_four z
-    rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2
-        by
-        rw [← h.eq]
-        ring]
+    rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2 by rw [← h.eq]; ring]
     norm_num [Int.add_emod]
 #align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
 -/
@@ -219,12 +203,8 @@ Case conversion may be inaccurate. Consider using '#align pythagorean_triple.gcd
 theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
   by
   by_cases h0 : Int.gcd x y = 0
-  · have hx : x = 0 := by
-      apply int.nat_abs_eq_zero.mp
-      apply Nat.eq_zero_of_gcd_eq_zero_left h0
-    have hy : y = 0 := by
-      apply int.nat_abs_eq_zero.mp
-      apply Nat.eq_zero_of_gcd_eq_zero_right h0
+  · have hx : x = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_left h0
+    have hy : y = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_right h0
     have hz : z = 0 := by
       simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
         or_self_iff] using h
@@ -242,24 +222,17 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
 theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / Int.gcd x y) :=
   by
   by_cases h0 : Int.gcd x y = 0
-  · have hx : x = 0 := by
-      apply int.nat_abs_eq_zero.mp
-      apply Nat.eq_zero_of_gcd_eq_zero_left h0
-    have hy : y = 0 := by
-      apply int.nat_abs_eq_zero.mp
-      apply Nat.eq_zero_of_gcd_eq_zero_right h0
+  · have hx : x = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_left h0
+    have hy : y = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_right h0
     have hz : z = 0 := by
       simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
         or_self_iff] using h
-    simp only [hx, hy, hz, Int.zero_div]
-    exact zero
+    simp only [hx, hy, hz, Int.zero_div]; exact zero
   rcases h.gcd_dvd with ⟨z0, rfl⟩
   obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
     ∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
     Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
-  have hk : (k : ℤ) ≠ 0 := by
-    norm_cast
-    rwa [pos_iff_ne_zero] at k0
+  have hk : (k : ℤ) ≠ 0 := by norm_cast; rwa [pos_iff_ne_zero] at k0
   rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h⊢
   rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
   rwa [Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel_left _ hk]
@@ -293,13 +266,9 @@ theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrim
 #print PythagoreanTriple.ne_zero_of_coprime /-
 theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
   by
-  suffices 0 < z * z by
-    rintro rfl
-    norm_num at this
+  suffices 0 < z * z by rintro rfl; norm_num at this
   rw [← h.eq, ← sq, ← sq]
-  have hc' : Int.gcd x y ≠ 0 := by
-    rw [hc]
-    exact one_ne_zero
+  have hc' : Int.gcd x y ≠ 0 := by rw [hc]; exact one_ne_zero
   cases' Int.ne_zero_of_gcd hc' with hxz hyz
   · apply lt_add_of_pos_of_le (sq_pos_of_ne_zero x hxz) (sq_nonneg y)
   · apply lt_add_of_le_of_pos (sq_nonneg x) (sq_pos_of_ne_zero y hyz)
@@ -313,12 +282,8 @@ theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx
   change Nat.gcd 0 (Int.natAbs y) = 1 at hc
   rw [Nat.gcd_zero_left (Int.natAbs y)] at hc
   cases' Int.natAbs_eq y with hy hy
-  · use 1, 0
-    rw [hy, hc, Int.gcd_zero_right]
-    norm_num
-  · use 0, 1
-    rw [hy, hc, Int.gcd_zero_left]
-    norm_num
+  · use 1, 0; rw [hy, hc, Int.gcd_zero_right]; norm_num
+  · use 0, 1; rw [hy, hc, Int.gcd_zero_left]; norm_num
 #align pythagorean_triple.is_primitive_classified_of_coprime_of_zero_left PythagoreanTriple.isPrimitiveClassified_of_coprime_of_zero_left
 -/
 
@@ -361,39 +326,26 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
     K ≃ { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }
     where
   toFun x :=
-    ⟨⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩,
-      by
-      field_simp [hk x, div_pow]
-      ring,
+    ⟨⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩, by field_simp [hk x, div_pow] ; ring,
       by
       simp only [Ne.def, div_eq_iff (hk x), neg_mul, one_mul, neg_add, sub_eq_add_neg, add_left_inj]
       simpa only [eq_neg_iff_add_eq_zero, one_pow] using hk 1⟩
   invFun p := (p : K × K).1 / ((p : K × K).2 + 1)
   left_inv x := by
     have h2 : (1 + 1 : K) = 2 := rfl
-    have h3 : (2 : K) ≠ 0 := by
-      convert hk 1
-      rw [one_pow 2, h2]
+    have h3 : (2 : K) ≠ 0 := by convert hk 1; rw [one_pow 2, h2]
     field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm]
   right_inv := fun ⟨⟨x, y⟩, hxy, hy⟩ =>
     by
     change x ^ 2 + y ^ 2 = 1 at hxy
     have h2 : y + 1 ≠ 0 := mt eq_neg_of_add_eq_zero_left hy
-    have h3 : (y + 1) ^ 2 + x ^ 2 = 2 * (y + 1) :=
-      by
-      rw [(add_neg_eq_iff_eq_add.mpr hxy.symm).symm]
-      ring
-    have h4 : (2 : K) ≠ 0 := by
-      convert hk 1
-      rw [one_pow 2]
-      rfl
+    have h3 : (y + 1) ^ 2 + x ^ 2 = 2 * (y + 1) := by
+      rw [(add_neg_eq_iff_eq_add.mpr hxy.symm).symm]; ring
+    have h4 : (2 : K) ≠ 0 := by convert hk 1; rw [one_pow 2]; rfl
     simp only [Prod.mk.inj_iff, Subtype.mk_eq_mk]
     constructor
-    · field_simp [h3]
-      ring
-    · field_simp [h3]
-      rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]
-      ring
+    · field_simp [h3] ; ring
+    · field_simp [h3] ; rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]; ring
 #align circle_equiv_gen circleEquivGen
 
 /- warning: circle_equiv_apply -> circleEquivGen_apply is a dubious translation:
@@ -423,22 +375,14 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
   by_contra H
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
   rw [← Int.coe_nat_dvd_left] at hp1 hp2
-  have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by
-    convert dvd_add hp2 hp1
-    ring
-  have h2n : (p : ℤ) ∣ 2 * n ^ 2 := by
-    convert dvd_sub hp2 hp1
-    ring
+  have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by convert dvd_add hp2 hp1; ring
+  have h2n : (p : ℤ) ∣ 2 * n ^ 2 := by convert dvd_sub hp2 hp1; ring
   have hmc : p = 2 ∨ p ∣ Int.natAbs m := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2m
   have hnc : p = 2 ∨ p ∣ Int.natAbs n := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2n
   by_cases h2 : p = 2
   · have h3 : (m ^ 2 + n ^ 2) % 2 = 1 := by norm_num [sq, Int.add_emod, Int.mul_emod, hm, hn]
-    have h4 : (m ^ 2 + n ^ 2) % 2 = 0 :=
-      by
-      apply Int.emod_eq_zero_of_dvd
-      rwa [h2] at hp2
-    rw [h4] at h3
-    exact zero_ne_one h3
+    have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by apply Int.emod_eq_zero_of_dvd; rwa [h2] at hp2
+    rw [h4] at h3; exact zero_ne_one h3
   · apply hp.not_dvd_one
     rw [← h]
     exact Nat.dvd_gcd (Or.resolve_left hmc h2) (Or.resolve_left hnc h2)
@@ -456,27 +400,22 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
   by_contra H
   obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
   rw [← Int.coe_nat_dvd_left] at hp1 hp2
-  have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by
-    rw [h]
-    norm_cast
+  have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by rw [h]; norm_cast;
     exact mt nat.dvd_one.mp (Nat.Prime.ne_one hp)
   cases' Int.Prime.dvd_mul hp hp2 with hp2m hpn
   · rw [Int.natAbs_mul] at hp2m
     cases' (Nat.Prime.dvd_mul hp).mp hp2m with hp2 hpm
     · have hp2' : p = 2 := (Nat.le_of_dvd zero_lt_two hp2).antisymm hp.two_le
-      revert hp1
-      rw [hp2']
+      revert hp1; rw [hp2']
       apply mt Int.emod_eq_zero_of_dvd
       norm_num [sq, Int.sub_emod, Int.mul_emod, hm, hn]
     apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpm)) hnp
-    apply (or_self_iff _).mp
-    apply Int.Prime.dvd_mul' hp
+    apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
     rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
     exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
   rw [Int.gcd_comm] at hnp
   apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp
-  apply (or_self_iff _).mp
-  apply Int.Prime.dvd_mul' hp
+  apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
   rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
   apply dvd_add hp1
   exact (int.coe_nat_dvd_left.mpr hpn).mul_right n
@@ -504,16 +443,12 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
   by
   cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hm) with m0 hm2
   cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hn) with n0 hn2
-  rw [sub_eq_iff_eq_add] at hm2 hn2
-  subst m
-  subst n
+  rw [sub_eq_iff_eq_add] at hm2 hn2; subst m; subst n
   have h1 : (m0 * 2 + 1) ^ 2 + (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 + n0 ^ 2 + m0 + n0) + 1) := by
     ring
   have h2 : (m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 - n0 ^ 2 + m0 - n0)) := by ring
-  have h3 : ((m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2) / 2 % 2 = 0 :=
-    by
-    rw [h2, Int.mul_ediv_cancel_left, Int.mul_emod_right]
-    exact by decide
+  have h3 : ((m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2) / 2 % 2 = 0 := by
+    rw [h2, Int.mul_ediv_cancel_left, Int.mul_emod_right]; exact by decide
   refine' ⟨⟨_, h1⟩, ⟨_, h2⟩, h3, _⟩
   have h20 : (2 : ℤ) ≠ 0 := by decide
   rw [h1, h2, Int.mul_ediv_cancel_left _ h20, Int.mul_ediv_cancel_left _ h20]
@@ -524,11 +459,9 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
   rw [← Int.coe_nat_dvd_left] at hp1 hp2
   apply Nat.dvd_gcd
   · apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
-    convert dvd_add hp1 hp2
-    ring
+    convert dvd_add hp1 hp2; ring
   · apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
-    convert dvd_sub hp2 hp1
-    ring
+    convert dvd_sub hp2 hp1; ring
 
