number_theory.pythagorean_triples
⟷
Mathlib.NumberTheory.PythagoreanTriples
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
A few convenience shortcuts for dvd
along with some simple nat
lemmas. Also
neg_dvd_of_dvd
/dvd_of_neg_dvd
/dvd_neg_of_dvd
/dvd_of_dvd_neg
in favor of the aforementioned shortcuts.dvd_neg
/neg_dvd
.int.of_nat_dvd_of_dvd_nat_abs
/int.dvd_nat_abs_of_of_nat_dvd
because they are the two directions of int.coe_nat_dvd_left
.group_with_zero.to_cancel_monoid_with_zero
from algebra.group_with_zero.units.basic
back to algebra.group_with_zero.basic
. It was erroneously moved during the Great Splits.@@ -129,8 +129,8 @@ begin
{ -- x even, y even
exfalso,
apply nat.not_coprime_of_dvd_of_dvd (dec_trivial : 1 < 2) _ _ hc,
- { apply int.dvd_nat_abs_of_of_nat_dvd, apply int.dvd_of_mod_eq_zero hx },
- { apply int.dvd_nat_abs_of_of_nat_dvd, apply int.dvd_of_mod_eq_zero hy } },
+ { apply int.coe_nat_dvd_left.1, apply int.dvd_of_mod_eq_zero hx },
+ { apply int.coe_nat_dvd_left.1, apply int.dvd_of_mod_eq_zero hy } },
{ left, exact ⟨hx, hy⟩ }, -- x even, y odd
{ right, exact ⟨hx, hy⟩ }, -- x odd, y even
{ -- x odd, y odd
@@ -334,8 +334,7 @@ begin
apply mt (int.dvd_gcd (int.coe_nat_dvd_left.mpr hpm)) hnp,
apply (or_self _).mp, apply int.prime.dvd_mul' hp,
rw (by ring : n * n = - (m ^ 2 - n ^ 2) + m * m),
- apply dvd_add (dvd_neg_of_dvd hp1),
- exact dvd_mul_of_dvd_left (int.coe_nat_dvd_left.mpr hpm) m },
+ exact hp1.neg_right.add ((int.coe_nat_dvd_left.2 hpm).mul_right _) },
rw int.gcd_comm at hnp,
apply mt (int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp,
apply (or_self _).mp, apply int.prime.dvd_mul' hp,
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -43,7 +43,7 @@ theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
by
suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
- rw [← ZMod.int_cast_eq_int_cast_iff']
+ rw [← ZMod.intCast_eq_intCast_iff']
simpa using sq_ne_two_fin_zmod_four _
#align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -9,7 +9,7 @@ import Tactic.Ring
import Tactic.RingExp
import Tactic.FieldSimp
import Data.Int.NatPrime
-import Data.Zmod.Basic
+import Data.ZMod.Basic
#align_import number_theory.pythagorean_triples from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"
@@ -158,15 +158,17 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
by
cases' Int.emod_two_eq_zero_or_one x with hx hx <;>
cases' Int.emod_two_eq_zero_or_one y with hy hy
- · exfalso
+ · -- x even, y even
+ exfalso
apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
- · apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hx
- · apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hy
+ · apply Int.natCast_dvd.1; apply Int.dvd_of_emod_eq_zero hx
+ · apply Int.natCast_dvd.1; apply Int.dvd_of_emod_eq_zero hy
· left; exact ⟨hx, hy⟩
-- x even, y odd
· right; exact ⟨hx, hy⟩
-- x odd, y even
- · exfalso
+ · -- x odd, y odd
+ exfalso
obtain ⟨x0, y0, rfl, rfl⟩ : ∃ x0 y0, x = x0 * 2 + 1 ∧ y = y0 * 2 + 1 :=
by
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) with x0 hx2
@@ -277,7 +279,7 @@ theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 :=
rw [← hc]
apply Nat.dvd_gcd (Int.Prime.dvd_natAbs_of_coe_dvd_sq hp _ _) hpy
rw [sq, eq_sub_of_add_eq h]
- rw [← Int.coe_nat_dvd_left] at hpy hpz
+ rw [← Int.natCast_dvd] at hpy hpz
exact dvd_sub (hpz.mul_right _) (hpy.mul_right _)
#align pythagorean_triple.coprime_of_coprime PythagoreanTriple.coprime_of_coprime
-/
@@ -310,7 +312,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
left_inv x := by
have h2 : (1 + 1 : K) = 2 := rfl
have h3 : (2 : K) ≠ 0 := by convert hk 1; rw [one_pow 2, h2]
- field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm]
+ field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel, mul_comm]
right_inv := fun ⟨⟨x, y⟩, hxy, hy⟩ =>
by
change x ^ 2 + y ^ 2 = 1 at hxy
@@ -349,7 +351,7 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
by
by_contra H
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.natCast_dvd] at hp1 hp2
have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by convert dvd_add hp2 hp1; ring
have h2n : (p : ℤ) ∣ 2 * n ^ 2 := by convert dvd_sub hp2 hp1; ring
have hmc : p = 2 ∨ p ∣ Int.natAbs m := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2m
@@ -374,7 +376,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
by
by_contra H
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.natCast_dvd] at hp1 hp2
have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by rw [h]; norm_cast;
exact mt nat.dvd_one.mp (Nat.Prime.ne_one hp)
cases' Int.Prime.dvd_mul hp hp2 with hp2m hpn
@@ -387,7 +389,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpm)) hnp
apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
- exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
+ exact hp1.neg_right.add ((Int.natCast_dvd.2 hpm).mul_right _)
rw [Int.gcd_comm] at hnp
apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp
apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
@@ -431,7 +433,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp h4
apply hp.not_dvd_one
rw [← h]
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.natCast_dvd] at hp1 hp2
apply Nat.dvd_gcd
· apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
convert dvd_add hp1 hp2; ring
@@ -505,7 +507,8 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
have hmncp : Int.gcd m n = 1 := by rw [Int.gcd_comm]; exact hnmcp
cases' Int.emod_two_eq_zero_or_one m with hm2 hm2 <;>
cases' Int.emod_two_eq_zero_or_one n with hn2 hn2
- · exfalso
+ · -- m even, n even
+ exfalso
have h1 : 2 ∣ (Int.gcd n m : ℤ) :=
Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
rw [hnmcp] at h1; revert h1; norm_num
@@ -517,7 +520,8 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
· apply Or.intro_right; exact And.intro hm2 hn2
apply coprime_sq_sub_sq_add_of_odd_even hmncp hm2 hn2
- · exfalso
+ · -- m odd, n odd
+ exfalso
have h1 :
2 ∣ m ^ 2 + n ^ 2 ∧
2 ∣ m ^ 2 - n ^ 2 ∧
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -34,7 +34,7 @@ the bulk of the proof below.
#print sq_ne_two_fin_zmod_four /-
theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
by
- change Fin 4 at z
+ change Fin 4 at z
fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
-/
@@ -42,7 +42,7 @@ theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
#print Int.sq_ne_two_mod_four /-
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
by
- suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
+ suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
rw [← ZMod.int_cast_eq_int_cast_iff']
simpa using sq_ne_two_fin_zmod_four _
#align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
@@ -158,8 +158,7 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
by
cases' Int.emod_two_eq_zero_or_one x with hx hx <;>
cases' Int.emod_two_eq_zero_or_one y with hy hy
- · -- x even, y even
- exfalso
+ · exfalso
apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
· apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hx
· apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hy
@@ -167,13 +166,12 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
-- x even, y odd
· right; exact ⟨hx, hy⟩
-- x odd, y even
- · -- x odd, y odd
- exfalso
+ · exfalso
obtain ⟨x0, y0, rfl, rfl⟩ : ∃ x0 y0, x = x0 * 2 + 1 ∧ y = y0 * 2 + 1 :=
by
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) with x0 hx2
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hy) with y0 hy2
- rw [sub_eq_iff_eq_add] at hx2 hy2 ; exact ⟨x0, y0, hx2, hy2⟩
+ rw [sub_eq_iff_eq_add] at hx2 hy2; exact ⟨x0, y0, hx2, hy2⟩
apply Int.sq_ne_two_mod_four z
rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2 by rw [← h.eq]; ring]
norm_num [Int.add_emod]
@@ -214,9 +212,9 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
- have hk : (k : ℤ) ≠ 0 := by norm_cast; rwa [pos_iff_ne_zero] at k0
+ have hk : (k : ℤ) ≠ 0 := by norm_cast; rwa [pos_iff_ne_zero] at k0
rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h ⊢
- rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
+ rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
rwa [Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel_left _ hk]
#align pythagorean_triple.normalize PythagoreanTriple.normalize
-/
@@ -249,7 +247,7 @@ theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrim
#print PythagoreanTriple.ne_zero_of_coprime /-
theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
by
- suffices 0 < z * z by rintro rfl; norm_num at this
+ suffices 0 < z * z by rintro rfl; norm_num at this
rw [← h.eq, ← sq, ← sq]
have hc' : Int.gcd x y ≠ 0 := by rw [hc]; exact one_ne_zero
cases' Int.ne_zero_of_gcd hc' with hxz hyz
@@ -262,8 +260,8 @@ theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx : x = 0) :
h.IsPrimitiveClassified := by
subst x
- change Nat.gcd 0 (Int.natAbs y) = 1 at hc
- rw [Nat.gcd_zero_left (Int.natAbs y)] at hc
+ change Nat.gcd 0 (Int.natAbs y) = 1 at hc
+ rw [Nat.gcd_zero_left (Int.natAbs y)] at hc
cases' Int.natAbs_eq y with hy hy
· use 1, 0; rw [hy, hc, Int.gcd_zero_right]; norm_num
· use 0, 1; rw [hy, hc, Int.gcd_zero_left]; norm_num
@@ -279,7 +277,7 @@ theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 :=
rw [← hc]
apply Nat.dvd_gcd (Int.Prime.dvd_natAbs_of_coe_dvd_sq hp _ _) hpy
rw [sq, eq_sub_of_add_eq h]
- rw [← Int.coe_nat_dvd_left] at hpy hpz
+ rw [← Int.coe_nat_dvd_left] at hpy hpz
exact dvd_sub (hpz.mul_right _) (hpy.mul_right _)
#align pythagorean_triple.coprime_of_coprime PythagoreanTriple.coprime_of_coprime
-/
@@ -315,7 +313,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm]
right_inv := fun ⟨⟨x, y⟩, hxy, hy⟩ =>
by
- change x ^ 2 + y ^ 2 = 1 at hxy
+ change x ^ 2 + y ^ 2 = 1 at hxy
have h2 : y + 1 ≠ 0 := mt eq_neg_of_add_eq_zero_left hy
have h3 : (y + 1) ^ 2 + x ^ 2 = 2 * (y + 1) := by
rw [(add_neg_eq_iff_eq_add.mpr hxy.symm).symm]; ring
@@ -351,15 +349,15 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
by
by_contra H
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.coe_nat_dvd_left] at hp1 hp2
have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by convert dvd_add hp2 hp1; ring
have h2n : (p : ℤ) ∣ 2 * n ^ 2 := by convert dvd_sub hp2 hp1; ring
have hmc : p = 2 ∨ p ∣ Int.natAbs m := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2m
have hnc : p = 2 ∨ p ∣ Int.natAbs n := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2n
by_cases h2 : p = 2
· have h3 : (m ^ 2 + n ^ 2) % 2 = 1 := by norm_num [sq, Int.add_emod, Int.mul_emod, hm, hn]
- have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by apply Int.emod_eq_zero_of_dvd; rwa [h2] at hp2
- rw [h4] at h3 ; exact zero_ne_one h3
+ have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by apply Int.emod_eq_zero_of_dvd; rwa [h2] at hp2
+ rw [h4] at h3; exact zero_ne_one h3
· apply hp.not_dvd_one
rw [← h]
exact Nat.dvd_gcd (Or.resolve_left hmc h2) (Or.resolve_left hnc h2)
@@ -376,11 +374,11 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
by
by_contra H
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.coe_nat_dvd_left] at hp1 hp2
have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by rw [h]; norm_cast;
exact mt nat.dvd_one.mp (Nat.Prime.ne_one hp)
cases' Int.Prime.dvd_mul hp hp2 with hp2m hpn
- · rw [Int.natAbs_mul] at hp2m
+ · rw [Int.natAbs_mul] at hp2m
cases' (Nat.Prime.dvd_mul hp).mp hp2m with hp2 hpm
· have hp2' : p = 2 := (Nat.le_of_dvd zero_lt_two hp2).antisymm hp.two_le
revert hp1; rw [hp2']
@@ -390,7 +388,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
- rw [Int.gcd_comm] at hnp
+ rw [Int.gcd_comm] at hnp
apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp
apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
@@ -420,7 +418,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
by
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hm) with m0 hm2
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hn) with n0 hn2
- rw [sub_eq_iff_eq_add] at hm2 hn2 ; subst m; subst n
+ rw [sub_eq_iff_eq_add] at hm2 hn2; subst m; subst n
have h1 : (m0 * 2 + 1) ^ 2 + (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 + n0 ^ 2 + m0 + n0) + 1) := by
ring
have h2 : (m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 - n0 ^ 2 + m0 - n0)) := by ring
@@ -433,7 +431,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp h4
apply hp.not_dvd_one
rw [← h]
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.coe_nat_dvd_left] at hp1 hp2
apply Nat.dvd_gcd
· apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
convert dvd_add hp1 hp2; ring
@@ -474,7 +472,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
have hvz : v ≠ 0 := by field_simp [hz]; exact h0
have hw1 : w ≠ -1 := by
contrapose! hvz with hw1
- rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq
+ rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq
exact pow_eq_zero hq
have hQ : ∀ x : ℚ, 1 + x ^ 2 ≠ 0 := by intro q; apply ne_of_gt;
exact lt_add_of_pos_of_le zero_lt_one (sq_nonneg q)
@@ -507,11 +505,10 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
have hmncp : Int.gcd m n = 1 := by rw [Int.gcd_comm]; exact hnmcp
cases' Int.emod_two_eq_zero_or_one m with hm2 hm2 <;>
cases' Int.emod_two_eq_zero_or_one n with hn2 hn2
- · -- m even, n even
- exfalso
+ · exfalso
have h1 : 2 ∣ (Int.gcd n m : ℤ) :=
Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
- rw [hnmcp] at h1 ; revert h1; norm_num
+ rw [hnmcp] at h1; revert h1; norm_num
· -- m even, n odd
apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
· apply Or.intro_left; exact And.intro hm2 hn2
@@ -520,8 +517,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
· apply Or.intro_right; exact And.intro hm2 hn2
apply coprime_sq_sub_sq_add_of_odd_even hmncp hm2 hn2
- · -- m odd, n odd
- exfalso
+ · exfalso
have h1 :
2 ∣ m ^ 2 + n ^ 2 ∧
2 ∣ m ^ 2 - n ^ 2 ∧
@@ -534,7 +530,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]; norm_cast
· apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp
rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]; exact hm2n2
- rw [h2.1, h1.2.2.1] at hyo
+ rw [h2.1, h1.2.2.1] at hyo
revert hyo
norm_num
#align pythagorean_triple.is_primitive_classified_of_coprime_of_odd_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos
@@ -546,7 +542,7 @@ theorem isPrimitiveClassified_of_coprime_of_pos (hc : Int.gcd x y = 1) (hzpos :
by
cases' h.even_odd_of_coprime hc with h1 h2
· exact h.is_primitive_classified_of_coprime_of_odd_of_pos hc h1.right hzpos
- rw [Int.gcd_comm] at hc
+ rw [Int.gcd_comm] at hc
obtain ⟨m, n, H⟩ := h.symm.is_primitive_classified_of_coprime_of_odd_of_pos hc h2.left hzpos
use m, n; tauto
#align pythagorean_triple.is_primitive_classified_of_coprime_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_pos
@@ -628,7 +624,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
exfalso
rcases h_even with ⟨rfl, -⟩
- rw [mul_assoc, Int.mul_emod_right] at h_parity
+ rw [mul_assoc, Int.mul_emod_right] at h_parity
exact zero_ne_one h_parity
· use-m, -n
cases' ht1 with h_odd h_even
@@ -646,7 +642,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
exfalso
rcases h_even with ⟨rfl, -⟩
- rw [mul_assoc, Int.mul_emod_right] at h_parity
+ rw [mul_assoc, Int.mul_emod_right] at h_parity
exact zero_ne_one h_parity
#align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,13 +3,13 @@ Copyright (c) 2020 Paul van Wamelen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Paul van Wamelen
-/
-import Mathbin.Algebra.Field.Basic
-import Mathbin.RingTheory.Int.Basic
-import Mathbin.Tactic.Ring
-import Mathbin.Tactic.RingExp
-import Mathbin.Tactic.FieldSimp
-import Mathbin.Data.Int.NatPrime
-import Mathbin.Data.Zmod.Basic
+import Algebra.Field.Basic
+import RingTheory.Int.Basic
+import Tactic.Ring
+import Tactic.RingExp
+import Tactic.FieldSimp
+import Data.Int.NatPrime
+import Data.Zmod.Basic
#align_import number_theory.pythagorean_triples from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"
@@ -461,7 +461,7 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
#align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_aux
-/
-/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([2, 3]) } -/
+/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:133:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([2, 3]) } -/
#print PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos /-
theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (hyo : y % 2 = 1)
(hzpos : 0 < z) : h.IsPrimitiveClassified :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/63721b2c3eba6c325ecf8ae8cca27155a4f6306f
@@ -630,7 +630,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
rcases h_even with ⟨rfl, -⟩
rw [mul_assoc, Int.mul_emod_right] at h_parity
exact zero_ne_one h_parity
- · use -m, -n
+ · use-m, -n
cases' ht1 with h_odd h_even
· rw [neg_sq m]
rw [neg_sq n]
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,11 +2,6 @@
Copyright (c) 2020 Paul van Wamelen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Paul van Wamelen
-
-! This file was ported from Lean 3 source module number_theory.pythagorean_triples
-! leanprover-community/mathlib commit e8638a0fcaf73e4500469f368ef9494e495099b3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Algebra.Field.Basic
import Mathbin.RingTheory.Int.Basic
@@ -16,6 +11,8 @@ import Mathbin.Tactic.FieldSimp
import Mathbin.Data.Int.NatPrime
import Mathbin.Data.Zmod.Basic
+#align_import number_theory.pythagorean_triples from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"
+
/-!
