order.boundedMathlib.Order.Bounded

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Violeta Hernández Palacios
 -/
 import Order.RelClasses
-import Data.Set.Intervals.Basic
+import Order.Interval.Set.Basic
 
 #align_import order.bounded from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
 
Diff
@@ -416,7 +416,7 @@ theorem bounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m)
   refine' ⟨_, bounded.mono (Set.inter_subset_left s _)⟩
   rintro ⟨b, hb⟩
   cases' H a b with m hm
-  exact ⟨m, fun c hc => hm c (or_iff_not_imp_left.2 fun hca => hb c ⟨hc, hca⟩)⟩
+  exact ⟨m, fun c hc => hm c (Classical.or_iff_not_imp_left.2 fun hca => hb c ⟨hc, hca⟩)⟩
 #align set.bounded_inter_not Set.bounded_inter_not
 -/
 
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Violeta Hernández Palacios
 -/
-import Mathbin.Order.RelClasses
-import Mathbin.Data.Set.Intervals.Basic
+import Order.RelClasses
+import Data.Set.Intervals.Basic
 
 #align_import order.bounded from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Violeta Hernández Palacios
-
-! This file was ported from Lean 3 source module order.bounded
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.RelClasses
 import Mathbin.Data.Set.Intervals.Basic
 
+#align_import order.bounded from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+
 /-!
 # Bounded and unbounded sets
 
Diff
@@ -46,50 +46,66 @@ theorem Unbounded.mono (hst : s ⊆ t) (hs : Unbounded r s) : Unbounded r t := f
 /-! ### Alternate characterizations of unboundedness on orders -/
 
 
+#print Set.unbounded_le_of_forall_exists_lt /-
 theorem unbounded_le_of_forall_exists_lt [Preorder α] (h : ∀ a, ∃ b ∈ s, a < b) :
     Unbounded (· ≤ ·) s := fun a =>
   let ⟨b, hb, hb'⟩ := h a
   ⟨b, hb, fun hba => hba.not_lt hb'⟩
 #align set.unbounded_le_of_forall_exists_lt Set.unbounded_le_of_forall_exists_lt
+-/
 
+#print Set.unbounded_le_iff /-
 theorem unbounded_le_iff [LinearOrder α] : Unbounded (· ≤ ·) s ↔ ∀ a, ∃ b ∈ s, a < b := by
   simp only [unbounded, not_le]
 #align set.unbounded_le_iff Set.unbounded_le_iff
+-/
 
+#print Set.unbounded_lt_of_forall_exists_le /-
 theorem unbounded_lt_of_forall_exists_le [Preorder α] (h : ∀ a, ∃ b ∈ s, a ≤ b) :
     Unbounded (· < ·) s := fun a =>
   let ⟨b, hb, hb'⟩ := h a
   ⟨b, hb, fun hba => hba.not_le hb'⟩
 #align set.unbounded_lt_of_forall_exists_le Set.unbounded_lt_of_forall_exists_le
+-/
 
+#print Set.unbounded_lt_iff /-
 theorem unbounded_lt_iff [LinearOrder α] : Unbounded (· < ·) s ↔ ∀ a, ∃ b ∈ s, a ≤ b := by
   simp only [unbounded, not_lt]
 #align set.unbounded_lt_iff Set.unbounded_lt_iff
+-/
 
+#print Set.unbounded_ge_of_forall_exists_gt /-
 theorem unbounded_ge_of_forall_exists_gt [Preorder α] (h : ∀ a, ∃ b ∈ s, b < a) :
     Unbounded (· ≥ ·) s :=
   @unbounded_le_of_forall_exists_lt αᵒᵈ _ _ h
 #align set.unbounded_ge_of_forall_exists_gt Set.unbounded_ge_of_forall_exists_gt
+-/
 
+#print Set.unbounded_ge_iff /-
 theorem unbounded_ge_iff [LinearOrder α] : Unbounded (· ≥ ·) s ↔ ∀ a, ∃ b ∈ s, b < a :=
   ⟨fun h a =>
     let ⟨b, hb, hba⟩ := h a
     ⟨b, hb, lt_of_not_ge hba⟩,
     unbounded_ge_of_forall_exists_gt⟩
 #align set.unbounded_ge_iff Set.unbounded_ge_iff
+-/
 
+#print Set.unbounded_gt_of_forall_exists_ge /-
 theorem unbounded_gt_of_forall_exists_ge [Preorder α] (h : ∀ a, ∃ b ∈ s, b ≤ a) :
     Unbounded (· > ·) s := fun a =>
   let ⟨b, hb, hb'⟩ := h a
   ⟨b, hb, fun hba => not_le_of_gt hba hb'⟩
 #align set.unbounded_gt_of_forall_exists_ge Set.unbounded_gt_of_forall_exists_ge
+-/
 
+#print Set.unbounded_gt_iff /-
 theorem unbounded_gt_iff [LinearOrder α] : Unbounded (· > ·) s ↔ ∀ a, ∃ b ∈ s, b ≤ a :=
   ⟨fun h a =>
     let ⟨b, hb, hba⟩ := h a
     ⟨b, hb, le_of_not_gt hba⟩,
     unbounded_gt_of_forall_exists_ge⟩
 #align set.unbounded_gt_iff Set.unbounded_gt_iff
+-/
 
 /-! ### Relation between boundedness by strict and nonstrict orders. -/
 
@@ -396,6 +412,7 @@ theorem unbounded_lt_Ici [SemilatticeSup α] (a : α) : Unbounded (· < ·) (Set
 /-! ### Bounded initial segments -/
 
 
+#print Set.bounded_inter_not /-
 theorem bounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m) (a : α) :
     Bounded r (s ∩ {b | ¬r b a}) ↔ Bounded r s :=
   by
@@ -404,37 +421,49 @@ theorem bounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m)
   cases' H a b with m hm
   exact ⟨m, fun c hc => hm c (or_iff_not_imp_left.2 fun hca => hb c ⟨hc, hca⟩)⟩
 #align set.bounded_inter_not Set.bounded_inter_not
+-/
 
+#print Set.unbounded_inter_not /-
 theorem unbounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m) (a : α) :
     Unbounded r (s ∩ {b | ¬r b a}) ↔ Unbounded r s := by
   simp_rw [← not_bounded_iff, bounded_inter_not H]
 #align set.unbounded_inter_not Set.unbounded_inter_not
+-/
 
 /-! #### Less or equal -/
 
 
+#print Set.bounded_le_inter_not_le /-
 theorem bounded_le_inter_not_le [SemilatticeSup α] (a : α) :
     Bounded (· ≤ ·) (s ∩ {b | ¬b ≤ a}) ↔ Bounded (· ≤ ·) s :=
   bounded_inter_not (fun x y => ⟨x ⊔ y, fun z h => h.elim le_sup_of_le_left le_sup_of_le_right⟩) a
 #align set.bounded_le_inter_not_le Set.bounded_le_inter_not_le
+-/
 
+#print Set.unbounded_le_inter_not_le /-
 theorem unbounded_le_inter_not_le [SemilatticeSup α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ {b | ¬b ≤ a}) ↔ Unbounded (· ≤ ·) s :=
   by
   rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
   exact bounded_le_inter_not_le a
 #align set.unbounded_le_inter_not_le Set.unbounded_le_inter_not_le
+-/
 
+#print Set.bounded_le_inter_lt /-
 theorem bounded_le_inter_lt [LinearOrder α] (a : α) :
     Bounded (· ≤ ·) (s ∩ {b | a < b}) ↔ Bounded (· ≤ ·) s := by
   simp_rw [← not_le, bounded_le_inter_not_le]
 #align set.bounded_le_inter_lt Set.bounded_le_inter_lt
+-/
 
+#print Set.unbounded_le_inter_lt /-
 theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ {b | a < b}) ↔ Unbounded (· ≤ ·) s := by
   convert unbounded_le_inter_not_le a; ext; exact lt_iff_not_le
 #align set.unbounded_le_inter_lt Set.unbounded_le_inter_lt
+-/
 
+#print Set.bounded_le_inter_le /-
 theorem bounded_le_inter_le [LinearOrder α] (a : α) :
     Bounded (· ≤ ·) (s ∩ {b | a ≤ b}) ↔ Bounded (· ≤ ·) s :=
   by
@@ -442,118 +471,157 @@ theorem bounded_le_inter_le [LinearOrder α] (a : α) :
   rw [← @bounded_le_inter_lt _ s _ a]
   exact bounded.mono fun x ⟨hx, hx'⟩ => ⟨hx, le_of_lt hx'⟩
 #align set.bounded_le_inter_le Set.bounded_le_inter_le
+-/
 
+#print Set.unbounded_le_inter_le /-
 theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ {b | a ≤ b}) ↔ Unbounded (· ≤ ·) s :=
   by
   rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
   exact bounded_le_inter_le a
 #align set.unbounded_le_inter_le Set.unbounded_le_inter_le
+-/
 
 /-! #### Less than -/
 
 
+#print Set.bounded_lt_inter_not_lt /-
 theorem bounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
     Bounded (· < ·) (s ∩ {b | ¬b < a}) ↔ Bounded (· < ·) s :=
   bounded_inter_not (fun x y => ⟨x ⊔ y, fun z h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩) a
 #align set.bounded_lt_inter_not_lt Set.bounded_lt_inter_not_lt
+-/
 
+#print Set.unbounded_lt_inter_not_lt /-
 theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
     Unbounded (· < ·) (s ∩ {b | ¬b < a}) ↔ Unbounded (· < ·) s :=
   by
   rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
   exact bounded_lt_inter_not_lt a
 #align set.unbounded_lt_inter_not_lt Set.unbounded_lt_inter_not_lt
+-/
 
+#print Set.bounded_lt_inter_le /-
 theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
     Bounded (· < ·) (s ∩ {b | a ≤ b}) ↔ Bounded (· < ·) s := by convert bounded_lt_inter_not_lt a;
   ext; exact not_lt.symm
 #align set.bounded_lt_inter_le Set.bounded_lt_inter_le
+-/
 
+#print Set.unbounded_lt_inter_le /-
 theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ {b | a ≤ b}) ↔ Unbounded (· < ·) s := by
   convert unbounded_lt_inter_not_lt a; ext; exact not_lt.symm
 #align set.unbounded_lt_inter_le Set.unbounded_lt_inter_le
+-/
 
+#print Set.bounded_lt_inter_lt /-
 theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
     Bounded (· < ·) (s ∩ {b | a < b}) ↔ Bounded (· < ·) s :=
   by
   rw [← bounded_le_iff_bounded_lt, ← bounded_le_iff_bounded_lt]
   exact bounded_le_inter_lt a
 #align set.bounded_lt_inter_lt Set.bounded_lt_inter_lt
+-/
 
+#print Set.unbounded_lt_inter_lt /-
 theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ {b | a < b}) ↔ Unbounded (· < ·) s :=
   by
   rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
   exact bounded_lt_inter_lt a
 #align set.unbounded_lt_inter_lt Set.unbounded_lt_inter_lt
+-/
 
 /-! #### Greater or equal -/
 
 
+#print Set.bounded_ge_inter_not_ge /-
 theorem bounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
     Bounded (· ≥ ·) (s ∩ {b | ¬a ≤ b}) ↔ Bounded (· ≥ ·) s :=
   @bounded_le_inter_not_le αᵒᵈ s _ a
 #align set.bounded_ge_inter_not_ge Set.bounded_ge_inter_not_ge
+-/
 
+#print Set.unbounded_ge_inter_not_ge /-
 theorem unbounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ {b | ¬a ≤ b}) ↔ Unbounded (· ≥ ·) s :=
   @unbounded_le_inter_not_le αᵒᵈ s _ a
 #align set.unbounded_ge_inter_not_ge Set.unbounded_ge_inter_not_ge
+-/
 
+#print Set.bounded_ge_inter_gt /-
 theorem bounded_ge_inter_gt [LinearOrder α] (a : α) :
     Bounded (· ≥ ·) (s ∩ {b | b < a}) ↔ Bounded (· ≥ ·) s :=
   @bounded_le_inter_lt αᵒᵈ s _ a
 #align set.bounded_ge_inter_gt Set.bounded_ge_inter_gt
+-/
 
+#print Set.unbounded_ge_inter_gt /-
 theorem unbounded_ge_inter_gt [LinearOrder α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ {b | b < a}) ↔ Unbounded (· ≥ ·) s :=
   @unbounded_le_inter_lt αᵒᵈ s _ a
 #align set.unbounded_ge_inter_gt Set.unbounded_ge_inter_gt
+-/
 
+#print Set.bounded_ge_inter_ge /-
 theorem bounded_ge_inter_ge [LinearOrder α] (a : α) :
     Bounded (· ≥ ·) (s ∩ {b | b ≤ a}) ↔ Bounded (· ≥ ·) s :=
   @bounded_le_inter_le αᵒᵈ s _ a
 #align set.bounded_ge_inter_ge Set.bounded_ge_inter_ge
+-/
 
+#print Set.unbounded_ge_iff_unbounded_inter_ge /-
 theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ {b | b ≤ a}) ↔ Unbounded (· ≥ ·) s :=
   @unbounded_le_inter_le αᵒᵈ s _ a
 #align set.unbounded_ge_iff_unbounded_inter_ge Set.unbounded_ge_iff_unbounded_inter_ge
+-/
 
 /-! #### Greater than -/
 
 
+#print Set.bounded_gt_inter_not_gt /-
 theorem bounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
     Bounded (· > ·) (s ∩ {b | ¬a < b}) ↔ Bounded (· > ·) s :=
   @bounded_lt_inter_not_lt αᵒᵈ s _ a
 #align set.bounded_gt_inter_not_gt Set.bounded_gt_inter_not_gt
+-/
 
+#print Set.unbounded_gt_inter_not_gt /-
 theorem unbounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
     Unbounded (· > ·) (s ∩ {b | ¬a < b}) ↔ Unbounded (· > ·) s :=
   @unbounded_lt_inter_not_lt αᵒᵈ s _ a
 #align set.unbounded_gt_inter_not_gt Set.unbounded_gt_inter_not_gt
+-/
 
+#print Set.bounded_gt_inter_ge /-
 theorem bounded_gt_inter_ge [LinearOrder α] (a : α) :
     Bounded (· > ·) (s ∩ {b | b ≤ a}) ↔ Bounded (· > ·) s :=
   @bounded_lt_inter_le αᵒᵈ s _ a
 #align set.bounded_gt_inter_ge Set.bounded_gt_inter_ge
+-/
 
+#print Set.unbounded_inter_ge /-
 theorem unbounded_inter_ge [LinearOrder α] (a : α) :
     Unbounded (· > ·) (s ∩ {b | b ≤ a}) ↔ Unbounded (· > ·) s :=
   @unbounded_lt_inter_le αᵒᵈ s _ a
 #align set.unbounded_inter_ge Set.unbounded_inter_ge
+-/
 
+#print Set.bounded_gt_inter_gt /-
 theorem bounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
     Bounded (· > ·) (s ∩ {b | b < a}) ↔ Bounded (· > ·) s :=
   @bounded_lt_inter_lt αᵒᵈ s _ _ a
 #align set.bounded_gt_inter_gt Set.bounded_gt_inter_gt
+-/
 
+#print Set.unbounded_gt_inter_gt /-
 theorem unbounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
     Unbounded (· > ·) (s ∩ {b | b < a}) ↔ Unbounded (· > ·) s :=
   @unbounded_lt_inter_lt αᵒᵈ s _ _ a
 #align set.unbounded_gt_inter_gt Set.unbounded_gt_inter_gt
+-/
 
 end Set
 
Diff
@@ -207,7 +207,7 @@ theorem unbounded_gt_univ [Preorder α] [NoBotOrder α] : Unbounded (· > ·) (@
 
 
 #print Set.bounded_self /-
-theorem bounded_self (a : α) : Bounded r { b | r b a } :=
+theorem bounded_self (a : α) : Bounded r {b | r b a} :=
   ⟨a, fun x => id⟩
 #align set.bounded_self Set.bounded_self
 -/
@@ -397,7 +397,7 @@ theorem unbounded_lt_Ici [SemilatticeSup α] (a : α) : Unbounded (· < ·) (Set
 
 
 theorem bounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m) (a : α) :
-    Bounded r (s ∩ { b | ¬r b a }) ↔ Bounded r s :=
+    Bounded r (s ∩ {b | ¬r b a}) ↔ Bounded r s :=
   by
   refine' ⟨_, bounded.mono (Set.inter_subset_left s _)⟩
   rintro ⟨b, hb⟩
@@ -406,7 +406,7 @@ theorem bounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m)
 #align set.bounded_inter_not Set.bounded_inter_not
 
 theorem unbounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m) (a : α) :
-    Unbounded r (s ∩ { b | ¬r b a }) ↔ Unbounded r s := by
+    Unbounded r (s ∩ {b | ¬r b a}) ↔ Unbounded r s := by
   simp_rw [← not_bounded_iff, bounded_inter_not H]
 #align set.unbounded_inter_not Set.unbounded_inter_not
 