 namespace PythagoreanTriple
 
@@ -545,16 +478,10 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
     (H : Int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1) (co : Int.gcd m n = 1)
     (pp : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) : h.IsPrimitiveClassified :=
   by
-  have hz : z ≠ 0
-  apply ne_of_gt hzpos
-  have h2 : y = m ^ 2 - n ^ 2 ∧ z = m ^ 2 + n ^ 2 :=
-    by
-    apply Rat.div_int_inj hzpos hm2n2 (h.coprime_of_coprime hc) H
-    rw [hw2]
-    norm_cast
-  use m, n
-  apply And.intro _ (And.intro co pp)
-  right
+  have hz : z ≠ 0; apply ne_of_gt hzpos
+  have h2 : y = m ^ 2 - n ^ 2 ∧ z = m ^ 2 + n ^ 2 := by
+    apply Rat.div_int_inj hzpos hm2n2 (h.coprime_of_coprime hc) H; rw [hw2]; norm_cast
+  use m, n; apply And.intro _ (And.intro co pp); right
   refine' ⟨_, h2.left⟩
   rw [← Rat.coe_int_inj _ _, ← div_left_inj' ((mt (Rat.coe_int_inj z 0).mp) hz), hv2, h2.right]
   norm_cast
@@ -565,26 +492,17 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
 theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (hyo : y % 2 = 1)
     (hzpos : 0 < z) : h.IsPrimitiveClassified :=
   by
-  by_cases h0 : x = 0
-  · exact h.is_primitive_classified_of_coprime_of_zero_left hc h0
+  by_cases h0 : x = 0; · exact h.is_primitive_classified_of_coprime_of_zero_left hc h0
   let v := (x : ℚ) / z
   let w := (y : ℚ) / z
-  have hz : z ≠ 0
-  apply ne_of_gt hzpos
-  have hq : v ^ 2 + w ^ 2 = 1 := by
-    field_simp [hz, sq]
-    norm_cast
-    exact h
-  have hvz : v ≠ 0 := by
-    field_simp [hz]
-    exact h0
+  have hz : z ≠ 0; apply ne_of_gt hzpos
+  have hq : v ^ 2 + w ^ 2 = 1 := by field_simp [hz, sq] ; norm_cast; exact h
+  have hvz : v ≠ 0 := by field_simp [hz] ; exact h0
   have hw1 : w ≠ -1 := by
     contrapose! hvz with hw1
     rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq
     exact pow_eq_zero hq
-  have hQ : ∀ x : ℚ, 1 + x ^ 2 ≠ 0 := by
-    intro q
-    apply ne_of_gt
+  have hQ : ∀ x : ℚ, 1 + x ^ 2 ≠ 0 := by intro q; apply ne_of_gt;
     exact lt_add_of_pos_of_le zero_lt_one (sq_nonneg q)
   have hp : (⟨v, w⟩ : ℚ × ℚ) ∈ { p : ℚ × ℚ | p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 } := ⟨hq, hw1⟩
   let q := (circleEquivGen hQ).symm ⟨⟨v, w⟩, hp⟩
@@ -595,53 +513,38 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
     exact congr_arg Subtype.val this
   let m := (q.denom : ℤ)
   let n := q.num
-  have hm0 : m ≠ 0 := by
-    norm_cast
-    apply Rat.den_nz q
+  have hm0 : m ≠ 0 := by norm_cast; apply Rat.den_nz q
   have hq2 : q = n / m := (Rat.num_div_den q).symm
   have hm2n2 : 0 < m ^ 2 + n ^ 2 :=
     by
     apply lt_add_of_pos_of_le _ (sq_nonneg n)
     exact lt_of_le_of_ne (sq_nonneg m) (Ne.symm (pow_ne_zero 2 hm0))
-  have hw2 : w = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2) :=
-    by
-    rw [ht4.2, hq2]
+  have hw2 : w = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2) := by rw [ht4.2, hq2];
     field_simp [hm2n2, Rat.den_nz q, -Rat.num_div_den]
-  have hm2n20 : (m : ℚ) ^ 2 + (n : ℚ) ^ 2 ≠ 0 :=
-    by
-    norm_cast
+  have hm2n20 : (m : ℚ) ^ 2 + (n : ℚ) ^ 2 ≠ 0 := by norm_cast;
     simpa only [Int.coe_nat_pow] using ne_of_gt hm2n2
   have hv2 : v = 2 * m * n / (m ^ 2 + n ^ 2) :=
     by
-    apply Eq.symm
-    apply (div_eq_iff hm2n20).mpr
-    rw [ht4.1]
-    field_simp [hQ q]
+    apply Eq.symm; apply (div_eq_iff hm2n20).mpr; rw [ht4.1]; field_simp [hQ q]
     rw [hq2]
     field_simp [Rat.den_nz q, -Rat.num_div_den]
     ring
   have hnmcp : Int.gcd n m = 1 := q.cop
-  have hmncp : Int.gcd m n = 1 := by
-    rw [Int.gcd_comm]
-    exact hnmcp
+  have hmncp : Int.gcd m n = 1 := by rw [Int.gcd_comm]; exact hnmcp
   cases' Int.emod_two_eq_zero_or_one m with hm2 hm2 <;>
     cases' Int.emod_two_eq_zero_or_one n with hn2 hn2
   · -- m even, n even
     exfalso
     have h1 : 2 ∣ (Int.gcd n m : ℤ) :=
       Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
-    rw [hnmcp] at h1
-    revert h1
-    norm_num
+    rw [hnmcp] at h1; revert h1; norm_num
   · -- m even, n odd
     apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
-    · apply Or.intro_left
-      exact And.intro hm2 hn2
+    · apply Or.intro_left; exact And.intro hm2 hn2
     · apply coprime_sq_sub_sq_add_of_even_odd hmncp hm2 hn2
   · -- m odd, n even
     apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
-    · apply Or.intro_right
-      exact And.intro hm2 hn2
+    · apply Or.intro_right; exact And.intro hm2 hn2
     apply coprime_sq_sub_sq_add_of_odd_even hmncp hm2 hn2
   · -- m odd, n odd
     exfalso
@@ -653,13 +556,10 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
     have h2 : y = (m ^ 2 - n ^ 2) / 2 ∧ z = (m ^ 2 + n ^ 2) / 2 :=
       by
       apply Rat.div_int_inj hzpos _ (h.coprime_of_coprime hc) h1.2.2.2
-      · show w = _
-        rw [← Rat.divInt_eq_div, ← Rat.divInt_mul_right (by norm_num : (2 : ℤ) ≠ 0)]
-        rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]
-        norm_cast
+      · show w = _; rw [← Rat.divInt_eq_div, ← Rat.divInt_mul_right (by norm_num : (2 : ℤ) ≠ 0)]
+        rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]; norm_cast
       · apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp
-        rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]
-        exact hm2n2
+        rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]; exact hm2n2
     rw [h2.1, h1.2.2.1] at hyo
     revert hyo
     norm_num
@@ -694,14 +594,9 @@ theorem isPrimitiveClassified_of_coprime (hc : Int.gcd x y = 1) : h.IsPrimitiveC
 theorem classified : h.IsClassified :=
   by
   by_cases h0 : Int.gcd x y = 0
-  · have hx : x = 0 := by
-      apply int.nat_abs_eq_zero.mp
-      apply Nat.eq_zero_of_gcd_eq_zero_left h0
-    have hy : y = 0 := by
-      apply int.nat_abs_eq_zero.mp
-      apply Nat.eq_zero_of_gcd_eq_zero_right h0
-    use 0, 1, 0
-    norm_num [hx, hy]
+  · have hx : x = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_left h0
+    have hy : y = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_right h0
+    use 0, 1, 0; norm_num [hx, hy]
   apply h.is_classified_of_normalize_is_primitive_classified
   apply h.normalize.is_primitive_classified_of_coprime
   apply Int.gcd_div_gcd_div_gcd (Nat.pos_of_ne_zero h0)
@@ -729,28 +624,18 @@ theorem coprime_classification :
     use m, n
     rcases H with ⟨⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, co, pp⟩
     · refine' ⟨Or.inl ⟨rfl, rfl⟩, _, co, pp⟩
-      have : z ^ 2 = (m ^ 2 + n ^ 2) ^ 2 :=
-        by
-        rw [sq, ← h.left.eq]
-        ring
+      have : z ^ 2 = (m ^ 2 + n ^ 2) ^ 2 := by rw [sq, ← h.left.eq]; ring
       simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this
     · refine' ⟨Or.inr ⟨rfl, rfl⟩, _, co, pp⟩
-      have : z ^ 2 = (m ^ 2 + n ^ 2) ^ 2 :=
-        by
-        rw [sq, ← h.left.eq]
-        ring
+      have : z ^ 2 = (m ^ 2 + n ^ 2) ^ 2 := by rw [sq, ← h.left.eq]; ring
       simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this
   · delta PythagoreanTriple
     rintro ⟨m, n, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl | rfl, co, pp⟩ <;>
       first
-        |·
-          constructor
-          · ring
-          exact coprime_sq_sub_mul co pp|·
-          constructor
-          · ring
-          rw [Int.gcd_comm]
-          exact coprime_sq_sub_mul co pp
+        |· constructor; · ring;
+          exact
+            coprime_sq_sub_mul co
+              pp|· constructor; · ring; rw [Int.gcd_comm]; exact coprime_sq_sub_mul co pp
 #align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classification
 
 /- warning: pythagorean_triple.coprime_classification' -> PythagoreanTriple.coprime_classification' is a dubious translation:
@@ -778,9 +663,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
       apply And.intro h_odd.2
       cases' ht2 with h_pos h_neg
       · apply And.intro h_pos (And.intro ht3 (And.intro ht4 hm))
-      · exfalso
-        revert h_pos
-        rw [h_neg]
+      · exfalso; revert h_pos; rw [h_neg]
         exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
     exfalso
     rcases h_even with ⟨rfl, -⟩
@@ -791,21 +674,14 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
     · rw [neg_sq m]
       rw [neg_sq n]
       apply And.intro h_odd.1
-      constructor
-      · rw [h_odd.2]
-        ring
+      constructor; · rw [h_odd.2]; ring
       cases' ht2 with h_pos h_neg
       · apply And.intro h_pos
         constructor
-        · delta Int.gcd
-          rw [Int.natAbs_neg, Int.natAbs_neg]
-          exact ht3
+        · delta Int.gcd; rw [Int.natAbs_neg, Int.natAbs_neg]; exact ht3
         · rw [Int.neg_emod_two, Int.neg_emod_two]
-          apply And.intro ht4
-          linarith
-      · exfalso
-        revert h_pos
-        rw [h_neg]
+          apply And.intro ht4; linarith
+      · exfalso; revert h_pos; rw [h_neg]
         exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
     exfalso
     rcases h_even with ⟨rfl, -⟩
@@ -833,16 +709,10 @@ theorem classification :
     use k, m, n
     rcases H with (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩)
     · refine' ⟨Or.inl ⟨rfl, rfl⟩, _⟩
-      have : z ^ 2 = (k * (m ^ 2 + n ^ 2)) ^ 2 :=
-        by
-        rw [sq, ← h.eq]
-        ring
+      have : z ^ 2 = (k * (m ^ 2 + n ^ 2)) ^ 2 := by rw [sq, ← h.eq]; ring
       simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this
     · refine' ⟨Or.inr ⟨rfl, rfl⟩, _⟩
-      have : z ^ 2 = (k * (m ^ 2 + n ^ 2)) ^ 2 :=
-        by
-        rw [sq, ← h.eq]
-        ring
+      have : z ^ 2 = (k * (m ^ 2 + n ^ 2)) ^ 2 := by rw [sq, ← h.eq]; ring
       simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this
   · rintro ⟨k, m, n, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl | rfl⟩ <;> delta PythagoreanTriple <;> ring
 #align pythagorean_triple.classification PythagoreanTriple.classification
Diff
@@ -397,10 +397,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
 #align circle_equiv_gen circleEquivGen
 