# Pythagorean Triples
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -34,11 +34,13 @@ the bulk of the proof below.
-/
+#print sq_ne_two_fin_zmod_four /-
theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
by
change Fin 4 at z
fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
+-/
#print Int.sq_ne_two_mod_four /-
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
@@ -79,8 +81,6 @@ namespace PythagoreanTriple
variable {x y z : ℤ} (h : PythagoreanTriple x y z)
-include h
-
#print PythagoreanTriple.eq /-
theorem eq : x * x + y * y = z * z :=
h
@@ -104,8 +104,6 @@ theorem mul (k : ℤ) : PythagoreanTriple (k * x) (k * y) (k * z) :=
#align pythagorean_triple.mul PythagoreanTriple.mul
-/
-omit h
-
#print PythagoreanTriple.mul_iff /-
/-- `(k*x, k*y, k*z)` is a Pythagorean triple if and only if
`(x, y, z)` is also a triple. -/
@@ -120,8 +118,6 @@ theorem mul_iff (k : ℤ) (hk : k ≠ 0) :
#align pythagorean_triple.mul_iff PythagoreanTriple.mul_iff
-/
-include h
-
#print PythagoreanTriple.IsClassified /-
/-- A Pythagorean triple `x, y, z` is “classified” if there exist integers `k, m, n` such that
either
@@ -187,6 +183,7 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
#align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
-/
+#print PythagoreanTriple.gcd_dvd /-
theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
by
by_cases h0 : Int.gcd x y = 0
@@ -204,6 +201,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
rw [(by ring : x0 * k * (x0 * k) + y0 * k * (y0 * k) = k ^ 2 * (x0 * x0 + y0 * y0))]
exact dvd_mul_right _ _
#align pythagorean_triple.gcd_dvd PythagoreanTriple.gcd_dvd
+-/
#print PythagoreanTriple.normalize /-
theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / Int.gcd x y) :=
@@ -302,6 +300,7 @@ For the classification of pythogorean triples, we will use a parametrization of
variable {K : Type _} [Field K]
+#print circleEquivGen /-
/-- A parameterization of the unit circle that is useful for classifying Pythagorean triples.
(To be applied in the case where `K = ℚ`.) -/
def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
@@ -329,19 +328,24 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
· field_simp [h3]; ring
· field_simp [h3]; rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]; ring
#align circle_equiv_gen circleEquivGen
+-/
+#print circleEquivGen_apply /-
@[simp]
theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
(circleEquivGen hk x : K × K) = ⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩ :=
rfl
#align circle_equiv_apply circleEquivGen_apply
+-/
+#print circleEquivGen_symm_apply /-
@[simp]
theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
(v : { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }) :
(circleEquivGen hk).symm v = (v : K × K).1 / ((v : K × K).2 + 1) :=
rfl
#align circle_equiv_symm_apply circleEquivGen_symm_apply
+-/
end circleEquivGen
@@ -443,8 +447,7 @@ namespace PythagoreanTriple
variable {x y z : ℤ} (h : PythagoreanTriple x y z)
-include h
-
+#print PythagoreanTriple.isPrimitiveClassified_aux /-
theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
(hm2n2 : 0 < m ^ 2 + n ^ 2) (hv2 : (x : ℚ) / z = 2 * m * n / (m ^ 2 + n ^ 2))
(hw2 : (y : ℚ) / z = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2))
@@ -459,6 +462,7 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
rw [← Rat.coe_int_inj _ _, ← div_left_inj' ((mt (Rat.coe_int_inj z 0).mp) hz), hv2, h2.right]
norm_cast
#align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_aux
+-/
/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([2, 3]) } -/
#print PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos /-
@@ -576,8 +580,7 @@ theorem classified : h.IsClassified :=
#align pythagorean_triple.classified PythagoreanTriple.classified
-/
-omit h
-
+#print PythagoreanTriple.coprime_classification /-
theorem coprime_classification :
PythagoreanTriple x y z ∧ Int.gcd x y = 1 ↔
∃ m n,
@@ -602,7 +605,9 @@ theorem coprime_classification :
| · constructor; · ring; exact coprime_sq_sub_mul co pp
| · constructor; · ring; rw [Int.gcd_comm]; exact coprime_sq_sub_mul co pp
#align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classification
+-/
+#print PythagoreanTriple.coprime_classification' /-
/-- by assuming `x` is odd and `z` is positive we get a slightly more precise classification of
the pythagorean triple `x ^ 2 + y ^ 2 = z ^ 2`-/
theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
@@ -647,7 +652,9 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
rw [mul_assoc, Int.mul_emod_right] at h_parity
exact zero_ne_one h_parity
#align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'
+-/
+#print PythagoreanTriple.classification /-
/-- **Formula for Pythagorean Triples** -/
theorem classification :
PythagoreanTriple x y z ↔
@@ -669,6 +676,7 @@ theorem classification :
simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this
· rintro ⟨k, m, n, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl | rfl⟩ <;> delta PythagoreanTriple <;> ring
#align pythagorean_triple.classification PythagoreanTriple.classification
+-/
end PythagoreanTriple
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -101,7 +101,6 @@ theorem mul (k : ℤ) : PythagoreanTriple (k * x) (k * y) (k * z) :=
k * x * (k * x) + k * y * (k * y) = k ^ 2 * (x * x + y * y) := by ring
_ = k ^ 2 * (z * z) := by rw [h.eq]
_ = k * z * (k * z) := by ring
-
#align pythagorean_triple.mul PythagoreanTriple.mul
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -242,7 +242,8 @@ theorem isClassified_of_isPrimitiveClassified (hp : h.IsPrimitiveClassified) : h
theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrimitiveClassified) :
h.IsClassified :=
by
- convert h.normalize.mul_is_classified (Int.gcd x y)
+ convert
+ h.normalize.mul_is_classified (Int.gcd x y)
(is_classified_of_is_primitive_classified h.normalize hc) <;>
rw [Int.mul_ediv_cancel']
· exact Int.gcd_dvd_left x y
@@ -477,7 +478,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
exact pow_eq_zero hq
have hQ : ∀ x : ℚ, 1 + x ^ 2 ≠ 0 := by intro q; apply ne_of_gt;
exact lt_add_of_pos_of_le zero_lt_one (sq_nonneg q)
- have hp : (⟨v, w⟩ : ℚ × ℚ) ∈ { p : ℚ × ℚ | p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 } := ⟨hq, hw1⟩
+ have hp : (⟨v, w⟩ : ℚ × ℚ) ∈ {p : ℚ × ℚ | p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1} := ⟨hq, hw1⟩
let q := (circleEquivGen hQ).symm ⟨⟨v, w⟩, hp⟩
have ht4 : v = 2 * q / (1 + q ^ 2) ∧ w = (1 - q ^ 2) / (1 + q ^ 2) :=
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -36,14 +36,14 @@ the bulk of the proof below.
theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
by
- change Fin 4 at z
+ change Fin 4 at z
fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
#print Int.sq_ne_two_mod_four /-
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
by
- suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
+ suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
rw [← ZMod.int_cast_eq_int_cast_iff']
simpa using sq_ne_two_fin_zmod_four _
#align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
@@ -181,7 +181,7 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
by
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) with x0 hx2
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hy) with y0 hy2
- rw [sub_eq_iff_eq_add] at hx2 hy2; exact ⟨x0, y0, hx2, hy2⟩
+ rw [sub_eq_iff_eq_add] at hx2 hy2 ; exact ⟨x0, y0, hx2, hy2⟩
apply Int.sq_ne_two_mod_four z
rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2 by rw [← h.eq]; ring]
norm_num [Int.add_emod]
@@ -198,7 +198,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
or_self_iff] using h
simp only [hz, dvd_zero]
obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
- ∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
+ ∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul]
rw [← Int.pow_dvd_pow_iff zero_lt_two, sq z, ← h.eq]
@@ -218,11 +218,11 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
simp only [hx, hy, hz, Int.zero_div]; exact zero
rcases h.gcd_dvd with ⟨z0, rfl⟩
obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
- ∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
+ ∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
- have hk : (k : ℤ) ≠ 0 := by norm_cast; rwa [pos_iff_ne_zero] at k0
- rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h⊢
- rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
+ have hk : (k : ℤ) ≠ 0 := by norm_cast; rwa [pos_iff_ne_zero] at k0
+ rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h ⊢
+ rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
rwa [Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel_left _ hk]
#align pythagorean_triple.normalize PythagoreanTriple.normalize
-/
@@ -254,7 +254,7 @@ theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrim
#print PythagoreanTriple.ne_zero_of_coprime /-
theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
by
- suffices 0 < z * z by rintro rfl; norm_num at this
+ suffices 0 < z * z by rintro rfl; norm_num at this
rw [← h.eq, ← sq, ← sq]
have hc' : Int.gcd x y ≠ 0 := by rw [hc]; exact one_ne_zero
cases' Int.ne_zero_of_gcd hc' with hxz hyz
@@ -267,8 +267,8 @@ theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx : x = 0) :
h.IsPrimitiveClassified := by
subst x
- change Nat.gcd 0 (Int.natAbs y) = 1 at hc
- rw [Nat.gcd_zero_left (Int.natAbs y)] at hc
+ change Nat.gcd 0 (Int.natAbs y) = 1 at hc
+ rw [Nat.gcd_zero_left (Int.natAbs y)] at hc
cases' Int.natAbs_eq y with hy hy
· use 1, 0; rw [hy, hc, Int.gcd_zero_right]; norm_num
· use 0, 1; rw [hy, hc, Int.gcd_zero_left]; norm_num
@@ -284,7 +284,7 @@ theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 :=
rw [← hc]
apply Nat.dvd_gcd (Int.Prime.dvd_natAbs_of_coe_dvd_sq hp _ _) hpy
rw [sq, eq_sub_of_add_eq h]
- rw [← Int.coe_nat_dvd_left] at hpy hpz
+ rw [← Int.coe_nat_dvd_left] at hpy hpz
exact dvd_sub (hpz.mul_right _) (hpy.mul_right _)
#align pythagorean_triple.coprime_of_coprime PythagoreanTriple.coprime_of_coprime
-/
@@ -308,7 +308,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
K ≃ { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }
where
toFun x :=
- ⟨⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩, by field_simp [hk x, div_pow] ; ring,
+ ⟨⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩, by field_simp [hk x, div_pow]; ring,
by
simp only [Ne.def, div_eq_iff (hk x), neg_mul, one_mul, neg_add, sub_eq_add_neg, add_left_inj]
simpa only [eq_neg_iff_add_eq_zero, one_pow] using hk 1⟩
@@ -319,15 +319,15 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm]
right_inv := fun ⟨⟨x, y⟩, hxy, hy⟩ =>
by
- change x ^ 2 + y ^ 2 = 1 at hxy
+ change x ^ 2 + y ^ 2 = 1 at hxy
have h2 : y + 1 ≠ 0 := mt eq_neg_of_add_eq_zero_left hy
have h3 : (y + 1) ^ 2 + x ^ 2 = 2 * (y + 1) := by
rw [(add_neg_eq_iff_eq_add.mpr hxy.symm).symm]; ring
have h4 : (2 : K) ≠ 0 := by convert hk 1; rw [one_pow 2]; rfl
simp only [Prod.mk.inj_iff, Subtype.mk_eq_mk]
constructor
- · field_simp [h3] ; ring
- · field_simp [h3] ; rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]; ring
+ · field_simp [h3]; ring
+ · field_simp [h3]; rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]; ring
#align circle_equiv_gen circleEquivGen
@[simp]
@@ -350,15 +350,15 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
by
by_contra H
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.coe_nat_dvd_left] at hp1 hp2
have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by convert dvd_add hp2 hp1; ring
have h2n : (p : ℤ) ∣ 2 * n ^ 2 := by convert dvd_sub hp2 hp1; ring
have hmc : p = 2 ∨ p ∣ Int.natAbs m := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2m
have hnc : p = 2 ∨ p ∣ Int.natAbs n := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2n
by_cases h2 : p = 2
· have h3 : (m ^ 2 + n ^ 2) % 2 = 1 := by norm_num [sq, Int.add_emod, Int.mul_emod, hm, hn]
- have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by apply Int.emod_eq_zero_of_dvd; rwa [h2] at hp2
- rw [h4] at h3; exact zero_ne_one h3
+ have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by apply Int.emod_eq_zero_of_dvd; rwa [h2] at hp2
+ rw [h4] at h3 ; exact zero_ne_one h3
· apply hp.not_dvd_one
rw [← h]
exact Nat.dvd_gcd (Or.resolve_left hmc h2) (Or.resolve_left hnc h2)
@@ -375,11 +375,11 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
by
by_contra H
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.coe_nat_dvd_left] at hp1 hp2
have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by rw [h]; norm_cast;
exact mt nat.dvd_one.mp (Nat.Prime.ne_one hp)
cases' Int.Prime.dvd_mul hp hp2 with hp2m hpn
- · rw [Int.natAbs_mul] at hp2m
+ · rw [Int.natAbs_mul] at hp2m
cases' (Nat.Prime.dvd_mul hp).mp hp2m with hp2 hpm
· have hp2' : p = 2 := (Nat.le_of_dvd zero_lt_two hp2).antisymm hp.two_le
revert hp1; rw [hp2']
@@ -389,7 +389,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
- rw [Int.gcd_comm] at hnp
+ rw [Int.gcd_comm] at hnp
apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp
apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
@@ -419,7 +419,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
by
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hm) with m0 hm2
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hn) with n0 hn2
- rw [sub_eq_iff_eq_add] at hm2 hn2; subst m; subst n
+ rw [sub_eq_iff_eq_add] at hm2 hn2 ; subst m; subst n
have h1 : (m0 * 2 + 1) ^ 2 + (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 + n0 ^ 2 + m0 + n0) + 1) := by
ring
have h2 : (m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 - n0 ^ 2 + m0 - n0)) := by ring
@@ -432,7 +432,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp h4
apply hp.not_dvd_one
rw [← h]
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.coe_nat_dvd_left] at hp1 hp2
apply Nat.dvd_gcd
· apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
convert dvd_add hp1 hp2; ring
@@ -469,11 +469,11 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
let v := (x : ℚ) / z
let w := (y : ℚ) / z
have hz : z ≠ 0; apply ne_of_gt hzpos
- have hq : v ^ 2 + w ^ 2 = 1 := by field_simp [hz, sq] ; norm_cast; exact h
- have hvz : v ≠ 0 := by field_simp [hz] ; exact h0
+ have hq : v ^ 2 + w ^ 2 = 1 := by field_simp [hz, sq]; norm_cast; exact h
+ have hvz : v ≠ 0 := by field_simp [hz]; exact h0
have hw1 : w ≠ -1 := by
contrapose! hvz with hw1
- rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq
+ rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq
exact pow_eq_zero hq
have hQ : ∀ x : ℚ, 1 + x ^ 2 ≠ 0 := by intro q; apply ne_of_gt;
exact lt_add_of_pos_of_le zero_lt_one (sq_nonneg q)
@@ -510,7 +510,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
exfalso
have h1 : 2 ∣ (Int.gcd n m : ℤ) :=
Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
- rw [hnmcp] at h1; revert h1; norm_num
+ rw [hnmcp] at h1 ; revert h1; norm_num
· -- m even, n odd
apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
· apply Or.intro_left; exact And.intro hm2 hn2
@@ -533,7 +533,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]; norm_cast
· apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp
rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]; exact hm2n2
- rw [h2.1, h1.2.2.1] at hyo
+ rw [h2.1, h1.2.2.1] at hyo
revert hyo
norm_num
#align pythagorean_triple.is_primitive_classified_of_coprime_of_odd_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos
@@ -545,7 +545,7 @@ theorem isPrimitiveClassified_of_coprime_of_pos (hc : Int.gcd x y = 1) (hzpos :
by
cases' h.even_odd_of_coprime hc with h1 h2
· exact h.is_primitive_classified_of_coprime_of_odd_of_pos hc h1.right hzpos
- rw [Int.gcd_comm] at hc
+ rw [Int.gcd_comm] at hc
obtain ⟨m, n, H⟩ := h.symm.is_primitive_classified_of_coprime_of_odd_of_pos hc h2.left hzpos
use m, n; tauto
#align pythagorean_triple.is_primitive_classified_of_coprime_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_pos
@@ -599,10 +599,8 @@ theorem coprime_classification :
· delta PythagoreanTriple
rintro ⟨m, n, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl | rfl, co, pp⟩ <;>
first
- |· constructor; · ring;
- exact
- coprime_sq_sub_mul co
- pp|· constructor; · ring; rw [Int.gcd_comm]; exact coprime_sq_sub_mul co pp
+ | · constructor; · ring; exact coprime_sq_sub_mul co pp
+ | · constructor; · ring; rw [Int.gcd_comm]; exact coprime_sq_sub_mul co pp
#align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classification
/-- by assuming `x` is odd and `z` is positive we get a slightly more precise classification of
@@ -628,7 +626,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
exfalso
rcases h_even with ⟨rfl, -⟩
- rw [mul_assoc, Int.mul_emod_right] at h_parity
+ rw [mul_assoc, Int.mul_emod_right] at h_parity
exact zero_ne_one h_parity
· use -m, -n
cases' ht1 with h_odd h_even
@@ -646,7 +644,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
exfalso
rcases h_even with ⟨rfl, -⟩
- rw [mul_assoc, Int.mul_emod_right] at h_parity
+ rw [mul_assoc, Int.mul_emod_right] at h_parity
exact zero_ne_one h_parity
#align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -51,7 +51,7 @@ theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
noncomputable section
-open Classical
+open scoped Classical
#print PythagoreanTriple /-
/-- Three integers `x`, `y`, and `z` form a Pythagorean triple if `x * x + y * y = z * z`. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -34,12 +34,6 @@ the bulk of the proof below.