@@ -414,29 +414,29 @@ theorem unbounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c
 
 
 theorem bounded_le_inter_not_le [SemilatticeSup α] (a : α) :
-    Bounded (· ≤ ·) (s ∩ { b | ¬b ≤ a }) ↔ Bounded (· ≤ ·) s :=
+    Bounded (· ≤ ·) (s ∩ {b | ¬b ≤ a}) ↔ Bounded (· ≤ ·) s :=
   bounded_inter_not (fun x y => ⟨x ⊔ y, fun z h => h.elim le_sup_of_le_left le_sup_of_le_right⟩) a
 #align set.bounded_le_inter_not_le Set.bounded_le_inter_not_le
 
 theorem unbounded_le_inter_not_le [SemilatticeSup α] (a : α) :
-    Unbounded (· ≤ ·) (s ∩ { b | ¬b ≤ a }) ↔ Unbounded (· ≤ ·) s :=
+    Unbounded (· ≤ ·) (s ∩ {b | ¬b ≤ a}) ↔ Unbounded (· ≤ ·) s :=
   by
   rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
   exact bounded_le_inter_not_le a
 #align set.unbounded_le_inter_not_le Set.unbounded_le_inter_not_le
 
 theorem bounded_le_inter_lt [LinearOrder α] (a : α) :
-    Bounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Bounded (· ≤ ·) s := by
+    Bounded (· ≤ ·) (s ∩ {b | a < b}) ↔ Bounded (· ≤ ·) s := by
   simp_rw [← not_le, bounded_le_inter_not_le]
 #align set.bounded_le_inter_lt Set.bounded_le_inter_lt
 
 theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
-    Unbounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Unbounded (· ≤ ·) s := by
+    Unbounded (· ≤ ·) (s ∩ {b | a < b}) ↔ Unbounded (· ≤ ·) s := by
   convert unbounded_le_inter_not_le a; ext; exact lt_iff_not_le
 #align set.unbounded_le_inter_lt Set.unbounded_le_inter_lt
 
 theorem bounded_le_inter_le [LinearOrder α] (a : α) :
-    Bounded (· ≤ ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· ≤ ·) s :=
+    Bounded (· ≤ ·) (s ∩ {b | a ≤ b}) ↔ Bounded (· ≤ ·) s :=
   by
   refine' ⟨_, bounded.mono (Set.inter_subset_left s _)⟩
   rw [← @bounded_le_inter_lt _ s _ a]
@@ -444,7 +444,7 @@ theorem bounded_le_inter_le [LinearOrder α] (a : α) :
 #align set.bounded_le_inter_le Set.bounded_le_inter_le
 
 theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
-    Unbounded (· ≤ ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· ≤ ·) s :=
+    Unbounded (· ≤ ·) (s ∩ {b | a ≤ b}) ↔ Unbounded (· ≤ ·) s :=
   by
   rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
   exact bounded_le_inter_le a
@@ -454,36 +454,36 @@ theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
 
 
 theorem bounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
-    Bounded (· < ·) (s ∩ { b | ¬b < a }) ↔ Bounded (· < ·) s :=
+    Bounded (· < ·) (s ∩ {b | ¬b < a}) ↔ Bounded (· < ·) s :=
   bounded_inter_not (fun x y => ⟨x ⊔ y, fun z h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩) a
 #align set.bounded_lt_inter_not_lt Set.bounded_lt_inter_not_lt
 
 theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
-    Unbounded (· < ·) (s ∩ { b | ¬b < a }) ↔ Unbounded (· < ·) s :=
+    Unbounded (· < ·) (s ∩ {b | ¬b < a}) ↔ Unbounded (· < ·) s :=
   by
   rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
   exact bounded_lt_inter_not_lt a
 #align set.unbounded_lt_inter_not_lt Set.unbounded_lt_inter_not_lt
 
 theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
-    Bounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· < ·) s := by convert bounded_lt_inter_not_lt a;
+    Bounded (· < ·) (s ∩ {b | a ≤ b}) ↔ Bounded (· < ·) s := by convert bounded_lt_inter_not_lt a;
   ext; exact not_lt.symm
 #align set.bounded_lt_inter_le Set.bounded_lt_inter_le
 
 theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
-    Unbounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· < ·) s := by
+    Unbounded (· < ·) (s ∩ {b | a ≤ b}) ↔ Unbounded (· < ·) s := by
   convert unbounded_lt_inter_not_lt a; ext; exact not_lt.symm
 #align set.unbounded_lt_inter_le Set.unbounded_lt_inter_le
 
 theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
-    Bounded (· < ·) (s ∩ { b | a < b }) ↔ Bounded (· < ·) s :=
+    Bounded (· < ·) (s ∩ {b | a < b}) ↔ Bounded (· < ·) s :=
   by
   rw [← bounded_le_iff_bounded_lt, ← bounded_le_iff_bounded_lt]
   exact bounded_le_inter_lt a
 #align set.bounded_lt_inter_lt Set.bounded_lt_inter_lt
 
 theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
-    Unbounded (· < ·) (s ∩ { b | a < b }) ↔ Unbounded (· < ·) s :=
+    Unbounded (· < ·) (s ∩ {b | a < b}) ↔ Unbounded (· < ·) s :=
   by
   rw [← not_bounded_iff, ← not_bounded_iff, not_iff_not]
   exact bounded_lt_inter_lt a
@@ -493,32 +493,32 @@ theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
 
 
 theorem bounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
-    Bounded (· ≥ ·) (s ∩ { b | ¬a ≤ b }) ↔ Bounded (· ≥ ·) s :=
+    Bounded (· ≥ ·) (s ∩ {b | ¬a ≤ b}) ↔ Bounded (· ≥ ·) s :=
   @bounded_le_inter_not_le αᵒᵈ s _ a
 #align set.bounded_ge_inter_not_ge Set.bounded_ge_inter_not_ge
 
 theorem unbounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
-    Unbounded (· ≥ ·) (s ∩ { b | ¬a ≤ b }) ↔ Unbounded (· ≥ ·) s :=
+    Unbounded (· ≥ ·) (s ∩ {b | ¬a ≤ b}) ↔ Unbounded (· ≥ ·) s :=
   @unbounded_le_inter_not_le αᵒᵈ s _ a
 #align set.unbounded_ge_inter_not_ge Set.unbounded_ge_inter_not_ge
 
 theorem bounded_ge_inter_gt [LinearOrder α] (a : α) :
-    Bounded (· ≥ ·) (s ∩ { b | b < a }) ↔ Bounded (· ≥ ·) s :=
+    Bounded (· ≥ ·) (s ∩ {b | b < a}) ↔ Bounded (· ≥ ·) s :=
   @bounded_le_inter_lt αᵒᵈ s _ a
 #align set.bounded_ge_inter_gt Set.bounded_ge_inter_gt
 
 theorem unbounded_ge_inter_gt [LinearOrder α] (a : α) :
-    Unbounded (· ≥ ·) (s ∩ { b | b < a }) ↔ Unbounded (· ≥ ·) s :=
+    Unbounded (· ≥ ·) (s ∩ {b | b < a}) ↔ Unbounded (· ≥ ·) s :=
   @unbounded_le_inter_lt αᵒᵈ s _ a
 #align set.unbounded_ge_inter_gt Set.unbounded_ge_inter_gt
 
 theorem bounded_ge_inter_ge [LinearOrder α] (a : α) :
-    Bounded (· ≥ ·) (s ∩ { b | b ≤ a }) ↔ Bounded (· ≥ ·) s :=
+    Bounded (· ≥ ·) (s ∩ {b | b ≤ a}) ↔ Bounded (· ≥ ·) s :=
   @bounded_le_inter_le αᵒᵈ s _ a
 #align set.bounded_ge_inter_ge Set.bounded_ge_inter_ge
 
 theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
-    Unbounded (· ≥ ·) (s ∩ { b | b ≤ a }) ↔ Unbounded (· ≥ ·) s :=
+    Unbounded (· ≥ ·) (s ∩ {b | b ≤ a}) ↔ Unbounded (· ≥ ·) s :=
   @unbounded_le_inter_le αᵒᵈ s _ a
 #align set.unbounded_ge_iff_unbounded_inter_ge Set.unbounded_ge_iff_unbounded_inter_ge
 
@@ -526,32 +526,32 @@ theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
 
 
 theorem bounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
-    Bounded (· > ·) (s ∩ { b | ¬a < b }) ↔ Bounded (· > ·) s :=
+    Bounded (· > ·) (s ∩ {b | ¬a < b}) ↔ Bounded (· > ·) s :=
   @bounded_lt_inter_not_lt αᵒᵈ s _ a
 #align set.bounded_gt_inter_not_gt Set.bounded_gt_inter_not_gt
 
 theorem unbounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
-    Unbounded (· > ·) (s ∩ { b | ¬a < b }) ↔ Unbounded (· > ·) s :=
+    Unbounded (· > ·) (s ∩ {b | ¬a < b}) ↔ Unbounded (· > ·) s :=
   @unbounded_lt_inter_not_lt αᵒᵈ s _ a
 #align set.unbounded_gt_inter_not_gt Set.unbounded_gt_inter_not_gt
 
 theorem bounded_gt_inter_ge [LinearOrder α] (a : α) :
-    Bounded (· > ·) (s ∩ { b | b ≤ a }) ↔ Bounded (· > ·) s :=
+    Bounded (· > ·) (s ∩ {b | b ≤ a}) ↔ Bounded (· > ·) s :=
   @bounded_lt_inter_le αᵒᵈ s _ a
 #align set.bounded_gt_inter_ge Set.bounded_gt_inter_ge
 
 theorem unbounded_inter_ge [LinearOrder α] (a : α) :
-    Unbounded (· > ·) (s ∩ { b | b ≤ a }) ↔ Unbounded (· > ·) s :=
+    Unbounded (· > ·) (s ∩ {b | b ≤ a}) ↔ Unbounded (· > ·) s :=
   @unbounded_lt_inter_le αᵒᵈ s _ a
 #align set.unbounded_inter_ge Set.unbounded_inter_ge
 
 theorem bounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
-    Bounded (· > ·) (s ∩ { b | b < a }) ↔ Bounded (· > ·) s :=
+    Bounded (· > ·) (s ∩ {b | b < a}) ↔ Bounded (· > ·) s :=
   @bounded_lt_inter_lt αᵒᵈ s _ _ a
 #align set.bounded_gt_inter_gt Set.bounded_gt_inter_gt
 
 theorem unbounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
-    Unbounded (· > ·) (s ∩ { b | b < a }) ↔ Unbounded (· > ·) s :=
+    Unbounded (· > ·) (s ∩ {b | b < a}) ↔ Unbounded (· > ·) s :=
   @unbounded_lt_inter_lt αᵒᵈ s _ _ a
 #align set.unbounded_gt_inter_gt Set.unbounded_gt_inter_gt
 
Diff
@@ -104,9 +104,11 @@ theorem Bounded.rel_mono {r' : α → α → Prop} (h : Bounded r s) (hrr' : r 
 #align set.bounded.rel_mono Set.Bounded.rel_mono
 -/
 
+#print Set.bounded_le_of_bounded_lt /-
 theorem bounded_le_of_bounded_lt [Preorder α] (h : Bounded (· < ·) s) : Bounded (· ≤ ·) s :=
   h.rel_mono fun _ _ => le_of_lt
 #align set.bounded_le_of_bounded_lt Set.bounded_le_of_bounded_lt
+-/
 
 #print Set.Unbounded.rel_mono /-
 theorem Unbounded.rel_mono {r' : α → α → Prop} (hr : r' ≤ r) (h : Unbounded r s) : Unbounded r' s :=
@@ -116,10 +118,13 @@ theorem Unbounded.rel_mono {r' : α → α → Prop} (hr : r' ≤ r) (h : Unboun
 #align set.unbounded.rel_mono Set.Unbounded.rel_mono
 -/
 
+#print Set.unbounded_lt_of_unbounded_le /-
 theorem unbounded_lt_of_unbounded_le [Preorder α] (h : Unbounded (· ≤ ·) s) : Unbounded (· < ·) s :=
   h.rel_mono fun _ _ => le_of_lt
 #align set.unbounded_lt_of_unbounded_le Set.unbounded_lt_of_unbounded_le
+-/
 
+#print Set.bounded_le_iff_bounded_lt /-
 theorem bounded_le_iff_bounded_lt [Preorder α] [NoMaxOrder α] :
     Bounded (· ≤ ·) s ↔ Bounded (· < ·) s :=
   by
@@ -128,35 +133,46 @@ theorem bounded_le_iff_bounded_lt [Preorder α] [NoMaxOrder α] :
   cases' exists_gt a with b hb
   exact ⟨b, fun c hc => lt_of_le_of_lt (ha c hc) hb⟩
 #align set.bounded_le_iff_bounded_lt Set.bounded_le_iff_bounded_lt
+-/
 
+#print Set.unbounded_lt_iff_unbounded_le /-
 theorem unbounded_lt_iff_unbounded_le [Preorder α] [NoMaxOrder α] :
     Unbounded (· < ·) s ↔ Unbounded (· ≤ ·) s := by
   simp_rw [← not_bounded_iff, bounded_le_iff_bounded_lt]
 #align set.unbounded_lt_iff_unbounded_le Set.unbounded_lt_iff_unbounded_le
+-/
 
 /-! #### Greater and greater or equal -/
 
 
+#print Set.bounded_ge_of_bounded_gt /-
 theorem bounded_ge_of_bounded_gt [Preorder α] (h : Bounded (· > ·) s) : Bounded (· ≥ ·) s :=
   let ⟨a, ha⟩ := h
   ⟨a, fun b hb => le_of_lt (ha b hb)⟩
 #align set.bounded_ge_of_bounded_gt Set.bounded_ge_of_bounded_gt
+-/
 
+#print Set.unbounded_gt_of_unbounded_ge /-
 theorem unbounded_gt_of_unbounded_ge [Preorder α] (h : Unbounded (· ≥ ·) s) : Unbounded (· > ·) s :=
   fun a =>
   let ⟨b, hb, hba⟩ := h a
   ⟨b, hb, fun hba' => hba (le_of_lt hba')⟩
 #align set.unbounded_gt_of_unbounded_ge Set.unbounded_gt_of_unbounded_ge
+-/
 
+#print Set.bounded_ge_iff_bounded_gt /-
 theorem bounded_ge_iff_bounded_gt [Preorder α] [NoMinOrder α] :
     Bounded (· ≥ ·) s ↔ Bounded (· > ·) s :=
   @bounded_le_iff_bounded_lt αᵒᵈ _ _ _
 #align set.bounded_ge_iff_bounded_gt Set.bounded_ge_iff_bounded_gt
+-/
 
+#print Set.unbounded_gt_iff_unbounded_ge /-
 theorem unbounded_gt_iff_unbounded_ge [Preorder α] [NoMinOrder α] :
     Unbounded (· > ·) s ↔ Unbounded (· ≥ ·) s :=
   @unbounded_lt_iff_unbounded_le αᵒᵈ _ _ _
 #align set.unbounded_gt_iff_unbounded_ge Set.unbounded_gt_iff_unbounded_ge
+-/
 
 /-! ### The universal set -/
 
@@ -168,9 +184,11 @@ theorem unbounded_le_univ [LE α] [NoTopOrder α] : Unbounded (· ≤ ·) (@Set.
 #align set.unbounded_le_univ Set.unbounded_le_univ
 -/
 
+#print Set.unbounded_lt_univ /-
 theorem unbounded_lt_univ [Preorder α] [NoTopOrder α] : Unbounded (· < ·) (@Set.univ α) :=
   unbounded_lt_of_unbounded_le unbounded_le_univ
 #align set.unbounded_lt_univ Set.unbounded_lt_univ
+-/
 
 #print Set.unbounded_ge_univ /-
 theorem unbounded_ge_univ [LE α] [NoBotOrder α] : Unbounded (· ≥ ·) (@Set.univ α) := fun a =>
@@ -179,9 +197,11 @@ theorem unbounded_ge_univ [LE α] [NoBotOrder α] : Unbounded (· ≥ ·) (@Set.
 #align set.unbounded_ge_univ Set.unbounded_ge_univ
 -/
 
+#print Set.unbounded_gt_univ /-
 theorem unbounded_gt_univ [Preorder α] [NoBotOrder α] : Unbounded (· > ·) (@Set.univ α) :=
   unbounded_gt_of_unbounded_ge unbounded_ge_univ
 #align set.unbounded_gt_univ Set.unbounded_gt_univ
+-/
 
 /-! ### Bounded and unbounded intervals -/
 
@@ -195,127 +215,183 @@ theorem bounded_self (a : α) : Bounded r { b | r b a } :=
 /-! #### Half-open bounded intervals -/
 
 
+#print Set.bounded_lt_Iio /-
 theorem bounded_lt_Iio [Preorder α] (a : α) : Bounded (· < ·) (Set.Iio a) :=
   bounded_self a
 #align set.bounded_lt_Iio Set.bounded_lt_Iio
+-/
 
+#print Set.bounded_le_Iio /-
 theorem bounded_le_Iio [Preorder α] (a : α) : Bounded (· ≤ ·) (Set.Iio a) :=
   bounded_le_of_bounded_lt (bounded_lt_Iio a)
 #align set.bounded_le_Iio Set.bounded_le_Iio
+-/
 
+#print Set.bounded_le_Iic /-
 theorem bounded_le_Iic [Preorder α] (a : α) : Bounded (· ≤ ·) (Set.Iic a) :=
   bounded_self a
 #align set.bounded_le_Iic Set.bounded_le_Iic
+-/
 
+#print Set.bounded_lt_Iic /-
 theorem bounded_lt_Iic [Preorder α] [NoMaxOrder α] (a : α) : Bounded (· < ·) (Set.Iic a) := by
   simp only [← bounded_le_iff_bounded_lt, bounded_le_Iic]
 #align set.bounded_lt_Iic Set.bounded_lt_Iic
+-/
 
+#print Set.bounded_gt_Ioi /-
 theorem bounded_gt_Ioi [Preorder α] (a : α) : Bounded (· > ·) (Set.Ioi a) :=
   bounded_self a
 #align set.bounded_gt_Ioi Set.bounded_gt_Ioi
+-/
 
+#print Set.bounded_ge_Ioi /-
 theorem bounded_ge_Ioi [Preorder α] (a : α) : Bounded (· ≥ ·) (Set.Ioi a) :=
   bounded_ge_of_bounded_gt (bounded_gt_Ioi a)
 #align set.bounded_ge_Ioi Set.bounded_ge_Ioi
+-/
 
+#print Set.bounded_ge_Ici /-
 theorem bounded_ge_Ici [Preorder α] (a : α) : Bounded (· ≥ ·) (Set.Ici a) :=
   bounded_self a
 #align set.bounded_ge_Ici Set.bounded_ge_Ici
+-/
 
+#print Set.bounded_gt_Ici /-
 theorem bounded_gt_Ici [Preorder α] [NoMinOrder α] (a : α) : Bounded (· > ·) (Set.Ici a) := by
   simp only [← bounded_ge_iff_bounded_gt, bounded_ge_Ici]
 #align set.bounded_gt_Ici Set.bounded_gt_Ici
+-/
 
 /-! #### Other bounded intervals -/
 
 
+#print Set.bounded_lt_Ioo /-
 theorem bounded_lt_Ioo [Preorder α] (a b : α) : Bounded (· < ·) (Set.Ioo a b) :=
   (bounded_lt_Iio b).mono Set.Ioo_subset_Iio_self
 #align set.bounded_lt_Ioo Set.bounded_lt_Ioo
+-/
 
+#print Set.bounded_lt_Ico /-
 theorem bounded_lt_Ico [Preorder α] (a b : α) : Bounded (· < ·) (Set.Ico a b) :=
   (bounded_lt_Iio b).mono Set.Ico_subset_Iio_self
 #align set.bounded_lt_Ico Set.bounded_lt_Ico
+-/
 
+#print Set.bounded_lt_Ioc /-
 theorem bounded_lt_Ioc [Preorder α] [NoMaxOrder α] (a b : α) : Bounded (· < ·) (Set.Ioc a b) :=
   (bounded_lt_Iic b).mono Set.Ioc_subset_Iic_self
 #align set.bounded_lt_Ioc Set.bounded_lt_Ioc
+-/
 
+#print Set.bounded_lt_Icc /-
 theorem bounded_lt_Icc [Preorder α] [NoMaxOrder α] (a b : α) : Bounded (· < ·) (Set.Icc a b) :=
   (bounded_lt_Iic b).mono Set.Icc_subset_Iic_self
 #align set.bounded_lt_Icc Set.bounded_lt_Icc
+-/
 
+#print Set.bounded_le_Ioo /-
 theorem bounded_le_Ioo [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Ioo a b) :=
   (bounded_le_Iio b).mono Set.Ioo_subset_Iio_self
 #align set.bounded_le_Ioo Set.bounded_le_Ioo
+-/
 
+#print Set.bounded_le_Ico /-
 theorem bounded_le_Ico [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Ico a b) :=
   (bounded_le_Iio b).mono Set.Ico_subset_Iio_self
 #align set.bounded_le_Ico Set.bounded_le_Ico
+-/
 