 /- warning: circle_equiv_apply -> circleEquivGen_apply is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (Semiring.toNatCast.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circleEquivGen_applyₓ'. -/
 @[simp]
 theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
@@ -409,10 +406,7 @@ theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
 #align circle_equiv_apply circleEquivGen_apply
 
 /- warning: circle_equiv_symm_apply -> circleEquivGen_symm_apply is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (DivisionSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semifield.toDivisionSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Field.toSemifield.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circleEquivGen_symm_applyₓ'. -/
 @[simp]
 theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
@@ -448,7 +442,6 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
   · apply hp.not_dvd_one
     rw [← h]
     exact Nat.dvd_gcd (Or.resolve_left hmc h2) (Or.resolve_left hnc h2)
-#align coprime_sq_sub_sq_add_of_even_odd coprime_sq_sub_sq_add_of_even_odd
 
 private theorem coprime_sq_sub_sq_add_of_odd_even {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 1)
     (hn : n % 2 = 0) : Int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1 :=
@@ -456,7 +449,6 @@ private theorem coprime_sq_sub_sq_add_of_odd_even {m n : ℤ} (h : Int.gcd m n =
   rw [Int.gcd, ← Int.natAbs_neg (m ^ 2 - n ^ 2)]
   rw [(by ring : -(m ^ 2 - n ^ 2) = n ^ 2 - m ^ 2), add_comm]
   apply coprime_sq_sub_sq_add_of_even_odd _ hn hm; rwa [Int.gcd_comm]
-#align coprime_sq_sub_sq_add_of_odd_even coprime_sq_sub_sq_add_of_odd_even
 
 private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 0)
     (hn : n % 2 = 1) : Int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 :=
@@ -488,7 +480,6 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
   rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
   apply dvd_add hp1
   exact (int.coe_nat_dvd_left.mpr hpn).mul_right n
-#align coprime_sq_sub_mul_of_even_odd coprime_sq_sub_mul_of_even_odd
 
 private theorem coprime_sq_sub_mul_of_odd_even {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 1)
     (hn : n % 2 = 0) : Int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 :=
@@ -496,7 +487,6 @@ private theorem coprime_sq_sub_mul_of_odd_even {m n : ℤ} (h : Int.gcd m n = 1)
   rw [Int.gcd, ← Int.natAbs_neg (m ^ 2 - n ^ 2)]
   rw [(by ring : 2 * m * n = 2 * n * m), (by ring : -(m ^ 2 - n ^ 2) = n ^ 2 - m ^ 2)]
   apply coprime_sq_sub_mul_of_even_odd _ hn hm; rwa [Int.gcd_comm]
-#align coprime_sq_sub_mul_of_odd_even coprime_sq_sub_mul_of_odd_even
 
 private theorem coprime_sq_sub_mul {m n : ℤ} (h : Int.gcd m n = 1)
     (hmn : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) :
@@ -505,7 +495,6 @@ private theorem coprime_sq_sub_mul {m n : ℤ} (h : Int.gcd m n = 1)
   cases' hmn with h1 h2
   · exact coprime_sq_sub_mul_of_even_odd h h1.left h1.right
   · exact coprime_sq_sub_mul_of_odd_even h h2.left h2.right
-#align coprime_sq_sub_mul coprime_sq_sub_mul
 
 private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 1)
     (hn : n % 2 = 1) :
@@ -540,7 +529,6 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
   · apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
     convert dvd_sub hp2 hp1
     ring
-#align coprime_sq_sub_sq_sum_of_odd_odd coprime_sq_sub_sq_sum_of_odd_odd
 
 namespace PythagoreanTriple
 
@@ -549,10 +537,7 @@ variable {x y z : ℤ} (h : PythagoreanTriple x y z)
 include h
 
 /- warning: pythagorean_triple.is_primitive_classified_aux -> PythagoreanTriple.isPrimitiveClassified_aux is a dubious translation:
-lean 3 declaration is
-  forall {x : Int} {y : Int} {z : Int} (h : PythagoreanTriple x y z), (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) z) -> (forall {m : Int} {n : Int}, (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) x) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.hasMul) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.hasMul) (OfNat.ofNat.{0} Rat 2 (OfNat.mk.{0} Rat 2 (bit0.{0} Rat Rat.hasAdd (One.one.{0} Rat Rat.hasOne)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n)) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.hasAdd) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) y) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) (HSub.hSub.{0, 0, 0} Rat Rat Rat (instHSub.{0} Rat (SubNegMonoid.toHasSub.{0} Rat (AddGroup.toSubNegMonoid.{0} Rat Rat.addGroup))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.hasAdd) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) -> (Eq.{1} Nat (Int.gcd (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))) -> (PythagoreanTriple.IsPrimitiveClassified x y z h))
-but is expected to have type
-  forall {x : Int} {y : Int} {z : Int} (h : PythagoreanTriple x y z), (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) z) -> (forall {m : Int} {n : Int}, (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (Int.cast.{0} Rat Rat.instIntCastRat x) (Int.cast.{0} Rat Rat.instIntCastRat z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMulRat) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMulRat) (OfNat.ofNat.{0} Rat 2 (Rat.instOfNatRat 2)) (Int.cast.{0} Rat Rat.instIntCastRat m)) (Int.cast.{0} Rat Rat.instIntCastRat n)) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.instAddRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (Int.cast.{0} Rat Rat.instIntCastRat y) (Int.cast.{0} Rat Rat.instIntCastRat z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (HSub.hSub.{0, 0, 0} Rat Rat Rat (instHSub.{0} Rat Rat.instSubRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.instAddRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) -> (Eq.{1} Nat (Int.gcd (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))) -> (PythagoreanTriple.IsPrimitiveClassified x y z h))
+<too large>
 Case conversion may be inaccurate. Consider using '#align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_auxₓ'. -/
 theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
     (hm2n2 : 0 < m ^ 2 + n ^ 2) (hv2 : (x : ℚ) / z = 2 * m * n / (m ^ 2 + n ^ 2))
Diff
@@ -400,7 +400,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
 lean 3 declaration is
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
 but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (Semiring.toNatCast.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (Semiring.toNatCast.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
 Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circleEquivGen_applyₓ'. -/
 @[simp]
 theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
@@ -412,7 +412,7 @@ theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
 lean 3 declaration is
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
 but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (DivisionSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semifield.toDivisionSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Field.toSemifield.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (DivisionSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semifield.toDivisionSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Field.toSemifield.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circleEquivGen_symm_applyₓ'. -/
 @[simp]
 theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
Diff
@@ -38,7 +38,7 @@ the bulk of the proof below.
 lean 3 declaration is
   forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddCommGroupWithOne.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toAddCommGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
 but is expected to have type
-  forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (NonAssocRing.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
+  forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (Semiring.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommSemiring.toSemiring.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toCommSemiring.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
 Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_fourₓ'. -/
 theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
   by
@@ -353,7 +353,7 @@ variable {K : Type _} [Field K]
 lean 3 declaration is
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))))
 but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))))
 Case conversion may be inaccurate. Consider using '#align circle_equiv_gen circleEquivGenₓ'. -/
 /-- A parameterization of the unit circle that is useful for classifying Pythagorean triples.
  (To be applied in the case where `K = ℚ`.) -/
@@ -400,7 +400,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
 lean 3 declaration is
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
 but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (NonAssocRing.toNatCast.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (Semiring.toNatCast.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
 Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circleEquivGen_applyₓ'. -/
 @[simp]
 theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
@@ -412,7 +412,7 @@ theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
 lean 3 declaration is
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
 but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (NonAssocRing.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (DivisionRing.toRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Field.toDivisionRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (DivisionSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semifield.toDivisionSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Field.toSemifield.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circleEquivGen_symm_applyₓ'. -/
 @[simp]
 theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Paul van Wamelen
 
 ! This file was ported from Lean 3 source module number_theory.pythagorean_triples
-! leanprover-community/mathlib commit 97eab48559068f3d6313da387714ef25768fb730
+! leanprover-community/mathlib commit e8638a0fcaf73e4500469f368ef9494e495099b3
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -183,9 +183,9 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
   · -- x even, y even
     exfalso
     apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
-    · apply Int.dvd_natAbs_of_ofNat_dvd
+    · apply Int.coe_nat_dvd_left.1
       apply Int.dvd_of_emod_eq_zero hx
-    · apply Int.dvd_natAbs_of_ofNat_dvd
+    · apply Int.coe_nat_dvd_left.1
       apply Int.dvd_of_emod_eq_zero hy
   · left
     exact ⟨hx, hy⟩
@@ -480,8 +480,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
     apply (or_self_iff _).mp
     apply Int.Prime.dvd_mul' hp
     rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
-    apply dvd_add (dvd_neg_of_dvd hp1)
-    exact dvd_mul_of_dvd_left (int.coe_nat_dvd_left.mpr hpm) m
+    exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
   rw [Int.gcd_comm] at hnp
   apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp
   apply (or_self_iff _).mp
Diff
@@ -34,24 +34,24 @@ the bulk of the proof below.
 -/
 
 
-/- warning: sq_ne_two_fin_zmod_four -> sq_ne_two_fin_zMod_four is a dubious translation:
+/- warning: sq_ne_two_fin_zmod_four -> sq_ne_two_fin_zmod_four is a dubious translation:
 lean 3 declaration is
   forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddCommGroupWithOne.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toAddCommGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
 but is expected to have type
   forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (NonAssocRing.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
-Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_fourₓ'. -/
-theorem sq_ne_two_fin_zMod_four (z : ZMod 4) : z * z ≠ 2 :=
+Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_fourₓ'. -/
+theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
   by
   change Fin 4 at z
   fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
-#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_four
+#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
 
 #print Int.sq_ne_two_mod_four /-
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
   by
   suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
   rw [← ZMod.int_cast_eq_int_cast_iff']
-  simpa using sq_ne_two_fin_zMod_four _
+  simpa using sq_ne_two_fin_zmod_four _
 #align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
 -/
 
@@ -396,30 +396,30 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
       ring
 #align circle_equiv_gen circleEquivGen
 
-/- warning: circle_equiv_apply -> circle_equiv_apply is a dubious translation:
+/- warning: circle_equiv_apply -> circleEquivGen_apply is a dubious translation:
 lean 3 declaration is
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (NonAssocRing.toNatCast.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
-Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circle_equiv_applyₓ'. -/
+Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circleEquivGen_applyₓ'. -/
 @[simp]
-theorem circle_equiv_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
+theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
     (circleEquivGen hk x : K × K) = ⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩ :=
   rfl
-#align circle_equiv_apply circle_equiv_apply
+#align circle_equiv_apply circleEquivGen_apply
 
-/- warning: circle_equiv_symm_apply -> circle_equiv_symm_apply is a dubious translation:
+/- warning: circle_equiv_symm_apply -> circleEquivGen_symm_apply is a dubious translation:
 lean 3 declaration is
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (NonAssocRing.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (DivisionRing.toRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Field.toDivisionRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circle_equiv_symm_applyₓ'. -/
+Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circleEquivGen_symm_applyₓ'. -/
 @[simp]
-theorem circle_equiv_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
+theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
     (v : { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }) :
     (circleEquivGen hk).symm v = (v : K × K).1 / ((v : K × K).2 + 1) :=
   rfl
-#align circle_equiv_symm_apply circle_equiv_symm_apply
+#align circle_equiv_symm_apply circleEquivGen_symm_apply
 
 end circleEquivGen
 
Diff
@@ -36,7 +36,7 @@ the bulk of the proof below.
 