-/
-/- warning: sq_ne_two_fin_zmod_four -> sq_ne_two_fin_zmod_four is a dubious translation:
-lean 3 declaration is
- forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddCommGroupWithOne.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toAddCommGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
-but is expected to have type
- forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (Semiring.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommSemiring.toSemiring.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toCommSemiring.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
-Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_fourₓ'. -/
theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
by
change Fin 4 at z
@@ -194,12 +188,6 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
#align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
-/
-/- warning: pythagorean_triple.gcd_dvd -> PythagoreanTriple.gcd_dvd is a dubious translation:
-lean 3 declaration is
- forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Dvd.Dvd.{0} Int (semigroupDvd.{0} Int Int.semigroup) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) (Int.gcd x y)) z)
-but is expected to have type
- forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Dvd.dvd.{0} Int Int.instDvdInt (Nat.cast.{0} Int instNatCastInt (Int.gcd x y)) z)
-Case conversion may be inaccurate. Consider using '#align pythagorean_triple.gcd_dvd PythagoreanTriple.gcd_dvdₓ'. -/
theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
by
by_cases h0 : Int.gcd x y = 0
@@ -314,12 +302,6 @@ For the classification of pythogorean triples, we will use a parametrization of
variable {K : Type _} [Field K]
-/- warning: circle_equiv_gen -> circleEquivGen is a dubious translation:
-lean 3 declaration is
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))))
-but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))))
-Case conversion may be inaccurate. Consider using '#align circle_equiv_gen circleEquivGenₓ'. -/
/-- A parameterization of the unit circle that is useful for classifying Pythagorean triples.
(To be applied in the case where `K = ℚ`.) -/
def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
@@ -348,18 +330,12 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
· field_simp [h3] ; rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]; ring
#align circle_equiv_gen circleEquivGen
-/- warning: circle_equiv_apply -> circleEquivGen_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circleEquivGen_applyₓ'. -/
@[simp]
theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
(circleEquivGen hk x : K × K) = ⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩ :=
rfl
#align circle_equiv_apply circleEquivGen_apply
-/- warning: circle_equiv_symm_apply -> circleEquivGen_symm_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circleEquivGen_symm_applyₓ'. -/
@[simp]
theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
(v : { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }) :
@@ -469,9 +445,6 @@ variable {x y z : ℤ} (h : PythagoreanTriple x y z)
include h
-/- warning: pythagorean_triple.is_primitive_classified_aux -> PythagoreanTriple.isPrimitiveClassified_aux is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_auxₓ'. -/
theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
(hm2n2 : 0 < m ^ 2 + n ^ 2) (hv2 : (x : ℚ) / z = 2 * m * n / (m ^ 2 + n ^ 2))
(hw2 : (y : ℚ) / z = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2))
@@ -605,12 +578,6 @@ theorem classified : h.IsClassified :=
omit h
-/- warning: pythagorean_triple.coprime_classification -> PythagoreanTriple.coprime_classification is a dubious translation:
-lean 3 declaration is
- forall {x : Int} {y : Int} {z : Int}, Iff (And (PythagoreanTriple x y z) (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)) (Eq.{1} Int y (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))) (And (Or (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (Eq.{1} Int z (Neg.neg.{0} Int Int.hasNeg (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))))))))
-but is expected to have type
- forall {x : Int} {y : Int} {z : Int}, Iff (And (PythagoreanTriple x y z) (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)) (Eq.{1} Int y (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))) (And (Or (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (Eq.{1} Int z (Neg.neg.{0} Int Int.instNegInt (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))))))))
-Case conversion may be inaccurate. Consider using '#align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classificationₓ'. -/
theorem coprime_classification :
PythagoreanTriple x y z ∧ Int.gcd x y = 1 ↔
∃ m n,
@@ -638,12 +605,6 @@ theorem coprime_classification :
pp|· constructor; · ring; rw [Int.gcd_comm]; exact coprime_sq_sub_mul co pp
#align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classification
-/- warning: pythagorean_triple.coprime_classification' -> PythagoreanTriple.coprime_classification' is a dubious translation:
-lean 3 declaration is
- forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) x (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) -> (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) z) -> (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (And (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)) (And (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (And (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))) (LE.le.{0} Int Int.hasLe (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) m))))))))
-but is expected to have type
- forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) x (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) -> (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) z) -> (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (And (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)) (And (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (And (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))) (LE.le.{0} Int Int.instLEInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) m))))))))
-Case conversion may be inaccurate. Consider using '#align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'ₓ'. -/
/-- by assuming `x` is odd and `z` is positive we get a slightly more precise classification of
the pythagorean triple `x ^ 2 + y ^ 2 = z ^ 2`-/
theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
@@ -689,12 +650,6 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
exact zero_ne_one h_parity
#align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'
-/- warning: pythagorean_triple.classification -> PythagoreanTriple.classification is a dubious translation:
-lean 3 declaration is
- forall {x : Int} {y : Int} {z : Int}, Iff (PythagoreanTriple x y z) (Exists.{1} Int (fun (k : Int) => Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) (Or (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (Neg.neg.{0} Int Int.hasNeg k) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
-but is expected to have type
- forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Iff (PythagoreanTriple x y z) (Exists.{1} Int (fun (k : Int) => Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))))) (Or (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (Neg.neg.{0} Int Int.instNegInt k) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))))))))
-Case conversion may be inaccurate. Consider using '#align pythagorean_triple.classification PythagoreanTriple.classificationₓ'. -/
/-- **Formula for Pythagorean Triples** -/
theorem classification :
PythagoreanTriple x y z ↔
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -69,10 +69,8 @@ def PythagoreanTriple (x y z : ℤ) : Prop :=
#print pythagoreanTriple_comm /-
/-- Pythagorean triples are interchangable, i.e `x * x + y * y = y * y + x * x = z * z`.
This comes from additive commutativity. -/
-theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ PythagoreanTriple y x z :=
- by
- delta PythagoreanTriple
- rw [add_comm]
+theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ PythagoreanTriple y x z := by
+ delta PythagoreanTriple; rw [add_comm]
#align pythagorean_triple_comm pythagoreanTriple_comm
-/
@@ -163,14 +161,8 @@ def IsPrimitiveClassified :=
theorem mul_isClassified (k : ℤ) (hc : h.IsClassified) : (h.mul k).IsClassified :=
by
obtain ⟨l, m, n, ⟨⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, co⟩⟩ := hc
- · use k * l, m, n
- apply And.intro _ co
- left
- constructor <;> ring
- · use k * l, m, n
- apply And.intro _ co
- right
- constructor <;> ring
+ · use k * l, m, n; apply And.intro _ co; left; constructor <;> ring
+ · use k * l, m, n; apply And.intro _ co; right; constructor <;> ring
#align pythagorean_triple.mul_is_classified PythagoreanTriple.mul_isClassified
-/
@@ -183,15 +175,11 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
· -- x even, y even
exfalso
apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
- · apply Int.coe_nat_dvd_left.1
- apply Int.dvd_of_emod_eq_zero hx
- · apply Int.coe_nat_dvd_left.1
- apply Int.dvd_of_emod_eq_zero hy
- · left
- exact ⟨hx, hy⟩
+ · apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hx
+ · apply Int.coe_nat_dvd_left.1; apply Int.dvd_of_emod_eq_zero hy
+ · left; exact ⟨hx, hy⟩
-- x even, y odd
- · right
- exact ⟨hx, hy⟩
+ · right; exact ⟨hx, hy⟩
-- x odd, y even
· -- x odd, y odd
exfalso
@@ -199,13 +187,9 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
by
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) with x0 hx2
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hy) with y0 hy2
- rw [sub_eq_iff_eq_add] at hx2 hy2
- exact ⟨x0, y0, hx2, hy2⟩
+ rw [sub_eq_iff_eq_add] at hx2 hy2; exact ⟨x0, y0, hx2, hy2⟩
apply Int.sq_ne_two_mod_four z
- rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2
- by
- rw [← h.eq]
- ring]
+ rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2 by rw [← h.eq]; ring]
norm_num [Int.add_emod]
#align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
-/
@@ -219,12 +203,8 @@ Case conversion may be inaccurate. Consider using '#align pythagorean_triple.gcd
theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
by
by_cases h0 : Int.gcd x y = 0
- · have hx : x = 0 := by
- apply int.nat_abs_eq_zero.mp
- apply Nat.eq_zero_of_gcd_eq_zero_left h0
- have hy : y = 0 := by
- apply int.nat_abs_eq_zero.mp
- apply Nat.eq_zero_of_gcd_eq_zero_right h0
+ · have hx : x = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_left h0
+ have hy : y = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_right h0
have hz : z = 0 := by
simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
or_self_iff] using h
@@ -242,24 +222,17 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / Int.gcd x y) :=
by
by_cases h0 : Int.gcd x y = 0
- · have hx : x = 0 := by
- apply int.nat_abs_eq_zero.mp
- apply Nat.eq_zero_of_gcd_eq_zero_left h0
- have hy : y = 0 := by
- apply int.nat_abs_eq_zero.mp
- apply Nat.eq_zero_of_gcd_eq_zero_right h0
+ · have hx : x = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_left h0
+ have hy : y = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_right h0
have hz : z = 0 := by
simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
or_self_iff] using h
- simp only [hx, hy, hz, Int.zero_div]
- exact zero
+ simp only [hx, hy, hz, Int.zero_div]; exact zero
rcases h.gcd_dvd with ⟨z0, rfl⟩
obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
- have hk : (k : ℤ) ≠ 0 := by
- norm_cast
- rwa [pos_iff_ne_zero] at k0
+ have hk : (k : ℤ) ≠ 0 := by norm_cast; rwa [pos_iff_ne_zero] at k0
rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h⊢
rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
rwa [Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel_left _ hk]
@@ -293,13 +266,9 @@ theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrim
#print PythagoreanTriple.ne_zero_of_coprime /-
theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
by
- suffices 0 < z * z by
- rintro rfl
- norm_num at this
+ suffices 0 < z * z by rintro rfl; norm_num at this
rw [← h.eq, ← sq, ← sq]
- have hc' : Int.gcd x y ≠ 0 := by
- rw [hc]
- exact one_ne_zero
+ have hc' : Int.gcd x y ≠ 0 := by rw [hc]; exact one_ne_zero
cases' Int.ne_zero_of_gcd hc' with hxz hyz
· apply lt_add_of_pos_of_le (sq_pos_of_ne_zero x hxz) (sq_nonneg y)
· apply lt_add_of_le_of_pos (sq_nonneg x) (sq_pos_of_ne_zero y hyz)
@@ -313,12 +282,8 @@ theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx
change Nat.gcd 0 (Int.natAbs y) = 1 at hc
rw [Nat.gcd_zero_left (Int.natAbs y)] at hc
cases' Int.natAbs_eq y with hy hy
- · use 1, 0
- rw [hy, hc, Int.gcd_zero_right]
- norm_num
- · use 0, 1
- rw [hy, hc, Int.gcd_zero_left]
- norm_num
+ · use 1, 0; rw [hy, hc, Int.gcd_zero_right]; norm_num
+ · use 0, 1; rw [hy, hc, Int.gcd_zero_left]; norm_num
#align pythagorean_triple.is_primitive_classified_of_coprime_of_zero_left PythagoreanTriple.isPrimitiveClassified_of_coprime_of_zero_left
-/
@@ -361,39 +326,26 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
K ≃ { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }
where
toFun x :=
- ⟨⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩,
- by
- field_simp [hk x, div_pow]
- ring,
+ ⟨⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩, by field_simp [hk x, div_pow] ; ring,
by
simp only [Ne.def, div_eq_iff (hk x), neg_mul, one_mul, neg_add, sub_eq_add_neg, add_left_inj]
simpa only [eq_neg_iff_add_eq_zero, one_pow] using hk 1⟩
invFun p := (p : K × K).1 / ((p : K × K).2 + 1)
left_inv x := by
have h2 : (1 + 1 : K) = 2 := rfl
- have h3 : (2 : K) ≠ 0 := by
- convert hk 1
- rw [one_pow 2, h2]
+ have h3 : (2 : K) ≠ 0 := by convert hk 1; rw [one_pow 2, h2]
field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm]
right_inv := fun ⟨⟨x, y⟩, hxy, hy⟩ =>
by
change x ^ 2 + y ^ 2 = 1 at hxy
have h2 : y + 1 ≠ 0 := mt eq_neg_of_add_eq_zero_left hy
- have h3 : (y + 1) ^ 2 + x ^ 2 = 2 * (y + 1) :=
- by
- rw [(add_neg_eq_iff_eq_add.mpr hxy.symm).symm]
- ring
- have h4 : (2 : K) ≠ 0 := by
- convert hk 1
- rw [one_pow 2]
- rfl
+ have h3 : (y + 1) ^ 2 + x ^ 2 = 2 * (y + 1) := by
+ rw [(add_neg_eq_iff_eq_add.mpr hxy.symm).symm]; ring
+ have h4 : (2 : K) ≠ 0 := by convert hk 1; rw [one_pow 2]; rfl
simp only [Prod.mk.inj_iff, Subtype.mk_eq_mk]
constructor
- · field_simp [h3]
- ring
- · field_simp [h3]
- rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]
- ring
+ · field_simp [h3] ; ring
+ · field_simp [h3] ; rw [← add_neg_eq_iff_eq_add.mpr hxy.symm]; ring
#align circle_equiv_gen circleEquivGen
/- warning: circle_equiv_apply -> circleEquivGen_apply is a dubious translation:
@@ -423,22 +375,14 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
by_contra H
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
rw [← Int.coe_nat_dvd_left] at hp1 hp2
- have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by
- convert dvd_add hp2 hp1
- ring
- have h2n : (p : ℤ) ∣ 2 * n ^ 2 := by
- convert dvd_sub hp2 hp1
- ring
+ have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by convert dvd_add hp2 hp1; ring
+ have h2n : (p : ℤ) ∣ 2 * n ^ 2 := by convert dvd_sub hp2 hp1; ring
have hmc : p = 2 ∨ p ∣ Int.natAbs m := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2m
have hnc : p = 2 ∨ p ∣ Int.natAbs n := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2n
by_cases h2 : p = 2
· have h3 : (m ^ 2 + n ^ 2) % 2 = 1 := by norm_num [sq, Int.add_emod, Int.mul_emod, hm, hn]
- have h4 : (m ^ 2 + n ^ 2) % 2 = 0 :=
- by
- apply Int.emod_eq_zero_of_dvd
- rwa [h2] at hp2
- rw [h4] at h3
- exact zero_ne_one h3
+ have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by apply Int.emod_eq_zero_of_dvd; rwa [h2] at hp2
+ rw [h4] at h3; exact zero_ne_one h3
· apply hp.not_dvd_one
rw [← h]
exact Nat.dvd_gcd (Or.resolve_left hmc h2) (Or.resolve_left hnc h2)
@@ -456,27 +400,22 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
by_contra H
obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H
rw [← Int.coe_nat_dvd_left] at hp1 hp2
- have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by
- rw [h]
- norm_cast
+ have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by rw [h]; norm_cast;
exact mt nat.dvd_one.mp (Nat.Prime.ne_one hp)
cases' Int.Prime.dvd_mul hp hp2 with hp2m hpn
· rw [Int.natAbs_mul] at hp2m
cases' (Nat.Prime.dvd_mul hp).mp hp2m with hp2 hpm
· have hp2' : p = 2 := (Nat.le_of_dvd zero_lt_two hp2).antisymm hp.two_le
- revert hp1
- rw [hp2']
+ revert hp1; rw [hp2']
apply mt Int.emod_eq_zero_of_dvd
norm_num [sq, Int.sub_emod, Int.mul_emod, hm, hn]
apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpm)) hnp
- apply (or_self_iff _).mp
- apply Int.Prime.dvd_mul' hp
+ apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
rw [Int.gcd_comm] at hnp
apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp
- apply (or_self_iff _).mp
- apply Int.Prime.dvd_mul' hp
+ apply (or_self_iff _).mp; apply Int.Prime.dvd_mul' hp
rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
apply dvd_add hp1
exact (int.coe_nat_dvd_left.mpr hpn).mul_right n
@@ -504,16 +443,12 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
by
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hm) with m0 hm2
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hn) with n0 hn2
- rw [sub_eq_iff_eq_add] at hm2 hn2
- subst m
- subst n
+ rw [sub_eq_iff_eq_add] at hm2 hn2; subst m; subst n
have h1 : (m0 * 2 + 1) ^ 2 + (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 + n0 ^ 2 + m0 + n0) + 1) := by
ring
have h2 : (m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 - n0 ^ 2 + m0 - n0)) := by ring
- have h3 : ((m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2) / 2 % 2 = 0 :=
- by
- rw [h2, Int.mul_ediv_cancel_left, Int.mul_emod_right]
- exact by decide
+ have h3 : ((m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2) / 2 % 2 = 0 := by
+ rw [h2, Int.mul_ediv_cancel_left, Int.mul_emod_right]; exact by decide