+#print Set.bounded_le_Ioc /-
 theorem bounded_le_Ioc [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Ioc a b) :=
   (bounded_le_Iic b).mono Set.Ioc_subset_Iic_self
 #align set.bounded_le_Ioc Set.bounded_le_Ioc
+-/
 
+#print Set.bounded_le_Icc /-
 theorem bounded_le_Icc [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Icc a b) :=
   (bounded_le_Iic b).mono Set.Icc_subset_Iic_self
 #align set.bounded_le_Icc Set.bounded_le_Icc
+-/
 
+#print Set.bounded_gt_Ioo /-
 theorem bounded_gt_Ioo [Preorder α] (a b : α) : Bounded (· > ·) (Set.Ioo a b) :=
   (bounded_gt_Ioi a).mono Set.Ioo_subset_Ioi_self
 #align set.bounded_gt_Ioo Set.bounded_gt_Ioo
+-/
 
+#print Set.bounded_gt_Ioc /-
 theorem bounded_gt_Ioc [Preorder α] (a b : α) : Bounded (· > ·) (Set.Ioc a b) :=
   (bounded_gt_Ioi a).mono Set.Ioc_subset_Ioi_self
 #align set.bounded_gt_Ioc Set.bounded_gt_Ioc
+-/
 
+#print Set.bounded_gt_Ico /-
 theorem bounded_gt_Ico [Preorder α] [NoMinOrder α] (a b : α) : Bounded (· > ·) (Set.Ico a b) :=
   (bounded_gt_Ici a).mono Set.Ico_subset_Ici_self
 #align set.bounded_gt_Ico Set.bounded_gt_Ico
+-/
 
+#print Set.bounded_gt_Icc /-
 theorem bounded_gt_Icc [Preorder α] [NoMinOrder α] (a b : α) : Bounded (· > ·) (Set.Icc a b) :=
   (bounded_gt_Ici a).mono Set.Icc_subset_Ici_self
 #align set.bounded_gt_Icc Set.bounded_gt_Icc
+-/
 
+#print Set.bounded_ge_Ioo /-
 theorem bounded_ge_Ioo [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Ioo a b) :=
   (bounded_ge_Ioi a).mono Set.Ioo_subset_Ioi_self
 #align set.bounded_ge_Ioo Set.bounded_ge_Ioo
+-/
 
+#print Set.bounded_ge_Ioc /-
 theorem bounded_ge_Ioc [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Ioc a b) :=
   (bounded_ge_Ioi a).mono Set.Ioc_subset_Ioi_self
 #align set.bounded_ge_Ioc Set.bounded_ge_Ioc
+-/
 
+#print Set.bounded_ge_Ico /-
 theorem bounded_ge_Ico [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Ico a b) :=
   (bounded_ge_Ici a).mono Set.Ico_subset_Ici_self
 #align set.bounded_ge_Ico Set.bounded_ge_Ico
+-/
 
+#print Set.bounded_ge_Icc /-
 theorem bounded_ge_Icc [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Icc a b) :=
   (bounded_ge_Ici a).mono Set.Icc_subset_Ici_self
 #align set.bounded_ge_Icc Set.bounded_ge_Icc
+-/
 
 /-! #### Unbounded intervals -/
 
 
+#print Set.unbounded_le_Ioi /-
 theorem unbounded_le_Ioi [SemilatticeSup α] [NoMaxOrder α] (a : α) :
     Unbounded (· ≤ ·) (Set.Ioi a) := fun b =>
   let ⟨c, hc⟩ := exists_gt (a ⊔ b)
   ⟨c, le_sup_left.trans_lt hc, (le_sup_right.trans_lt hc).not_le⟩
 #align set.unbounded_le_Ioi Set.unbounded_le_Ioi
+-/
 
+#print Set.unbounded_le_Ici /-
 theorem unbounded_le_Ici [SemilatticeSup α] [NoMaxOrder α] (a : α) :
     Unbounded (· ≤ ·) (Set.Ici a) :=
   (unbounded_le_Ioi a).mono Set.Ioi_subset_Ici_self
 #align set.unbounded_le_Ici Set.unbounded_le_Ici
+-/
 
+#print Set.unbounded_lt_Ioi /-
 theorem unbounded_lt_Ioi [SemilatticeSup α] [NoMaxOrder α] (a : α) :
     Unbounded (· < ·) (Set.Ioi a) :=
   unbounded_lt_of_unbounded_le (unbounded_le_Ioi a)
 #align set.unbounded_lt_Ioi Set.unbounded_lt_Ioi
+-/
 
+#print Set.unbounded_lt_Ici /-
 theorem unbounded_lt_Ici [SemilatticeSup α] (a : α) : Unbounded (· < ·) (Set.Ici a) := fun b =>
   ⟨a ⊔ b, le_sup_left, le_sup_right.not_lt⟩
 #align set.unbounded_lt_Ici Set.unbounded_lt_Ici
+-/
 
 /-! ### Bounded initial segments -/
 
Diff
@@ -46,67 +46,31 @@ theorem Unbounded.mono (hst : s ⊆ t) (hs : Unbounded r s) : Unbounded r t := f
 /-! ### Alternate characterizations of unboundedness on orders -/
 
 
-/- warning: set.unbounded_le_of_forall_exists_lt -> Set.unbounded_le_of_forall_exists_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b))) -> (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b))) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.172 : α) (x._@.Mathlib.Order.Bounded._hyg.174 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.172 x._@.Mathlib.Order.Bounded._hyg.174) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_le_of_forall_exists_lt Set.unbounded_le_of_forall_exists_ltₓ'. -/
 theorem unbounded_le_of_forall_exists_lt [Preorder α] (h : ∀ a, ∃ b ∈ s, a < b) :
     Unbounded (· ≤ ·) s := fun a =>
   let ⟨b, hb, hb'⟩ := h a
   ⟨b, hb, fun hba => hba.not_lt hb'⟩
 #align set.unbounded_le_of_forall_exists_lt Set.unbounded_le_of_forall_exists_lt
 
-/- warning: set.unbounded_le_iff -> Set.unbounded_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.248 : α) (x._@.Mathlib.Order.Bounded._hyg.250 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.248 x._@.Mathlib.Order.Bounded._hyg.250) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))
-Case conversion may be inaccurate. Consider using '#align set.unbounded_le_iff Set.unbounded_le_iffₓ'. -/
 theorem unbounded_le_iff [LinearOrder α] : Unbounded (· ≤ ·) s ↔ ∀ a, ∃ b ∈ s, a < b := by
   simp only [unbounded, not_le]
 #align set.unbounded_le_iff Set.unbounded_le_iff
 
-/- warning: set.unbounded_lt_of_forall_exists_le -> Set.unbounded_lt_of_forall_exists_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b))) -> (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b))) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.336 : α) (x._@.Mathlib.Order.Bounded._hyg.338 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.336 x._@.Mathlib.Order.Bounded._hyg.338) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_of_forall_exists_le Set.unbounded_lt_of_forall_exists_leₓ'. -/
 theorem unbounded_lt_of_forall_exists_le [Preorder α] (h : ∀ a, ∃ b ∈ s, a ≤ b) :
     Unbounded (· < ·) s := fun a =>
   let ⟨b, hb, hb'⟩ := h a
   ⟨b, hb, fun hba => hba.not_le hb'⟩
 #align set.unbounded_lt_of_forall_exists_le Set.unbounded_lt_of_forall_exists_le
 
-/- warning: set.unbounded_lt_iff -> Set.unbounded_lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.412 : α) (x._@.Mathlib.Order.Bounded._hyg.414 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.412 x._@.Mathlib.Order.Bounded._hyg.414) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))
-Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_iff Set.unbounded_lt_iffₓ'. -/
 theorem unbounded_lt_iff [LinearOrder α] : Unbounded (· < ·) s ↔ ∀ a, ∃ b ∈ s, a ≤ b := by
   simp only [unbounded, not_lt]
 #align set.unbounded_lt_iff Set.unbounded_lt_iff
 
-/- warning: set.unbounded_ge_of_forall_exists_gt -> Set.unbounded_ge_of_forall_exists_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) b a))) -> (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) b a))) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.500 : α) (x._@.Mathlib.Order.Bounded._hyg.502 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.500 x._@.Mathlib.Order.Bounded._hyg.502) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_of_forall_exists_gt Set.unbounded_ge_of_forall_exists_gtₓ'. -/
 theorem unbounded_ge_of_forall_exists_gt [Preorder α] (h : ∀ a, ∃ b ∈ s, b < a) :
     Unbounded (· ≥ ·) s :=
   @unbounded_le_of_forall_exists_lt αᵒᵈ _ _ h
 #align set.unbounded_ge_of_forall_exists_gt Set.unbounded_ge_of_forall_exists_gt
 
-/- warning: set.unbounded_ge_iff -> Set.unbounded_ge_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.542 : α) (x._@.Mathlib.Order.Bounded._hyg.544 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.542 x._@.Mathlib.Order.Bounded._hyg.544) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))
-Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_iff Set.unbounded_ge_iffₓ'. -/
 theorem unbounded_ge_iff [LinearOrder α] : Unbounded (· ≥ ·) s ↔ ∀ a, ∃ b ∈ s, b < a :=
   ⟨fun h a =>
     let ⟨b, hb, hba⟩ := h a
@@ -114,24 +78,12 @@ theorem unbounded_ge_iff [LinearOrder α] : Unbounded (· ≥ ·) s ↔ ∀ a, 
     unbounded_ge_of_forall_exists_gt⟩
 #align set.unbounded_ge_iff Set.unbounded_ge_iff
 
-/- warning: set.unbounded_gt_of_forall_exists_ge -> Set.unbounded_gt_of_forall_exists_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a))) -> (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a))) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.668 : α) (x._@.Mathlib.Order.Bounded._hyg.670 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.668 x._@.Mathlib.Order.Bounded._hyg.670) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_of_forall_exists_ge Set.unbounded_gt_of_forall_exists_geₓ'. -/
 theorem unbounded_gt_of_forall_exists_ge [Preorder α] (h : ∀ a, ∃ b ∈ s, b ≤ a) :
     Unbounded (· > ·) s := fun a =>
   let ⟨b, hb, hb'⟩ := h a
   ⟨b, hb, fun hba => not_le_of_gt hba hb'⟩
 #align set.unbounded_gt_of_forall_exists_ge Set.unbounded_gt_of_forall_exists_ge
 
-/- warning: set.unbounded_gt_iff -> Set.unbounded_gt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.745 : α) (x._@.Mathlib.Order.Bounded._hyg.747 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.745 x._@.Mathlib.Order.Bounded._hyg.747) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))
-Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_iff Set.unbounded_gt_iffₓ'. -/
 theorem unbounded_gt_iff [LinearOrder α] : Unbounded (· > ·) s ↔ ∀ a, ∃ b ∈ s, b ≤ a :=
   ⟨fun h a =>
     let ⟨b, hb, hba⟩ := h a
@@ -152,12 +104,6 @@ theorem Bounded.rel_mono {r' : α → α → Prop} (h : Bounded r s) (hrr' : r 
 #align set.bounded.rel_mono Set.Bounded.rel_mono
 -/
 
-/- warning: set.bounded_le_of_bounded_lt -> Set.bounded_le_of_bounded_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s) -> (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.909 : α) (x._@.Mathlib.Order.Bounded._hyg.911 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.909 x._@.Mathlib.Order.Bounded._hyg.911) s) -> (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.926 : α) (x._@.Mathlib.Order.Bounded._hyg.928 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.926 x._@.Mathlib.Order.Bounded._hyg.928) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_of_bounded_lt Set.bounded_le_of_bounded_ltₓ'. -/
 theorem bounded_le_of_bounded_lt [Preorder α] (h : Bounded (· < ·) s) : Bounded (· ≤ ·) s :=
   h.rel_mono fun _ _ => le_of_lt
 #align set.bounded_le_of_bounded_lt Set.bounded_le_of_bounded_lt
@@ -170,22 +116,10 @@ theorem Unbounded.rel_mono {r' : α → α → Prop} (hr : r' ≤ r) (h : Unboun
 #align set.unbounded.rel_mono Set.Unbounded.rel_mono
 -/
 
-/- warning: set.unbounded_lt_of_unbounded_le -> Set.unbounded_lt_of_unbounded_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s) -> (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1044 : α) (x._@.Mathlib.Order.Bounded._hyg.1046 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1044 x._@.Mathlib.Order.Bounded._hyg.1046) s) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1061 : α) (x._@.Mathlib.Order.Bounded._hyg.1063 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1061 x._@.Mathlib.Order.Bounded._hyg.1063) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_of_unbounded_le Set.unbounded_lt_of_unbounded_leₓ'. -/
 theorem unbounded_lt_of_unbounded_le [Preorder α] (h : Unbounded (· ≤ ·) s) : Unbounded (· < ·) s :=
   h.rel_mono fun _ _ => le_of_lt
 #align set.unbounded_lt_of_unbounded_le Set.unbounded_lt_of_unbounded_le
 
-/- warning: set.bounded_le_iff_bounded_lt -> Set.bounded_le_iff_bounded_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1107 : α) (x._@.Mathlib.Order.Bounded._hyg.1109 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1107 x._@.Mathlib.Order.Bounded._hyg.1109) s) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1124 : α) (x._@.Mathlib.Order.Bounded._hyg.1126 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1124 x._@.Mathlib.Order.Bounded._hyg.1126) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_iff_bounded_lt Set.bounded_le_iff_bounded_ltₓ'. -/
 theorem bounded_le_iff_bounded_lt [Preorder α] [NoMaxOrder α] :
     Bounded (· ≤ ·) s ↔ Bounded (· < ·) s :=
   by
@@ -195,12 +129,6 @@ theorem bounded_le_iff_bounded_lt [Preorder α] [NoMaxOrder α] :
   exact ⟨b, fun c hc => lt_of_le_of_lt (ha c hc) hb⟩
 #align set.bounded_le_iff_bounded_lt Set.bounded_le_iff_bounded_lt
 
-/- warning: set.unbounded_lt_iff_unbounded_le -> Set.unbounded_lt_iff_unbounded_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1198 : α) (x._@.Mathlib.Order.Bounded._hyg.1200 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1198 x._@.Mathlib.Order.Bounded._hyg.1200) s) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1215 : α) (x._@.Mathlib.Order.Bounded._hyg.1217 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1215 x._@.Mathlib.Order.Bounded._hyg.1217) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_iff_unbounded_le Set.unbounded_lt_iff_unbounded_leₓ'. -/
 theorem unbounded_lt_iff_unbounded_le [Preorder α] [NoMaxOrder α] :
     Unbounded (· < ·) s ↔ Unbounded (· ≤ ·) s := by
   simp_rw [← not_bounded_iff, bounded_le_iff_bounded_lt]
@@ -209,46 +137,22 @@ theorem unbounded_lt_iff_unbounded_le [Preorder α] [NoMaxOrder α] :
 /-! #### Greater and greater or equal -/
 
 
-/- warning: set.bounded_ge_of_bounded_gt -> Set.bounded_ge_of_bounded_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s) -> (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1255 : α) (x._@.Mathlib.Order.Bounded._hyg.1257 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1255 x._@.Mathlib.Order.Bounded._hyg.1257) s) -> (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1272 : α) (x._@.Mathlib.Order.Bounded._hyg.1274 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1272 x._@.Mathlib.Order.Bounded._hyg.1274) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_of_bounded_gt Set.bounded_ge_of_bounded_gtₓ'. -/
 theorem bounded_ge_of_bounded_gt [Preorder α] (h : Bounded (· > ·) s) : Bounded (· ≥ ·) s :=
   let ⟨a, ha⟩ := h
   ⟨a, fun b hb => le_of_lt (ha b hb)⟩
 #align set.bounded_ge_of_bounded_gt Set.bounded_ge_of_bounded_gt
 
-/- warning: set.unbounded_gt_of_unbounded_ge -> Set.unbounded_gt_of_unbounded_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s) -> (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1332 : α) (x._@.Mathlib.Order.Bounded._hyg.1334 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1332 x._@.Mathlib.Order.Bounded._hyg.1334) s) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1349 : α) (x._@.Mathlib.Order.Bounded._hyg.1351 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1349 x._@.Mathlib.Order.Bounded._hyg.1351) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_of_unbounded_ge Set.unbounded_gt_of_unbounded_geₓ'. -/
 theorem unbounded_gt_of_unbounded_ge [Preorder α] (h : Unbounded (· ≥ ·) s) : Unbounded (· > ·) s :=
   fun a =>
   let ⟨b, hb, hba⟩ := h a
   ⟨b, hb, fun hba' => hba (le_of_lt hba')⟩
 #align set.unbounded_gt_of_unbounded_ge Set.unbounded_gt_of_unbounded_ge
 
-/- warning: set.bounded_ge_iff_bounded_gt -> Set.bounded_ge_iff_bounded_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1431 : α) (x._@.Mathlib.Order.Bounded._hyg.1433 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1431 x._@.Mathlib.Order.Bounded._hyg.1433) s) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1448 : α) (x._@.Mathlib.Order.Bounded._hyg.1450 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1448 x._@.Mathlib.Order.Bounded._hyg.1450) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_iff_bounded_gt Set.bounded_ge_iff_bounded_gtₓ'. -/
 theorem bounded_ge_iff_bounded_gt [Preorder α] [NoMinOrder α] :
     Bounded (· ≥ ·) s ↔ Bounded (· > ·) s :=
   @bounded_le_iff_bounded_lt αᵒᵈ _ _ _
 #align set.bounded_ge_iff_bounded_gt Set.bounded_ge_iff_bounded_gt
 
-/- warning: set.unbounded_gt_iff_unbounded_ge -> Set.unbounded_gt_iff_unbounded_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1492 : α) (x._@.Mathlib.Order.Bounded._hyg.1494 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1492 x._@.Mathlib.Order.Bounded._hyg.1494) s) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1509 : α) (x._@.Mathlib.Order.Bounded._hyg.1511 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1509 x._@.Mathlib.Order.Bounded._hyg.1511) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_iff_unbounded_ge Set.unbounded_gt_iff_unbounded_geₓ'. -/
 theorem unbounded_gt_iff_unbounded_ge [Preorder α] [NoMinOrder α] :
     Unbounded (· > ·) s ↔ Unbounded (· ≥ ·) s :=
   @unbounded_lt_iff_unbounded_le αᵒᵈ _ _ _
@@ -264,12 +168,6 @@ theorem unbounded_le_univ [LE α] [NoTopOrder α] : Unbounded (· ≤ ·) (@Set.
 #align set.unbounded_le_univ Set.unbounded_le_univ
 -/
 