 /- warning: sq_ne_two_fin_zmod_four -> sq_ne_two_fin_zMod_four is a dubious translation:
 lean 3 declaration is
-  forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (NonAssocRing.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toNonAssocRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
+  forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddCommGroupWithOne.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toAddCommGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
 but is expected to have type
   forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (NonAssocRing.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
 Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_fourₓ'. -/
@@ -351,7 +351,7 @@ variable {K : Type _} [Field K]
 
 /- warning: circle_equiv_gen -> circleEquivGen is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))))
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
 Case conversion may be inaccurate. Consider using '#align circle_equiv_gen circleEquivGenₓ'. -/
@@ -398,7 +398,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
 
 /- warning: circle_equiv_apply -> circle_equiv_apply is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (NonAssocRing.toNatCast.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
 Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circle_equiv_applyₓ'. -/
@@ -410,7 +410,7 @@ theorem circle_equiv_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
 
 /- warning: circle_equiv_symm_apply -> circle_equiv_symm_apply is a dubious translation:
 lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
 but is expected to have type
   forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (NonAssocRing.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (DivisionRing.toRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Field.toDivisionRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circle_equiv_symm_applyₓ'. -/
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Paul van Wamelen
 
 ! This file was ported from Lean 3 source module number_theory.pythagorean_triples
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit 97eab48559068f3d6313da387714ef25768fb730
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -19,6 +19,9 @@ import Mathbin.Data.Zmod.Basic
 /-!
 # Pythagorean Triples
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 The main result is the classification of Pythagorean triples. The final result is for general
 Pythagorean triples. It follows from the more interesting relatively prime case. We use the
 "rational parametrization of the circle" method for the proof. The parametrization maps the point
Diff
@@ -31,28 +31,39 @@ the bulk of the proof below.
 -/
 
 
+/- warning: sq_ne_two_fin_zmod_four -> sq_ne_two_fin_zMod_four is a dubious translation:
+lean 3 declaration is
+  forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (NonAssocRing.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toNonAssocRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
+but is expected to have type
+  forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (NonAssocRing.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
+Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_fourₓ'. -/
 theorem sq_ne_two_fin_zMod_four (z : ZMod 4) : z * z ≠ 2 :=
   by
   change Fin 4 at z
   fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
 #align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_four
 
+#print Int.sq_ne_two_mod_four /-
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
   by
   suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
   rw [← ZMod.int_cast_eq_int_cast_iff']
   simpa using sq_ne_two_fin_zMod_four _
 #align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
+-/
 
 noncomputable section
 
 open Classical
 
+#print PythagoreanTriple /-
 /-- Three integers `x`, `y`, and `z` form a Pythagorean triple if `x * x + y * y = z * z`. -/
 def PythagoreanTriple (x y z : ℤ) : Prop :=
   x * x + y * y = z * z
 #align pythagorean_triple PythagoreanTriple
+-/
 
+#print pythagoreanTriple_comm /-
 /-- Pythagorean triples are interchangable, i.e `x * x + y * y = y * y + x * x = z * z`.
 This comes from additive commutativity. -/
 theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ PythagoreanTriple y x z :=
@@ -60,11 +71,14 @@ theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ Pytha
   delta PythagoreanTriple
   rw [add_comm]
 #align pythagorean_triple_comm pythagoreanTriple_comm
+-/
 
+#print PythagoreanTriple.zero /-
 /-- The zeroth Pythagorean triple is all zeros. -/
 theorem PythagoreanTriple.zero : PythagoreanTriple 0 0 0 := by
   simp only [PythagoreanTriple, MulZeroClass.zero_mul, zero_add]
 #align pythagorean_triple.zero PythagoreanTriple.zero
+-/
 
 namespace PythagoreanTriple
 
@@ -72,14 +86,19 @@ variable {x y z : ℤ} (h : PythagoreanTriple x y z)
 
 include h
 
+#print PythagoreanTriple.eq /-
 theorem eq : x * x + y * y = z * z :=
   h
 #align pythagorean_triple.eq PythagoreanTriple.eq
+-/
 
+#print PythagoreanTriple.symm /-
 @[symm]
 theorem symm : PythagoreanTriple y x z := by rwa [pythagoreanTriple_comm]
 #align pythagorean_triple.symm PythagoreanTriple.symm
+-/
 
+#print PythagoreanTriple.mul /-
 /-- A triple is still a triple if you multiply `x`, `y` and `z`
 by a constant `k`. -/
 theorem mul (k : ℤ) : PythagoreanTriple (k * x) (k * y) (k * z) :=
@@ -89,9 +108,11 @@ theorem mul (k : ℤ) : PythagoreanTriple (k * x) (k * y) (k * z) :=
     _ = k * z * (k * z) := by ring
     
 #align pythagorean_triple.mul PythagoreanTriple.mul
+-/
 
 omit h
 
+#print PythagoreanTriple.mul_iff /-
 /-- `(k*x, k*y, k*z)` is a Pythagorean triple if and only if
 `(x, y, z)` is also a triple. -/
 theorem mul_iff (k : ℤ) (hk : k ≠ 0) :
@@ -103,9 +124,11 @@ theorem mul_iff (k : ℤ) (hk : k ≠ 0) :
   rw [← mul_left_inj' (mul_ne_zero hk hk)]
   convert h using 1 <;> ring
 #align pythagorean_triple.mul_iff PythagoreanTriple.mul_iff
+-/
 
 include h
 
+#print PythagoreanTriple.IsClassified /-
 /-- A Pythagorean triple `x, y, z` is “classified” if there exist integers `k, m, n` such that
 either
  * `x = k * (m ^ 2 - n ^ 2)` and `y = k * (2 * m * n)`, or
@@ -117,7 +140,9 @@ def IsClassified :=
         x = k * (2 * m * n) ∧ y = k * (m ^ 2 - n ^ 2)) ∧
       Int.gcd m n = 1
 #align pythagorean_triple.is_classified PythagoreanTriple.IsClassified
+-/
 
+#print PythagoreanTriple.IsPrimitiveClassified /-
 /-- A primitive pythogorean triple `x, y, z` is a pythagorean triple with `x` and `y` coprime.
  Such a triple is “primitively classified” if there exist coprime integers `m, n` such that either
  * `x = m ^ 2 - n ^ 2` and `y = 2 * m * n`, or
@@ -129,7 +154,9 @@ def IsPrimitiveClassified :=
     (x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n ∨ x = 2 * m * n ∧ y = m ^ 2 - n ^ 2) ∧
       Int.gcd m n = 1 ∧ (m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0)
 #align pythagorean_triple.is_primitive_classified PythagoreanTriple.IsPrimitiveClassified
+-/
 
+#print PythagoreanTriple.mul_isClassified /-
 theorem mul_isClassified (k : ℤ) (hc : h.IsClassified) : (h.mul k).IsClassified :=
   by
   obtain ⟨l, m, n, ⟨⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, co⟩⟩ := hc
@@ -142,7 +169,9 @@ theorem mul_isClassified (k : ℤ) (hc : h.IsClassified) : (h.mul k).IsClassifie
     right
     constructor <;> ring
 #align pythagorean_triple.mul_is_classified PythagoreanTriple.mul_isClassified
+-/
 
+#print PythagoreanTriple.even_odd_of_coprime /-
 theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
     x % 2 = 0 ∧ y % 2 = 1 ∨ x % 2 = 1 ∧ y % 2 = 0 :=
   by
@@ -176,7 +205,14 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
         ring]
     norm_num [Int.add_emod]
 #align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
+-/
 
+/- warning: pythagorean_triple.gcd_dvd -> PythagoreanTriple.gcd_dvd is a dubious translation:
+lean 3 declaration is
+  forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Dvd.Dvd.{0} Int (semigroupDvd.{0} Int Int.semigroup) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) (Int.gcd x y)) z)
+but is expected to have type
+  forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Dvd.dvd.{0} Int Int.instDvdInt (Nat.cast.{0} Int instNatCastInt (Int.gcd x y)) z)
+Case conversion may be inaccurate. Consider using '#align pythagorean_triple.gcd_dvd PythagoreanTriple.gcd_dvdₓ'. -/
 theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
   by
   by_cases h0 : Int.gcd x y = 0
@@ -199,6 +235,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
   exact dvd_mul_right _ _
 #align pythagorean_triple.gcd_dvd PythagoreanTriple.gcd_dvd
 
+#print PythagoreanTriple.normalize /-
 theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / Int.gcd x y) :=
   by
   by_cases h0 : Int.gcd x y = 0
@@ -224,7 +261,9 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
   rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
   rwa [Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel_left _ hk]
 #align pythagorean_triple.normalize PythagoreanTriple.normalize
+-/
 
+#print PythagoreanTriple.isClassified_of_isPrimitiveClassified /-
 theorem isClassified_of_isPrimitiveClassified (hp : h.IsPrimitiveClassified) : h.IsClassified :=
   by
   obtain ⟨m, n, H⟩ := hp
@@ -233,7 +272,9 @@ theorem isClassified_of_isPrimitiveClassified (hp : h.IsPrimitiveClassified) : h
   rw [one_mul, one_mul]
   exact ⟨t, co⟩
 #align pythagorean_triple.is_classified_of_is_primitive_classified PythagoreanTriple.isClassified_of_isPrimitiveClassified
+-/
 
+#print PythagoreanTriple.isClassified_of_normalize_isPrimitiveClassified /-
 theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrimitiveClassified) :
     h.IsClassified :=
   by
@@ -244,7 +285,9 @@ theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrim
   · exact Int.gcd_dvd_right x y
   · exact h.gcd_dvd
 #align pythagorean_triple.is_classified_of_normalize_is_primitive_classified PythagoreanTriple.isClassified_of_normalize_isPrimitiveClassified
+-/
 
+#print PythagoreanTriple.ne_zero_of_coprime /-
 theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
   by
   suffices 0 < z * z by
@@ -258,7 +301,9 @@ theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
   · apply lt_add_of_pos_of_le (sq_pos_of_ne_zero x hxz) (sq_nonneg y)
   · apply lt_add_of_le_of_pos (sq_nonneg x) (sq_pos_of_ne_zero y hyz)
 #align pythagorean_triple.ne_zero_of_coprime PythagoreanTriple.ne_zero_of_coprime
+-/
 
+#print PythagoreanTriple.isPrimitiveClassified_of_coprime_of_zero_left /-
 theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx : x = 0) :
     h.IsPrimitiveClassified := by
   subst x
@@ -272,7 +317,9 @@ theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx
     rw [hy, hc, Int.gcd_zero_left]
     norm_num
 #align pythagorean_triple.is_primitive_classified_of_coprime_of_zero_left PythagoreanTriple.isPrimitiveClassified_of_coprime_of_zero_left
+-/
 