refine' ⟨⟨_, h1⟩, ⟨_, h2⟩, h3, _⟩
have h20 : (2 : ℤ) ≠ 0 := by decide
rw [h1, h2, Int.mul_ediv_cancel_left _ h20, Int.mul_ediv_cancel_left _ h20]
@@ -524,11 +459,9 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
rw [← Int.coe_nat_dvd_left] at hp1 hp2
apply Nat.dvd_gcd
· apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
- convert dvd_add hp1 hp2
- ring
+ convert dvd_add hp1 hp2; ring
· apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
- convert dvd_sub hp2 hp1
- ring
+ convert dvd_sub hp2 hp1; ring
namespace PythagoreanTriple
@@ -545,16 +478,10 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
(H : Int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1) (co : Int.gcd m n = 1)
(pp : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) : h.IsPrimitiveClassified :=
by
- have hz : z ≠ 0
- apply ne_of_gt hzpos
- have h2 : y = m ^ 2 - n ^ 2 ∧ z = m ^ 2 + n ^ 2 :=
- by
- apply Rat.div_int_inj hzpos hm2n2 (h.coprime_of_coprime hc) H
- rw [hw2]
- norm_cast
- use m, n
- apply And.intro _ (And.intro co pp)
- right
+ have hz : z ≠ 0; apply ne_of_gt hzpos
+ have h2 : y = m ^ 2 - n ^ 2 ∧ z = m ^ 2 + n ^ 2 := by
+ apply Rat.div_int_inj hzpos hm2n2 (h.coprime_of_coprime hc) H; rw [hw2]; norm_cast
+ use m, n; apply And.intro _ (And.intro co pp); right
refine' ⟨_, h2.left⟩
rw [← Rat.coe_int_inj _ _, ← div_left_inj' ((mt (Rat.coe_int_inj z 0).mp) hz), hv2, h2.right]
norm_cast
@@ -565,26 +492,17 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (hyo : y % 2 = 1)
(hzpos : 0 < z) : h.IsPrimitiveClassified :=
by
- by_cases h0 : x = 0
- · exact h.is_primitive_classified_of_coprime_of_zero_left hc h0
+ by_cases h0 : x = 0; · exact h.is_primitive_classified_of_coprime_of_zero_left hc h0
let v := (x : ℚ) / z
let w := (y : ℚ) / z
- have hz : z ≠ 0
- apply ne_of_gt hzpos
- have hq : v ^ 2 + w ^ 2 = 1 := by
- field_simp [hz, sq]
- norm_cast
- exact h
- have hvz : v ≠ 0 := by
- field_simp [hz]
- exact h0
+ have hz : z ≠ 0; apply ne_of_gt hzpos
+ have hq : v ^ 2 + w ^ 2 = 1 := by field_simp [hz, sq] ; norm_cast; exact h
+ have hvz : v ≠ 0 := by field_simp [hz] ; exact h0
have hw1 : w ≠ -1 := by
contrapose! hvz with hw1
rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq
exact pow_eq_zero hq
- have hQ : ∀ x : ℚ, 1 + x ^ 2 ≠ 0 := by
- intro q
- apply ne_of_gt
+ have hQ : ∀ x : ℚ, 1 + x ^ 2 ≠ 0 := by intro q; apply ne_of_gt;
exact lt_add_of_pos_of_le zero_lt_one (sq_nonneg q)
have hp : (⟨v, w⟩ : ℚ × ℚ) ∈ { p : ℚ × ℚ | p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 } := ⟨hq, hw1⟩
let q := (circleEquivGen hQ).symm ⟨⟨v, w⟩, hp⟩
@@ -595,53 +513,38 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
exact congr_arg Subtype.val this
let m := (q.denom : ℤ)
let n := q.num
- have hm0 : m ≠ 0 := by
- norm_cast
- apply Rat.den_nz q
+ have hm0 : m ≠ 0 := by norm_cast; apply Rat.den_nz q
have hq2 : q = n / m := (Rat.num_div_den q).symm
have hm2n2 : 0 < m ^ 2 + n ^ 2 :=
by
apply lt_add_of_pos_of_le _ (sq_nonneg n)
exact lt_of_le_of_ne (sq_nonneg m) (Ne.symm (pow_ne_zero 2 hm0))
- have hw2 : w = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2) :=
- by
- rw [ht4.2, hq2]
+ have hw2 : w = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2) := by rw [ht4.2, hq2];
field_simp [hm2n2, Rat.den_nz q, -Rat.num_div_den]
- have hm2n20 : (m : ℚ) ^ 2 + (n : ℚ) ^ 2 ≠ 0 :=
- by
- norm_cast
+ have hm2n20 : (m : ℚ) ^ 2 + (n : ℚ) ^ 2 ≠ 0 := by norm_cast;
simpa only [Int.coe_nat_pow] using ne_of_gt hm2n2
have hv2 : v = 2 * m * n / (m ^ 2 + n ^ 2) :=
by
- apply Eq.symm
- apply (div_eq_iff hm2n20).mpr
- rw [ht4.1]
- field_simp [hQ q]
+ apply Eq.symm; apply (div_eq_iff hm2n20).mpr; rw [ht4.1]; field_simp [hQ q]
rw [hq2]
field_simp [Rat.den_nz q, -Rat.num_div_den]
ring
have hnmcp : Int.gcd n m = 1 := q.cop
- have hmncp : Int.gcd m n = 1 := by
- rw [Int.gcd_comm]
- exact hnmcp
+ have hmncp : Int.gcd m n = 1 := by rw [Int.gcd_comm]; exact hnmcp
cases' Int.emod_two_eq_zero_or_one m with hm2 hm2 <;>
cases' Int.emod_two_eq_zero_or_one n with hn2 hn2
· -- m even, n even
exfalso
have h1 : 2 ∣ (Int.gcd n m : ℤ) :=
Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
- rw [hnmcp] at h1
- revert h1
- norm_num
+ rw [hnmcp] at h1; revert h1; norm_num
· -- m even, n odd
apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
- · apply Or.intro_left
- exact And.intro hm2 hn2
+ · apply Or.intro_left; exact And.intro hm2 hn2
· apply coprime_sq_sub_sq_add_of_even_odd hmncp hm2 hn2
· -- m odd, n even
apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
- · apply Or.intro_right
- exact And.intro hm2 hn2
+ · apply Or.intro_right; exact And.intro hm2 hn2
apply coprime_sq_sub_sq_add_of_odd_even hmncp hm2 hn2
· -- m odd, n odd
exfalso
@@ -653,13 +556,10 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
have h2 : y = (m ^ 2 - n ^ 2) / 2 ∧ z = (m ^ 2 + n ^ 2) / 2 :=
by
apply Rat.div_int_inj hzpos _ (h.coprime_of_coprime hc) h1.2.2.2
- · show w = _
- rw [← Rat.divInt_eq_div, ← Rat.divInt_mul_right (by norm_num : (2 : ℤ) ≠ 0)]
- rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]
- norm_cast
+ · show w = _; rw [← Rat.divInt_eq_div, ← Rat.divInt_mul_right (by norm_num : (2 : ℤ) ≠ 0)]
+ rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]; norm_cast
· apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp
- rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]
- exact hm2n2
+ rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]; exact hm2n2
rw [h2.1, h1.2.2.1] at hyo
revert hyo
norm_num
@@ -694,14 +594,9 @@ theorem isPrimitiveClassified_of_coprime (hc : Int.gcd x y = 1) : h.IsPrimitiveC
theorem classified : h.IsClassified :=
by
by_cases h0 : Int.gcd x y = 0
- · have hx : x = 0 := by
- apply int.nat_abs_eq_zero.mp
- apply Nat.eq_zero_of_gcd_eq_zero_left h0
- have hy : y = 0 := by
- apply int.nat_abs_eq_zero.mp
- apply Nat.eq_zero_of_gcd_eq_zero_right h0
- use 0, 1, 0
- norm_num [hx, hy]
+ · have hx : x = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_left h0
+ have hy : y = 0 := by apply int.nat_abs_eq_zero.mp; apply Nat.eq_zero_of_gcd_eq_zero_right h0
+ use 0, 1, 0; norm_num [hx, hy]
apply h.is_classified_of_normalize_is_primitive_classified
apply h.normalize.is_primitive_classified_of_coprime
apply Int.gcd_div_gcd_div_gcd (Nat.pos_of_ne_zero h0)
@@ -729,28 +624,18 @@ theorem coprime_classification :
use m, n
rcases H with ⟨⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, co, pp⟩
· refine' ⟨Or.inl ⟨rfl, rfl⟩, _, co, pp⟩
- have : z ^ 2 = (m ^ 2 + n ^ 2) ^ 2 :=
- by
- rw [sq, ← h.left.eq]
- ring
+ have : z ^ 2 = (m ^ 2 + n ^ 2) ^ 2 := by rw [sq, ← h.left.eq]; ring
simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this
· refine' ⟨Or.inr ⟨rfl, rfl⟩, _, co, pp⟩
- have : z ^ 2 = (m ^ 2 + n ^ 2) ^ 2 :=
- by
- rw [sq, ← h.left.eq]
- ring
+ have : z ^ 2 = (m ^ 2 + n ^ 2) ^ 2 := by rw [sq, ← h.left.eq]; ring
simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this
· delta PythagoreanTriple
rintro ⟨m, n, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl | rfl, co, pp⟩ <;>
first
- |·
- constructor
- · ring
- exact coprime_sq_sub_mul co pp|·
- constructor
- · ring
- rw [Int.gcd_comm]
- exact coprime_sq_sub_mul co pp
+ |· constructor; · ring;
+ exact
+ coprime_sq_sub_mul co
+ pp|· constructor; · ring; rw [Int.gcd_comm]; exact coprime_sq_sub_mul co pp
#align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classification
/- warning: pythagorean_triple.coprime_classification' -> PythagoreanTriple.coprime_classification' is a dubious translation:
@@ -778,9 +663,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
apply And.intro h_odd.2
cases' ht2 with h_pos h_neg
· apply And.intro h_pos (And.intro ht3 (And.intro ht4 hm))
- · exfalso
- revert h_pos
- rw [h_neg]
+ · exfalso; revert h_pos; rw [h_neg]
exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
exfalso
rcases h_even with ⟨rfl, -⟩
@@ -791,21 +674,14 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
· rw [neg_sq m]
rw [neg_sq n]
apply And.intro h_odd.1
- constructor
- · rw [h_odd.2]
- ring
+ constructor; · rw [h_odd.2]; ring
cases' ht2 with h_pos h_neg
· apply And.intro h_pos
constructor
- · delta Int.gcd
- rw [Int.natAbs_neg, Int.natAbs_neg]
- exact ht3
+ · delta Int.gcd; rw [Int.natAbs_neg, Int.natAbs_neg]; exact ht3
· rw [Int.neg_emod_two, Int.neg_emod_two]
- apply And.intro ht4
- linarith
- · exfalso
- revert h_pos
- rw [h_neg]
+ apply And.intro ht4; linarith
+ · exfalso; revert h_pos; rw [h_neg]
exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n))))
exfalso
rcases h_even with ⟨rfl, -⟩
@@ -833,16 +709,10 @@ theorem classification :
use k, m, n
rcases H with (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩)
· refine' ⟨Or.inl ⟨rfl, rfl⟩, _⟩
- have : z ^ 2 = (k * (m ^ 2 + n ^ 2)) ^ 2 :=
- by
- rw [sq, ← h.eq]
- ring
+ have : z ^ 2 = (k * (m ^ 2 + n ^ 2)) ^ 2 := by rw [sq, ← h.eq]; ring
simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this
· refine' ⟨Or.inr ⟨rfl, rfl⟩, _⟩
- have : z ^ 2 = (k * (m ^ 2 + n ^ 2)) ^ 2 :=
- by
- rw [sq, ← h.eq]
- ring
+ have : z ^ 2 = (k * (m ^ 2 + n ^ 2)) ^ 2 := by rw [sq, ← h.eq]; ring
simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this
· rintro ⟨k, m, n, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl | rfl⟩ <;> delta PythagoreanTriple <;> ring
#align pythagorean_triple.classification PythagoreanTriple.classification
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -397,10 +397,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
#align circle_equiv_gen circleEquivGen
/- warning: circle_equiv_apply -> circleEquivGen_apply is a dubious translation:
-lean 3 declaration is
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
-but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (Semiring.toNatCast.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circleEquivGen_applyₓ'. -/
@[simp]
theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
@@ -409,10 +406,7 @@ theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
#align circle_equiv_apply circleEquivGen_apply
/- warning: circle_equiv_symm_apply -> circleEquivGen_symm_apply is a dubious translation:
-lean 3 declaration is
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
-but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (DivisionSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semifield.toDivisionSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Field.toSemifield.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circleEquivGen_symm_applyₓ'. -/
@[simp]
theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
@@ -448,7 +442,6 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
· apply hp.not_dvd_one
rw [← h]
exact Nat.dvd_gcd (Or.resolve_left hmc h2) (Or.resolve_left hnc h2)
-#align coprime_sq_sub_sq_add_of_even_odd coprime_sq_sub_sq_add_of_even_odd
private theorem coprime_sq_sub_sq_add_of_odd_even {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 1)
(hn : n % 2 = 0) : Int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1 :=
@@ -456,7 +449,6 @@ private theorem coprime_sq_sub_sq_add_of_odd_even {m n : ℤ} (h : Int.gcd m n =
rw [Int.gcd, ← Int.natAbs_neg (m ^ 2 - n ^ 2)]
rw [(by ring : -(m ^ 2 - n ^ 2) = n ^ 2 - m ^ 2), add_comm]
apply coprime_sq_sub_sq_add_of_even_odd _ hn hm; rwa [Int.gcd_comm]
-#align coprime_sq_sub_sq_add_of_odd_even coprime_sq_sub_sq_add_of_odd_even
private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 0)
(hn : n % 2 = 1) : Int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 :=
@@ -488,7 +480,6 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
apply dvd_add hp1
exact (int.coe_nat_dvd_left.mpr hpn).mul_right n
-#align coprime_sq_sub_mul_of_even_odd coprime_sq_sub_mul_of_even_odd
private theorem coprime_sq_sub_mul_of_odd_even {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 1)
(hn : n % 2 = 0) : Int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 :=
@@ -496,7 +487,6 @@ private theorem coprime_sq_sub_mul_of_odd_even {m n : ℤ} (h : Int.gcd m n = 1)
rw [Int.gcd, ← Int.natAbs_neg (m ^ 2 - n ^ 2)]
rw [(by ring : 2 * m * n = 2 * n * m), (by ring : -(m ^ 2 - n ^ 2) = n ^ 2 - m ^ 2)]
apply coprime_sq_sub_mul_of_even_odd _ hn hm; rwa [Int.gcd_comm]
-#align coprime_sq_sub_mul_of_odd_even coprime_sq_sub_mul_of_odd_even
private theorem coprime_sq_sub_mul {m n : ℤ} (h : Int.gcd m n = 1)
(hmn : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) :
@@ -505,7 +495,6 @@ private theorem coprime_sq_sub_mul {m n : ℤ} (h : Int.gcd m n = 1)
cases' hmn with h1 h2
· exact coprime_sq_sub_mul_of_even_odd h h1.left h1.right
· exact coprime_sq_sub_mul_of_odd_even h h2.left h2.right
-#align coprime_sq_sub_mul coprime_sq_sub_mul
private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 1)
(hn : n % 2 = 1) :
@@ -540,7 +529,6 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
· apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
convert dvd_sub hp2 hp1
ring
-#align coprime_sq_sub_sq_sum_of_odd_odd coprime_sq_sub_sq_sum_of_odd_odd
namespace PythagoreanTriple
@@ -549,10 +537,7 @@ variable {x y z : ℤ} (h : PythagoreanTriple x y z)
include h
/- warning: pythagorean_triple.is_primitive_classified_aux -> PythagoreanTriple.isPrimitiveClassified_aux is a dubious translation:
-lean 3 declaration is
- forall {x : Int} {y : Int} {z : Int} (h : PythagoreanTriple x y z), (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) z) -> (forall {m : Int} {n : Int}, (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) x) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.hasMul) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.hasMul) (OfNat.ofNat.{0} Rat 2 (OfNat.mk.{0} Rat 2 (bit0.{0} Rat Rat.hasAdd (One.one.{0} Rat Rat.hasOne)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n)) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.hasAdd) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) y) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) (HSub.hSub.{0, 0, 0} Rat Rat Rat (instHSub.{0} Rat (SubNegMonoid.toHasSub.{0} Rat (AddGroup.toSubNegMonoid.{0} Rat Rat.addGroup))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.hasAdd) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) -> (Eq.{1} Nat (Int.gcd (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))) -> (PythagoreanTriple.IsPrimitiveClassified x y z h))
-but is expected to have type
- forall {x : Int} {y : Int} {z : Int} (h : PythagoreanTriple x y z), (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) z) -> (forall {m : Int} {n : Int}, (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (Int.cast.{0} Rat Rat.instIntCastRat x) (Int.cast.{0} Rat Rat.instIntCastRat z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMulRat) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMulRat) (OfNat.ofNat.{0} Rat 2 (Rat.instOfNatRat 2)) (Int.cast.{0} Rat Rat.instIntCastRat m)) (Int.cast.{0} Rat Rat.instIntCastRat n)) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.instAddRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (Int.cast.{0} Rat Rat.instIntCastRat y) (Int.cast.{0} Rat Rat.instIntCastRat z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (HSub.hSub.{0, 0, 0} Rat Rat Rat (instHSub.{0} Rat Rat.instSubRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.instAddRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) -> (Eq.{1} Nat (Int.gcd (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))) -> (PythagoreanTriple.IsPrimitiveClassified x y z h))
+<too large>
Case conversion may be inaccurate. Consider using '#align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_auxₓ'. -/
theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
(hm2n2 : 0 < m ^ 2 + n ^ 2) (hv2 : (x : ℚ) / z = 2 * m * n / (m ^ 2 + n ^ 2))
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -400,7 +400,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
lean 3 declaration is
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (Semiring.toNatCast.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (Semiring.toNatCast.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circleEquivGen_applyₓ'. -/
@[simp]
theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
@@ -412,7 +412,7 @@ theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
lean 3 declaration is
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (DivisionSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semifield.toDivisionSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Field.toSemifield.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (DivisionSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semifield.toDivisionSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Field.toSemifield.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circleEquivGen_symm_applyₓ'. -/
@[simp]
theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -38,7 +38,7 @@ the bulk of the proof below.
lean 3 declaration is
forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddCommGroupWithOne.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toAddCommGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
but is expected to have type
- forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (NonAssocRing.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
+ forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (Semiring.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommSemiring.toSemiring.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toCommSemiring.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_fourₓ'. -/
theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
by
@@ -353,7 +353,7 @@ variable {K : Type _} [Field K]
lean 3 declaration is
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))))
but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))))
Case conversion may be inaccurate. Consider using '#align circle_equiv_gen circleEquivGenₓ'. -/
/-- A parameterization of the unit circle that is useful for classifying Pythagorean triples.