-/- warning: set.unbounded_lt_univ -> Set.unbounded_lt_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoTopOrder.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.univ.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoTopOrder.{u1} α (Preorder.toLE.{u1} α _inst_1)], Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1621 : α) (x._@.Mathlib.Order.Bounded._hyg.1623 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1621 x._@.Mathlib.Order.Bounded._hyg.1623) (Set.univ.{u1} α)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_univ Set.unbounded_lt_univₓ'. -/
 theorem unbounded_lt_univ [Preorder α] [NoTopOrder α] : Unbounded (· < ·) (@Set.univ α) :=
   unbounded_lt_of_unbounded_le unbounded_le_univ
 #align set.unbounded_lt_univ Set.unbounded_lt_univ
@@ -281,12 +179,6 @@ theorem unbounded_ge_univ [LE α] [NoBotOrder α] : Unbounded (· ≥ ·) (@Set.
 #align set.unbounded_ge_univ Set.unbounded_ge_univ
 -/
 
-/- warning: set.unbounded_gt_univ -> Set.unbounded_gt_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoBotOrder.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.univ.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoBotOrder.{u1} α (Preorder.toLE.{u1} α _inst_1)], Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1731 : α) (x._@.Mathlib.Order.Bounded._hyg.1733 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1731 x._@.Mathlib.Order.Bounded._hyg.1733) (Set.univ.{u1} α)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_univ Set.unbounded_gt_univₓ'. -/
 theorem unbounded_gt_univ [Preorder α] [NoBotOrder α] : Unbounded (· > ·) (@Set.univ α) :=
   unbounded_gt_of_unbounded_ge unbounded_ge_univ
 #align set.unbounded_gt_univ Set.unbounded_gt_univ
@@ -303,82 +195,34 @@ theorem bounded_self (a : α) : Bounded r { b | r b a } :=
 /-! #### Half-open bounded intervals -/
 
 
-/- warning: set.bounded_lt_Iio -> Set.bounded_lt_Iio is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Iio.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1803 : α) (x._@.Mathlib.Order.Bounded._hyg.1805 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1803 x._@.Mathlib.Order.Bounded._hyg.1805) (Set.Iio.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Iio Set.bounded_lt_Iioₓ'. -/
 theorem bounded_lt_Iio [Preorder α] (a : α) : Bounded (· < ·) (Set.Iio a) :=
   bounded_self a
 #align set.bounded_lt_Iio Set.bounded_lt_Iio
 
-/- warning: set.bounded_le_Iio -> Set.bounded_le_Iio is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Iio.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1841 : α) (x._@.Mathlib.Order.Bounded._hyg.1843 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1841 x._@.Mathlib.Order.Bounded._hyg.1843) (Set.Iio.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_Iio Set.bounded_le_Iioₓ'. -/
 theorem bounded_le_Iio [Preorder α] (a : α) : Bounded (· ≤ ·) (Set.Iio a) :=
   bounded_le_of_bounded_lt (bounded_lt_Iio a)
 #align set.bounded_le_Iio Set.bounded_le_Iio
 
-/- warning: set.bounded_le_Iic -> Set.bounded_le_Iic is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Iic.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1882 : α) (x._@.Mathlib.Order.Bounded._hyg.1884 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1882 x._@.Mathlib.Order.Bounded._hyg.1884) (Set.Iic.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_Iic Set.bounded_le_Iicₓ'. -/
 theorem bounded_le_Iic [Preorder α] (a : α) : Bounded (· ≤ ·) (Set.Iic a) :=
   bounded_self a
 #align set.bounded_le_Iic Set.bounded_le_Iic
 
-/- warning: set.bounded_lt_Iic -> Set.bounded_lt_Iic is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Iic.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1923 : α) (x._@.Mathlib.Order.Bounded._hyg.1925 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1923 x._@.Mathlib.Order.Bounded._hyg.1925) (Set.Iic.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Iic Set.bounded_lt_Iicₓ'. -/
 theorem bounded_lt_Iic [Preorder α] [NoMaxOrder α] (a : α) : Bounded (· < ·) (Set.Iic a) := by
   simp only [← bounded_le_iff_bounded_lt, bounded_le_Iic]
 #align set.bounded_lt_Iic Set.bounded_lt_Iic
 
-/- warning: set.bounded_gt_Ioi -> Set.bounded_gt_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ioi.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1963 : α) (x._@.Mathlib.Order.Bounded._hyg.1965 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1963 x._@.Mathlib.Order.Bounded._hyg.1965) (Set.Ioi.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Ioi Set.bounded_gt_Ioiₓ'. -/
 theorem bounded_gt_Ioi [Preorder α] (a : α) : Bounded (· > ·) (Set.Ioi a) :=
   bounded_self a
 #align set.bounded_gt_Ioi Set.bounded_gt_Ioi
 
-/- warning: set.bounded_ge_Ioi -> Set.bounded_ge_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ioi.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2001 : α) (x._@.Mathlib.Order.Bounded._hyg.2003 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2001 x._@.Mathlib.Order.Bounded._hyg.2003) (Set.Ioi.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Ioi Set.bounded_ge_Ioiₓ'. -/
 theorem bounded_ge_Ioi [Preorder α] (a : α) : Bounded (· ≥ ·) (Set.Ioi a) :=
   bounded_ge_of_bounded_gt (bounded_gt_Ioi a)
 #align set.bounded_ge_Ioi Set.bounded_ge_Ioi
 
-/- warning: set.bounded_ge_Ici -> Set.bounded_ge_Ici is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ici.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2042 : α) (x._@.Mathlib.Order.Bounded._hyg.2044 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2042 x._@.Mathlib.Order.Bounded._hyg.2044) (Set.Ici.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Ici Set.bounded_ge_Iciₓ'. -/
 theorem bounded_ge_Ici [Preorder α] (a : α) : Bounded (· ≥ ·) (Set.Ici a) :=
   bounded_self a
 #align set.bounded_ge_Ici Set.bounded_ge_Ici
 
-/- warning: set.bounded_gt_Ici -> Set.bounded_gt_Ici is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ici.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2083 : α) (x._@.Mathlib.Order.Bounded._hyg.2085 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2083 x._@.Mathlib.Order.Bounded._hyg.2085) (Set.Ici.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Ici Set.bounded_gt_Iciₓ'. -/
 theorem bounded_gt_Ici [Preorder α] [NoMinOrder α] (a : α) : Bounded (· > ·) (Set.Ici a) := by
   simp only [← bounded_ge_iff_bounded_gt, bounded_ge_Ici]
 #align set.bounded_gt_Ici Set.bounded_gt_Ici
@@ -386,162 +230,66 @@ theorem bounded_gt_Ici [Preorder α] [NoMinOrder α] (a : α) : Bounded (· > ·
 /-! #### Other bounded intervals -/
 
 
-/- warning: set.bounded_lt_Ioo -> Set.bounded_lt_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ioo.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2125 : α) (x._@.Mathlib.Order.Bounded._hyg.2127 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2125 x._@.Mathlib.Order.Bounded._hyg.2127) (Set.Ioo.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Ioo Set.bounded_lt_Iooₓ'. -/
 theorem bounded_lt_Ioo [Preorder α] (a b : α) : Bounded (· < ·) (Set.Ioo a b) :=
   (bounded_lt_Iio b).mono Set.Ioo_subset_Iio_self
 #align set.bounded_lt_Ioo Set.bounded_lt_Ioo
 
-/- warning: set.bounded_lt_Ico -> Set.bounded_lt_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ico.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2169 : α) (x._@.Mathlib.Order.Bounded._hyg.2171 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2169 x._@.Mathlib.Order.Bounded._hyg.2171) (Set.Ico.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Ico Set.bounded_lt_Icoₓ'. -/
 theorem bounded_lt_Ico [Preorder α] (a b : α) : Bounded (· < ·) (Set.Ico a b) :=
   (bounded_lt_Iio b).mono Set.Ico_subset_Iio_self
 #align set.bounded_lt_Ico Set.bounded_lt_Ico
 
-/- warning: set.bounded_lt_Ioc -> Set.bounded_lt_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ioc.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2216 : α) (x._@.Mathlib.Order.Bounded._hyg.2218 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2216 x._@.Mathlib.Order.Bounded._hyg.2218) (Set.Ioc.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Ioc Set.bounded_lt_Iocₓ'. -/
 theorem bounded_lt_Ioc [Preorder α] [NoMaxOrder α] (a b : α) : Bounded (· < ·) (Set.Ioc a b) :=
   (bounded_lt_Iic b).mono Set.Ioc_subset_Iic_self
 #align set.bounded_lt_Ioc Set.bounded_lt_Ioc
 
-/- warning: set.bounded_lt_Icc -> Set.bounded_lt_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Icc.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2263 : α) (x._@.Mathlib.Order.Bounded._hyg.2265 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2263 x._@.Mathlib.Order.Bounded._hyg.2265) (Set.Icc.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Icc Set.bounded_lt_Iccₓ'. -/
 theorem bounded_lt_Icc [Preorder α] [NoMaxOrder α] (a b : α) : Bounded (· < ·) (Set.Icc a b) :=
   (bounded_lt_Iic b).mono Set.Icc_subset_Iic_self
 #align set.bounded_lt_Icc Set.bounded_lt_Icc
 
-/- warning: set.bounded_le_Ioo -> Set.bounded_le_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ioo.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2307 : α) (x._@.Mathlib.Order.Bounded._hyg.2309 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2307 x._@.Mathlib.Order.Bounded._hyg.2309) (Set.Ioo.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_Ioo Set.bounded_le_Iooₓ'. -/
 theorem bounded_le_Ioo [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Ioo a b) :=
   (bounded_le_Iio b).mono Set.Ioo_subset_Iio_self
 #align set.bounded_le_Ioo Set.bounded_le_Ioo
 
-/- warning: set.bounded_le_Ico -> Set.bounded_le_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ico.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2351 : α) (x._@.Mathlib.Order.Bounded._hyg.2353 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2351 x._@.Mathlib.Order.Bounded._hyg.2353) (Set.Ico.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_Ico Set.bounded_le_Icoₓ'. -/
 theorem bounded_le_Ico [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Ico a b) :=
   (bounded_le_Iio b).mono Set.Ico_subset_Iio_self
 #align set.bounded_le_Ico Set.bounded_le_Ico
 
-/- warning: set.bounded_le_Ioc -> Set.bounded_le_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ioc.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2395 : α) (x._@.Mathlib.Order.Bounded._hyg.2397 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2395 x._@.Mathlib.Order.Bounded._hyg.2397) (Set.Ioc.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_Ioc Set.bounded_le_Iocₓ'. -/
 theorem bounded_le_Ioc [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Ioc a b) :=
   (bounded_le_Iic b).mono Set.Ioc_subset_Iic_self
 #align set.bounded_le_Ioc Set.bounded_le_Ioc
 
-/- warning: set.bounded_le_Icc -> Set.bounded_le_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Icc.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2439 : α) (x._@.Mathlib.Order.Bounded._hyg.2441 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2439 x._@.Mathlib.Order.Bounded._hyg.2441) (Set.Icc.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_Icc Set.bounded_le_Iccₓ'. -/
 theorem bounded_le_Icc [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Icc a b) :=
   (bounded_le_Iic b).mono Set.Icc_subset_Iic_self
 #align set.bounded_le_Icc Set.bounded_le_Icc
 
-/- warning: set.bounded_gt_Ioo -> Set.bounded_gt_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ioo.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2483 : α) (x._@.Mathlib.Order.Bounded._hyg.2485 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2483 x._@.Mathlib.Order.Bounded._hyg.2485) (Set.Ioo.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Ioo Set.bounded_gt_Iooₓ'. -/
 theorem bounded_gt_Ioo [Preorder α] (a b : α) : Bounded (· > ·) (Set.Ioo a b) :=
   (bounded_gt_Ioi a).mono Set.Ioo_subset_Ioi_self
 #align set.bounded_gt_Ioo Set.bounded_gt_Ioo
 
-/- warning: set.bounded_gt_Ioc -> Set.bounded_gt_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ioc.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2527 : α) (x._@.Mathlib.Order.Bounded._hyg.2529 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2527 x._@.Mathlib.Order.Bounded._hyg.2529) (Set.Ioc.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Ioc Set.bounded_gt_Iocₓ'. -/
 theorem bounded_gt_Ioc [Preorder α] (a b : α) : Bounded (· > ·) (Set.Ioc a b) :=
   (bounded_gt_Ioi a).mono Set.Ioc_subset_Ioi_self
 #align set.bounded_gt_Ioc Set.bounded_gt_Ioc
 
-/- warning: set.bounded_gt_Ico -> Set.bounded_gt_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ico.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2574 : α) (x._@.Mathlib.Order.Bounded._hyg.2576 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2574 x._@.Mathlib.Order.Bounded._hyg.2576) (Set.Ico.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Ico Set.bounded_gt_Icoₓ'. -/
 theorem bounded_gt_Ico [Preorder α] [NoMinOrder α] (a b : α) : Bounded (· > ·) (Set.Ico a b) :=
   (bounded_gt_Ici a).mono Set.Ico_subset_Ici_self
 #align set.bounded_gt_Ico Set.bounded_gt_Ico
 
-/- warning: set.bounded_gt_Icc -> Set.bounded_gt_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Icc.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2621 : α) (x._@.Mathlib.Order.Bounded._hyg.2623 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2621 x._@.Mathlib.Order.Bounded._hyg.2623) (Set.Icc.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Icc Set.bounded_gt_Iccₓ'. -/
 theorem bounded_gt_Icc [Preorder α] [NoMinOrder α] (a b : α) : Bounded (· > ·) (Set.Icc a b) :=
   (bounded_gt_Ici a).mono Set.Icc_subset_Ici_self
 #align set.bounded_gt_Icc Set.bounded_gt_Icc
 
-/- warning: set.bounded_ge_Ioo -> Set.bounded_ge_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ioo.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2665 : α) (x._@.Mathlib.Order.Bounded._hyg.2667 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2665 x._@.Mathlib.Order.Bounded._hyg.2667) (Set.Ioo.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Ioo Set.bounded_ge_Iooₓ'. -/
 theorem bounded_ge_Ioo [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Ioo a b) :=
   (bounded_ge_Ioi a).mono Set.Ioo_subset_Ioi_self
 #align set.bounded_ge_Ioo Set.bounded_ge_Ioo
 
-/- warning: set.bounded_ge_Ioc -> Set.bounded_ge_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ioc.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2709 : α) (x._@.Mathlib.Order.Bounded._hyg.2711 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2709 x._@.Mathlib.Order.Bounded._hyg.2711) (Set.Ioc.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Ioc Set.bounded_ge_Iocₓ'. -/
 theorem bounded_ge_Ioc [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Ioc a b) :=
   (bounded_ge_Ioi a).mono Set.Ioc_subset_Ioi_self
 #align set.bounded_ge_Ioc Set.bounded_ge_Ioc
 
-/- warning: set.bounded_ge_Ico -> Set.bounded_ge_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ico.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2753 : α) (x._@.Mathlib.Order.Bounded._hyg.2755 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2753 x._@.Mathlib.Order.Bounded._hyg.2755) (Set.Ico.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Ico Set.bounded_ge_Icoₓ'. -/
 theorem bounded_ge_Ico [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Ico a b) :=
   (bounded_ge_Ici a).mono Set.Ico_subset_Ici_self
 #align set.bounded_ge_Ico Set.bounded_ge_Ico
 
-/- warning: set.bounded_ge_Icc -> Set.bounded_ge_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Icc.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2797 : α) (x._@.Mathlib.Order.Bounded._hyg.2799 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2797 x._@.Mathlib.Order.Bounded._hyg.2799) (Set.Icc.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Icc Set.bounded_ge_Iccₓ'. -/
 theorem bounded_ge_Icc [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Icc a b) :=
   (bounded_ge_Ici a).mono Set.Icc_subset_Ici_self
 #align set.bounded_ge_Icc Set.bounded_ge_Icc
@@ -549,46 +297,22 @@ theorem bounded_ge_Icc [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Icc a
 /-! #### Unbounded intervals -/
 
 
-/- warning: set.unbounded_le_Ioi -> Set.unbounded_le_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2844 : α) (x._@.Mathlib.Order.Bounded._hyg.2846 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.2844 x._@.Mathlib.Order.Bounded._hyg.2846) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_le_Ioi Set.unbounded_le_Ioiₓ'. -/
 theorem unbounded_le_Ioi [SemilatticeSup α] [NoMaxOrder α] (a : α) :
     Unbounded (· ≤ ·) (Set.Ioi a) := fun b =>
   let ⟨c, hc⟩ := exists_gt (a ⊔ b)
   ⟨c, le_sup_left.trans_lt hc, (le_sup_right.trans_lt hc).not_le⟩
 #align set.unbounded_le_Ioi Set.unbounded_le_Ioi
 
-/- warning: set.unbounded_le_Ici -> Set.unbounded_le_Ici is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2925 : α) (x._@.Mathlib.Order.Bounded._hyg.2927 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.2925 x._@.Mathlib.Order.Bounded._hyg.2927) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_le_Ici Set.unbounded_le_Iciₓ'. -/
 theorem unbounded_le_Ici [SemilatticeSup α] [NoMaxOrder α] (a : α) :
     Unbounded (· ≤ ·) (Set.Ici a) :=
   (unbounded_le_Ioi a).mono Set.Ioi_subset_Ici_self
 #align set.unbounded_le_Ici Set.unbounded_le_Ici
 
-/- warning: set.unbounded_lt_Ioi -> Set.unbounded_lt_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2970 : α) (x._@.Mathlib.Order.Bounded._hyg.2972 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.2970 x._@.Mathlib.Order.Bounded._hyg.2972) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_Ioi Set.unbounded_lt_Ioiₓ'. -/
 theorem unbounded_lt_Ioi [SemilatticeSup α] [NoMaxOrder α] (a : α) :
     Unbounded (· < ·) (Set.Ioi a) :=
   unbounded_lt_of_unbounded_le (unbounded_le_Ioi a)
 #align set.unbounded_lt_Ioi Set.unbounded_lt_Ioi
 
-/- warning: set.unbounded_lt_Ici -> Set.unbounded_lt_Ici is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3011 : α) (x._@.Mathlib.Order.Bounded._hyg.3013 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3011 x._@.Mathlib.Order.Bounded._hyg.3013) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_Ici Set.unbounded_lt_Iciₓ'. -/
 theorem unbounded_lt_Ici [SemilatticeSup α] (a : α) : Unbounded (· < ·) (Set.Ici a) := fun b =>
   ⟨a ⊔ b, le_sup_left, le_sup_right.not_lt⟩
 #align set.unbounded_lt_Ici Set.unbounded_lt_Ici
@@ -596,12 +320,6 @@ theorem unbounded_lt_Ici [SemilatticeSup α] (a : α) : Unbounded (· < ·) (Set
 /-! ### Bounded initial segments -/
 