+#print PythagoreanTriple.coprime_of_coprime /-
 theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 :=
   by
   by_contra H
@@ -284,6 +331,7 @@ theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 :=
   rw [← Int.coe_nat_dvd_left] at hpy hpz
   exact dvd_sub (hpz.mul_right _) (hpy.mul_right _)
 #align pythagorean_triple.coprime_of_coprime PythagoreanTriple.coprime_of_coprime
+-/
 
 end PythagoreanTriple
 
@@ -298,6 +346,12 @@ For the classification of pythogorean triples, we will use a parametrization of
 
 variable {K : Type _} [Field K]
 
+/- warning: circle_equiv_gen -> circleEquivGen is a dubious translation:
+lean 3 declaration is
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))))
+but is expected to have type
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
+Case conversion may be inaccurate. Consider using '#align circle_equiv_gen circleEquivGenₓ'. -/
 /-- A parameterization of the unit circle that is useful for classifying Pythagorean triples.
  (To be applied in the case where `K = ℚ`.) -/
 def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
@@ -339,12 +393,24 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
       ring
 #align circle_equiv_gen circleEquivGen
 
+/- warning: circle_equiv_apply -> circle_equiv_apply is a dubious translation:
+lean 3 declaration is
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
+but is expected to have type
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (NonAssocRing.toNatCast.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
+Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circle_equiv_applyₓ'. -/
 @[simp]
 theorem circle_equiv_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
     (circleEquivGen hk x : K × K) = ⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩ :=
   rfl
 #align circle_equiv_apply circle_equiv_apply
 
+/- warning: circle_equiv_symm_apply -> circle_equiv_symm_apply is a dubious translation:
+lean 3 declaration is
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
+but is expected to have type
+  forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (NonAssocRing.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (DivisionRing.toRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Field.toDivisionRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circle_equiv_symm_applyₓ'. -/
 @[simp]
 theorem circle_equiv_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
     (v : { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }) :
@@ -480,6 +546,12 @@ variable {x y z : ℤ} (h : PythagoreanTriple x y z)
 
 include h
 
+/- warning: pythagorean_triple.is_primitive_classified_aux -> PythagoreanTriple.isPrimitiveClassified_aux is a dubious translation:
+lean 3 declaration is
+  forall {x : Int} {y : Int} {z : Int} (h : PythagoreanTriple x y z), (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) z) -> (forall {m : Int} {n : Int}, (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) x) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.hasMul) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.hasMul) (OfNat.ofNat.{0} Rat 2 (OfNat.mk.{0} Rat 2 (bit0.{0} Rat Rat.hasAdd (One.one.{0} Rat Rat.hasOne)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n)) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.hasAdd) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) y) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) (HSub.hSub.{0, 0, 0} Rat Rat Rat (instHSub.{0} Rat (SubNegMonoid.toHasSub.{0} Rat (AddGroup.toSubNegMonoid.{0} Rat Rat.addGroup))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.hasAdd) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) -> (Eq.{1} Nat (Int.gcd (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))) -> (PythagoreanTriple.IsPrimitiveClassified x y z h))
+but is expected to have type
+  forall {x : Int} {y : Int} {z : Int} (h : PythagoreanTriple x y z), (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) z) -> (forall {m : Int} {n : Int}, (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (Int.cast.{0} Rat Rat.instIntCastRat x) (Int.cast.{0} Rat Rat.instIntCastRat z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMulRat) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMulRat) (OfNat.ofNat.{0} Rat 2 (Rat.instOfNatRat 2)) (Int.cast.{0} Rat Rat.instIntCastRat m)) (Int.cast.{0} Rat Rat.instIntCastRat n)) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.instAddRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (Int.cast.{0} Rat Rat.instIntCastRat y) (Int.cast.{0} Rat Rat.instIntCastRat z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (HSub.hSub.{0, 0, 0} Rat Rat Rat (instHSub.{0} Rat Rat.instSubRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.instAddRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) -> (Eq.{1} Nat (Int.gcd (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))) -> (PythagoreanTriple.IsPrimitiveClassified x y z h))
+Case conversion may be inaccurate. Consider using '#align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_auxₓ'. -/
 theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
     (hm2n2 : 0 < m ^ 2 + n ^ 2) (hv2 : (x : ℚ) / z = 2 * m * n / (m ^ 2 + n ^ 2))
     (hw2 : (y : ℚ) / z = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2))
@@ -502,6 +574,7 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
 #align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_aux
 
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([2, 3]) } -/
+#print PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos /-
 theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (hyo : y % 2 = 1)
     (hzpos : 0 < z) : h.IsPrimitiveClassified :=
   by
@@ -604,7 +677,9 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
     revert hyo
     norm_num
 #align pythagorean_triple.is_primitive_classified_of_coprime_of_odd_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos
+-/
 
+#print PythagoreanTriple.isPrimitiveClassified_of_coprime_of_pos /-
 theorem isPrimitiveClassified_of_coprime_of_pos (hc : Int.gcd x y = 1) (hzpos : 0 < z) :
     h.IsPrimitiveClassified :=
   by
@@ -614,7 +689,9 @@ theorem isPrimitiveClassified_of_coprime_of_pos (hc : Int.gcd x y = 1) (hzpos :
   obtain ⟨m, n, H⟩ := h.symm.is_primitive_classified_of_coprime_of_odd_of_pos hc h2.left hzpos
   use m, n; tauto
 #align pythagorean_triple.is_primitive_classified_of_coprime_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_pos
+-/
 
+#print PythagoreanTriple.isPrimitiveClassified_of_coprime /-
 theorem isPrimitiveClassified_of_coprime (hc : Int.gcd x y = 1) : h.IsPrimitiveClassified :=
   by
   by_cases hz : 0 < z
@@ -624,7 +701,9 @@ theorem isPrimitiveClassified_of_coprime (hc : Int.gcd x y = 1) : h.IsPrimitiveC
   apply lt_of_le_of_ne _ (h'.ne_zero_of_coprime hc).symm
   exact le_neg.mp (not_lt.mp hz)
 #align pythagorean_triple.is_primitive_classified_of_coprime PythagoreanTriple.isPrimitiveClassified_of_coprime
+-/
 
+#print PythagoreanTriple.classified /-
 theorem classified : h.IsClassified :=
   by
   by_cases h0 : Int.gcd x y = 0
@@ -640,9 +719,16 @@ theorem classified : h.IsClassified :=
   apply h.normalize.is_primitive_classified_of_coprime
   apply Int.gcd_div_gcd_div_gcd (Nat.pos_of_ne_zero h0)
 #align pythagorean_triple.classified PythagoreanTriple.classified
+-/
 
 omit h
 
+/- warning: pythagorean_triple.coprime_classification -> PythagoreanTriple.coprime_classification is a dubious translation:
+lean 3 declaration is
+  forall {x : Int} {y : Int} {z : Int}, Iff (And (PythagoreanTriple x y z) (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)) (Eq.{1} Int y (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))) (And (Or (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (Eq.{1} Int z (Neg.neg.{0} Int Int.hasNeg (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))))))))
+but is expected to have type
+  forall {x : Int} {y : Int} {z : Int}, Iff (And (PythagoreanTriple x y z) (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)) (Eq.{1} Int y (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))) (And (Or (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (Eq.{1} Int z (Neg.neg.{0} Int Int.instNegInt (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))))))))
+Case conversion may be inaccurate. Consider using '#align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classificationₓ'. -/
 theorem coprime_classification :
     PythagoreanTriple x y z ∧ Int.gcd x y = 1 ↔
       ∃ m n,
@@ -680,6 +766,12 @@ theorem coprime_classification :
           exact coprime_sq_sub_mul co pp
 #align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classification
 
+/- warning: pythagorean_triple.coprime_classification' -> PythagoreanTriple.coprime_classification' is a dubious translation:
+lean 3 declaration is
+  forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) x (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) -> (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) z) -> (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (And (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)) (And (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (And (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))) (LE.le.{0} Int Int.hasLe (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) m))))))))
+but is expected to have type
+  forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) x (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) -> (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) z) -> (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (And (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)) (And (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (And (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))) (LE.le.{0} Int Int.instLEInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) m))))))))
+Case conversion may be inaccurate. Consider using '#align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'ₓ'. -/
 /-- by assuming `x` is odd and `z` is positive we get a slightly more precise classification of
 the pythagorean triple `x ^ 2 + y ^ 2 = z ^ 2`-/
 theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
@@ -734,6 +826,12 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
     exact zero_ne_one h_parity
 #align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'
 
+/- warning: pythagorean_triple.classification -> PythagoreanTriple.classification is a dubious translation:
+lean 3 declaration is
+  forall {x : Int} {y : Int} {z : Int}, Iff (PythagoreanTriple x y z) (Exists.{1} Int (fun (k : Int) => Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) (Or (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (Neg.neg.{0} Int Int.hasNeg k) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
+but is expected to have type
+  forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Iff (PythagoreanTriple x y z) (Exists.{1} Int (fun (k : Int) => Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))))) (Or (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (Neg.neg.{0} Int Int.instNegInt k) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))))))))
+Case conversion may be inaccurate. Consider using '#align pythagorean_triple.classification PythagoreanTriple.classificationₓ'. -/
 /-- **Formula for Pythagorean Triples** -/
 theorem classification :
     PythagoreanTriple x y z ↔
Diff
@@ -40,7 +40,7 @@ theorem sq_ne_two_fin_zMod_four (z : ZMod 4) : z * z ≠ 2 :=
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
   by
   suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
-  rw [← ZMod.int_coe_eq_int_coe_iff']
+  rw [← ZMod.int_cast_eq_int_cast_iff']
   simpa using sq_ne_two_fin_zMod_four _
 #align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
 
Diff
@@ -237,8 +237,7 @@ theorem isClassified_of_isPrimitiveClassified (hp : h.IsPrimitiveClassified) : h
 theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrimitiveClassified) :
     h.IsClassified :=
   by
-  convert
-      h.normalize.mul_is_classified (Int.gcd x y)
+  convert h.normalize.mul_is_classified (Int.gcd x y)
         (is_classified_of_is_primitive_classified h.normalize hc) <;>
     rw [Int.mul_ediv_cancel']
   · exact Int.gcd_dvd_left x y
Diff
@@ -63,7 +63,7 @@ theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ Pytha
 
 /-- The zeroth Pythagorean triple is all zeros. -/
 theorem PythagoreanTriple.zero : PythagoreanTriple 0 0 0 := by
-  simp only [PythagoreanTriple, zero_mul, zero_add]
+  simp only [PythagoreanTriple, MulZeroClass.zero_mul, zero_add]
 #align pythagorean_triple.zero PythagoreanTriple.zero
 
 namespace PythagoreanTriple
@@ -187,7 +187,8 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
       apply int.nat_abs_eq_zero.mp
       apply Nat.eq_zero_of_gcd_eq_zero_right h0
     have hz : z = 0 := by
-      simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, mul_zero, or_self_iff] using h
+      simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
+        or_self_iff] using h
     simp only [hz, dvd_zero]
   obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
     ∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
@@ -208,7 +209,8 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
       apply int.nat_abs_eq_zero.mp
       apply Nat.eq_zero_of_gcd_eq_zero_right h0
     have hz : z = 0 := by
-      simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, mul_zero, or_self_iff] using h
+      simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
+        or_self_iff] using h
     simp only [hx, hy, hz, Int.zero_div]
     exact zero
   rcases h.gcd_dvd with ⟨z0, rfl⟩
@@ -597,7 +599,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
         rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]
         norm_cast
       · apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp
-        rw [Int.ediv_mul_cancel h1.1, zero_mul]
+        rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]
         exact hm2n2
     rw [h2.1, h1.2.2.1] at hyo
     revert hyo

Changes in mathlib4

mathlib3
mathlib4
chore: make argument to sq_pos_of_ne_zero/sq_pos_iff implicit (#12288)

This matches our general policy and zpow_two_pos_of_ne_zero.