(To be applied in the case where `K = ℚ`.) -/
@@ -400,7 +400,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
lean 3 declaration is
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (NonAssocRing.toNatCast.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (Semiring.toNatCast.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circleEquivGen_applyₓ'. -/
@[simp]
theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
@@ -412,7 +412,7 @@ theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
lean 3 declaration is
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (NonAssocRing.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (DivisionRing.toRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Field.toDivisionRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semiring.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (DivisionSemiring.toSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Semifield.toDivisionSemiring.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) (Field.toSemifield.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (Semiring.toOne.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circleEquivGen_symm_applyₓ'. -/
@[simp]
theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
mathlib commit https://github.com/leanprover-community/mathlib/commit/06a655b5fcfbda03502f9158bbf6c0f1400886f9
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Paul van Wamelen
! This file was ported from Lean 3 source module number_theory.pythagorean_triples
-! leanprover-community/mathlib commit 97eab48559068f3d6313da387714ef25768fb730
+! leanprover-community/mathlib commit e8638a0fcaf73e4500469f368ef9494e495099b3
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -183,9 +183,9 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
· -- x even, y even
exfalso
apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
- · apply Int.dvd_natAbs_of_ofNat_dvd
+ · apply Int.coe_nat_dvd_left.1
apply Int.dvd_of_emod_eq_zero hx
- · apply Int.dvd_natAbs_of_ofNat_dvd
+ · apply Int.coe_nat_dvd_left.1
apply Int.dvd_of_emod_eq_zero hy
· left
exact ⟨hx, hy⟩
@@ -480,8 +480,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
apply (or_self_iff _).mp
apply Int.Prime.dvd_mul' hp
rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
- apply dvd_add (dvd_neg_of_dvd hp1)
- exact dvd_mul_of_dvd_left (int.coe_nat_dvd_left.mpr hpm) m
+ exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
rw [Int.gcd_comm] at hnp
apply mt (Int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp
apply (or_self_iff _).mp
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -34,24 +34,24 @@ the bulk of the proof below.
-/
-/- warning: sq_ne_two_fin_zmod_four -> sq_ne_two_fin_zMod_four is a dubious translation:
+/- warning: sq_ne_two_fin_zmod_four -> sq_ne_two_fin_zmod_four is a dubious translation:
lean 3 declaration is
forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddCommGroupWithOne.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toAddCommGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
but is expected to have type
forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (NonAssocRing.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
-Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_fourₓ'. -/
-theorem sq_ne_two_fin_zMod_four (z : ZMod 4) : z * z ≠ 2 :=
+Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_fourₓ'. -/
+theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 :=
by
change Fin 4 at z
fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
-#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_four
+#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
#print Int.sq_ne_two_mod_four /-
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
by
suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
rw [← ZMod.int_cast_eq_int_cast_iff']
- simpa using sq_ne_two_fin_zMod_four _
+ simpa using sq_ne_two_fin_zmod_four _
#align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
-/
@@ -396,30 +396,30 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
ring
#align circle_equiv_gen circleEquivGen
-/- warning: circle_equiv_apply -> circle_equiv_apply is a dubious translation:
+/- warning: circle_equiv_apply -> circleEquivGen_apply is a dubious translation:
lean 3 declaration is
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
but is expected to have type
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (NonAssocRing.toNatCast.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
-Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circle_equiv_applyₓ'. -/
+Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circleEquivGen_applyₓ'. -/
@[simp]
-theorem circle_equiv_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
+theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
(circleEquivGen hk x : K × K) = ⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩ :=
rfl
-#align circle_equiv_apply circle_equiv_apply
+#align circle_equiv_apply circleEquivGen_apply
-/- warning: circle_equiv_symm_apply -> circle_equiv_symm_apply is a dubious translation:
+/- warning: circle_equiv_symm_apply -> circleEquivGen_symm_apply is a dubious translation:
lean 3 declaration is
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
but is expected to have type
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (NonAssocRing.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (DivisionRing.toRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Field.toDivisionRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circle_equiv_symm_applyₓ'. -/
+Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circleEquivGen_symm_applyₓ'. -/
@[simp]
-theorem circle_equiv_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
+theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
(v : { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }) :
(circleEquivGen hk).symm v = (v : K × K).1 / ((v : K × K).2 + 1) :=
rfl
-#align circle_equiv_symm_apply circle_equiv_symm_apply
+#align circle_equiv_symm_apply circleEquivGen_symm_apply
end circleEquivGen
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -36,7 +36,7 @@ the bulk of the proof below.
/- warning: sq_ne_two_fin_zmod_four -> sq_ne_two_fin_zMod_four is a dubious translation:
lean 3 declaration is
- forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (NonAssocRing.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toNonAssocRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
+ forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddCommGroupWithOne.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toAddCommGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
but is expected to have type
forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (NonAssocRing.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_fourₓ'. -/
@@ -351,7 +351,7 @@ variable {K : Type _} [Field K]
/- warning: circle_equiv_gen -> circleEquivGen is a dubious translation:
lean 3 declaration is
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))))
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))))
but is expected to have type
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
Case conversion may be inaccurate. Consider using '#align circle_equiv_gen circleEquivGenₓ'. -/
@@ -398,7 +398,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
/- warning: circle_equiv_apply -> circle_equiv_apply is a dubious translation:
lean 3 declaration is
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
but is expected to have type
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (NonAssocRing.toNatCast.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circle_equiv_applyₓ'. -/
@@ -410,7 +410,7 @@ theorem circle_equiv_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
/- warning: circle_equiv_symm_apply -> circle_equiv_symm_apply is a dubious translation:
lean 3 declaration is
- forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (AddCommGroupWithOne.toAddGroupWithOne.{u1} K (Ring.toAddCommGroupWithOne.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
but is expected to have type
forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (NonAssocRing.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (DivisionRing.toRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Field.toDivisionRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circle_equiv_symm_applyₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/d11893b411025250c8e61ff2f12ccbd7ee35ab15
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Paul van Wamelen
! This file was ported from Lean 3 source module number_theory.pythagorean_triples
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit 97eab48559068f3d6313da387714ef25768fb730
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -19,6 +19,9 @@ import Mathbin.Data.Zmod.Basic
/-!
# Pythagorean Triples
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
The main result is the classification of Pythagorean triples. The final result is for general
Pythagorean triples. It follows from the more interesting relatively prime case. We use the
"rational parametrization of the circle" method for the proof. The parametrization maps the point
mathlib commit https://github.com/leanprover-community/mathlib/commit/57e09a1296bfb4330ddf6624f1028ba186117d82
@@ -31,28 +31,39 @@ the bulk of the proof below.
-/
+/- warning: sq_ne_two_fin_zmod_four -> sq_ne_two_fin_zMod_four is a dubious translation:
+lean 3 declaration is
+ forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Distrib.toHasMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (Ring.toDistrib.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (OfNat.mk.{0} Nat 4 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) z z) (OfNat.ofNat.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (OfNat.mk.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) 2 (bit0.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Distrib.toHasAdd.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toDistrib.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (One.one.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddMonoidWithOne.toOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (AddGroupWithOne.toAddMonoidWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (NonAssocRing.toAddGroupWithOne.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (Ring.toNonAssocRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (CommRing.toRing.{0} (ZMod (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))) (ZMod.commRing (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
+but is expected to have type
+ forall (z : ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))), Ne.{1} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (HMul.hMul.{0, 0, 0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (instHMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonUnitalNonAssocRing.toMul.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (NonAssocRing.toNonUnitalNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))))) z z) (OfNat.ofNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (instOfNat.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) 2 (NonAssocRing.toNatCast.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (Ring.toNonAssocRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (CommRing.toRing.{0} (ZMod (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4))) (ZMod.commRing (OfNat.ofNat.{0} Nat 4 (instOfNatNat 4)))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))
+Case conversion may be inaccurate. Consider using '#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_fourₓ'. -/
theorem sq_ne_two_fin_zMod_four (z : ZMod 4) : z * z ≠ 2 :=
by
change Fin 4 at z
fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_four
+#print Int.sq_ne_two_mod_four /-
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
by
suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
rw [← ZMod.int_cast_eq_int_cast_iff']
simpa using sq_ne_two_fin_zMod_four _
#align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
+-/
noncomputable section
open Classical
+#print PythagoreanTriple /-
/-- Three integers `x`, `y`, and `z` form a Pythagorean triple if `x * x + y * y = z * z`. -/
def PythagoreanTriple (x y z : ℤ) : Prop :=
x * x + y * y = z * z
#align pythagorean_triple PythagoreanTriple
+-/
+#print pythagoreanTriple_comm /-
/-- Pythagorean triples are interchangable, i.e `x * x + y * y = y * y + x * x = z * z`.
This comes from additive commutativity. -/
theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ PythagoreanTriple y x z :=
@@ -60,11 +71,14 @@ theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ Pytha
delta PythagoreanTriple
rw [add_comm]
#align pythagorean_triple_comm pythagoreanTriple_comm
+-/
+#print PythagoreanTriple.zero /-
/-- The zeroth Pythagorean triple is all zeros. -/
theorem PythagoreanTriple.zero : PythagoreanTriple 0 0 0 := by
simp only [PythagoreanTriple, MulZeroClass.zero_mul, zero_add]
#align pythagorean_triple.zero PythagoreanTriple.zero
+-/
namespace PythagoreanTriple
@@ -72,14 +86,19 @@ variable {x y z : ℤ} (h : PythagoreanTriple x y z)
include h
+#print PythagoreanTriple.eq /-
theorem eq : x * x + y * y = z * z :=
h
#align pythagorean_triple.eq PythagoreanTriple.eq
+-/
+#print PythagoreanTriple.symm /-
@[symm]
theorem symm : PythagoreanTriple y x z := by rwa [pythagoreanTriple_comm]
#align pythagorean_triple.symm PythagoreanTriple.symm
+-/
+#print PythagoreanTriple.mul /-
/-- A triple is still a triple if you multiply `x`, `y` and `z`
by a constant `k`. -/
theorem mul (k : ℤ) : PythagoreanTriple (k * x) (k * y) (k * z) :=
@@ -89,9 +108,11 @@ theorem mul (k : ℤ) : PythagoreanTriple (k * x) (k * y) (k * z) :=
_ = k * z * (k * z) := by ring
#align pythagorean_triple.mul PythagoreanTriple.mul
+-/
omit h
+#print PythagoreanTriple.mul_iff /-
/-- `(k*x, k*y, k*z)` is a Pythagorean triple if and only if
`(x, y, z)` is also a triple. -/
theorem mul_iff (k : ℤ) (hk : k ≠ 0) :
@@ -103,9 +124,11 @@ theorem mul_iff (k : ℤ) (hk : k ≠ 0) :
rw [← mul_left_inj' (mul_ne_zero hk hk)]
convert h using 1 <;> ring
#align pythagorean_triple.mul_iff PythagoreanTriple.mul_iff
+-/
include h
+#print PythagoreanTriple.IsClassified /-
/-- A Pythagorean triple `x, y, z` is “classified” if there exist integers `k, m, n` such that
either
* `x = k * (m ^ 2 - n ^ 2)` and `y = k * (2 * m * n)`, or
@@ -117,7 +140,9 @@ def IsClassified :=
x = k * (2 * m * n) ∧ y = k * (m ^ 2 - n ^ 2)) ∧
Int.gcd m n = 1
#align pythagorean_triple.is_classified PythagoreanTriple.IsClassified
+-/
+#print PythagoreanTriple.IsPrimitiveClassified /-
/-- A primitive pythogorean triple `x, y, z` is a pythagorean triple with `x` and `y` coprime.
Such a triple is “primitively classified” if there exist coprime integers `m, n` such that either
* `x = m ^ 2 - n ^ 2` and `y = 2 * m * n`, or
@@ -129,7 +154,9 @@ def IsPrimitiveClassified :=
(x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n ∨ x = 2 * m * n ∧ y = m ^ 2 - n ^ 2) ∧
Int.gcd m n = 1 ∧ (m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0)
#align pythagorean_triple.is_primitive_classified PythagoreanTriple.IsPrimitiveClassified
+-/
+#print PythagoreanTriple.mul_isClassified /-
theorem mul_isClassified (k : ℤ) (hc : h.IsClassified) : (h.mul k).IsClassified :=
by
obtain ⟨l, m, n, ⟨⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, co⟩⟩ := hc
@@ -142,7 +169,9 @@ theorem mul_isClassified (k : ℤ) (hc : h.IsClassified) : (h.mul k).IsClassifie
right
constructor <;> ring
#align pythagorean_triple.mul_is_classified PythagoreanTriple.mul_isClassified
+-/
+#print PythagoreanTriple.even_odd_of_coprime /-
theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
x % 2 = 0 ∧ y % 2 = 1 ∨ x % 2 = 1 ∧ y % 2 = 0 :=
by
@@ -176,7 +205,14 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
ring]
norm_num [Int.add_emod]
#align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
+-/
+/- warning: pythagorean_triple.gcd_dvd -> PythagoreanTriple.gcd_dvd is a dubious translation:
+lean 3 declaration is
+ forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Dvd.Dvd.{0} Int (semigroupDvd.{0} Int Int.semigroup) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCₓ.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) (Int.gcd x y)) z)
+but is expected to have type
+ forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Dvd.dvd.{0} Int Int.instDvdInt (Nat.cast.{0} Int instNatCastInt (Int.gcd x y)) z)
+Case conversion may be inaccurate. Consider using '#align pythagorean_triple.gcd_dvd PythagoreanTriple.gcd_dvdₓ'. -/
theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
by
by_cases h0 : Int.gcd x y = 0
@@ -199,6 +235,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
exact dvd_mul_right _ _
#align pythagorean_triple.gcd_dvd PythagoreanTriple.gcd_dvd
+#print PythagoreanTriple.normalize /-
theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / Int.gcd x y) :=
by
by_cases h0 : Int.gcd x y = 0
@@ -224,7 +261,9 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
rwa [Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel_left _ hk]
#align pythagorean_triple.normalize PythagoreanTriple.normalize
+-/
+#print PythagoreanTriple.isClassified_of_isPrimitiveClassified /-
theorem isClassified_of_isPrimitiveClassified (hp : h.IsPrimitiveClassified) : h.IsClassified :=
by
obtain ⟨m, n, H⟩ := hp
@@ -233,7 +272,9 @@ theorem isClassified_of_isPrimitiveClassified (hp : h.IsPrimitiveClassified) : h
rw [one_mul, one_mul]
exact ⟨t, co⟩
#align pythagorean_triple.is_classified_of_is_primitive_classified PythagoreanTriple.isClassified_of_isPrimitiveClassified
+-/
+#print PythagoreanTriple.isClassified_of_normalize_isPrimitiveClassified /-
theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrimitiveClassified) :
h.IsClassified :=
by
@@ -244,7 +285,9 @@ theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrim
· exact Int.gcd_dvd_right x y
· exact h.gcd_dvd
#align pythagorean_triple.is_classified_of_normalize_is_primitive_classified PythagoreanTriple.isClassified_of_normalize_isPrimitiveClassified
+-/
+#print PythagoreanTriple.ne_zero_of_coprime /-
theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
by
suffices 0 < z * z by
@@ -258,7 +301,9 @@ theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 :=
· apply lt_add_of_pos_of_le (sq_pos_of_ne_zero x hxz) (sq_nonneg y)
· apply lt_add_of_le_of_pos (sq_nonneg x) (sq_pos_of_ne_zero y hyz)
#align pythagorean_triple.ne_zero_of_coprime PythagoreanTriple.ne_zero_of_coprime
+-/
+#print PythagoreanTriple.isPrimitiveClassified_of_coprime_of_zero_left /-
theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx : x = 0) :
h.IsPrimitiveClassified := by
subst x
@@ -272,7 +317,9 @@ theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx
rw [hy, hc, Int.gcd_zero_left]
norm_num
#align pythagorean_triple.is_primitive_classified_of_coprime_of_zero_left PythagoreanTriple.isPrimitiveClassified_of_coprime_of_zero_left
+-/
+#print PythagoreanTriple.coprime_of_coprime /-
theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 :=
by
by_contra H
@@ -284,6 +331,7 @@ theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 :=
rw [← Int.coe_nat_dvd_left] at hpy hpz
exact dvd_sub (hpz.mul_right _) (hpy.mul_right _)
#align pythagorean_triple.coprime_of_coprime PythagoreanTriple.coprime_of_coprime
+-/
end PythagoreanTriple
@@ -298,6 +346,12 @@ For the classification of pythogorean triples, we will use a parametrization of
variable {K : Type _} [Field K]
+/- warning: circle_equiv_gen -> circleEquivGen is a dubious translation:
+lean 3 declaration is
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))))
+but is expected to have type
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K], (forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) -> (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
+Case conversion may be inaccurate. Consider using '#align circle_equiv_gen circleEquivGenₓ'. -/
/-- A parameterization of the unit circle that is useful for classifying Pythagorean triples.