 
-/- warning: set.bounded_inter_not -> Set.bounded_inter_not is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {r : α -> α -> Prop} {s : Set.{u1} α}, (forall (a : α) (b : α), Exists.{succ u1} α (fun (m : α) => forall (c : α), (Or (r c a) (r c b)) -> (r c m))) -> (forall (a : α), Iff (Set.Bounded.{u1} α r (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (r b a))))) (Set.Bounded.{u1} α r s))
-but is expected to have type
-  forall {α : Type.{u1}} {r : α -> α -> Prop} {s : Set.{u1} α}, (forall (a : α) (b : α), Exists.{succ u1} α (fun (m : α) => forall (c : α), (Or (r c a) (r c b)) -> (r c m))) -> (forall (a : α), Iff (Set.Bounded.{u1} α r (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (r b a))))) (Set.Bounded.{u1} α r s))
-Case conversion may be inaccurate. Consider using '#align set.bounded_inter_not Set.bounded_inter_notₓ'. -/
 theorem bounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m) (a : α) :
     Bounded r (s ∩ { b | ¬r b a }) ↔ Bounded r s :=
   by
@@ -611,12 +329,6 @@ theorem bounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m)
   exact ⟨m, fun c hc => hm c (or_iff_not_imp_left.2 fun hca => hb c ⟨hc, hca⟩)⟩
 #align set.bounded_inter_not Set.bounded_inter_not
 
-/- warning: set.unbounded_inter_not -> Set.unbounded_inter_not is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {r : α -> α -> Prop} {s : Set.{u1} α}, (forall (a : α) (b : α), Exists.{succ u1} α (fun (m : α) => forall (c : α), (Or (r c a) (r c b)) -> (r c m))) -> (forall (a : α), Iff (Set.Unbounded.{u1} α r (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (r b a))))) (Set.Unbounded.{u1} α r s))
-but is expected to have type
-  forall {α : Type.{u1}} {r : α -> α -> Prop} {s : Set.{u1} α}, (forall (a : α) (b : α), Exists.{succ u1} α (fun (m : α) => forall (c : α), (Or (r c a) (r c b)) -> (r c m))) -> (forall (a : α), Iff (Set.Unbounded.{u1} α r (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (r b a))))) (Set.Unbounded.{u1} α r s))
-Case conversion may be inaccurate. Consider using '#align set.unbounded_inter_not Set.unbounded_inter_notₓ'. -/
 theorem unbounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m) (a : α) :
     Unbounded r (s ∩ { b | ¬r b a }) ↔ Unbounded r s := by
   simp_rw [← not_bounded_iff, bounded_inter_not H]
@@ -625,23 +337,11 @@ theorem unbounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c
 /-! #### Less or equal -/
 
 
-/- warning: set.bounded_le_inter_not_le -> Set.bounded_le_inter_not_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3249 : α) (x._@.Mathlib.Order.Bounded._hyg.3251 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3249 x._@.Mathlib.Order.Bounded._hyg.3251) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3285 : α) (x._@.Mathlib.Order.Bounded._hyg.3287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3285 x._@.Mathlib.Order.Bounded._hyg.3287) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_not_le Set.bounded_le_inter_not_leₓ'. -/
 theorem bounded_le_inter_not_le [SemilatticeSup α] (a : α) :
     Bounded (· ≤ ·) (s ∩ { b | ¬b ≤ a }) ↔ Bounded (· ≤ ·) s :=
   bounded_inter_not (fun x y => ⟨x ⊔ y, fun z h => h.elim le_sup_of_le_left le_sup_of_le_right⟩) a
 #align set.bounded_le_inter_not_le Set.bounded_le_inter_not_le
 
-/- warning: set.unbounded_le_inter_not_le -> Set.unbounded_le_inter_not_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3346 : α) (x._@.Mathlib.Order.Bounded._hyg.3348 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3346 x._@.Mathlib.Order.Bounded._hyg.3348) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3382 : α) (x._@.Mathlib.Order.Bounded._hyg.3384 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3382 x._@.Mathlib.Order.Bounded._hyg.3384) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_not_le Set.unbounded_le_inter_not_leₓ'. -/
 theorem unbounded_le_inter_not_le [SemilatticeSup α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | ¬b ≤ a }) ↔ Unbounded (· ≤ ·) s :=
   by
@@ -649,34 +349,16 @@ theorem unbounded_le_inter_not_le [SemilatticeSup α] (a : α) :
   exact bounded_le_inter_not_le a
 #align set.unbounded_le_inter_not_le Set.unbounded_le_inter_not_le
 
-/- warning: set.bounded_le_inter_lt -> Set.bounded_le_inter_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3455 : α) (x._@.Mathlib.Order.Bounded._hyg.3457 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3455 x._@.Mathlib.Order.Bounded._hyg.3457) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3488 : α) (x._@.Mathlib.Order.Bounded._hyg.3490 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3488 x._@.Mathlib.Order.Bounded._hyg.3490) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_lt Set.bounded_le_inter_ltₓ'. -/
 theorem bounded_le_inter_lt [LinearOrder α] (a : α) :
     Bounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Bounded (· ≤ ·) s := by
   simp_rw [← not_le, bounded_le_inter_not_le]
 #align set.bounded_le_inter_lt Set.bounded_le_inter_lt
 
-/- warning: set.unbounded_le_inter_lt -> Set.unbounded_le_inter_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3531 : α) (x._@.Mathlib.Order.Bounded._hyg.3533 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3531 x._@.Mathlib.Order.Bounded._hyg.3533) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3564 : α) (x._@.Mathlib.Order.Bounded._hyg.3566 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3564 x._@.Mathlib.Order.Bounded._hyg.3566) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_lt Set.unbounded_le_inter_ltₓ'. -/
 theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Unbounded (· ≤ ·) s := by
   convert unbounded_le_inter_not_le a; ext; exact lt_iff_not_le
 #align set.unbounded_le_inter_lt Set.unbounded_le_inter_lt
 
-/- warning: set.bounded_le_inter_le -> Set.bounded_le_inter_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3674 : α) (x._@.Mathlib.Order.Bounded._hyg.3676 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3674 x._@.Mathlib.Order.Bounded._hyg.3676) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3707 : α) (x._@.Mathlib.Order.Bounded._hyg.3709 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3707 x._@.Mathlib.Order.Bounded._hyg.3709) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_le Set.bounded_le_inter_leₓ'. -/
 theorem bounded_le_inter_le [LinearOrder α] (a : α) :
     Bounded (· ≤ ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· ≤ ·) s :=
   by
@@ -685,12 +367,6 @@ theorem bounded_le_inter_le [LinearOrder α] (a : α) :
   exact bounded.mono fun x ⟨hx, hx'⟩ => ⟨hx, le_of_lt hx'⟩
 #align set.bounded_le_inter_le Set.bounded_le_inter_le
 
-/- warning: set.unbounded_le_inter_le -> Set.unbounded_le_inter_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3816 : α) (x._@.Mathlib.Order.Bounded._hyg.3818 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3816 x._@.Mathlib.Order.Bounded._hyg.3818) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3849 : α) (x._@.Mathlib.Order.Bounded._hyg.3851 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3849 x._@.Mathlib.Order.Bounded._hyg.3851) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_le Set.unbounded_le_inter_leₓ'. -/
 theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· ≤ ·) s :=
   by
@@ -701,23 +377,11 @@ theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
 /-! #### Less than -/
 
 
-/- warning: set.bounded_lt_inter_not_lt -> Set.bounded_lt_inter_not_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3923 : α) (x._@.Mathlib.Order.Bounded._hyg.3925 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3923 x._@.Mathlib.Order.Bounded._hyg.3925) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3959 : α) (x._@.Mathlib.Order.Bounded._hyg.3961 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3959 x._@.Mathlib.Order.Bounded._hyg.3961) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_not_lt Set.bounded_lt_inter_not_ltₓ'. -/
 theorem bounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
     Bounded (· < ·) (s ∩ { b | ¬b < a }) ↔ Bounded (· < ·) s :=
   bounded_inter_not (fun x y => ⟨x ⊔ y, fun z h => h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩) a
 #align set.bounded_lt_inter_not_lt Set.bounded_lt_inter_not_lt
 
-/- warning: set.unbounded_lt_inter_not_lt -> Set.unbounded_lt_inter_not_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4020 : α) (x._@.Mathlib.Order.Bounded._hyg.4022 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4020 x._@.Mathlib.Order.Bounded._hyg.4022) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4056 : α) (x._@.Mathlib.Order.Bounded._hyg.4058 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4056 x._@.Mathlib.Order.Bounded._hyg.4058) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_not_lt Set.unbounded_lt_inter_not_ltₓ'. -/
 theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | ¬b < a }) ↔ Unbounded (· < ·) s :=
   by
@@ -725,34 +389,16 @@ theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
   exact bounded_lt_inter_not_lt a
 #align set.unbounded_lt_inter_not_lt Set.unbounded_lt_inter_not_lt
 
-/- warning: set.bounded_lt_inter_le -> Set.bounded_lt_inter_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4129 : α) (x._@.Mathlib.Order.Bounded._hyg.4131 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4129 x._@.Mathlib.Order.Bounded._hyg.4131) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4162 : α) (x._@.Mathlib.Order.Bounded._hyg.4164 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4162 x._@.Mathlib.Order.Bounded._hyg.4164) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_le Set.bounded_lt_inter_leₓ'. -/
 theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
     Bounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· < ·) s := by convert bounded_lt_inter_not_lt a;
   ext; exact not_lt.symm
 #align set.bounded_lt_inter_le Set.bounded_lt_inter_le
 
-/- warning: set.unbounded_lt_inter_le -> Set.unbounded_lt_inter_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4272 : α) (x._@.Mathlib.Order.Bounded._hyg.4274 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4272 x._@.Mathlib.Order.Bounded._hyg.4274) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4305 : α) (x._@.Mathlib.Order.Bounded._hyg.4307 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4305 x._@.Mathlib.Order.Bounded._hyg.4307) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_le Set.unbounded_lt_inter_leₓ'. -/
 theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· < ·) s := by
   convert unbounded_lt_inter_not_lt a; ext; exact not_lt.symm
 #align set.unbounded_lt_inter_le Set.unbounded_lt_inter_le
 
-/- warning: set.bounded_lt_inter_lt -> Set.bounded_lt_inter_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4418 : α) (x._@.Mathlib.Order.Bounded._hyg.4420 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4418 x._@.Mathlib.Order.Bounded._hyg.4420) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4451 : α) (x._@.Mathlib.Order.Bounded._hyg.4453 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4451 x._@.Mathlib.Order.Bounded._hyg.4453) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_lt Set.bounded_lt_inter_ltₓ'. -/
 theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
     Bounded (· < ·) (s ∩ { b | a < b }) ↔ Bounded (· < ·) s :=
   by
@@ -760,12 +406,6 @@ theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
   exact bounded_le_inter_lt a
 #align set.bounded_lt_inter_lt Set.bounded_lt_inter_lt
 
-/- warning: set.unbounded_lt_inter_lt -> Set.unbounded_lt_inter_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4526 : α) (x._@.Mathlib.Order.Bounded._hyg.4528 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4526 x._@.Mathlib.Order.Bounded._hyg.4528) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4559 : α) (x._@.Mathlib.Order.Bounded._hyg.4561 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4559 x._@.Mathlib.Order.Bounded._hyg.4561) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_lt Set.unbounded_lt_inter_ltₓ'. -/
 theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | a < b }) ↔ Unbounded (· < ·) s :=
   by
@@ -776,67 +416,31 @@ theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
 /-! #### Greater or equal -/
 
 
-/- warning: set.bounded_ge_inter_not_ge -> Set.bounded_ge_inter_not_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4633 : α) (x._@.Mathlib.Order.Bounded._hyg.4635 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4633 x._@.Mathlib.Order.Bounded._hyg.4635) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4669 : α) (x._@.Mathlib.Order.Bounded._hyg.4671 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4669 x._@.Mathlib.Order.Bounded._hyg.4671) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_not_ge Set.bounded_ge_inter_not_geₓ'. -/
 theorem bounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | ¬a ≤ b }) ↔ Bounded (· ≥ ·) s :=
   @bounded_le_inter_not_le αᵒᵈ s _ a
 #align set.bounded_ge_inter_not_ge Set.bounded_ge_inter_not_ge
 
-/- warning: set.unbounded_ge_inter_not_ge -> Set.unbounded_ge_inter_not_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4712 : α) (x._@.Mathlib.Order.Bounded._hyg.4714 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4712 x._@.Mathlib.Order.Bounded._hyg.4714) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4748 : α) (x._@.Mathlib.Order.Bounded._hyg.4750 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4748 x._@.Mathlib.Order.Bounded._hyg.4750) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_inter_not_ge Set.unbounded_ge_inter_not_geₓ'. -/
 theorem unbounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | ¬a ≤ b }) ↔ Unbounded (· ≥ ·) s :=
   @unbounded_le_inter_not_le αᵒᵈ s _ a
 #align set.unbounded_ge_inter_not_ge Set.unbounded_ge_inter_not_ge
 
-/- warning: set.bounded_ge_inter_gt -> Set.bounded_ge_inter_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4791 : α) (x._@.Mathlib.Order.Bounded._hyg.4793 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4791 x._@.Mathlib.Order.Bounded._hyg.4793) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4824 : α) (x._@.Mathlib.Order.Bounded._hyg.4826 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4824 x._@.Mathlib.Order.Bounded._hyg.4826) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_gt Set.bounded_ge_inter_gtₓ'. -/
 theorem bounded_ge_inter_gt [LinearOrder α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | b < a }) ↔ Bounded (· ≥ ·) s :=
   @bounded_le_inter_lt αᵒᵈ s _ a
 #align set.bounded_ge_inter_gt Set.bounded_ge_inter_gt
 
-/- warning: set.unbounded_ge_inter_gt -> Set.unbounded_ge_inter_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4867 : α) (x._@.Mathlib.Order.Bounded._hyg.4869 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4867 x._@.Mathlib.Order.Bounded._hyg.4869) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4900 : α) (x._@.Mathlib.Order.Bounded._hyg.4902 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4900 x._@.Mathlib.Order.Bounded._hyg.4902) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_inter_gt Set.unbounded_ge_inter_gtₓ'. -/
 theorem unbounded_ge_inter_gt [LinearOrder α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | b < a }) ↔ Unbounded (· ≥ ·) s :=
   @unbounded_le_inter_lt αᵒᵈ s _ a
 #align set.unbounded_ge_inter_gt Set.unbounded_ge_inter_gt
 
-/- warning: set.bounded_ge_inter_ge -> Set.bounded_ge_inter_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4943 : α) (x._@.Mathlib.Order.Bounded._hyg.4945 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4943 x._@.Mathlib.Order.Bounded._hyg.4945) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4976 : α) (x._@.Mathlib.Order.Bounded._hyg.4978 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4976 x._@.Mathlib.Order.Bounded._hyg.4978) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_ge Set.bounded_ge_inter_geₓ'. -/
 theorem bounded_ge_inter_ge [LinearOrder α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | b ≤ a }) ↔ Bounded (· ≥ ·) s :=
   @bounded_le_inter_le αᵒᵈ s _ a
 #align set.bounded_ge_inter_ge Set.bounded_ge_inter_ge
 
-/- warning: set.unbounded_ge_iff_unbounded_inter_ge -> Set.unbounded_ge_iff_unbounded_inter_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5019 : α) (x._@.Mathlib.Order.Bounded._hyg.5021 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5019 x._@.Mathlib.Order.Bounded._hyg.5021) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5052 : α) (x._@.Mathlib.Order.Bounded._hyg.5054 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5052 x._@.Mathlib.Order.Bounded._hyg.5054) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_iff_unbounded_inter_ge Set.unbounded_ge_iff_unbounded_inter_geₓ'. -/
 theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | b ≤ a }) ↔ Unbounded (· ≥ ·) s :=
   @unbounded_le_inter_le αᵒᵈ s _ a
@@ -845,67 +449,31 @@ theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
 /-! #### Greater than -/
 
 
-/- warning: set.bounded_gt_inter_not_gt -> Set.bounded_gt_inter_not_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5096 : α) (x._@.Mathlib.Order.Bounded._hyg.5098 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5096 x._@.Mathlib.Order.Bounded._hyg.5098) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5132 : α) (x._@.Mathlib.Order.Bounded._hyg.5134 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5132 x._@.Mathlib.Order.Bounded._hyg.5134) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_not_gt Set.bounded_gt_inter_not_gtₓ'. -/
 theorem bounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
     Bounded (· > ·) (s ∩ { b | ¬a < b }) ↔ Bounded (· > ·) s :=
   @bounded_lt_inter_not_lt αᵒᵈ s _ a
 #align set.bounded_gt_inter_not_gt Set.bounded_gt_inter_not_gt
 
-/- warning: set.unbounded_gt_inter_not_gt -> Set.unbounded_gt_inter_not_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5175 : α) (x._@.Mathlib.Order.Bounded._hyg.5177 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5175 x._@.Mathlib.Order.Bounded._hyg.5177) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5211 : α) (x._@.Mathlib.Order.Bounded._hyg.5213 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5211 x._@.Mathlib.Order.Bounded._hyg.5213) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_inter_not_gt Set.unbounded_gt_inter_not_gtₓ'. -/
 theorem unbounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | ¬a < b }) ↔ Unbounded (· > ·) s :=
   @unbounded_lt_inter_not_lt αᵒᵈ s _ a
 #align set.unbounded_gt_inter_not_gt Set.unbounded_gt_inter_not_gt
 
-/- warning: set.bounded_gt_inter_ge -> Set.bounded_gt_inter_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5254 : α) (x._@.Mathlib.Order.Bounded._hyg.5256 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5254 x._@.Mathlib.Order.Bounded._hyg.5256) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5287 : α) (x._@.Mathlib.Order.Bounded._hyg.5289 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5287 x._@.Mathlib.Order.Bounded._hyg.5289) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_ge Set.bounded_gt_inter_geₓ'. -/
 theorem bounded_gt_inter_ge [LinearOrder α] (a : α) :
     Bounded (· > ·) (s ∩ { b | b ≤ a }) ↔ Bounded (· > ·) s :=
   @bounded_lt_inter_le αᵒᵈ s _ a
 #align set.bounded_gt_inter_ge Set.bounded_gt_inter_ge
 
-/- warning: set.unbounded_inter_ge -> Set.unbounded_inter_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5330 : α) (x._@.Mathlib.Order.Bounded._hyg.5332 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5330 x._@.Mathlib.Order.Bounded._hyg.5332) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5363 : α) (x._@.Mathlib.Order.Bounded._hyg.5365 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5363 x._@.Mathlib.Order.Bounded._hyg.5365) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_inter_ge Set.unbounded_inter_geₓ'. -/
 theorem unbounded_inter_ge [LinearOrder α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | b ≤ a }) ↔ Unbounded (· > ·) s :=
   @unbounded_lt_inter_le αᵒᵈ s _ a
 #align set.unbounded_inter_ge Set.unbounded_inter_ge
 
-/- warning: set.bounded_gt_inter_gt -> Set.bounded_gt_inter_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5409 : α) (x._@.Mathlib.Order.Bounded._hyg.5411 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5409 x._@.Mathlib.Order.Bounded._hyg.5411) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5442 : α) (x._@.Mathlib.Order.Bounded._hyg.5444 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5442 x._@.Mathlib.Order.Bounded._hyg.5444) s)
-Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_gt Set.bounded_gt_inter_gtₓ'. -/
 theorem bounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
     Bounded (· > ·) (s ∩ { b | b < a }) ↔ Bounded (· > ·) s :=
   @bounded_lt_inter_lt αᵒᵈ s _ _ a
 #align set.bounded_gt_inter_gt Set.bounded_gt_inter_gt
 