Also define sq_pos_of_ne_zero as an alias.

Diff
@@ -233,8 +233,8 @@ theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 := by
     rw [hc]
     exact one_ne_zero
   cases' Int.ne_zero_of_gcd hc' with hxz hyz
-  · apply lt_add_of_pos_of_le (sq_pos_of_ne_zero x hxz) (sq_nonneg y)
-  · apply lt_add_of_le_of_pos (sq_nonneg x) (sq_pos_of_ne_zero y hyz)
+  · apply lt_add_of_pos_of_le (sq_pos_of_ne_zero hxz) (sq_nonneg y)
+  · apply lt_add_of_le_of_pos (sq_nonneg x) (sq_pos_of_ne_zero hyz)
 #align pythagorean_triple.ne_zero_of_coprime PythagoreanTriple.ne_zero_of_coprime
 
 theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx : x = 0) :
chore: Rename nat_cast/int_cast/rat_cast to natCast/intCast/ratCast (#11486)

Now that I am defining NNRat.cast, I want a definitive answer to this naming issue. Plenty of lemmas in mathlib already use natCast/intCast/ratCast over nat_cast/int_cast/rat_cast, and this matches with the general expectation that underscore-separated name parts correspond to a single declaration.

Diff
@@ -35,7 +35,7 @@ theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 := by
 
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 := by
   suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by exact this
-  rw [← ZMod.int_cast_eq_int_cast_iff']
+  rw [← ZMod.intCast_eq_intCast_iff']
   simpa using sq_ne_two_fin_zmod_four _
 #align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
 
Feat: add fermatLastTheoremThree_of_three_dvd_only_c (#11767)

We add fermatLastTheoremThree_of_three_dvd_only_c: To prove FermatLastTheoremFor 3, we may assume that ¬ 3 ∣ a, ¬ 3 ∣ b, a and b are coprime and 3 ∣ c.

From the flt3 project in LFTCM2024.

Co-authored-by: Pietro Monticone <38562595+pitmonticone@users.noreply.github.com>

Diff
@@ -176,7 +176,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z := by
     ∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
     Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
   rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul]
-  rw [← Int.pow_dvd_pow_iff zero_lt_two, sq z, ← h.eq]
+  rw [← Int.pow_dvd_pow_iff two_ne_zero, sq z, ← h.eq]
   rw [(by ring : x0 * k * (x0 * k) + y0 * k * (y0 * k) = (k : ℤ) ^ 2 * (x0 * x0 + y0 * y0))]
   exact dvd_mul_right _ _
 #align pythagorean_triple.gcd_dvd PythagoreanTriple.gcd_dvd
chore: exact by decide -> decide (#12067)

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -420,7 +420,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
   have h2 : (m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 - n0 ^ 2 + m0 - n0)) := by ring
   have h3 : ((m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2) / 2 % 2 = 0 := by
     rw [h2, Int.mul_ediv_cancel_left, Int.mul_emod_right]
-    exact by decide
+    decide
   refine' ⟨⟨_, h1⟩, ⟨_, h2⟩, h3, _⟩
   have h20 : (2 : ℤ) ≠ 0 := by decide
   rw [h1, h2, Int.mul_ediv_cancel_left _ h20, Int.mul_ediv_cancel_left _ h20]
chore(Data/Int): Rename coe_nat to natCast (#11637)

Reduce the diff of #11499

Renames

All in the Int namespace:

  • ofNat_eq_castofNat_eq_natCast
  • cast_eq_cast_iff_NatnatCast_inj
  • natCast_eq_ofNatofNat_eq_natCast
  • coe_nat_subnatCast_sub
  • coe_nat_nonnegnatCast_nonneg
  • sign_coe_add_onesign_natCast_add_one
  • nat_succ_eq_int_succnatCast_succ
  • succ_neg_nat_succsucc_neg_natCast_succ
  • coe_pred_of_posnatCast_pred_of_pos
  • coe_nat_divnatCast_div
  • coe_nat_edivnatCast_ediv
  • sign_coe_nat_of_nonzerosign_natCast_of_ne_zero
  • toNat_coe_nattoNat_natCast
  • toNat_coe_nat_add_onetoNat_natCast_add_one
  • coe_nat_dvdnatCast_dvd_natCast
  • coe_nat_dvd_leftnatCast_dvd
  • coe_nat_dvd_rightdvd_natCast
  • le_coe_nat_suble_natCast_sub
  • succ_coe_nat_possucc_natCast_pos
  • coe_nat_modEq_iffnatCast_modEq_iff
  • coe_natAbsnatCast_natAbs
  • coe_nat_eq_zeronatCast_eq_zero
  • coe_nat_ne_zeronatCast_ne_zero
  • coe_nat_ne_zero_iff_posnatCast_ne_zero_iff_pos
  • abs_coe_natabs_natCast
  • coe_nat_nonpos_iffnatCast_nonpos_iff

Also rename Nat.coe_nat_dvd to Nat.cast_dvd_cast

Diff
@@ -135,9 +135,9 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
   -- x even, y even
   · exfalso
     apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
-    · apply Int.coe_nat_dvd_left.1
+    · apply Int.natCast_dvd.1
       apply Int.dvd_of_emod_eq_zero hx
-    · apply Int.coe_nat_dvd_left.1
+    · apply Int.natCast_dvd.1
       apply Int.dvd_of_emod_eq_zero hy
   -- x even, y odd
   · left
@@ -258,7 +258,7 @@ theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 := by
   rw [← hc]
   apply Nat.dvd_gcd (Int.Prime.dvd_natAbs_of_coe_dvd_sq hp _ _) hpy
   rw [sq, eq_sub_of_add_eq h]
-  rw [← Int.coe_nat_dvd_left] at hpy hpz
+  rw [← Int.natCast_dvd] at hpy hpz
   exact dvd_sub (hpz.mul_right _) (hpy.mul_right _)
 #align pythagorean_triple.coprime_of_coprime PythagoreanTriple.coprime_of_coprime
 
@@ -330,7 +330,7 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
     (hn : n % 2 = 1) : Int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1 := by
   by_contra H
   obtain ⟨p, hp, hp1, hp2⟩ := Nat.Prime.not_coprime_iff_dvd.mp H
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2
+  rw [← Int.natCast_dvd] at hp1 hp2
   have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by
     convert dvd_add hp2 hp1 using 1
     ring
@@ -363,7 +363,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
     (hn : n % 2 = 1) : Int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 := by
   by_contra H
   obtain ⟨p, hp, hp1, hp2⟩ := Nat.Prime.not_coprime_iff_dvd.mp H
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2
+  rw [← Int.natCast_dvd] at hp1 hp2
   have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by
     rw [h]
     norm_cast
@@ -379,18 +379,18 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
       simp only [sq, Nat.cast_ofNat, Int.sub_emod, Int.mul_emod, hm, hn,
         mul_zero, EuclideanDomain.zero_mod, mul_one, zero_sub]
       decide
-    apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpm)) hnp
+    apply mt (Int.dvd_gcd (Int.natCast_dvd.mpr hpm)) hnp
     apply or_self_iff.mp
     apply Int.Prime.dvd_mul' hp
     rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
-    exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
+    exact hp1.neg_right.add ((Int.natCast_dvd.2 hpm).mul_right _)
   rw [Int.gcd_comm] at hnp
-  apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpn)) hnp
+  apply mt (Int.dvd_gcd (Int.natCast_dvd.mpr hpn)) hnp
   apply or_self_iff.mp
   apply Int.Prime.dvd_mul' hp
   rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
   apply dvd_add hp1
-  exact (Int.coe_nat_dvd_left.mpr hpn).mul_right n
+  exact (Int.natCast_dvd.mpr hpn).mul_right n
 
 private theorem coprime_sq_sub_mul_of_odd_even {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 1)
     (hn : n % 2 = 0) : Int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 := by
@@ -428,7 +428,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
   obtain ⟨p, hp, hp1, hp2⟩ := Nat.Prime.not_coprime_iff_dvd.mp h4
   apply hp.not_dvd_one
   rw [← h]
-  rw [← Int.coe_nat_dvd_left] at hp1 hp2
+  rw [← Int.natCast_dvd] at hp1 hp2
   apply Nat.dvd_gcd
   · apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
     convert dvd_add hp1 hp2
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -283,7 +283,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
     ⟨⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩, by
       field_simp [hk x, div_pow]
       ring, by
-      simp only [Ne.def, div_eq_iff (hk x), neg_mul, one_mul, neg_add, sub_eq_add_neg, add_left_inj]
+      simp only [Ne, div_eq_iff (hk x), neg_mul, one_mul, neg_add, sub_eq_add_neg, add_left_inj]
       simpa only [eq_neg_iff_add_eq_zero, one_pow] using hk 1⟩
   invFun p := (p : K × K).1 / ((p : K × K).2 + 1)
   left_inv x := by
chore: Rename mul-div cancellation lemmas (#11530)

Lemma names around cancellation of multiplication and division are a mess.