(To be applied in the case where `K = ℚ`.) -/
def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
@@ -339,12 +393,24 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
ring
#align circle_equiv_gen circleEquivGen
+/- warning: circle_equiv_apply -> circle_equiv_apply is a dubious translation:
+lean 3 declaration is
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (fun (_x : Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) => K -> (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (Equiv.hasCoeToFun.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (Distrib.toHasMul.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 2 (OfNat.mk.{u1} K 2 (bit0.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (SubNegMonoid.toHasSub.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))
+but is expected to have type
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (x : K), Eq.{succ u1} (Prod.{u1, u1} K K) (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) K (fun (_x : K) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : K) => Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (circleEquivGen.{u1} K _inst_1 hk) x)) (Prod.mk.{u1, u1} K K (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HMul.hMul.{u1, u1, u1} K K K (instHMul.{u1} K (NonUnitalNonAssocRing.toMul.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (OfNat.ofNat.{u1} K 2 (instOfNat.{u1} K 2 (NonAssocRing.toNatCast.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) x) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (HSub.hSub.{u1, u1, u1} K K K (instHSub.{u1} K (Ring.toSub.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))
+Case conversion may be inaccurate. Consider using '#align circle_equiv_apply circle_equiv_applyₓ'. -/
@[simp]
theorem circle_equiv_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
(circleEquivGen hk x : K × K) = ⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩ :=
rfl
#align circle_equiv_apply circle_equiv_apply
+/- warning: circle_equiv_symm_apply -> circle_equiv_symm_apply is a dubious translation:
+lean 3 declaration is
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) x (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 0 (OfNat.mk.{u1} K 0 (Zero.zero.{u1} K (MulZeroClass.toHasZero.{u1} K (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))), Eq.{succ u1} K (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (fun (_x : Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) => (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) -> K) (Equiv.hasCoeToFun.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (DivInvMonoid.toHasDiv.{u1} K (DivisionRing.toDivInvMonoid.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))) (Prod.fst.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeBase.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))))))) (Prod.{u1, u1} K K) (coeSubtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toHasAdd.{u1} K (Ring.toDistrib.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (Ring.toMonoid.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (SubNegMonoid.toHasNeg.{u1} K (AddGroup.toSubNegMonoid.{u1} K (AddGroupWithOne.toAddGroup.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))))))) v)) (OfNat.ofNat.{u1} K 1 (OfNat.mk.{u1} K 1 (One.one.{u1} K (AddMonoidWithOne.toOne.{u1} K (AddGroupWithOne.toAddMonoidWithOne.{u1} K (NonAssocRing.toAddGroupWithOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))))
+but is expected to have type
+ forall {K : Type.{u1}} [_inst_1 : Field.{u1} K] (hk : forall (x : K), Ne.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) x (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 0 (Zero.toOfNat0.{u1} K (CommMonoidWithZero.toZero.{u1} K (CommGroupWithZero.toCommMonoidWithZero.{u1} K (Semifield.toCommGroupWithZero.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (v : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (fun (_x : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) K) (Equiv.symm.{succ u1, succ u1} K (Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) (circleEquivGen.{u1} K _inst_1 hk)) v) (HDiv.hDiv.{u1, u1, u1} K K K (instHDiv.{u1} K (Field.toDiv.{u1} K _inst_1)) (Prod.fst.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (HAdd.hAdd.{u1, u1, u1} K ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (Prod.snd.{u1, u1} K K (Subtype.val.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))))) v)) (OfNat.ofNat.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) 1 (One.toOfNat1.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (NonAssocRing.toOne.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Ring.toNonAssocRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (DivisionRing.toRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) (Field.toDivisionRing.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Subtype.{succ u1} (Prod.{u1, u1} K K) (fun (p : Prod.{u1, u1} K K) => And (Eq.{succ u1} K (HAdd.hAdd.{u1, u1, u1} K K K (instHAdd.{u1} K (Distrib.toAdd.{u1} K (NonUnitalNonAssocSemiring.toDistrib.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.fst.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{u1, 0, u1} K Nat K (instHPow.{u1, 0} K Nat (Monoid.Pow.{u1} K (MonoidWithZero.toMonoid.{u1} K (Semiring.toMonoidWithZero.{u1} K (DivisionSemiring.toSemiring.{u1} K (Semifield.toDivisionSemiring.{u1} K (Field.toSemifield.{u1} K _inst_1))))))) (Prod.snd.{u1, u1} K K p) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))))))) (Ne.{succ u1} K (Prod.snd.{u1, u1} K K p) (Neg.neg.{u1} K (Ring.toNeg.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1))) (OfNat.ofNat.{u1} K 1 (One.toOfNat1.{u1} K (NonAssocRing.toOne.{u1} K (Ring.toNonAssocRing.{u1} K (DivisionRing.toRing.{u1} K (Field.toDivisionRing.{u1} K _inst_1)))))))))) => K) v) _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align circle_equiv_symm_apply circle_equiv_symm_applyₓ'. -/
@[simp]
theorem circle_equiv_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
(v : { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }) :
@@ -480,6 +546,12 @@ variable {x y z : ℤ} (h : PythagoreanTriple x y z)
include h
+/- warning: pythagorean_triple.is_primitive_classified_aux -> PythagoreanTriple.isPrimitiveClassified_aux is a dubious translation:
+lean 3 declaration is
+ forall {x : Int} {y : Int} {z : Int} (h : PythagoreanTriple x y z), (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) z) -> (forall {m : Int} {n : Int}, (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) x) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.hasMul) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.hasMul) (OfNat.ofNat.{0} Rat 2 (OfNat.mk.{0} Rat 2 (bit0.{0} Rat Rat.hasAdd (One.one.{0} Rat Rat.hasOne)))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n)) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.hasAdd) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) y) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.hasDiv) (HSub.hSub.{0, 0, 0} Rat Rat Rat (instHSub.{0} Rat (SubNegMonoid.toHasSub.{0} Rat (AddGroup.toSubNegMonoid.{0} Rat Rat.addGroup))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.hasAdd) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) m) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Rat (HasLiftT.mk.{1, 1} Int Rat (CoeTCₓ.coe.{1, 1} Int Rat (Int.castCoe.{0} Rat Rat.hasIntCast))) n) (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) -> (Eq.{1} Nat (Int.gcd (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))) -> (PythagoreanTriple.IsPrimitiveClassified x y z h))
+but is expected to have type
+ forall {x : Int} {y : Int} {z : Int} (h : PythagoreanTriple x y z), (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) z) -> (forall {m : Int} {n : Int}, (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (Int.cast.{0} Rat Rat.instIntCastRat x) (Int.cast.{0} Rat Rat.instIntCastRat z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMulRat) (HMul.hMul.{0, 0, 0} Rat Rat Rat (instHMul.{0} Rat Rat.instMulRat) (OfNat.ofNat.{0} Rat 2 (Rat.instOfNatRat 2)) (Int.cast.{0} Rat Rat.instIntCastRat m)) (Int.cast.{0} Rat Rat.instIntCastRat n)) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.instAddRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) -> (Eq.{1} Rat (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (Int.cast.{0} Rat Rat.instIntCastRat y) (Int.cast.{0} Rat Rat.instIntCastRat z)) (HDiv.hDiv.{0, 0, 0} Rat Rat Rat (instHDiv.{0} Rat Rat.instDivRat) (HSub.hSub.{0, 0, 0} Rat Rat Rat (instHSub.{0} Rat Rat.instSubRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{0, 0, 0} Rat Rat Rat (instHAdd.{0} Rat Rat.instAddRat) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat m) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Rat Nat Rat (instHPow.{0, 0} Rat Nat (Monoid.Pow.{0} Rat Rat.monoid)) (Int.cast.{0} Rat Rat.instIntCastRat n) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) -> (Eq.{1} Nat (Int.gcd (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))) -> (PythagoreanTriple.IsPrimitiveClassified x y z h))
+Case conversion may be inaccurate. Consider using '#align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_auxₓ'. -/
theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
(hm2n2 : 0 < m ^ 2 + n ^ 2) (hv2 : (x : ℚ) / z = 2 * m * n / (m ^ 2 + n ^ 2))
(hw2 : (y : ℚ) / z = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2))
@@ -502,6 +574,7 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
#align pythagorean_triple.is_primitive_classified_aux PythagoreanTriple.isPrimitiveClassified_aux
/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([2, 3]) } -/
+#print PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos /-
theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (hyo : y % 2 = 1)
(hzpos : 0 < z) : h.IsPrimitiveClassified :=
by
@@ -604,7 +677,9 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
revert hyo
norm_num
#align pythagorean_triple.is_primitive_classified_of_coprime_of_odd_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_odd_of_pos
+-/
+#print PythagoreanTriple.isPrimitiveClassified_of_coprime_of_pos /-
theorem isPrimitiveClassified_of_coprime_of_pos (hc : Int.gcd x y = 1) (hzpos : 0 < z) :
h.IsPrimitiveClassified :=
by
@@ -614,7 +689,9 @@ theorem isPrimitiveClassified_of_coprime_of_pos (hc : Int.gcd x y = 1) (hzpos :
obtain ⟨m, n, H⟩ := h.symm.is_primitive_classified_of_coprime_of_odd_of_pos hc h2.left hzpos
use m, n; tauto
#align pythagorean_triple.is_primitive_classified_of_coprime_of_pos PythagoreanTriple.isPrimitiveClassified_of_coprime_of_pos
+-/
+#print PythagoreanTriple.isPrimitiveClassified_of_coprime /-
theorem isPrimitiveClassified_of_coprime (hc : Int.gcd x y = 1) : h.IsPrimitiveClassified :=
by
by_cases hz : 0 < z
@@ -624,7 +701,9 @@ theorem isPrimitiveClassified_of_coprime (hc : Int.gcd x y = 1) : h.IsPrimitiveC
apply lt_of_le_of_ne _ (h'.ne_zero_of_coprime hc).symm
exact le_neg.mp (not_lt.mp hz)
#align pythagorean_triple.is_primitive_classified_of_coprime PythagoreanTriple.isPrimitiveClassified_of_coprime
+-/
+#print PythagoreanTriple.classified /-
theorem classified : h.IsClassified :=
by
by_cases h0 : Int.gcd x y = 0
@@ -640,9 +719,16 @@ theorem classified : h.IsClassified :=
apply h.normalize.is_primitive_classified_of_coprime
apply Int.gcd_div_gcd_div_gcd (Nat.pos_of_ne_zero h0)
#align pythagorean_triple.classified PythagoreanTriple.classified
+-/
omit h
+/- warning: pythagorean_triple.coprime_classification -> PythagoreanTriple.coprime_classification is a dubious translation:
+lean 3 declaration is
+ forall {x : Int} {y : Int} {z : Int}, Iff (And (PythagoreanTriple x y z) (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)) (Eq.{1} Int y (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))) (And (Or (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (Eq.{1} Int z (Neg.neg.{0} Int Int.hasNeg (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))))))))
+but is expected to have type
+ forall {x : Int} {y : Int} {z : Int}, Iff (And (PythagoreanTriple x y z) (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)) (Eq.{1} Int y (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))) (And (Or (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (Eq.{1} Int z (Neg.neg.{0} Int Int.instNegInt (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))))))))
+Case conversion may be inaccurate. Consider using '#align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classificationₓ'. -/
theorem coprime_classification :
PythagoreanTriple x y z ∧ Int.gcd x y = 1 ↔
∃ m n,
@@ -680,6 +766,12 @@ theorem coprime_classification :
exact coprime_sq_sub_mul co pp
#align pythagorean_triple.coprime_classification PythagoreanTriple.coprime_classification
+/- warning: pythagorean_triple.coprime_classification' -> PythagoreanTriple.coprime_classification' is a dubious translation:
+lean 3 declaration is
+ forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) -> (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) x (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) -> (LT.lt.{0} Int Int.hasLt (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) z) -> (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (And (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)) (And (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (And (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne))))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) m (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 1 (OfNat.mk.{0} Int 1 (One.one.{0} Int Int.hasOne)))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.hasMod) n (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne))))) (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero)))))) (LE.le.{0} Int Int.hasLe (OfNat.ofNat.{0} Int 0 (OfNat.mk.{0} Int 0 (Zero.zero.{0} Int Int.hasZero))) m))))))))
+but is expected to have type
+ forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Eq.{1} Nat (Int.gcd x y) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) -> (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) x (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) -> (LT.lt.{0} Int Int.instLTInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) z) -> (Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Eq.{1} Int x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (And (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)) (And (Eq.{1} Int z (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (And (Eq.{1} Nat (Int.gcd m n) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (And (Or (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1)))) (And (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) m (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 1 (instOfNatInt 1))) (Eq.{1} Int (HMod.hMod.{0, 0, 0} Int Int Int (instHMod.{0} Int Int.instModInt_1) n (OfNat.ofNat.{0} Int 2 (instOfNatInt 2))) (OfNat.ofNat.{0} Int 0 (instOfNatInt 0))))) (LE.le.{0} Int Int.instLEInt (OfNat.ofNat.{0} Int 0 (instOfNatInt 0)) m))))))))
+Case conversion may be inaccurate. Consider using '#align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'ₓ'. -/
/-- by assuming `x` is odd and `z` is positive we get a slightly more precise classification of
the pythagorean triple `x ^ 2 + y ^ 2 = z ^ 2`-/
theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
@@ -734,6 +826,12 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
exact zero_ne_one h_parity
#align pythagorean_triple.coprime_classification' PythagoreanTriple.coprime_classification'
+/- warning: pythagorean_triple.classification -> PythagoreanTriple.classification is a dubious translation:
+lean 3 declaration is
+ forall {x : Int} {y : Int} {z : Int}, Iff (PythagoreanTriple x y z) (Exists.{1} Int (fun (k : Int) => Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n)))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (OfNat.ofNat.{0} Int 2 (OfNat.mk.{0} Int 2 (bit0.{0} Int Int.hasAdd (One.one.{0} Int Int.hasOne)))) m) n))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))) (Or (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) k (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))) (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.hasMul) (Neg.neg.{0} Int Int.hasNeg k) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.hasAdd) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) m (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.monoid)) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))))))))))
+but is expected to have type
+ forall {x : Int} {y : Int} {z : Int}, (PythagoreanTriple x y z) -> (Iff (PythagoreanTriple x y z) (Exists.{1} Int (fun (k : Int) => Exists.{1} Int (fun (m : Int) => Exists.{1} Int (fun (n : Int) => And (Or (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n)))) (And (Eq.{1} Int x (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (OfNat.ofNat.{0} Int 2 (instOfNatInt 2)) m) n))) (Eq.{1} Int y (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))))) (Or (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) k (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))) (Eq.{1} Int z (HMul.hMul.{0, 0, 0} Int Int Int (instHMul.{0} Int Int.instMulInt) (Neg.neg.{0} Int Int.instNegInt k) (HAdd.hAdd.{0, 0, 0} Int Int Int (instHAdd.{0} Int Int.instAddInt) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) m (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HPow.hPow.{0, 0, 0} Int Nat Int (instHPow.{0, 0} Int Nat (Monoid.Pow.{0} Int Int.instMonoidInt)) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))))))))))
+Case conversion may be inaccurate. Consider using '#align pythagorean_triple.classification PythagoreanTriple.classificationₓ'. -/
/-- **Formula for Pythagorean Triples** -/
theorem classification :
PythagoreanTriple x y z ↔
mathlib commit https://github.com/leanprover-community/mathlib/commit/02ba8949f486ebecf93fe7460f1ed0564b5e442c
@@ -40,7 +40,7 @@ theorem sq_ne_two_fin_zMod_four (z : ZMod 4) : z * z ≠ 2 :=
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 :=
by
suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by norm_num at this
- rw [← ZMod.int_coe_eq_int_coe_iff']
+ rw [← ZMod.int_cast_eq_int_cast_iff']
simpa using sq_ne_two_fin_zMod_four _
#align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce7e9d53d4bbc38065db3b595cd5bd73c323bc1d
@@ -237,8 +237,7 @@ theorem isClassified_of_isPrimitiveClassified (hp : h.IsPrimitiveClassified) : h
theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrimitiveClassified) :
h.IsClassified :=
by
- convert
- h.normalize.mul_is_classified (Int.gcd x y)
+ convert h.normalize.mul_is_classified (Int.gcd x y)
(is_classified_of_is_primitive_classified h.normalize hc) <;>
rw [Int.mul_ediv_cancel']
· exact Int.gcd_dvd_left x y
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -63,7 +63,7 @@ theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ Pytha
/-- The zeroth Pythagorean triple is all zeros. -/
theorem PythagoreanTriple.zero : PythagoreanTriple 0 0 0 := by
- simp only [PythagoreanTriple, zero_mul, zero_add]
+ simp only [PythagoreanTriple, MulZeroClass.zero_mul, zero_add]
#align pythagorean_triple.zero PythagoreanTriple.zero
namespace PythagoreanTriple
@@ -187,7 +187,8 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z :=
apply int.nat_abs_eq_zero.mp
apply Nat.eq_zero_of_gcd_eq_zero_right h0
have hz : z = 0 := by
- simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, mul_zero, or_self_iff] using h
+ simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
+ or_self_iff] using h
simp only [hz, dvd_zero]
obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
@@ -208,7 +209,8 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
apply int.nat_abs_eq_zero.mp
apply Nat.eq_zero_of_gcd_eq_zero_right h0
have hz : z = 0 := by
- simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, mul_zero, or_self_iff] using h
+ simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
+ or_self_iff] using h
simp only [hx, hy, hz, Int.zero_div]
exact zero
rcases h.gcd_dvd with ⟨z0, rfl⟩
@@ -597,7 +599,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]
norm_cast
· apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp
- rw [Int.ediv_mul_cancel h1.1, zero_mul]
+ rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]
exact hm2n2
rw [h2.1, h1.2.2.1] at hyo
revert hyo
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
This matches our general policy and zpow_two_pos_of_ne_zero.
Also define sq_pos_of_ne_zero as an alias.
@@ -233,8 +233,8 @@ theorem ne_zero_of_coprime (hc : Int.gcd x y = 1) : z ≠ 0 := by
rw [hc]
exact one_ne_zero
cases' Int.ne_zero_of_gcd hc' with hxz hyz
- · apply lt_add_of_pos_of_le (sq_pos_of_ne_zero x hxz) (sq_nonneg y)
- · apply lt_add_of_le_of_pos (sq_nonneg x) (sq_pos_of_ne_zero y hyz)
+ · apply lt_add_of_pos_of_le (sq_pos_of_ne_zero hxz) (sq_nonneg y)
+ · apply lt_add_of_le_of_pos (sq_nonneg x) (sq_pos_of_ne_zero hyz)
#align pythagorean_triple.ne_zero_of_coprime PythagoreanTriple.ne_zero_of_coprime
theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx : x = 0) :
nat_cast
/int_cast
/rat_cast
to natCast
/intCast
/ratCast
(#11486)
Now that I am defining NNRat.cast
, I want a definitive answer to this naming issue. Plenty of lemmas in mathlib already use natCast
/intCast
/ratCast
over nat_cast
/int_cast
/rat_cast
, and this matches with the general expectation that underscore-separated name parts correspond to a single declaration.