-/- warning: set.unbounded_gt_inter_gt -> Set.unbounded_gt_inter_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
-but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5488 : α) (x._@.Mathlib.Order.Bounded._hyg.5490 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5488 x._@.Mathlib.Order.Bounded._hyg.5490) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5521 : α) (x._@.Mathlib.Order.Bounded._hyg.5523 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5521 x._@.Mathlib.Order.Bounded._hyg.5523) s)
-Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_inter_gt Set.unbounded_gt_inter_gtₓ'. -/
 theorem unbounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | b < a }) ↔ Unbounded (· > ·) s :=
   @unbounded_lt_inter_lt αᵒᵈ s _ _ a
Diff
@@ -667,11 +667,8 @@ but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3531 : α) (x._@.Mathlib.Order.Bounded._hyg.3533 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3531 x._@.Mathlib.Order.Bounded._hyg.3533) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3564 : α) (x._@.Mathlib.Order.Bounded._hyg.3566 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3564 x._@.Mathlib.Order.Bounded._hyg.3566) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_lt Set.unbounded_le_inter_ltₓ'. -/
 theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
-    Unbounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Unbounded (· ≤ ·) s :=
-  by
-  convert unbounded_le_inter_not_le a
-  ext
-  exact lt_iff_not_le
+    Unbounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Unbounded (· ≤ ·) s := by
+  convert unbounded_le_inter_not_le a; ext; exact lt_iff_not_le
 #align set.unbounded_le_inter_lt Set.unbounded_le_inter_lt
 
 /- warning: set.bounded_le_inter_le -> Set.bounded_le_inter_le is a dubious translation:
@@ -735,11 +732,8 @@ but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4129 : α) (x._@.Mathlib.Order.Bounded._hyg.4131 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4129 x._@.Mathlib.Order.Bounded._hyg.4131) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4162 : α) (x._@.Mathlib.Order.Bounded._hyg.4164 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4162 x._@.Mathlib.Order.Bounded._hyg.4164) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_le Set.bounded_lt_inter_leₓ'. -/
 theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
-    Bounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· < ·) s :=
-  by
-  convert bounded_lt_inter_not_lt a
-  ext
-  exact not_lt.symm
+    Bounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· < ·) s := by convert bounded_lt_inter_not_lt a;
+  ext; exact not_lt.symm
 #align set.bounded_lt_inter_le Set.bounded_lt_inter_le
 
 /- warning: set.unbounded_lt_inter_le -> Set.unbounded_lt_inter_le is a dubious translation:
@@ -749,11 +743,8 @@ but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4272 : α) (x._@.Mathlib.Order.Bounded._hyg.4274 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4272 x._@.Mathlib.Order.Bounded._hyg.4274) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4305 : α) (x._@.Mathlib.Order.Bounded._hyg.4307 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4305 x._@.Mathlib.Order.Bounded._hyg.4307) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_le Set.unbounded_lt_inter_leₓ'. -/
 theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
-    Unbounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· < ·) s :=
-  by
-  convert unbounded_lt_inter_not_lt a
-  ext
-  exact not_lt.symm
+    Unbounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· < ·) s := by
+  convert unbounded_lt_inter_not_lt a; ext; exact not_lt.symm
 #align set.unbounded_lt_inter_le Set.unbounded_lt_inter_le
 
 /- warning: set.bounded_lt_inter_lt -> Set.bounded_lt_inter_lt is a dubious translation:
Diff
@@ -48,7 +48,7 @@ theorem Unbounded.mono (hst : s ⊆ t) (hs : Unbounded r s) : Unbounded r t := f
 
 /- warning: set.unbounded_le_of_forall_exists_lt -> Set.unbounded_le_of_forall_exists_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b))) -> (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b))) -> (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b))) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.172 : α) (x._@.Mathlib.Order.Bounded._hyg.174 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.172 x._@.Mathlib.Order.Bounded._hyg.174) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_of_forall_exists_lt Set.unbounded_le_of_forall_exists_ltₓ'. -/
@@ -60,7 +60,7 @@ theorem unbounded_le_of_forall_exists_lt [Preorder α] (h : ∀ a, ∃ b ∈ s,
 
 /- warning: set.unbounded_le_iff -> Set.unbounded_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.248 : α) (x._@.Mathlib.Order.Bounded._hyg.250 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.248 x._@.Mathlib.Order.Bounded._hyg.250) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_iff Set.unbounded_le_iffₓ'. -/
@@ -70,7 +70,7 @@ theorem unbounded_le_iff [LinearOrder α] : Unbounded (· ≤ ·) s ↔ ∀ a, 
 
 /- warning: set.unbounded_lt_of_forall_exists_le -> Set.unbounded_lt_of_forall_exists_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b))) -> (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1)) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b))) -> (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b))) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.336 : α) (x._@.Mathlib.Order.Bounded._hyg.338 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.336 x._@.Mathlib.Order.Bounded._hyg.338) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_of_forall_exists_le Set.unbounded_lt_of_forall_exists_leₓ'. -/
@@ -82,7 +82,7 @@ theorem unbounded_lt_of_forall_exists_le [Preorder α] (h : ∀ a, ∃ b ∈ s,
 
 /- warning: set.unbounded_lt_iff -> Set.unbounded_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.412 : α) (x._@.Mathlib.Order.Bounded._hyg.414 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.412 x._@.Mathlib.Order.Bounded._hyg.414) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_iff Set.unbounded_lt_iffₓ'. -/
@@ -92,7 +92,7 @@ theorem unbounded_lt_iff [LinearOrder α] : Unbounded (· < ·) s ↔ ∀ a, ∃
 
 /- warning: set.unbounded_ge_of_forall_exists_gt -> Set.unbounded_ge_of_forall_exists_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) b a))) -> (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1)) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) b a))) -> (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) b a))) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.500 : α) (x._@.Mathlib.Order.Bounded._hyg.502 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.500 x._@.Mathlib.Order.Bounded._hyg.502) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_of_forall_exists_gt Set.unbounded_ge_of_forall_exists_gtₓ'. -/
@@ -103,7 +103,7 @@ theorem unbounded_ge_of_forall_exists_gt [Preorder α] (h : ∀ a, ∃ b ∈ s,
 
 /- warning: set.unbounded_ge_iff -> Set.unbounded_ge_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.542 : α) (x._@.Mathlib.Order.Bounded._hyg.544 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.542 x._@.Mathlib.Order.Bounded._hyg.544) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_iff Set.unbounded_ge_iffₓ'. -/
@@ -116,7 +116,7 @@ theorem unbounded_ge_iff [LinearOrder α] : Unbounded (· ≥ ·) s ↔ ∀ a, 
 
 /- warning: set.unbounded_gt_of_forall_exists_ge -> Set.unbounded_gt_of_forall_exists_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a))) -> (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1)) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a))) -> (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a))) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.668 : α) (x._@.Mathlib.Order.Bounded._hyg.670 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.668 x._@.Mathlib.Order.Bounded._hyg.670) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_of_forall_exists_ge Set.unbounded_gt_of_forall_exists_geₓ'. -/
@@ -128,7 +128,7 @@ theorem unbounded_gt_of_forall_exists_ge [Preorder α] (h : ∀ a, ∃ b ∈ s,
 
 /- warning: set.unbounded_gt_iff -> Set.unbounded_gt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.745 : α) (x._@.Mathlib.Order.Bounded._hyg.747 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.745 x._@.Mathlib.Order.Bounded._hyg.747) s) (forall (a : α), Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))
 Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_iff Set.unbounded_gt_iffₓ'. -/
@@ -152,11 +152,15 @@ theorem Bounded.rel_mono {r' : α → α → Prop} (h : Bounded r s) (hrr' : r 
 #align set.bounded.rel_mono Set.Bounded.rel_mono
 -/
 
-#print Set.bounded_le_of_bounded_lt /-
+/- warning: set.bounded_le_of_bounded_lt -> Set.bounded_le_of_bounded_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s) -> (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.909 : α) (x._@.Mathlib.Order.Bounded._hyg.911 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.909 x._@.Mathlib.Order.Bounded._hyg.911) s) -> (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.926 : α) (x._@.Mathlib.Order.Bounded._hyg.928 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.926 x._@.Mathlib.Order.Bounded._hyg.928) s)
+Case conversion may be inaccurate. Consider using '#align set.bounded_le_of_bounded_lt Set.bounded_le_of_bounded_ltₓ'. -/
 theorem bounded_le_of_bounded_lt [Preorder α] (h : Bounded (· < ·) s) : Bounded (· ≤ ·) s :=
   h.rel_mono fun _ _ => le_of_lt
 #align set.bounded_le_of_bounded_lt Set.bounded_le_of_bounded_lt
--/
 
 #print Set.Unbounded.rel_mono /-
 theorem Unbounded.rel_mono {r' : α → α → Prop} (hr : r' ≤ r) (h : Unbounded r s) : Unbounded r' s :=
@@ -166,13 +170,22 @@ theorem Unbounded.rel_mono {r' : α → α → Prop} (hr : r' ≤ r) (h : Unboun
 #align set.unbounded.rel_mono Set.Unbounded.rel_mono
 -/
 
-#print Set.unbounded_lt_of_unbounded_le /-
+/- warning: set.unbounded_lt_of_unbounded_le -> Set.unbounded_lt_of_unbounded_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s) -> (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1044 : α) (x._@.Mathlib.Order.Bounded._hyg.1046 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1044 x._@.Mathlib.Order.Bounded._hyg.1046) s) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1061 : α) (x._@.Mathlib.Order.Bounded._hyg.1063 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1061 x._@.Mathlib.Order.Bounded._hyg.1063) s)
+Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_of_unbounded_le Set.unbounded_lt_of_unbounded_leₓ'. -/
 theorem unbounded_lt_of_unbounded_le [Preorder α] (h : Unbounded (· ≤ ·) s) : Unbounded (· < ·) s :=
   h.rel_mono fun _ _ => le_of_lt
 #align set.unbounded_lt_of_unbounded_le Set.unbounded_lt_of_unbounded_le
--/
 
-#print Set.bounded_le_iff_bounded_lt /-
+/- warning: set.bounded_le_iff_bounded_lt -> Set.bounded_le_iff_bounded_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1107 : α) (x._@.Mathlib.Order.Bounded._hyg.1109 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1107 x._@.Mathlib.Order.Bounded._hyg.1109) s) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1124 : α) (x._@.Mathlib.Order.Bounded._hyg.1126 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1124 x._@.Mathlib.Order.Bounded._hyg.1126) s)
+Case conversion may be inaccurate. Consider using '#align set.bounded_le_iff_bounded_lt Set.bounded_le_iff_bounded_ltₓ'. -/
 theorem bounded_le_iff_bounded_lt [Preorder α] [NoMaxOrder α] :
     Bounded (· ≤ ·) s ↔ Bounded (· < ·) s :=
   by
@@ -181,46 +194,65 @@ theorem bounded_le_iff_bounded_lt [Preorder α] [NoMaxOrder α] :
   cases' exists_gt a with b hb
   exact ⟨b, fun c hc => lt_of_le_of_lt (ha c hc) hb⟩
 #align set.bounded_le_iff_bounded_lt Set.bounded_le_iff_bounded_lt
--/
 
-#print Set.unbounded_lt_iff_unbounded_le /-
+/- warning: set.unbounded_lt_iff_unbounded_le -> Set.unbounded_lt_iff_unbounded_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1198 : α) (x._@.Mathlib.Order.Bounded._hyg.1200 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1198 x._@.Mathlib.Order.Bounded._hyg.1200) s) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1215 : α) (x._@.Mathlib.Order.Bounded._hyg.1217 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1215 x._@.Mathlib.Order.Bounded._hyg.1217) s)
+Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_iff_unbounded_le Set.unbounded_lt_iff_unbounded_leₓ'. -/
 theorem unbounded_lt_iff_unbounded_le [Preorder α] [NoMaxOrder α] :
     Unbounded (· < ·) s ↔ Unbounded (· ≤ ·) s := by
   simp_rw [← not_bounded_iff, bounded_le_iff_bounded_lt]
 #align set.unbounded_lt_iff_unbounded_le Set.unbounded_lt_iff_unbounded_le
--/
 
 /-! #### Greater and greater or equal -/
 
 
-#print Set.bounded_ge_of_bounded_gt /-
+/- warning: set.bounded_ge_of_bounded_gt -> Set.bounded_ge_of_bounded_gt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s) -> (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1255 : α) (x._@.Mathlib.Order.Bounded._hyg.1257 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1255 x._@.Mathlib.Order.Bounded._hyg.1257) s) -> (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1272 : α) (x._@.Mathlib.Order.Bounded._hyg.1274 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1272 x._@.Mathlib.Order.Bounded._hyg.1274) s)
+Case conversion may be inaccurate. Consider using '#align set.bounded_ge_of_bounded_gt Set.bounded_ge_of_bounded_gtₓ'. -/
 theorem bounded_ge_of_bounded_gt [Preorder α] (h : Bounded (· > ·) s) : Bounded (· ≥ ·) s :=
   let ⟨a, ha⟩ := h
   ⟨a, fun b hb => le_of_lt (ha b hb)⟩
 #align set.bounded_ge_of_bounded_gt Set.bounded_ge_of_bounded_gt
--/
 
-#print Set.unbounded_gt_of_unbounded_ge /-
+/- warning: set.unbounded_gt_of_unbounded_ge -> Set.unbounded_gt_of_unbounded_ge is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s) -> (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α], (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1332 : α) (x._@.Mathlib.Order.Bounded._hyg.1334 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1332 x._@.Mathlib.Order.Bounded._hyg.1334) s) -> (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1349 : α) (x._@.Mathlib.Order.Bounded._hyg.1351 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1349 x._@.Mathlib.Order.Bounded._hyg.1351) s)
+Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_of_unbounded_ge Set.unbounded_gt_of_unbounded_geₓ'. -/
 theorem unbounded_gt_of_unbounded_ge [Preorder α] (h : Unbounded (· ≥ ·) s) : Unbounded (· > ·) s :=
   fun a =>
   let ⟨b, hb, hba⟩ := h a
   ⟨b, hb, fun hba' => hba (le_of_lt hba')⟩
 #align set.unbounded_gt_of_unbounded_ge Set.unbounded_gt_of_unbounded_ge
--/
 
-#print Set.bounded_ge_iff_bounded_gt /-
+/- warning: set.bounded_ge_iff_bounded_gt -> Set.bounded_ge_iff_bounded_gt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1431 : α) (x._@.Mathlib.Order.Bounded._hyg.1433 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1431 x._@.Mathlib.Order.Bounded._hyg.1433) s) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1448 : α) (x._@.Mathlib.Order.Bounded._hyg.1450 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1448 x._@.Mathlib.Order.Bounded._hyg.1450) s)
+Case conversion may be inaccurate. Consider using '#align set.bounded_ge_iff_bounded_gt Set.bounded_ge_iff_bounded_gtₓ'. -/
 theorem bounded_ge_iff_bounded_gt [Preorder α] [NoMinOrder α] :
     Bounded (· ≥ ·) s ↔ Bounded (· > ·) s :=
   @bounded_le_iff_bounded_lt αᵒᵈ _ _ _
 #align set.bounded_ge_iff_bounded_gt Set.bounded_ge_iff_bounded_gt
--/
 
-#print Set.unbounded_gt_iff_unbounded_ge /-
+/- warning: set.unbounded_gt_iff_unbounded_ge -> Set.unbounded_gt_iff_unbounded_ge is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) s) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) s)
+but is expected to have type
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1492 : α) (x._@.Mathlib.Order.Bounded._hyg.1494 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1492 x._@.Mathlib.Order.Bounded._hyg.1494) s) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1509 : α) (x._@.Mathlib.Order.Bounded._hyg.1511 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1509 x._@.Mathlib.Order.Bounded._hyg.1511) s)
+Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_iff_unbounded_ge Set.unbounded_gt_iff_unbounded_geₓ'. -/
 theorem unbounded_gt_iff_unbounded_ge [Preorder α] [NoMinOrder α] :
     Unbounded (· > ·) s ↔ Unbounded (· ≥ ·) s :=
   @unbounded_lt_iff_unbounded_le αᵒᵈ _ _ _
 #align set.unbounded_gt_iff_unbounded_ge Set.unbounded_gt_iff_unbounded_ge
--/
 
 /-! ### The universal set -/
 
@@ -232,11 +264,15 @@ theorem unbounded_le_univ [LE α] [NoTopOrder α] : Unbounded (· ≤ ·) (@Set.
 #align set.unbounded_le_univ Set.unbounded_le_univ
 -/
 
-#print Set.unbounded_lt_univ /-
+/- warning: set.unbounded_lt_univ -> Set.unbounded_lt_univ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoTopOrder.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.univ.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoTopOrder.{u1} α (Preorder.toLE.{u1} α _inst_1)], Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1621 : α) (x._@.Mathlib.Order.Bounded._hyg.1623 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1621 x._@.Mathlib.Order.Bounded._hyg.1623) (Set.univ.{u1} α)
+Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_univ Set.unbounded_lt_univₓ'. -/
 theorem unbounded_lt_univ [Preorder α] [NoTopOrder α] : Unbounded (· < ·) (@Set.univ α) :=
   unbounded_lt_of_unbounded_le unbounded_le_univ
 #align set.unbounded_lt_univ Set.unbounded_lt_univ
--/
 
 #print Set.unbounded_ge_univ /-
 theorem unbounded_ge_univ [LE α] [NoBotOrder α] : Unbounded (· ≥ ·) (@Set.univ α) := fun a =>
@@ -245,11 +281,15 @@ theorem unbounded_ge_univ [LE α] [NoBotOrder α] : Unbounded (· ≥ ·) (@Set.
 #align set.unbounded_ge_univ Set.unbounded_ge_univ
 -/
 
-#print Set.unbounded_gt_univ /-
+/- warning: set.unbounded_gt_univ -> Set.unbounded_gt_univ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoBotOrder.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.univ.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoBotOrder.{u1} α (Preorder.toLE.{u1} α _inst_1)], Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1731 : α) (x._@.Mathlib.Order.Bounded._hyg.1733 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1731 x._@.Mathlib.Order.Bounded._hyg.1733) (Set.univ.{u1} α)
+Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_univ Set.unbounded_gt_univₓ'. -/
 theorem unbounded_gt_univ [Preorder α] [NoBotOrder α] : Unbounded (· > ·) (@Set.univ α) :=
   unbounded_gt_of_unbounded_ge unbounded_ge_univ
 #align set.unbounded_gt_univ Set.unbounded_gt_univ
--/
 
 /-! ### Bounded and unbounded intervals -/
 
@@ -263,183 +303,295 @@ theorem bounded_self (a : α) : Bounded r { b | r b a } :=
 /-! #### Half-open bounded intervals -/
 