This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero lemma name, the Group lemma, the AddGroup lemma name).

| Statement | New name | Old name | |

Diff
@@ -291,7 +291,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
     have h3 : (2 : K) ≠ 0 := by
       convert hk 1
       rw [one_pow 2, h2]
-    field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm]
+    field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel, mul_comm]
   right_inv := fun ⟨⟨x, y⟩, hxy, hy⟩ => by
     change x ^ 2 + y ^ 2 = 1 at hxy
     have h2 : y + 1 ≠ 0 := mt eq_neg_of_add_eq_zero_left hy
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -41,7 +41,7 @@ theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 := by
 
 noncomputable section
 
-open Classical
+open scoped Classical
 
 /-- Three integers `x`, `y`, and `z` form a Pythagorean triple if `x * x + y * y = z * z`. -/
 def PythagoreanTriple (x y z : ℤ) : Prop :=
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -473,7 +473,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
     exact h0
   have hw1 : w ≠ -1 := by
     contrapose! hvz with hw1
-    -- porting note: `contrapose` unfolds local names, refold them
+    -- Porting note: `contrapose` unfolds local names, refold them
     replace hw1 : w = -1 := hw1; show v = 0
     rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq
     exact pow_eq_zero hq
@@ -604,7 +604,7 @@ theorem coprime_classification :
         (x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n ∨ x = 2 * m * n ∧ y = m ^ 2 - n ^ 2) ∧
           (z = m ^ 2 + n ^ 2 ∨ z = -(m ^ 2 + n ^ 2)) ∧
             Int.gcd m n = 1 ∧ (m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) := by
-  clear h -- porting note: don't want this variable, but can't use `include` / `omit`
+  clear h -- Porting note: don't want this variable, but can't use `include` / `omit`
   constructor
   · intro h
     obtain ⟨m, n, H⟩ := h.left.isPrimitiveClassified_of_coprime h.right
chore: more backporting of simp changes from #10995 (#11001)

Co-authored-by: Patrick Massot <patrickmassot@free.fr> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -466,10 +466,10 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
   let v := (x : ℚ) / z
   let w := (y : ℚ) / z
   have hq : v ^ 2 + w ^ 2 = 1 := by
-    field_simp [sq]
+    field_simp [v, w, sq]
     norm_cast
   have hvz : v ≠ 0 := by
-    field_simp
+    field_simp [v]
     exact h0
   have hw1 : w ≠ -1 := by
     contrapose! hvz with hw1
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -446,8 +446,7 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
     (hw2 : (y : ℚ) / z = ((m : ℚ) ^ 2 - (n : ℚ) ^ 2) / ((m : ℚ) ^ 2 + (n : ℚ) ^ 2))
     (H : Int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1) (co : Int.gcd m n = 1)
     (pp : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) : h.IsPrimitiveClassified := by
-  have hz : z ≠ 0
-  apply ne_of_gt hzpos
+  have hz : z ≠ 0 := ne_of_gt hzpos
   have h2 : y = m ^ 2 - n ^ 2 ∧ z = m ^ 2 + n ^ 2 := by
     apply Rat.div_int_inj hzpos hm2n2 (h.coprime_of_coprime hc) H
     rw [hw2]
chore: bump Std to leanprover/std4#541 (#9828)

Notable changes: lemmas were added in https://github.com/leanprover/std4/pull/538 about gcd and lcm, that now have implicit arguments. Mostly this is a positive change in Mathlib, we can just delete the arguments. The one to consider in review is in ModEq.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -219,8 +219,8 @@ theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrim
   convert h.normalize.mul_isClassified (Int.gcd x y)
         (isClassified_of_isPrimitiveClassified h.normalize hc) <;>
     rw [Int.mul_ediv_cancel']
-  · exact Int.gcd_dvd_left x y
-  · exact Int.gcd_dvd_right x y
+  · exact Int.gcd_dvd_left
+  · exact Int.gcd_dvd_right
   · exact h.gcd_dvd
 #align pythagorean_triple.is_classified_of_normalize_is_primitive_classified PythagoreanTriple.isClassified_of_normalize_isPrimitiveClassified
 
fix: shake the import tree (#9749)

cherry-picked from #9347

Co-Authored-By: @digama0

Diff
@@ -9,6 +9,7 @@ import Mathlib.Tactic.Ring
 import Mathlib.Tactic.FieldSimp
 import Mathlib.Data.Int.NatPrime
 import Mathlib.Data.ZMod.Basic
+import Mathlib.Algebra.GroupPower.Order
 
 #align_import number_theory.pythagorean_triples from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"
 
chore: remove uses of cases' (#9171)

I literally went through and regex'd some uses of cases', replacing them with rcases; this is meant to be a low effort PR as I hope that tools can do this in the future.

rcases is an easier replacement than cases, though with better tools we could in future do a second pass converting simple rcases added here (and existing ones) to cases.

Diff
@@ -638,7 +638,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
             Int.gcd m n = 1 ∧ (m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) ∧ 0 ≤ m := by
   obtain ⟨m, n, ht1, ht2, ht3, ht4⟩ :=
     PythagoreanTriple.coprime_classification.mp (And.intro h h_coprime)
-  cases' le_or_lt 0 m with hm hm
+  rcases le_or_lt 0 m with hm | hm
   · use m, n
     cases' ht1 with h_odd h_even
     · apply And.intro h_odd.1
chore: bump to v4.3.0-rc2 (#8366)

PR contents

This is the supremum of

along with some minor fixes from failures on nightly-testing as Mathlib master is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0 branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

leanprover/lean4#2778

We can get rid of all the

local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)

macros across Mathlib (and in any projects that want to write natural number powers of reals).

leanprover/lean4#2722

Changes the default behaviour of simp to (config := {decide := false}). This makes simp (and consequentially norm_num) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp or norm_num to decide or rfl, or adding (config := {decide := true}).

leanprover/lean4#2783

This changed the behaviour of simp so that simp [f] will only unfold "fully applied" occurrences of f. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true }). We may in future add a syntax for this, e.g. simp [!f]; please provide feedback! In the meantime, we have made the following changes:

  • switching to using explicit lemmas that have the intended level of application
  • (config := { unfoldPartialApp := true }) in some places, to recover the old behaviour
  • Using @[eqns] to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp and Function.flip.

This change in Lean may require further changes down the line (e.g. adding the !f syntax, and/or upstreaming the special treatment for Function.comp and Function.flip, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!

Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>

Diff
@@ -29,7 +29,7 @@ the bulk of the proof below.
 
 theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 := by
   change Fin 4 at z
-  fin_cases z <;> norm_num [Fin.ext_iff]
+  fin_cases z <;> decide
 #align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
 
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 := by
@@ -155,7 +155,8 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
     rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2 by
         rw [← h.eq]
         ring]
-    norm_num [Int.add_emod]
+    simp only [Int.add_emod, Int.mul_emod_right, zero_add]
+    decide
 #align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
 
 theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z := by
@@ -243,10 +244,10 @@ theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx
   cases' Int.natAbs_eq y with hy hy
   · use 1, 0
     rw [hy, hc, Int.gcd_zero_right]
-    norm_num
+    decide
   · use 0, 1
     rw [hy, hc, Int.gcd_zero_left]
-    norm_num
+    decide
 #align pythagorean_triple.is_primitive_classified_of_coprime_of_zero_left PythagoreanTriple.isPrimitiveClassified_of_coprime_of_zero_left
 
 theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 := by
@@ -339,7 +340,9 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
   have hnc : p = 2 ∨ p ∣ Int.natAbs n := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2n
   by_cases h2 : p = 2
   -- Porting note: norm_num is not enough to close h3
-  · have h3 : (m ^ 2 + n ^ 2) % 2 = 1 := by field_simp [sq, Int.add_emod, Int.mul_emod, hm, hn]
+  · have h3 : (m ^ 2 + n ^ 2) % 2 = 1 := by
+      simp only [sq, Int.add_emod, Int.mul_emod, hm, hn, dvd_refl, Int.emod_emod_of_dvd]
+      decide
     have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by
       apply Int.emod_eq_zero_of_dvd
       rwa [h2] at hp2
@@ -372,7 +375,9 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
       rw [hp2']
       apply mt Int.emod_eq_zero_of_dvd
       -- Porting note: norm_num is not enough to close this
-      field_simp [sq, Int.sub_emod, Int.mul_emod, hm, hn]
+      simp only [sq, Nat.cast_ofNat, Int.sub_emod, Int.mul_emod, hm, hn,
+        mul_zero, EuclideanDomain.zero_mod, mul_one, zero_sub]
+      decide
     apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpm)) hnp
     apply or_self_iff.mp
     apply Int.Prime.dvd_mul' hp
@@ -528,7 +533,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
       Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
     rw [hnmcp] at h1
     revert h1
-    norm_num
+    decide
   · -- m even, n odd
     apply h.isPrimitiveClassified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
     · apply Or.intro_left
chore: bump Std to Std#340 (#8104)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -374,13 +374,13 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
       -- Porting note: norm_num is not enough to close this
       field_simp [sq, Int.sub_emod, Int.mul_emod, hm, hn]
     apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpm)) hnp
-    apply (or_self_iff _).mp
+    apply or_self_iff.mp
     apply Int.Prime.dvd_mul' hp
     rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
     exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
   rw [Int.gcd_comm] at hnp
   apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpn)) hnp
-  apply (or_self_iff _).mp
+  apply or_self_iff.mp
   apply Int.Prime.dvd_mul' hp
   rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
   apply dvd_add hp1
chore: bump toolchain to v4.3.0-rc1 (#8051)

This incorporates changes from

  • #7845
  • #7847
  • #7853
  • #7872 (was never actually made to work, but the diffs in nightly-testing are unexciting: we need to fully qualify a few names)

They can all be closed when this is merged.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -485,6 +485,11 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
   let m := (q.den : ℤ)
   let n := q.num
   have hm0 : m ≠ 0 := by
+    -- Added to adapt to leanprover/lean4#2734.
+    -- Without `unfold_let`, `norm_cast` can't see the coercion.
+    -- One might try `zeta := true` in `Tactic.NormCast.derive`,
+    -- but that seems to break many other things.
+    unfold_let m
     norm_cast
     apply Rat.den_nz q
   have hq2 : q = n / m := (Rat.num_div_den q).symm
feat: fix norm num with arguments (#6600)

norm_num was passing the wrong syntax node to elabSimpArgs when elaborating, which essentially had the effect of ignoring all arguments it was passed, i.e. norm_num [add_comm] would not try to commute addition in the simp step. The fix itself is very simple (though not obvious to debug!), probably using TSyntax more would help avoid such issues in future.

Due to this bug many norm_num [blah] became rw [blah]; norm_num or similar, sometimes with porting notes, sometimes not, we fix these porting notes and other regressions during the port also.

Interestingly cancel_denoms uses norm_num [<- mul_assoc] internally, so cancel_denoms also got stronger with this change.

Diff
@@ -29,7 +29,7 @@ the bulk of the proof below.
 
 theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 := by
   change Fin 4 at z
-  fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
+  fin_cases z <;> norm_num [Fin.ext_iff]
 #align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
 
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 := by
@@ -155,7 +155,7 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
     rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2 by
         rw [← h.eq]
         ring]
-    field_simp [Int.add_emod] -- Porting note: norm_num is not enough to close this
+    norm_num [Int.add_emod]
 #align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
 
 theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z := by
field_simp: Use positivity as a discharger (#6312)

The main reasons is that having h : 0 < denom in the context should suffice for field_simp to do its job, without the need to manually pass h.ne or similar.

Quite a few have := … ≠ 0 could be dropped, and some field_simp calls no longer need explicit arguments; this is promising.

This does break some proofs where field_simp was not used as a closing tactic, and it now shuffles terms around a bit different. These were fixed. Using field_simp in the middle of a proof seems rather fragile anyways.