@@ -35,7 +35,7 @@ theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 := by
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 := by
suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by exact this
- rw [← ZMod.int_cast_eq_int_cast_iff']
+ rw [← ZMod.intCast_eq_intCast_iff']
simpa using sq_ne_two_fin_zmod_four _
#align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
We add fermatLastTheoremThree_of_three_dvd_only_c
: To prove FermatLastTheoremFor 3
, we may assume that ¬ 3 ∣ a
, ¬ 3 ∣ b
, a
and b
are coprime and 3 ∣ c
.
From the flt3 project in LFTCM2024.
Co-authored-by: Pietro Monticone <38562595+pitmonticone@users.noreply.github.com>
@@ -176,7 +176,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z := by
∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul]
- rw [← Int.pow_dvd_pow_iff zero_lt_two, sq z, ← h.eq]
+ rw [← Int.pow_dvd_pow_iff two_ne_zero, sq z, ← h.eq]
rw [(by ring : x0 * k * (x0 * k) + y0 * k * (y0 * k) = (k : ℤ) ^ 2 * (x0 * x0 + y0 * y0))]
exact dvd_mul_right _ _
#align pythagorean_triple.gcd_dvd PythagoreanTriple.gcd_dvd
@@ -420,7 +420,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
have h2 : (m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 - n0 ^ 2 + m0 - n0)) := by ring
have h3 : ((m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2) / 2 % 2 = 0 := by
rw [h2, Int.mul_ediv_cancel_left, Int.mul_emod_right]
- exact by decide
+ decide
refine' ⟨⟨_, h1⟩, ⟨_, h2⟩, h3, _⟩
have h20 : (2 : ℤ) ≠ 0 := by decide
rw [h1, h2, Int.mul_ediv_cancel_left _ h20, Int.mul_ediv_cancel_left _ h20]
coe_nat
to natCast
(#11637)
Reduce the diff of #11499
All in the Int
namespace:
ofNat_eq_cast
→ ofNat_eq_natCast
cast_eq_cast_iff_Nat
→ natCast_inj
natCast_eq_ofNat
→ ofNat_eq_natCast
coe_nat_sub
→ natCast_sub
coe_nat_nonneg
→ natCast_nonneg
sign_coe_add_one
→ sign_natCast_add_one
nat_succ_eq_int_succ
→ natCast_succ
succ_neg_nat_succ
→ succ_neg_natCast_succ
coe_pred_of_pos
→ natCast_pred_of_pos
coe_nat_div
→ natCast_div
coe_nat_ediv
→ natCast_ediv
sign_coe_nat_of_nonzero
→ sign_natCast_of_ne_zero
toNat_coe_nat
→ toNat_natCast
toNat_coe_nat_add_one
→ toNat_natCast_add_one
coe_nat_dvd
→ natCast_dvd_natCast
coe_nat_dvd_left
→ natCast_dvd
coe_nat_dvd_right
→ dvd_natCast
le_coe_nat_sub
→ le_natCast_sub
succ_coe_nat_pos
→ succ_natCast_pos
coe_nat_modEq_iff
→ natCast_modEq_iff
coe_natAbs
→ natCast_natAbs
coe_nat_eq_zero
→ natCast_eq_zero
coe_nat_ne_zero
→ natCast_ne_zero
coe_nat_ne_zero_iff_pos
→ natCast_ne_zero_iff_pos
abs_coe_nat
→ abs_natCast
coe_nat_nonpos_iff
→ natCast_nonpos_iff
Also rename Nat.coe_nat_dvd
to Nat.cast_dvd_cast
@@ -135,9 +135,9 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
-- x even, y even
· exfalso
apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
- · apply Int.coe_nat_dvd_left.1
+ · apply Int.natCast_dvd.1
apply Int.dvd_of_emod_eq_zero hx
- · apply Int.coe_nat_dvd_left.1
+ · apply Int.natCast_dvd.1
apply Int.dvd_of_emod_eq_zero hy
-- x even, y odd
· left
@@ -258,7 +258,7 @@ theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 := by
rw [← hc]
apply Nat.dvd_gcd (Int.Prime.dvd_natAbs_of_coe_dvd_sq hp _ _) hpy
rw [sq, eq_sub_of_add_eq h]
- rw [← Int.coe_nat_dvd_left] at hpy hpz
+ rw [← Int.natCast_dvd] at hpy hpz
exact dvd_sub (hpz.mul_right _) (hpy.mul_right _)
#align pythagorean_triple.coprime_of_coprime PythagoreanTriple.coprime_of_coprime
@@ -330,7 +330,7 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
(hn : n % 2 = 1) : Int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1 := by
by_contra H
obtain ⟨p, hp, hp1, hp2⟩ := Nat.Prime.not_coprime_iff_dvd.mp H
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.natCast_dvd] at hp1 hp2
have h2m : (p : ℤ) ∣ 2 * m ^ 2 := by
convert dvd_add hp2 hp1 using 1
ring
@@ -363,7 +363,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
(hn : n % 2 = 1) : Int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 := by
by_contra H
obtain ⟨p, hp, hp1, hp2⟩ := Nat.Prime.not_coprime_iff_dvd.mp H
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.natCast_dvd] at hp1 hp2
have hnp : ¬(p : ℤ) ∣ Int.gcd m n := by
rw [h]
norm_cast
@@ -379,18 +379,18 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
simp only [sq, Nat.cast_ofNat, Int.sub_emod, Int.mul_emod, hm, hn,
mul_zero, EuclideanDomain.zero_mod, mul_one, zero_sub]
decide
- apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpm)) hnp
+ apply mt (Int.dvd_gcd (Int.natCast_dvd.mpr hpm)) hnp
apply or_self_iff.mp
apply Int.Prime.dvd_mul' hp
rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
- exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
+ exact hp1.neg_right.add ((Int.natCast_dvd.2 hpm).mul_right _)
rw [Int.gcd_comm] at hnp
- apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpn)) hnp
+ apply mt (Int.dvd_gcd (Int.natCast_dvd.mpr hpn)) hnp
apply or_self_iff.mp
apply Int.Prime.dvd_mul' hp
rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
apply dvd_add hp1
- exact (Int.coe_nat_dvd_left.mpr hpn).mul_right n
+ exact (Int.natCast_dvd.mpr hpn).mul_right n
private theorem coprime_sq_sub_mul_of_odd_even {m n : ℤ} (h : Int.gcd m n = 1) (hm : m % 2 = 1)
(hn : n % 2 = 0) : Int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 := by
@@ -428,7 +428,7 @@ private theorem coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : Int.gcd m n =
obtain ⟨p, hp, hp1, hp2⟩ := Nat.Prime.not_coprime_iff_dvd.mp h4
apply hp.not_dvd_one
rw [← h]
- rw [← Int.coe_nat_dvd_left] at hp1 hp2
+ rw [← Int.natCast_dvd] at hp1 hp2
apply Nat.dvd_gcd
· apply Int.Prime.dvd_natAbs_of_coe_dvd_sq hp
convert dvd_add hp1 hp2
@@ -283,7 +283,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
⟨⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩, by
field_simp [hk x, div_pow]
ring, by
- simp only [Ne.def, div_eq_iff (hk x), neg_mul, one_mul, neg_add, sub_eq_add_neg, add_left_inj]
+ simp only [Ne, div_eq_iff (hk x), neg_mul, one_mul, neg_add, sub_eq_add_neg, add_left_inj]
simpa only [eq_neg_iff_add_eq_zero, one_pow] using hk 1⟩
invFun p := (p : K × K).1 / ((p : K × K).2 + 1)
left_inv x := by
mul
-div
cancellation lemmas (#11530)
Lemma names around cancellation of multiplication and division are a mess.
This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero
lemma name, the Group
lemma, the AddGroup
lemma name).
| Statement | New name | Old name | |
@@ -291,7 +291,7 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
have h3 : (2 : K) ≠ 0 := by
convert hk 1
rw [one_pow 2, h2]
- field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm]
+ field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel, mul_comm]
right_inv := fun ⟨⟨x, y⟩, hxy, hy⟩ => by
change x ^ 2 + y ^ 2 = 1 at hxy
have h2 : y + 1 ≠ 0 := mt eq_neg_of_add_eq_zero_left hy
open Classical
(#11199)
We remove all but one open Classical
s, instead preferring to use open scoped Classical
. The only real side-effect this led to is moving a couple declarations to use Exists.choose
instead of Classical.choose
.
The first few commits are explicitly labelled regex replaces for ease of review.
@@ -41,7 +41,7 @@ theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 := by
noncomputable section
-open Classical
+open scoped Classical
/-- Three integers `x`, `y`, and `z` form a Pythagorean triple if `x * x + y * y = z * z`. -/
def PythagoreanTriple (x y z : ℤ) : Prop :=
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -473,7 +473,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
exact h0
have hw1 : w ≠ -1 := by
contrapose! hvz with hw1
- -- porting note: `contrapose` unfolds local names, refold them
+ -- Porting note: `contrapose` unfolds local names, refold them
replace hw1 : w = -1 := hw1; show v = 0
rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq
exact pow_eq_zero hq
@@ -604,7 +604,7 @@ theorem coprime_classification :
(x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n ∨ x = 2 * m * n ∧ y = m ^ 2 - n ^ 2) ∧
(z = m ^ 2 + n ^ 2 ∨ z = -(m ^ 2 + n ^ 2)) ∧
Int.gcd m n = 1 ∧ (m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) := by
- clear h -- porting note: don't want this variable, but can't use `include` / `omit`
+ clear h -- Porting note: don't want this variable, but can't use `include` / `omit`
constructor
· intro h
obtain ⟨m, n, H⟩ := h.left.isPrimitiveClassified_of_coprime h.right
@@ -466,10 +466,10 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
let v := (x : ℚ) / z
let w := (y : ℚ) / z
have hq : v ^ 2 + w ^ 2 = 1 := by
- field_simp [sq]
+ field_simp [v, w, sq]
norm_cast
have hvz : v ≠ 0 := by
- field_simp
+ field_simp [v]
exact h0
have hw1 : w ≠ -1 := by
contrapose! hvz with hw1
have
, replace
and suffices
(#10640)
No changes to tactic file, it's just boring fixes throughout the library.
This follows on from #6964.
Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -446,8 +446,7 @@ theorem isPrimitiveClassified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ}
(hw2 : (y : ℚ) / z = ((m : ℚ) ^ 2 - (n : ℚ) ^ 2) / ((m : ℚ) ^ 2 + (n : ℚ) ^ 2))
(H : Int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1) (co : Int.gcd m n = 1)
(pp : m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) : h.IsPrimitiveClassified := by
- have hz : z ≠ 0
- apply ne_of_gt hzpos
+ have hz : z ≠ 0 := ne_of_gt hzpos
have h2 : y = m ^ 2 - n ^ 2 ∧ z = m ^ 2 + n ^ 2 := by
apply Rat.div_int_inj hzpos hm2n2 (h.coprime_of_coprime hc) H
rw [hw2]
Notable changes: lemmas were added in https://github.com/leanprover/std4/pull/538 about gcd
and lcm
, that now have implicit arguments. Mostly this is a positive change in Mathlib, we can just delete the arguments. The one to consider in review is in ModEq
.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -219,8 +219,8 @@ theorem isClassified_of_normalize_isPrimitiveClassified (hc : h.normalize.IsPrim
convert h.normalize.mul_isClassified (Int.gcd x y)
(isClassified_of_isPrimitiveClassified h.normalize hc) <;>
rw [Int.mul_ediv_cancel']
- · exact Int.gcd_dvd_left x y
- · exact Int.gcd_dvd_right x y
+ · exact Int.gcd_dvd_left
+ · exact Int.gcd_dvd_right
· exact h.gcd_dvd
#align pythagorean_triple.is_classified_of_normalize_is_primitive_classified PythagoreanTriple.isClassified_of_normalize_isPrimitiveClassified
@@ -9,6 +9,7 @@ import Mathlib.Tactic.Ring
import Mathlib.Tactic.FieldSimp
import Mathlib.Data.Int.NatPrime
import Mathlib.Data.ZMod.Basic
+import Mathlib.Algebra.GroupPower.Order
#align_import number_theory.pythagorean_triples from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"
cases'
(#9171)
I literally went through and regex'd some uses of cases'
, replacing them with rcases
; this is meant to be a low effort PR as I hope that tools can do this in the future.
rcases
is an easier replacement than cases
, though with better tools we could in future do a second pass converting simple rcases
added here (and existing ones) to cases
.
@@ -638,7 +638,7 @@ theorem coprime_classification' {x y z : ℤ} (h : PythagoreanTriple x y z)
Int.gcd m n = 1 ∧ (m % 2 = 0 ∧ n % 2 = 1 ∨ m % 2 = 1 ∧ n % 2 = 0) ∧ 0 ≤ m := by
obtain ⟨m, n, ht1, ht2, ht3, ht4⟩ :=
PythagoreanTriple.coprime_classification.mp (And.intro h h_coprime)
- cases' le_or_lt 0 m with hm hm
+ rcases le_or_lt 0 m with hm | hm
· use m, n
cases' ht1 with h_odd h_even
· apply And.intro h_odd.1
This is the supremum of
along with some minor fixes from failures on nightly-testing as Mathlib master
is merged into it.
Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.
I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0
branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.
In particular this includes adjustments for the Lean PRs
We can get rid of all the
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)
macros across Mathlib (and in any projects that want to write natural number powers of reals).
Changes the default behaviour of simp
to (config := {decide := false})
. This makes simp
(and consequentially norm_num
) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp
or norm_num
to decide
or rfl
, or adding (config := {decide := true})
.
This changed the behaviour of simp
so that simp [f]
will only unfold "fully applied" occurrences of f
. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true })
. We may in future add a syntax for this, e.g. simp [!f]
; please provide feedback! In the meantime, we have made the following changes:
(config := { unfoldPartialApp := true })
in some places, to recover the old behaviour@[eqns]
to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp
and Function.flip
.This change in Lean may require further changes down the line (e.g. adding the !f
syntax, and/or upstreaming the special treatment for Function.comp
and Function.flip
, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!
Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>
@@ -29,7 +29,7 @@ the bulk of the proof below.
theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 := by
change Fin 4 at z
- fin_cases z <;> norm_num [Fin.ext_iff]
+ fin_cases z <;> decide
#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 := by
@@ -155,7 +155,8 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2 by
rw [← h.eq]
ring]
- norm_num [Int.add_emod]
+ simp only [Int.add_emod, Int.mul_emod_right, zero_add]
+ decide
#align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z := by
@@ -243,10 +244,10 @@ theorem isPrimitiveClassified_of_coprime_of_zero_left (hc : Int.gcd x y = 1) (hx
cases' Int.natAbs_eq y with hy hy
· use 1, 0
rw [hy, hc, Int.gcd_zero_right]
- norm_num
+ decide
· use 0, 1
rw [hy, hc, Int.gcd_zero_left]
- norm_num
+ decide
#align pythagorean_triple.is_primitive_classified_of_coprime_of_zero_left PythagoreanTriple.isPrimitiveClassified_of_coprime_of_zero_left
theorem coprime_of_coprime (hc : Int.gcd x y = 1) : Int.gcd y z = 1 := by
@@ -339,7 +340,9 @@ private theorem coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : Int.gcd m n =
have hnc : p = 2 ∨ p ∣ Int.natAbs n := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2n
by_cases h2 : p = 2
-- Porting note: norm_num is not enough to close h3
- · have h3 : (m ^ 2 + n ^ 2) % 2 = 1 := by field_simp [sq, Int.add_emod, Int.mul_emod, hm, hn]
+ · have h3 : (m ^ 2 + n ^ 2) % 2 = 1 := by
+ simp only [sq, Int.add_emod, Int.mul_emod, hm, hn, dvd_refl, Int.emod_emod_of_dvd]
+ decide
have h4 : (m ^ 2 + n ^ 2) % 2 = 0 := by
apply Int.emod_eq_zero_of_dvd
rwa [h2] at hp2
@@ -372,7 +375,9 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
rw [hp2']
apply mt Int.emod_eq_zero_of_dvd
-- Porting note: norm_num is not enough to close this
- field_simp [sq, Int.sub_emod, Int.mul_emod, hm, hn]
+ simp only [sq, Nat.cast_ofNat, Int.sub_emod, Int.mul_emod, hm, hn,
+ mul_zero, EuclideanDomain.zero_mod, mul_one, zero_sub]
+ decide
apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpm)) hnp
apply or_self_iff.mp
apply Int.Prime.dvd_mul' hp
@@ -528,7 +533,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
Int.dvd_gcd (Int.dvd_of_emod_eq_zero hn2) (Int.dvd_of_emod_eq_zero hm2)
rw [hnmcp] at h1
revert h1
- norm_num
+ decide
· -- m even, n odd
apply h.isPrimitiveClassified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp
· apply Or.intro_left
@@ -374,13 +374,13 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
-- Porting note: norm_num is not enough to close this
field_simp [sq, Int.sub_emod, Int.mul_emod, hm, hn]
apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpm)) hnp
- apply (or_self_iff _).mp
+ apply or_self_iff.mp
apply Int.Prime.dvd_mul' hp
rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
rw [Int.gcd_comm] at hnp
apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpn)) hnp
- apply (or_self_iff _).mp
+ apply or_self_iff.mp
apply Int.Prime.dvd_mul' hp
rw [(by ring : m * m = m ^ 2 - n ^ 2 + n * n)]
apply dvd_add hp1
This incorporates changes from
nightly-testing
are unexciting: we need to fully qualify a few names)They can all be closed when this is merged.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -485,6 +485,11 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
let m := (q.den : ℤ)
let n := q.num
have hm0 : m ≠ 0 := by
+ -- Added to adapt to leanprover/lean4#2734.
+ -- Without `unfold_let`, `norm_cast` can't see the coercion.
+ -- One might try `zeta := true` in `Tactic.NormCast.derive`,
+ -- but that seems to break many other things.