 
-#print Set.bounded_lt_Iio /-
+/- warning: set.bounded_lt_Iio -> Set.bounded_lt_Iio is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Iio.{u1} α _inst_1 a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1803 : α) (x._@.Mathlib.Order.Bounded._hyg.1805 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1803 x._@.Mathlib.Order.Bounded._hyg.1805) (Set.Iio.{u1} α _inst_1 a)
+Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Iio Set.bounded_lt_Iioₓ'. -/
 theorem bounded_lt_Iio [Preorder α] (a : α) : Bounded (· < ·) (Set.Iio a) :=
   bounded_self a
 #align set.bounded_lt_Iio Set.bounded_lt_Iio
--/
 
-#print Set.bounded_le_Iio /-
+/- warning: set.bounded_le_Iio -> Set.bounded_le_Iio is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Iio.{u1} α _inst_1 a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1841 : α) (x._@.Mathlib.Order.Bounded._hyg.1843 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1841 x._@.Mathlib.Order.Bounded._hyg.1843) (Set.Iio.{u1} α _inst_1 a)
+Case conversion may be inaccurate. Consider using '#align set.bounded_le_Iio Set.bounded_le_Iioₓ'. -/
 theorem bounded_le_Iio [Preorder α] (a : α) : Bounded (· ≤ ·) (Set.Iio a) :=
   bounded_le_of_bounded_lt (bounded_lt_Iio a)
 #align set.bounded_le_Iio Set.bounded_le_Iio
--/
 
-#print Set.bounded_le_Iic /-
+/- warning: set.bounded_le_Iic -> Set.bounded_le_Iic is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Iic.{u1} α _inst_1 a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1882 : α) (x._@.Mathlib.Order.Bounded._hyg.1884 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1882 x._@.Mathlib.Order.Bounded._hyg.1884) (Set.Iic.{u1} α _inst_1 a)
+Case conversion may be inaccurate. Consider using '#align set.bounded_le_Iic Set.bounded_le_Iicₓ'. -/
 theorem bounded_le_Iic [Preorder α] (a : α) : Bounded (· ≤ ·) (Set.Iic a) :=
   bounded_self a
 #align set.bounded_le_Iic Set.bounded_le_Iic
--/
 
-#print Set.bounded_lt_Iic /-
+/- warning: set.bounded_lt_Iic -> Set.bounded_lt_Iic is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Iic.{u1} α _inst_1 a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1923 : α) (x._@.Mathlib.Order.Bounded._hyg.1925 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1923 x._@.Mathlib.Order.Bounded._hyg.1925) (Set.Iic.{u1} α _inst_1 a)
+Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Iic Set.bounded_lt_Iicₓ'. -/
 theorem bounded_lt_Iic [Preorder α] [NoMaxOrder α] (a : α) : Bounded (· < ·) (Set.Iic a) := by
   simp only [← bounded_le_iff_bounded_lt, bounded_le_Iic]
 #align set.bounded_lt_Iic Set.bounded_lt_Iic
--/
 
-#print Set.bounded_gt_Ioi /-
+/- warning: set.bounded_gt_Ioi -> Set.bounded_gt_Ioi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ioi.{u1} α _inst_1 a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.1963 : α) (x._@.Mathlib.Order.Bounded._hyg.1965 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.1963 x._@.Mathlib.Order.Bounded._hyg.1965) (Set.Ioi.{u1} α _inst_1 a)
+Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Ioi Set.bounded_gt_Ioiₓ'. -/
 theorem bounded_gt_Ioi [Preorder α] (a : α) : Bounded (· > ·) (Set.Ioi a) :=
   bounded_self a
 #align set.bounded_gt_Ioi Set.bounded_gt_Ioi
--/
 
-#print Set.bounded_ge_Ioi /-
+/- warning: set.bounded_ge_Ioi -> Set.bounded_ge_Ioi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ioi.{u1} α _inst_1 a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2001 : α) (x._@.Mathlib.Order.Bounded._hyg.2003 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2001 x._@.Mathlib.Order.Bounded._hyg.2003) (Set.Ioi.{u1} α _inst_1 a)
+Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Ioi Set.bounded_ge_Ioiₓ'. -/
 theorem bounded_ge_Ioi [Preorder α] (a : α) : Bounded (· ≥ ·) (Set.Ioi a) :=
   bounded_ge_of_bounded_gt (bounded_gt_Ioi a)
 #align set.bounded_ge_Ioi Set.bounded_ge_Ioi
--/
 
-#print Set.bounded_ge_Ici /-
+/- warning: set.bounded_ge_Ici -> Set.bounded_ge_Ici is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ici.{u1} α _inst_1 a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2042 : α) (x._@.Mathlib.Order.Bounded._hyg.2044 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2042 x._@.Mathlib.Order.Bounded._hyg.2044) (Set.Ici.{u1} α _inst_1 a)
+Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Ici Set.bounded_ge_Iciₓ'. -/
 theorem bounded_ge_Ici [Preorder α] (a : α) : Bounded (· ≥ ·) (Set.Ici a) :=
   bounded_self a
 #align set.bounded_ge_Ici Set.bounded_ge_Ici
--/
 
-#print Set.bounded_gt_Ici /-
+/- warning: set.bounded_gt_Ici -> Set.bounded_gt_Ici is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ici.{u1} α _inst_1 a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2083 : α) (x._@.Mathlib.Order.Bounded._hyg.2085 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2083 x._@.Mathlib.Order.Bounded._hyg.2085) (Set.Ici.{u1} α _inst_1 a)
+Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Ici Set.bounded_gt_Iciₓ'. -/
 theorem bounded_gt_Ici [Preorder α] [NoMinOrder α] (a : α) : Bounded (· > ·) (Set.Ici a) := by
   simp only [← bounded_ge_iff_bounded_gt, bounded_ge_Ici]
 #align set.bounded_gt_Ici Set.bounded_gt_Ici
--/
 
 /-! #### Other bounded intervals -/
 
 
-#print Set.bounded_lt_Ioo /-
+/- warning: set.bounded_lt_Ioo -> Set.bounded_lt_Ioo is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ioo.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2125 : α) (x._@.Mathlib.Order.Bounded._hyg.2127 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2125 x._@.Mathlib.Order.Bounded._hyg.2127) (Set.Ioo.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Ioo Set.bounded_lt_Iooₓ'. -/
 theorem bounded_lt_Ioo [Preorder α] (a b : α) : Bounded (· < ·) (Set.Ioo a b) :=
   (bounded_lt_Iio b).mono Set.Ioo_subset_Iio_self
 #align set.bounded_lt_Ioo Set.bounded_lt_Ioo
--/
 
-#print Set.bounded_lt_Ico /-
+/- warning: set.bounded_lt_Ico -> Set.bounded_lt_Ico is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ico.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2169 : α) (x._@.Mathlib.Order.Bounded._hyg.2171 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2169 x._@.Mathlib.Order.Bounded._hyg.2171) (Set.Ico.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Ico Set.bounded_lt_Icoₓ'. -/
 theorem bounded_lt_Ico [Preorder α] (a b : α) : Bounded (· < ·) (Set.Ico a b) :=
   (bounded_lt_Iio b).mono Set.Ico_subset_Iio_self
 #align set.bounded_lt_Ico Set.bounded_lt_Ico
--/
 
-#print Set.bounded_lt_Ioc /-
+/- warning: set.bounded_lt_Ioc -> Set.bounded_lt_Ioc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ioc.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2216 : α) (x._@.Mathlib.Order.Bounded._hyg.2218 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2216 x._@.Mathlib.Order.Bounded._hyg.2218) (Set.Ioc.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Ioc Set.bounded_lt_Iocₓ'. -/
 theorem bounded_lt_Ioc [Preorder α] [NoMaxOrder α] (a b : α) : Bounded (· < ·) (Set.Ioc a b) :=
   (bounded_lt_Iic b).mono Set.Ioc_subset_Iic_self
 #align set.bounded_lt_Ioc Set.bounded_lt_Ioc
--/
 
-#print Set.bounded_lt_Icc /-
+/- warning: set.bounded_lt_Icc -> Set.bounded_lt_Icc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Icc.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2263 : α) (x._@.Mathlib.Order.Bounded._hyg.2265 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2263 x._@.Mathlib.Order.Bounded._hyg.2265) (Set.Icc.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_lt_Icc Set.bounded_lt_Iccₓ'. -/
 theorem bounded_lt_Icc [Preorder α] [NoMaxOrder α] (a b : α) : Bounded (· < ·) (Set.Icc a b) :=
   (bounded_lt_Iic b).mono Set.Icc_subset_Iic_self
 #align set.bounded_lt_Icc Set.bounded_lt_Icc
--/
 
-#print Set.bounded_le_Ioo /-
+/- warning: set.bounded_le_Ioo -> Set.bounded_le_Ioo is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ioo.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2307 : α) (x._@.Mathlib.Order.Bounded._hyg.2309 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2307 x._@.Mathlib.Order.Bounded._hyg.2309) (Set.Ioo.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_le_Ioo Set.bounded_le_Iooₓ'. -/
 theorem bounded_le_Ioo [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Ioo a b) :=
   (bounded_le_Iio b).mono Set.Ioo_subset_Iio_self
 #align set.bounded_le_Ioo Set.bounded_le_Ioo
--/
 
-#print Set.bounded_le_Ico /-
+/- warning: set.bounded_le_Ico -> Set.bounded_le_Ico is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ico.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2351 : α) (x._@.Mathlib.Order.Bounded._hyg.2353 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2351 x._@.Mathlib.Order.Bounded._hyg.2353) (Set.Ico.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_le_Ico Set.bounded_le_Icoₓ'. -/
 theorem bounded_le_Ico [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Ico a b) :=
   (bounded_le_Iio b).mono Set.Ico_subset_Iio_self
 #align set.bounded_le_Ico Set.bounded_le_Ico
--/
 
-#print Set.bounded_le_Ioc /-
+/- warning: set.bounded_le_Ioc -> Set.bounded_le_Ioc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ioc.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2395 : α) (x._@.Mathlib.Order.Bounded._hyg.2397 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2395 x._@.Mathlib.Order.Bounded._hyg.2397) (Set.Ioc.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_le_Ioc Set.bounded_le_Iocₓ'. -/
 theorem bounded_le_Ioc [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Ioc a b) :=
   (bounded_le_Iic b).mono Set.Ioc_subset_Iic_self
 #align set.bounded_le_Ioc Set.bounded_le_Ioc
--/
 
-#print Set.bounded_le_Icc /-
+/- warning: set.bounded_le_Icc -> Set.bounded_le_Icc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Icc.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2439 : α) (x._@.Mathlib.Order.Bounded._hyg.2441 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2439 x._@.Mathlib.Order.Bounded._hyg.2441) (Set.Icc.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_le_Icc Set.bounded_le_Iccₓ'. -/
 theorem bounded_le_Icc [Preorder α] (a b : α) : Bounded (· ≤ ·) (Set.Icc a b) :=
   (bounded_le_Iic b).mono Set.Icc_subset_Iic_self
 #align set.bounded_le_Icc Set.bounded_le_Icc
--/
 
-#print Set.bounded_gt_Ioo /-
+/- warning: set.bounded_gt_Ioo -> Set.bounded_gt_Ioo is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ioo.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2483 : α) (x._@.Mathlib.Order.Bounded._hyg.2485 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2483 x._@.Mathlib.Order.Bounded._hyg.2485) (Set.Ioo.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Ioo Set.bounded_gt_Iooₓ'. -/
 theorem bounded_gt_Ioo [Preorder α] (a b : α) : Bounded (· > ·) (Set.Ioo a b) :=
   (bounded_gt_Ioi a).mono Set.Ioo_subset_Ioi_self
 #align set.bounded_gt_Ioo Set.bounded_gt_Ioo
--/
 
-#print Set.bounded_gt_Ioc /-
+/- warning: set.bounded_gt_Ioc -> Set.bounded_gt_Ioc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ioc.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2527 : α) (x._@.Mathlib.Order.Bounded._hyg.2529 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2527 x._@.Mathlib.Order.Bounded._hyg.2529) (Set.Ioc.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Ioc Set.bounded_gt_Iocₓ'. -/
 theorem bounded_gt_Ioc [Preorder α] (a b : α) : Bounded (· > ·) (Set.Ioc a b) :=
   (bounded_gt_Ioi a).mono Set.Ioc_subset_Ioi_self
 #align set.bounded_gt_Ioc Set.bounded_gt_Ioc
--/
 
-#print Set.bounded_gt_Ico /-
+/- warning: set.bounded_gt_Ico -> Set.bounded_gt_Ico is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Ico.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2574 : α) (x._@.Mathlib.Order.Bounded._hyg.2576 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2574 x._@.Mathlib.Order.Bounded._hyg.2576) (Set.Ico.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Ico Set.bounded_gt_Icoₓ'. -/
 theorem bounded_gt_Ico [Preorder α] [NoMinOrder α] (a b : α) : Bounded (· > ·) (Set.Ico a b) :=
   (bounded_gt_Ici a).mono Set.Ico_subset_Ici_self
 #align set.bounded_gt_Ico Set.bounded_gt_Ico
--/
 
-#print Set.bounded_gt_Icc /-
+/- warning: set.bounded_gt_Icc -> Set.bounded_gt_Icc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α _inst_1)) (Set.Icc.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2621 : α) (x._@.Mathlib.Order.Bounded._hyg.2623 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2621 x._@.Mathlib.Order.Bounded._hyg.2623) (Set.Icc.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_gt_Icc Set.bounded_gt_Iccₓ'. -/
 theorem bounded_gt_Icc [Preorder α] [NoMinOrder α] (a b : α) : Bounded (· > ·) (Set.Icc a b) :=
   (bounded_gt_Ici a).mono Set.Icc_subset_Ici_self
 #align set.bounded_gt_Icc Set.bounded_gt_Icc
--/
 
-#print Set.bounded_ge_Ioo /-
+/- warning: set.bounded_ge_Ioo -> Set.bounded_ge_Ioo is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ioo.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2665 : α) (x._@.Mathlib.Order.Bounded._hyg.2667 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2665 x._@.Mathlib.Order.Bounded._hyg.2667) (Set.Ioo.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Ioo Set.bounded_ge_Iooₓ'. -/
 theorem bounded_ge_Ioo [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Ioo a b) :=
   (bounded_ge_Ioi a).mono Set.Ioo_subset_Ioi_self
 #align set.bounded_ge_Ioo Set.bounded_ge_Ioo
--/
 
-#print Set.bounded_ge_Ioc /-
+/- warning: set.bounded_ge_Ioc -> Set.bounded_ge_Ioc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ioc.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2709 : α) (x._@.Mathlib.Order.Bounded._hyg.2711 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2709 x._@.Mathlib.Order.Bounded._hyg.2711) (Set.Ioc.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Ioc Set.bounded_ge_Iocₓ'. -/
 theorem bounded_ge_Ioc [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Ioc a b) :=
   (bounded_ge_Ioi a).mono Set.Ioc_subset_Ioi_self
 #align set.bounded_ge_Ioc Set.bounded_ge_Ioc
--/
 
-#print Set.bounded_ge_Ico /-
+/- warning: set.bounded_ge_Ico -> Set.bounded_ge_Ico is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Ico.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2753 : α) (x._@.Mathlib.Order.Bounded._hyg.2755 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2753 x._@.Mathlib.Order.Bounded._hyg.2755) (Set.Ico.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Ico Set.bounded_ge_Icoₓ'. -/
 theorem bounded_ge_Ico [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Ico a b) :=
   (bounded_ge_Ici a).mono Set.Ico_subset_Ici_self
 #align set.bounded_ge_Ico Set.bounded_ge_Ico
--/
 
-#print Set.bounded_ge_Icc /-
+/- warning: set.bounded_ge_Icc -> Set.bounded_ge_Icc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (Set.Icc.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] (a : α) (b : α), Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2797 : α) (x._@.Mathlib.Order.Bounded._hyg.2799 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Bounded._hyg.2797 x._@.Mathlib.Order.Bounded._hyg.2799) (Set.Icc.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align set.bounded_ge_Icc Set.bounded_ge_Iccₓ'. -/
 theorem bounded_ge_Icc [Preorder α] (a b : α) : Bounded (· ≥ ·) (Set.Icc a b) :=
   (bounded_ge_Ici a).mono Set.Icc_subset_Ici_self
 #align set.bounded_ge_Icc Set.bounded_ge_Icc
--/
 
 /-! #### Unbounded intervals -/
 
 
-#print Set.unbounded_le_Ioi /-
+/- warning: set.unbounded_le_Ioi -> Set.unbounded_le_Ioi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2844 : α) (x._@.Mathlib.Order.Bounded._hyg.2846 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.2844 x._@.Mathlib.Order.Bounded._hyg.2846) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
+Case conversion may be inaccurate. Consider using '#align set.unbounded_le_Ioi Set.unbounded_le_Ioiₓ'. -/
 theorem unbounded_le_Ioi [SemilatticeSup α] [NoMaxOrder α] (a : α) :
     Unbounded (· ≤ ·) (Set.Ioi a) := fun b =>
   let ⟨c, hc⟩ := exists_gt (a ⊔ b)
   ⟨c, le_sup_left.trans_lt hc, (le_sup_right.trans_lt hc).not_le⟩
 #align set.unbounded_le_Ioi Set.unbounded_le_Ioi
--/
 
-#print Set.unbounded_le_Ici /-
+/- warning: set.unbounded_le_Ici -> Set.unbounded_le_Ici is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2925 : α) (x._@.Mathlib.Order.Bounded._hyg.2927 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.2925 x._@.Mathlib.Order.Bounded._hyg.2927) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
+Case conversion may be inaccurate. Consider using '#align set.unbounded_le_Ici Set.unbounded_le_Iciₓ'. -/
 theorem unbounded_le_Ici [SemilatticeSup α] [NoMaxOrder α] (a : α) :
     Unbounded (· ≤ ·) (Set.Ici a) :=
   (unbounded_le_Ioi a).mono Set.Ioi_subset_Ici_self
 #align set.unbounded_le_Ici Set.unbounded_le_Ici
--/
 
-#print Set.unbounded_lt_Ioi /-
+/- warning: set.unbounded_lt_Ioi -> Set.unbounded_lt_Ioi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] (a : α), Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.2970 : α) (x._@.Mathlib.Order.Bounded._hyg.2972 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.2970 x._@.Mathlib.Order.Bounded._hyg.2972) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
+Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_Ioi Set.unbounded_lt_Ioiₓ'. -/
 theorem unbounded_lt_Ioi [SemilatticeSup α] [NoMaxOrder α] (a : α) :
     Unbounded (· < ·) (Set.Ioi a) :=
   unbounded_lt_of_unbounded_le (unbounded_le_Ioi a)
 #align set.unbounded_lt_Ioi Set.unbounded_lt_Ioi
--/
 