As a drive-by contribution, positivity now knows about π > 0.

fixes: #4835

Co-authored-by: Matthew Ballard <matt@mrb.email>

Diff
@@ -460,13 +460,11 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
   · exact h.isPrimitiveClassified_of_coprime_of_zero_left hc h0
   let v := (x : ℚ) / z
   let w := (y : ℚ) / z
-  have hz : z ≠ 0
-  apply ne_of_gt hzpos
   have hq : v ^ 2 + w ^ 2 = 1 := by
-    field_simp [hz, sq]
+    field_simp [sq]
     norm_cast
   have hvz : v ≠ 0 := by
-    field_simp [hz]
+    field_simp
     exact h0
   have hw1 : w ≠ -1 := by
     contrapose! hvz with hw1
chore: drop MulZeroClass. in mul_zero/zero_mul (#6682)

Search&replace MulZeroClass.mul_zero -> mul_zero, MulZeroClass.zero_mul -> zero_mul.

These were introduced by Mathport, as the full name of mul_zero is actually MulZeroClass.mul_zero (it's exported with the short name).

Diff
@@ -56,7 +56,7 @@ theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ Pytha
 
 /-- The zeroth Pythagorean triple is all zeros. -/
 theorem PythagoreanTriple.zero : PythagoreanTriple 0 0 0 := by
-  simp only [PythagoreanTriple, MulZeroClass.zero_mul, zero_add]
+  simp only [PythagoreanTriple, zero_mul, zero_add]
 #align pythagorean_triple.zero PythagoreanTriple.zero
 
 namespace PythagoreanTriple
@@ -167,7 +167,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z := by
       apply Int.natAbs_eq_zero.mp
       apply Nat.eq_zero_of_gcd_eq_zero_right h0
     have hz : z = 0 := by
-      simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
+      simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, mul_zero,
         or_self_iff] using h
     simp only [hz, dvd_zero]
   obtain ⟨k, x0, y0, _, h2, rfl, rfl⟩ :
@@ -188,7 +188,7 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
       apply Int.natAbs_eq_zero.mp
       apply Nat.eq_zero_of_gcd_eq_zero_right h0
     have hz : z = 0 := by
-      simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
+      simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, mul_zero,
         or_self_iff] using h
     simp only [hx, hy, hz, Int.zero_div]
     exact zero
@@ -550,7 +550,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
         rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]
         norm_cast
       · apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp
-        rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]
+        rw [Int.ediv_mul_cancel h1.1, zero_mul]
         exact hm2n2
     rw [h2.1, h1.2.2.1] at hyo
     revert hyo
fix(NumberTheory/PythagoreanTriples): clear unnecessary hypothesis of PythagoreanTriple.classification (#6594)

The rcases tactic causes this theorem to pull in an unused assumption, as per this Zulip thread.

Before this PR, PythagoreanTriple.classification includes an unnecessary h:

theorem PythagoreanTriple.classification {x y z : ℤ} (h : PythagoreanTriple x y z) :
  PythagoreanTriple x y z ↔
    ∃ k m n,
      (x = k * (m ^ 2 - n ^ 2) ∧ y = k * (2 * m * n) ∨ x = k * (2 * m * n) ∧ y = k * (m ^ 2 - n ^ 2)) ∧
        (z = k * (m ^ 2 + n ^ 2) ∨ z = -k * (m ^ 2 + n ^ 2))
Diff
@@ -679,6 +679,7 @@ theorem classification :
         (x = k * (m ^ 2 - n ^ 2) ∧ y = k * (2 * m * n) ∨
             x = k * (2 * m * n) ∧ y = k * (m ^ 2 - n ^ 2)) ∧
           (z = k * (m ^ 2 + n ^ 2) ∨ z = -k * (m ^ 2 + n ^ 2)) := by
+  clear h
   constructor
   · intro h
     obtain ⟨k, m, n, H⟩ := h.classified
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -271,7 +271,7 @@ For the classification of Pythagorean triples, we will use a parametrization of
 -/
 
 
-variable {K : Type _} [Field K]
+variable {K : Type*} [Field K]
 
 /-- A parameterization of the unit circle that is useful for classifying Pythagorean triples.
  (To be applied in the case where `K = ℚ`.) -/
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2020 Paul van Wamelen. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Paul van Wamelen
-
-! This file was ported from Lean 3 source module number_theory.pythagorean_triples
-! leanprover-community/mathlib commit e8638a0fcaf73e4500469f368ef9494e495099b3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Field.Basic
 import Mathlib.RingTheory.Int.Basic
@@ -15,6 +10,8 @@ import Mathlib.Tactic.FieldSimp
 import Mathlib.Data.Int.NatPrime
 import Mathlib.Data.ZMod.Basic
 
+#align_import number_theory.pythagorean_triples from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"
+
 /-!
 # Pythagorean Triples
 
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -202,7 +202,7 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
   have hk : (k : ℤ) ≠ 0 := by
     norm_cast
     rwa [pos_iff_ne_zero] at k0
-  rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h⊢
+  rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h ⊢
   rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
   rwa [Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel_left _ hk]
 #align pythagorean_triple.normalize PythagoreanTriple.normalize
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -174,7 +174,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z := by
         or_self_iff] using h
     simp only [hz, dvd_zero]
   obtain ⟨k, x0, y0, _, h2, rfl, rfl⟩ :
-    ∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
+    ∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
     Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
   rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul]
   rw [← Int.pow_dvd_pow_iff zero_lt_two, sq z, ← h.eq]
@@ -197,7 +197,7 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
     exact zero
   rcases h.gcd_dvd with ⟨z0, rfl⟩
   obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
-    ∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
+    ∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
     Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
   have hk : (k : ℤ) ≠ 0 := by
     norm_cast
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -106,7 +106,7 @@ def IsClassified (_ : PythagoreanTriple x y z) :=
       Int.gcd m n = 1
 #align pythagorean_triple.is_classified PythagoreanTriple.IsClassified
 
-/-- A primitive pythogorean triple `x, y, z` is a pythagorean triple with `x` and `y` coprime.
+/-- A primitive Pythagorean triple `x, y, z` is a Pythagorean triple with `x` and `y` coprime.
  Such a triple is “primitively classified” if there exist coprime integers `m, n` such that either
  * `x = m ^ 2 - n ^ 2` and `y = 2 * m * n`, or
  * `x = 2 * m * n` and `y = m ^ 2 - n ^ 2`.
chore: fix many typos (#4535)

Run codespell Mathlib and keep some suggestions.

Diff
@@ -50,7 +50,7 @@ def PythagoreanTriple (x y z : ℤ) : Prop :=
   x * x + y * y = z * z
 #align pythagorean_triple PythagoreanTriple
 
-/-- Pythagorean triples are interchangable, i.e `x * x + y * y = y * y + x * x = z * z`.
+/-- Pythagorean triples are interchangeable, i.e `x * x + y * y = y * y + x * x = z * z`.
 This comes from additive commutativity. -/
 theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ PythagoreanTriple y x z := by
   delta PythagoreanTriple
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -81,7 +81,6 @@ theorem mul (k : ℤ) : PythagoreanTriple (k * x) (k * y) (k * z) :=
     k * x * (k * x) + k * y * (k * y) = k ^ 2 * (x * x + y * y) := by ring
     _ = k ^ 2 * (z * z) := by rw [h.eq]
     _ = k * z * (k * z) := by ring
-
 #align pythagorean_triple.mul PythagoreanTriple.mul
 
 /-- `(k*x, k*y, k*z)` is a Pythagorean triple if and only if
feat: Dot notation aliases (#3303)

Match https://github.com/leanprover-community/mathlib/pull/18698 and a bit of https://github.com/leanprover-community/mathlib/pull/18785.

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Paul van Wamelen
 
 ! This file was ported from Lean 3 source module number_theory.pythagorean_triples
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit e8638a0fcaf73e4500469f368ef9494e495099b3
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -138,9 +138,9 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
   -- x even, y even
   · exfalso
     apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
-    · apply Int.dvd_natAbs_of_ofNat_dvd
+    · apply Int.coe_nat_dvd_left.1
       apply Int.dvd_of_emod_eq_zero hx
-    · apply Int.dvd_natAbs_of_ofNat_dvd
+    · apply Int.coe_nat_dvd_left.1
       apply Int.dvd_of_emod_eq_zero hy
   -- x even, y odd
   · left
@@ -381,8 +381,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
     apply (or_self_iff _).mp
     apply Int.Prime.dvd_mul' hp
     rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
-    apply dvd_add (dvd_neg_of_dvd hp1)
-    exact dvd_mul_of_dvd_left (Int.coe_nat_dvd_left.mpr hpm) m
+    exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
   rw [Int.gcd_comm] at hnp
   apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpn)) hnp
   apply (or_self_iff _).mp
chore: tidy various files (#3110)
Diff
@@ -30,15 +30,15 @@ the bulk of the proof below.
 -/
 
 
-theorem sq_ne_two_fin_zMod_four (z : ZMod 4) : z * z ≠ 2 := by
+theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 := by
   change Fin 4 at z
   fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
-#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_four
+#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
 
 theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 := by
   suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by exact this
   rw [← ZMod.int_cast_eq_int_cast_iff']
-  simpa using sq_ne_two_fin_zMod_four _
+  simpa using sq_ne_two_fin_zmod_four _
 #align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
 
 noncomputable section
@@ -135,21 +135,21 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
     x % 2 = 0 ∧ y % 2 = 1 ∨ x % 2 = 1 ∧ y % 2 = 0 := by
   cases' Int.emod_two_eq_zero_or_one x with hx hx <;>
     cases' Int.emod_two_eq_zero_or_one y with hy hy
-  · -- x even, y even
-    exfalso
+  -- x even, y even
+  · exfalso
     apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
     · apply Int.dvd_natAbs_of_ofNat_dvd
       apply Int.dvd_of_emod_eq_zero hx
     · apply Int.dvd_natAbs_of_ofNat_dvd
       apply Int.dvd_of_emod_eq_zero hy
+  -- x even, y odd
   · left
     exact ⟨hx, hy⟩
-  -- x even, y odd
+  -- x odd, y even
   · right
     exact ⟨hx, hy⟩
-  -- x odd, y even
-  · -- x odd, y odd
-    exfalso
+  -- x odd, y odd
+  · exfalso
     obtain ⟨x0, y0, rfl, rfl⟩ : ∃ x0 y0, x = x0 * 2 + 1 ∧ y = y0 * 2 + 1 := by
       cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) with x0 hx2
       cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hy) with y0 hy2
@@ -314,17 +314,17 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
 #align circle_equiv_gen circleEquivGen
 
 @[simp]
-theorem circle_equiv_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
+theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
     (circleEquivGen hk x : K × K) = ⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩ :=
   rfl
-#align circle_equiv_apply circle_equiv_apply
+#align circle_equiv_apply circleEquivGen_apply
 
 @[simp]
-theorem circle_equiv_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
+theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
     (v : { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }) :
     (circleEquivGen hk).symm v = (v : K × K).1 / ((v : K × K).2 + 1) :=
   rfl
-#align circle_equiv_symm_apply circle_equiv_symm_apply
+#align circle_equiv_symm_apply circleEquivGen_symm_apply
 
 end circleEquivGen
 
feat: port NumberTheory.PythagoreanTriples (#3022)

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com>

Dependencies 8 + 499

500 files ported (98.4%)
206242 lines ported (98.5%)
Show graph

The unported dependencies are