+ unfold_let m
norm_cast
apply Rat.den_nz q
have hq2 : q = n / m := (Rat.num_div_den q).symm
norm_num
was passing the wrong syntax node to elabSimpArgs
when elaborating, which essentially had the effect of ignoring all arguments it was passed, i.e. norm_num [add_comm]
would not try to commute addition in the simp step.
The fix itself is very simple (though not obvious to debug!), probably using TSyntax more would help avoid such issues in future.
Due to this bug many norm_num [blah]
became rw [blah]; norm_num
or similar, sometimes with porting notes, sometimes not, we fix these porting notes and other regressions during the port also.
Interestingly cancel_denoms
uses norm_num [<- mul_assoc]
internally, so cancel_denoms
also got stronger with this change.
@@ -29,7 +29,7 @@ the bulk of the proof below.
theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 := by
change Fin 4 at z
- fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
+ fin_cases z <;> norm_num [Fin.ext_iff]
#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 := by
@@ -155,7 +155,7 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
rw [show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2 by
rw [← h.eq]
ring]
- field_simp [Int.add_emod] -- Porting note: norm_num is not enough to close this
+ norm_num [Int.add_emod]
#align pythagorean_triple.even_odd_of_coprime PythagoreanTriple.even_odd_of_coprime
theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z := by
The main reasons is that having h : 0 < denom
in the context should suffice for field_simp
to do its job, without the need to manually pass h.ne
or similar.
Quite a few have := … ≠ 0
could be dropped, and some field_simp
calls no longer need explicit arguments; this is promising.
This does break some proofs where field_simp
was not used as a closing tactic, and it now
shuffles terms around a bit different. These were fixed. Using field_simp
in the middle of a proof seems rather fragile anyways.
As a drive-by contribution, positivity
now knows about π > 0
.
fixes: #4835
Co-authored-by: Matthew Ballard <matt@mrb.email>
@@ -460,13 +460,11 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
· exact h.isPrimitiveClassified_of_coprime_of_zero_left hc h0
let v := (x : ℚ) / z
let w := (y : ℚ) / z
- have hz : z ≠ 0
- apply ne_of_gt hzpos
have hq : v ^ 2 + w ^ 2 = 1 := by
- field_simp [hz, sq]
+ field_simp [sq]
norm_cast
have hvz : v ≠ 0 := by
- field_simp [hz]
+ field_simp
exact h0
have hw1 : w ≠ -1 := by
contrapose! hvz with hw1
MulZeroClass.
in mul_zero
/zero_mul
(#6682)
Search&replace MulZeroClass.mul_zero
-> mul_zero
, MulZeroClass.zero_mul
-> zero_mul
.
These were introduced by Mathport, as the full name of mul_zero
is actually MulZeroClass.mul_zero
(it's exported with the short name).
@@ -56,7 +56,7 @@ theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ Pytha
/-- The zeroth Pythagorean triple is all zeros. -/
theorem PythagoreanTriple.zero : PythagoreanTriple 0 0 0 := by
- simp only [PythagoreanTriple, MulZeroClass.zero_mul, zero_add]
+ simp only [PythagoreanTriple, zero_mul, zero_add]
#align pythagorean_triple.zero PythagoreanTriple.zero
namespace PythagoreanTriple
@@ -167,7 +167,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z := by
apply Int.natAbs_eq_zero.mp
apply Nat.eq_zero_of_gcd_eq_zero_right h0
have hz : z = 0 := by
- simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
+ simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, mul_zero,
or_self_iff] using h
simp only [hz, dvd_zero]
obtain ⟨k, x0, y0, _, h2, rfl, rfl⟩ :
@@ -188,7 +188,7 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
apply Int.natAbs_eq_zero.mp
apply Nat.eq_zero_of_gcd_eq_zero_right h0
have hz : z = 0 := by
- simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, MulZeroClass.mul_zero,
+ simpa only [PythagoreanTriple, hx, hy, add_zero, zero_eq_mul, mul_zero,
or_self_iff] using h
simp only [hx, hy, hz, Int.zero_div]
exact zero
@@ -550,7 +550,7 @@ theorem isPrimitiveClassified_of_coprime_of_odd_of_pos (hc : Int.gcd x y = 1) (h
rw [Int.ediv_mul_cancel h1.1, Int.ediv_mul_cancel h1.2.1, hw2]
norm_cast
· apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp
- rw [Int.ediv_mul_cancel h1.1, MulZeroClass.zero_mul]
+ rw [Int.ediv_mul_cancel h1.1, zero_mul]
exact hm2n2
rw [h2.1, h1.2.2.1] at hyo
revert hyo
PythagoreanTriple.classification
(#6594)
The rcases
tactic causes this theorem to pull in an unused assumption, as per this Zulip thread.
Before this PR, PythagoreanTriple.classification
includes an unnecessary h
:
theorem PythagoreanTriple.classification {x y z : ℤ} (h : PythagoreanTriple x y z) :
PythagoreanTriple x y z ↔
∃ k m n,
(x = k * (m ^ 2 - n ^ 2) ∧ y = k * (2 * m * n) ∨ x = k * (2 * m * n) ∧ y = k * (m ^ 2 - n ^ 2)) ∧
(z = k * (m ^ 2 + n ^ 2) ∨ z = -k * (m ^ 2 + n ^ 2))
@@ -679,6 +679,7 @@ theorem classification :
(x = k * (m ^ 2 - n ^ 2) ∧ y = k * (2 * m * n) ∨
x = k * (2 * m * n) ∧ y = k * (m ^ 2 - n ^ 2)) ∧
(z = k * (m ^ 2 + n ^ 2) ∨ z = -k * (m ^ 2 + n ^ 2)) := by
+ clear h
constructor
· intro h
obtain ⟨k, m, n, H⟩ := h.classified
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -271,7 +271,7 @@ For the classification of Pythagorean triples, we will use a parametrization of
-/
-variable {K : Type _} [Field K]
+variable {K : Type*} [Field K]
/-- A parameterization of the unit circle that is useful for classifying Pythagorean triples.
(To be applied in the case where `K = ℚ`.) -/
@@ -2,11 +2,6 @@
Copyright (c) 2020 Paul van Wamelen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Paul van Wamelen
-
-! This file was ported from Lean 3 source module number_theory.pythagorean_triples
-! leanprover-community/mathlib commit e8638a0fcaf73e4500469f368ef9494e495099b3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Algebra.Field.Basic
import Mathlib.RingTheory.Int.Basic
@@ -15,6 +10,8 @@ import Mathlib.Tactic.FieldSimp
import Mathlib.Data.Int.NatPrime
import Mathlib.Data.ZMod.Basic
+#align_import number_theory.pythagorean_triples from "leanprover-community/mathlib"@"e8638a0fcaf73e4500469f368ef9494e495099b3"
+
/-!
# Pythagorean Triples
at
and goals (#5387)
Changes are of the form
some_tactic at h⊢
-> some_tactic at h ⊢
some_tactic at h
-> some_tactic at h
@@ -202,7 +202,7 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
have hk : (k : ℤ) ≠ 0 := by
norm_cast
rwa [pos_iff_ne_zero] at k0
- rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h⊢
+ rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul] at h ⊢
rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h
rwa [Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel _ hk, Int.mul_ediv_cancel_left _ hk]
#align pythagorean_triple.normalize PythagoreanTriple.normalize
@@ -174,7 +174,7 @@ theorem gcd_dvd : (Int.gcd x y : ℤ) ∣ z := by
or_self_iff] using h
simp only [hz, dvd_zero]
obtain ⟨k, x0, y0, _, h2, rfl, rfl⟩ :
- ∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
+ ∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
rw [Int.gcd_mul_right, h2, Int.natAbs_ofNat, one_mul]
rw [← Int.pow_dvd_pow_iff zero_lt_two, sq z, ← h.eq]
@@ -197,7 +197,7 @@ theorem normalize : PythagoreanTriple (x / Int.gcd x y) (y / Int.gcd x y) (z / I
exact zero
rcases h.gcd_dvd with ⟨z0, rfl⟩
obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ :
- ∃ (k : ℕ)(x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
+ ∃ (k : ℕ) (x0 y0 : _), 0 < k ∧ Int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k :=
Int.exists_gcd_one' (Nat.pos_of_ne_zero h0)
have hk : (k : ℤ) ≠ 0 := by
norm_cast
@@ -106,7 +106,7 @@ def IsClassified (_ : PythagoreanTriple x y z) :=
Int.gcd m n = 1
#align pythagorean_triple.is_classified PythagoreanTriple.IsClassified
-/-- A primitive pythogorean triple `x, y, z` is a pythagorean triple with `x` and `y` coprime.
+/-- A primitive Pythagorean triple `x, y, z` is a Pythagorean triple with `x` and `y` coprime.
Such a triple is “primitively classified” if there exist coprime integers `m, n` such that either
* `x = m ^ 2 - n ^ 2` and `y = 2 * m * n`, or
* `x = 2 * m * n` and `y = m ^ 2 - n ^ 2`.
@@ -50,7 +50,7 @@ def PythagoreanTriple (x y z : ℤ) : Prop :=
x * x + y * y = z * z
#align pythagorean_triple PythagoreanTriple
-/-- Pythagorean triples are interchangable, i.e `x * x + y * y = y * y + x * x = z * z`.
+/-- Pythagorean triples are interchangeable, i.e `x * x + y * y = y * y + x * x = z * z`.
This comes from additive commutativity. -/
theorem pythagoreanTriple_comm {x y z : ℤ} : PythagoreanTriple x y z ↔ PythagoreanTriple y x z := by
delta PythagoreanTriple
This PR fixes two things:
align
statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align
). This is often seen in the mathport output after ending calc
blocks.#align
statements. (This was needed for a script I wrote for #3630.)@@ -81,7 +81,6 @@ theorem mul (k : ℤ) : PythagoreanTriple (k * x) (k * y) (k * z) :=
k * x * (k * x) + k * y * (k * y) = k ^ 2 * (x * x + y * y) := by ring
_ = k ^ 2 * (z * z) := by rw [h.eq]
_ = k * z * (k * z) := by ring
-
#align pythagorean_triple.mul PythagoreanTriple.mul
/-- `(k*x, k*y, k*z)` is a Pythagorean triple if and only if
Match https://github.com/leanprover-community/mathlib/pull/18698 and a bit of https://github.com/leanprover-community/mathlib/pull/18785.
algebra.divisibility.basic
@70d50ecfd4900dd6d328da39ab7ebd516abe4025
..e8638a0fcaf73e4500469f368ef9494e495099b3
algebra.euclidean_domain.basic
@655994e298904d7e5bbd1e18c95defd7b543eb94
..e8638a0fcaf73e4500469f368ef9494e495099b3
algebra.group.units
@369525b73f229ccd76a6ec0e0e0bf2be57599768
..e8638a0fcaf73e4500469f368ef9494e495099b3
algebra.group_with_zero.basic
@2196ab363eb097c008d4497125e0dde23fb36db2
..e8638a0fcaf73e4500469f368ef9494e495099b3
algebra.group_with_zero.divisibility
@f1a2caaf51ef593799107fe9a8d5e411599f3996
..e8638a0fcaf73e4500469f368ef9494e495099b3
algebra.group_with_zero.units.basic
@70d50ecfd4900dd6d328da39ab7ebd516abe4025
..df5e9937a06fdd349fc60106f54b84d47b1434f0
algebra.order.monoid.canonical.defs
@de87d5053a9fe5cbde723172c0fb7e27e7436473
..e8638a0fcaf73e4500469f368ef9494e495099b3
algebra.ring.divisibility
@f1a2caaf51ef593799107fe9a8d5e411599f3996
..e8638a0fcaf73e4500469f368ef9494e495099b3
data.int.dvd.basic
@e1bccd6e40ae78370f01659715d3c948716e3b7e
..e8638a0fcaf73e4500469f368ef9494e495099b3
data.int.dvd.pow
@b3f25363ae62cb169e72cd6b8b1ac97bacf21ca7
..e8638a0fcaf73e4500469f368ef9494e495099b3
data.int.order.basic
@728baa2f54e6062c5879a3e397ac6bac323e506f
..e8638a0fcaf73e4500469f368ef9494e495099b3
data.nat.gcd.basic
@a47cda9662ff3925c6df271090b5808adbca5b46
..e8638a0fcaf73e4500469f368ef9494e495099b3
data.nat.order.basic
@26f081a2fb920140ed5bc5cc5344e84bcc7cb2b2
..e8638a0fcaf73e4500469f368ef9494e495099b3
data.nat.order.lemmas
@2258b40dacd2942571c8ce136215350c702dc78f
..e8638a0fcaf73e4500469f368ef9494e495099b3
group_theory.perm.cycle.basic
@92ca63f0fb391a9ca5f22d2409a6080e786d99f7
..e8638a0fcaf73e4500469f368ef9494e495099b3
number_theory.divisors
@f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c
..e8638a0fcaf73e4500469f368ef9494e495099b3
number_theory.pythagorean_triples
@70fd9563a21e7b963887c9360bd29b2393e6225a
..e8638a0fcaf73e4500469f368ef9494e495099b3
number_theory.zsqrtd.basic
@7ec294687917cbc5c73620b4414ae9b5dd9ae1b4
..e8638a0fcaf73e4500469f368ef9494e495099b3
ring_theory.multiplicity
@ceb887ddf3344dab425292e497fa2af91498437c
..e8638a0fcaf73e4500469f368ef9494e495099b3
Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Paul van Wamelen
! This file was ported from Lean 3 source module number_theory.pythagorean_triples
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit e8638a0fcaf73e4500469f368ef9494e495099b3
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -138,9 +138,9 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
-- x even, y even
· exfalso
apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
- · apply Int.dvd_natAbs_of_ofNat_dvd
+ · apply Int.coe_nat_dvd_left.1
apply Int.dvd_of_emod_eq_zero hx
- · apply Int.dvd_natAbs_of_ofNat_dvd
+ · apply Int.coe_nat_dvd_left.1
apply Int.dvd_of_emod_eq_zero hy
-- x even, y odd
· left
@@ -381,8 +381,7 @@ private theorem coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : Int.gcd m n = 1)
apply (or_self_iff _).mp
apply Int.Prime.dvd_mul' hp
rw [(by ring : n * n = -(m ^ 2 - n ^ 2) + m * m)]
- apply dvd_add (dvd_neg_of_dvd hp1)
- exact dvd_mul_of_dvd_left (Int.coe_nat_dvd_left.mpr hpm) m
+ exact hp1.neg_right.add ((Int.coe_nat_dvd_left.2 hpm).mul_right _)
rw [Int.gcd_comm] at hnp
apply mt (Int.dvd_gcd (Int.coe_nat_dvd_left.mpr hpn)) hnp
apply (or_self_iff _).mp
@@ -30,15 +30,15 @@ the bulk of the proof below.
-/
-theorem sq_ne_two_fin_zMod_four (z : ZMod 4) : z * z ≠ 2 := by
+theorem sq_ne_two_fin_zmod_four (z : ZMod 4) : z * z ≠ 2 := by
change Fin 4 at z
fin_cases z <;> norm_num [Fin.ext_iff, Fin.val_bit0, Fin.val_bit1]
-#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zMod_four
+#align sq_ne_two_fin_zmod_four sq_ne_two_fin_zmod_four
theorem Int.sq_ne_two_mod_four (z : ℤ) : z * z % 4 ≠ 2 := by
suffices ¬z * z % (4 : ℕ) = 2 % (4 : ℕ) by exact this
rw [← ZMod.int_cast_eq_int_cast_iff']
- simpa using sq_ne_two_fin_zMod_four _
+ simpa using sq_ne_two_fin_zmod_four _
#align int.sq_ne_two_mod_four Int.sq_ne_two_mod_four
noncomputable section
@@ -135,21 +135,21 @@ theorem even_odd_of_coprime (hc : Int.gcd x y = 1) :
x % 2 = 0 ∧ y % 2 = 1 ∨ x % 2 = 1 ∧ y % 2 = 0 := by
cases' Int.emod_two_eq_zero_or_one x with hx hx <;>
cases' Int.emod_two_eq_zero_or_one y with hy hy
- · -- x even, y even
- exfalso
+ -- x even, y even
+ · exfalso
apply Nat.not_coprime_of_dvd_of_dvd (by decide : 1 < 2) _ _ hc
· apply Int.dvd_natAbs_of_ofNat_dvd
apply Int.dvd_of_emod_eq_zero hx
· apply Int.dvd_natAbs_of_ofNat_dvd
apply Int.dvd_of_emod_eq_zero hy
+ -- x even, y odd
· left
exact ⟨hx, hy⟩
- -- x even, y odd
+ -- x odd, y even
· right
exact ⟨hx, hy⟩
- -- x odd, y even
- · -- x odd, y odd
- exfalso
+ -- x odd, y odd
+ · exfalso
obtain ⟨x0, y0, rfl, rfl⟩ : ∃ x0 y0, x = x0 * 2 + 1 ∧ y = y0 * 2 + 1 := by
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hx) with x0 hx2
cases' exists_eq_mul_left_of_dvd (Int.dvd_sub_of_emod_eq hy) with y0 hy2
@@ -314,17 +314,17 @@ def circleEquivGen (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) :
#align circle_equiv_gen circleEquivGen
@[simp]
-theorem circle_equiv_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
+theorem circleEquivGen_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0) (x : K) :
(circleEquivGen hk x : K × K) = ⟨2 * x / (1 + x ^ 2), (1 - x ^ 2) / (1 + x ^ 2)⟩ :=
rfl
-#align circle_equiv_apply circle_equiv_apply
+#align circle_equiv_apply circleEquivGen_apply
@[simp]
-theorem circle_equiv_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
+theorem circleEquivGen_symm_apply (hk : ∀ x : K, 1 + x ^ 2 ≠ 0)
(v : { p : K × K // p.1 ^ 2 + p.2 ^ 2 = 1 ∧ p.2 ≠ -1 }) :
(circleEquivGen hk).symm v = (v : K × K).1 / ((v : K × K).2 + 1) :=
rfl
-#align circle_equiv_symm_apply circle_equiv_symm_apply
+#align circle_equiv_symm_apply circleEquivGen_symm_apply
end circleEquivGen
The unported dependencies are