-#print Set.unbounded_lt_Ici /-
+/- warning: set.unbounded_lt_Ici -> Set.unbounded_lt_Ici is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3011 : α) (x._@.Mathlib.Order.Bounded._hyg.3013 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3011 x._@.Mathlib.Order.Bounded._hyg.3013) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a)
+Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_Ici Set.unbounded_lt_Iciₓ'. -/
 theorem unbounded_lt_Ici [SemilatticeSup α] (a : α) : Unbounded (· < ·) (Set.Ici a) := fun b =>
   ⟨a ⊔ b, le_sup_left, le_sup_right.not_lt⟩
 #align set.unbounded_lt_Ici Set.unbounded_lt_Ici
--/
 
 /-! ### Bounded initial segments -/
 
@@ -475,7 +627,7 @@ theorem unbounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c
 
 /- warning: set.bounded_le_inter_not_le -> Set.bounded_le_inter_not_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3249 : α) (x._@.Mathlib.Order.Bounded._hyg.3251 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3249 x._@.Mathlib.Order.Bounded._hyg.3251) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3285 : α) (x._@.Mathlib.Order.Bounded._hyg.3287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3285 x._@.Mathlib.Order.Bounded._hyg.3287) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_not_le Set.bounded_le_inter_not_leₓ'. -/
@@ -486,7 +638,7 @@ theorem bounded_le_inter_not_le [SemilatticeSup α] (a : α) :
 
 /- warning: set.unbounded_le_inter_not_le -> Set.unbounded_le_inter_not_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3346 : α) (x._@.Mathlib.Order.Bounded._hyg.3348 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3346 x._@.Mathlib.Order.Bounded._hyg.3348) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3382 : α) (x._@.Mathlib.Order.Bounded._hyg.3384 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3382 x._@.Mathlib.Order.Bounded._hyg.3384) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_not_le Set.unbounded_le_inter_not_leₓ'. -/
@@ -499,7 +651,7 @@ theorem unbounded_le_inter_not_le [SemilatticeSup α] (a : α) :
 
 /- warning: set.bounded_le_inter_lt -> Set.bounded_le_inter_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3455 : α) (x._@.Mathlib.Order.Bounded._hyg.3457 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3455 x._@.Mathlib.Order.Bounded._hyg.3457) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3488 : α) (x._@.Mathlib.Order.Bounded._hyg.3490 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3488 x._@.Mathlib.Order.Bounded._hyg.3490) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_lt Set.bounded_le_inter_ltₓ'. -/
@@ -510,7 +662,7 @@ theorem bounded_le_inter_lt [LinearOrder α] (a : α) :
 
 /- warning: set.unbounded_le_inter_lt -> Set.unbounded_le_inter_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3531 : α) (x._@.Mathlib.Order.Bounded._hyg.3533 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3531 x._@.Mathlib.Order.Bounded._hyg.3533) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3564 : α) (x._@.Mathlib.Order.Bounded._hyg.3566 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3564 x._@.Mathlib.Order.Bounded._hyg.3566) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_lt Set.unbounded_le_inter_ltₓ'. -/
@@ -524,7 +676,7 @@ theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
 
 /- warning: set.bounded_le_inter_le -> Set.bounded_le_inter_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3674 : α) (x._@.Mathlib.Order.Bounded._hyg.3676 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3674 x._@.Mathlib.Order.Bounded._hyg.3676) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3707 : α) (x._@.Mathlib.Order.Bounded._hyg.3709 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3707 x._@.Mathlib.Order.Bounded._hyg.3709) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_le Set.bounded_le_inter_leₓ'. -/
@@ -538,7 +690,7 @@ theorem bounded_le_inter_le [LinearOrder α] (a : α) :
 
 /- warning: set.unbounded_le_inter_le -> Set.unbounded_le_inter_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3816 : α) (x._@.Mathlib.Order.Bounded._hyg.3818 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3816 x._@.Mathlib.Order.Bounded._hyg.3818) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3849 : α) (x._@.Mathlib.Order.Bounded._hyg.3851 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3849 x._@.Mathlib.Order.Bounded._hyg.3851) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_le Set.unbounded_le_inter_leₓ'. -/
@@ -554,7 +706,7 @@ theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
 
 /- warning: set.bounded_lt_inter_not_lt -> Set.bounded_lt_inter_not_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3923 : α) (x._@.Mathlib.Order.Bounded._hyg.3925 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3923 x._@.Mathlib.Order.Bounded._hyg.3925) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3959 : α) (x._@.Mathlib.Order.Bounded._hyg.3961 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3959 x._@.Mathlib.Order.Bounded._hyg.3961) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_not_lt Set.bounded_lt_inter_not_ltₓ'. -/
@@ -565,7 +717,7 @@ theorem bounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
 
 /- warning: set.unbounded_lt_inter_not_lt -> Set.unbounded_lt_inter_not_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4020 : α) (x._@.Mathlib.Order.Bounded._hyg.4022 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4020 x._@.Mathlib.Order.Bounded._hyg.4022) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4056 : α) (x._@.Mathlib.Order.Bounded._hyg.4058 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4056 x._@.Mathlib.Order.Bounded._hyg.4058) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_not_lt Set.unbounded_lt_inter_not_ltₓ'. -/
@@ -578,7 +730,7 @@ theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
 
 /- warning: set.bounded_lt_inter_le -> Set.bounded_lt_inter_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4129 : α) (x._@.Mathlib.Order.Bounded._hyg.4131 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4129 x._@.Mathlib.Order.Bounded._hyg.4131) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4162 : α) (x._@.Mathlib.Order.Bounded._hyg.4164 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4162 x._@.Mathlib.Order.Bounded._hyg.4164) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_le Set.bounded_lt_inter_leₓ'. -/
@@ -592,7 +744,7 @@ theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
 
 /- warning: set.unbounded_lt_inter_le -> Set.unbounded_lt_inter_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4272 : α) (x._@.Mathlib.Order.Bounded._hyg.4274 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4272 x._@.Mathlib.Order.Bounded._hyg.4274) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4305 : α) (x._@.Mathlib.Order.Bounded._hyg.4307 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4305 x._@.Mathlib.Order.Bounded._hyg.4307) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_le Set.unbounded_lt_inter_leₓ'. -/
@@ -606,7 +758,7 @@ theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
 
 /- warning: set.bounded_lt_inter_lt -> Set.bounded_lt_inter_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4418 : α) (x._@.Mathlib.Order.Bounded._hyg.4420 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4418 x._@.Mathlib.Order.Bounded._hyg.4420) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4451 : α) (x._@.Mathlib.Order.Bounded._hyg.4453 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4451 x._@.Mathlib.Order.Bounded._hyg.4453) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_lt Set.bounded_lt_inter_ltₓ'. -/
@@ -619,7 +771,7 @@ theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
 
 /- warning: set.unbounded_lt_inter_lt -> Set.unbounded_lt_inter_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4526 : α) (x._@.Mathlib.Order.Bounded._hyg.4528 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4526 x._@.Mathlib.Order.Bounded._hyg.4528) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4559 : α) (x._@.Mathlib.Order.Bounded._hyg.4561 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4559 x._@.Mathlib.Order.Bounded._hyg.4561) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_lt Set.unbounded_lt_inter_ltₓ'. -/
@@ -635,7 +787,7 @@ theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
 
 /- warning: set.bounded_ge_inter_not_ge -> Set.bounded_ge_inter_not_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4633 : α) (x._@.Mathlib.Order.Bounded._hyg.4635 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4633 x._@.Mathlib.Order.Bounded._hyg.4635) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4669 : α) (x._@.Mathlib.Order.Bounded._hyg.4671 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4669 x._@.Mathlib.Order.Bounded._hyg.4671) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_not_ge Set.bounded_ge_inter_not_geₓ'. -/
@@ -646,7 +798,7 @@ theorem bounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
 
 /- warning: set.unbounded_ge_inter_not_ge -> Set.unbounded_ge_inter_not_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4712 : α) (x._@.Mathlib.Order.Bounded._hyg.4714 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4712 x._@.Mathlib.Order.Bounded._hyg.4714) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4748 : α) (x._@.Mathlib.Order.Bounded._hyg.4750 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4748 x._@.Mathlib.Order.Bounded._hyg.4750) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_inter_not_ge Set.unbounded_ge_inter_not_geₓ'. -/
@@ -657,7 +809,7 @@ theorem unbounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
 
 /- warning: set.bounded_ge_inter_gt -> Set.bounded_ge_inter_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4791 : α) (x._@.Mathlib.Order.Bounded._hyg.4793 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4791 x._@.Mathlib.Order.Bounded._hyg.4793) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4824 : α) (x._@.Mathlib.Order.Bounded._hyg.4826 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4824 x._@.Mathlib.Order.Bounded._hyg.4826) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_gt Set.bounded_ge_inter_gtₓ'. -/
@@ -668,7 +820,7 @@ theorem bounded_ge_inter_gt [LinearOrder α] (a : α) :
 
 /- warning: set.unbounded_ge_inter_gt -> Set.unbounded_ge_inter_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4867 : α) (x._@.Mathlib.Order.Bounded._hyg.4869 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4867 x._@.Mathlib.Order.Bounded._hyg.4869) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4900 : α) (x._@.Mathlib.Order.Bounded._hyg.4902 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4900 x._@.Mathlib.Order.Bounded._hyg.4902) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_inter_gt Set.unbounded_ge_inter_gtₓ'. -/
@@ -679,7 +831,7 @@ theorem unbounded_ge_inter_gt [LinearOrder α] (a : α) :
 
 /- warning: set.bounded_ge_inter_ge -> Set.bounded_ge_inter_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4943 : α) (x._@.Mathlib.Order.Bounded._hyg.4945 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4943 x._@.Mathlib.Order.Bounded._hyg.4945) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4976 : α) (x._@.Mathlib.Order.Bounded._hyg.4978 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4976 x._@.Mathlib.Order.Bounded._hyg.4978) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_ge Set.bounded_ge_inter_geₓ'. -/
@@ -690,7 +842,7 @@ theorem bounded_ge_inter_ge [LinearOrder α] (a : α) :
 
 /- warning: set.unbounded_ge_iff_unbounded_inter_ge -> Set.unbounded_ge_iff_unbounded_inter_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5019 : α) (x._@.Mathlib.Order.Bounded._hyg.5021 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5019 x._@.Mathlib.Order.Bounded._hyg.5021) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5052 : α) (x._@.Mathlib.Order.Bounded._hyg.5054 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5052 x._@.Mathlib.Order.Bounded._hyg.5054) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_iff_unbounded_inter_ge Set.unbounded_ge_iff_unbounded_inter_geₓ'. -/
@@ -704,7 +856,7 @@ theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
 
 /- warning: set.bounded_gt_inter_not_gt -> Set.bounded_gt_inter_not_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5096 : α) (x._@.Mathlib.Order.Bounded._hyg.5098 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5096 x._@.Mathlib.Order.Bounded._hyg.5098) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5132 : α) (x._@.Mathlib.Order.Bounded._hyg.5134 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5132 x._@.Mathlib.Order.Bounded._hyg.5134) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_not_gt Set.bounded_gt_inter_not_gtₓ'. -/
@@ -715,7 +867,7 @@ theorem bounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
 
 /- warning: set.unbounded_gt_inter_not_gt -> Set.unbounded_gt_inter_not_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5175 : α) (x._@.Mathlib.Order.Bounded._hyg.5177 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5175 x._@.Mathlib.Order.Bounded._hyg.5177) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5211 : α) (x._@.Mathlib.Order.Bounded._hyg.5213 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5211 x._@.Mathlib.Order.Bounded._hyg.5213) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_inter_not_gt Set.unbounded_gt_inter_not_gtₓ'. -/
@@ -726,7 +878,7 @@ theorem unbounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
 
 /- warning: set.bounded_gt_inter_ge -> Set.bounded_gt_inter_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5254 : α) (x._@.Mathlib.Order.Bounded._hyg.5256 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5254 x._@.Mathlib.Order.Bounded._hyg.5256) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5287 : α) (x._@.Mathlib.Order.Bounded._hyg.5289 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5287 x._@.Mathlib.Order.Bounded._hyg.5289) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_ge Set.bounded_gt_inter_geₓ'. -/
@@ -737,7 +889,7 @@ theorem bounded_gt_inter_ge [LinearOrder α] (a : α) :
 
 /- warning: set.unbounded_inter_ge -> Set.unbounded_inter_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5330 : α) (x._@.Mathlib.Order.Bounded._hyg.5332 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5330 x._@.Mathlib.Order.Bounded._hyg.5332) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5363 : α) (x._@.Mathlib.Order.Bounded._hyg.5365 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5363 x._@.Mathlib.Order.Bounded._hyg.5365) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_inter_ge Set.unbounded_inter_geₓ'. -/
@@ -748,7 +900,7 @@ theorem unbounded_inter_ge [LinearOrder α] (a : α) :
 
 /- warning: set.bounded_gt_inter_gt -> Set.bounded_gt_inter_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5409 : α) (x._@.Mathlib.Order.Bounded._hyg.5411 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5409 x._@.Mathlib.Order.Bounded._hyg.5411) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5442 : α) (x._@.Mathlib.Order.Bounded._hyg.5444 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5442 x._@.Mathlib.Order.Bounded._hyg.5444) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_gt Set.bounded_gt_inter_gtₓ'. -/
@@ -759,7 +911,7 @@ theorem bounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
 
 /- warning: set.unbounded_gt_inter_gt -> Set.unbounded_gt_inter_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5488 : α) (x._@.Mathlib.Order.Bounded._hyg.5490 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5488 x._@.Mathlib.Order.Bounded._hyg.5490) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5521 : α) (x._@.Mathlib.Order.Bounded._hyg.5523 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5521 x._@.Mathlib.Order.Bounded._hyg.5523) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_inter_gt Set.unbounded_gt_inter_gtₓ'. -/
Diff
@@ -477,7 +477,7 @@ theorem unbounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3253 : α) (x._@.Mathlib.Order.Bounded._hyg.3255 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3253 x._@.Mathlib.Order.Bounded._hyg.3255) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3289 : α) (x._@.Mathlib.Order.Bounded._hyg.3291 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3289 x._@.Mathlib.Order.Bounded._hyg.3291) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3249 : α) (x._@.Mathlib.Order.Bounded._hyg.3251 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3249 x._@.Mathlib.Order.Bounded._hyg.3251) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3285 : α) (x._@.Mathlib.Order.Bounded._hyg.3287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3285 x._@.Mathlib.Order.Bounded._hyg.3287) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_not_le Set.bounded_le_inter_not_leₓ'. -/
 theorem bounded_le_inter_not_le [SemilatticeSup α] (a : α) :
     Bounded (· ≤ ·) (s ∩ { b | ¬b ≤ a }) ↔ Bounded (· ≤ ·) s :=
@@ -488,7 +488,7 @@ theorem bounded_le_inter_not_le [SemilatticeSup α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3350 : α) (x._@.Mathlib.Order.Bounded._hyg.3352 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3350 x._@.Mathlib.Order.Bounded._hyg.3352) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3386 : α) (x._@.Mathlib.Order.Bounded._hyg.3388 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3386 x._@.Mathlib.Order.Bounded._hyg.3388) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3346 : α) (x._@.Mathlib.Order.Bounded._hyg.3348 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3346 x._@.Mathlib.Order.Bounded._hyg.3348) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3382 : α) (x._@.Mathlib.Order.Bounded._hyg.3384 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3382 x._@.Mathlib.Order.Bounded._hyg.3384) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_not_le Set.unbounded_le_inter_not_leₓ'. -/
 theorem unbounded_le_inter_not_le [SemilatticeSup α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | ¬b ≤ a }) ↔ Unbounded (· ≤ ·) s :=
@@ -501,7 +501,7 @@ theorem unbounded_le_inter_not_le [SemilatticeSup α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3459 : α) (x._@.Mathlib.Order.Bounded._hyg.3461 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3459 x._@.Mathlib.Order.Bounded._hyg.3461) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3492 : α) (x._@.Mathlib.Order.Bounded._hyg.3494 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3492 x._@.Mathlib.Order.Bounded._hyg.3494) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3455 : α) (x._@.Mathlib.Order.Bounded._hyg.3457 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3455 x._@.Mathlib.Order.Bounded._hyg.3457) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3488 : α) (x._@.Mathlib.Order.Bounded._hyg.3490 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3488 x._@.Mathlib.Order.Bounded._hyg.3490) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_lt Set.bounded_le_inter_ltₓ'. -/
 theorem bounded_le_inter_lt [LinearOrder α] (a : α) :
     Bounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Bounded (· ≤ ·) s := by
@@ -512,7 +512,7 @@ theorem bounded_le_inter_lt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3537 : α) (x._@.Mathlib.Order.Bounded._hyg.3539 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3537 x._@.Mathlib.Order.Bounded._hyg.3539) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3570 : α) (x._@.Mathlib.Order.Bounded._hyg.3572 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3570 x._@.Mathlib.Order.Bounded._hyg.3572) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3531 : α) (x._@.Mathlib.Order.Bounded._hyg.3533 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3531 x._@.Mathlib.Order.Bounded._hyg.3533) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3564 : α) (x._@.Mathlib.Order.Bounded._hyg.3566 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3564 x._@.Mathlib.Order.Bounded._hyg.3566) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_lt Set.unbounded_le_inter_ltₓ'. -/
 theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Unbounded (· ≤ ·) s :=
@@ -526,7 +526,7 @@ theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3680 : α) (x._@.Mathlib.Order.Bounded._hyg.3682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3680 x._@.Mathlib.Order.Bounded._hyg.3682) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3713 : α) (x._@.Mathlib.Order.Bounded._hyg.3715 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3713 x._@.Mathlib.Order.Bounded._hyg.3715) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3674 : α) (x._@.Mathlib.Order.Bounded._hyg.3676 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3674 x._@.Mathlib.Order.Bounded._hyg.3676) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3707 : α) (x._@.Mathlib.Order.Bounded._hyg.3709 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3707 x._@.Mathlib.Order.Bounded._hyg.3709) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_le Set.bounded_le_inter_leₓ'. -/
 theorem bounded_le_inter_le [LinearOrder α] (a : α) :
     Bounded (· ≤ ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· ≤ ·) s :=
@@ -540,7 +540,7 @@ theorem bounded_le_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3822 : α) (x._@.Mathlib.Order.Bounded._hyg.3824 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3822 x._@.Mathlib.Order.Bounded._hyg.3824) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3855 : α) (x._@.Mathlib.Order.Bounded._hyg.3857 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3855 x._@.Mathlib.Order.Bounded._hyg.3857) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3816 : α) (x._@.Mathlib.Order.Bounded._hyg.3818 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3816 x._@.Mathlib.Order.Bounded._hyg.3818) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3849 : α) (x._@.Mathlib.Order.Bounded._hyg.3851 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3849 x._@.Mathlib.Order.Bounded._hyg.3851) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_le Set.unbounded_le_inter_leₓ'. -/
 theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· ≤ ·) s :=
@@ -556,7 +556,7 @@ theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3929 : α) (x._@.Mathlib.Order.Bounded._hyg.3931 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3929 x._@.Mathlib.Order.Bounded._hyg.3931) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3965 : α) (x._@.Mathlib.Order.Bounded._hyg.3967 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3965 x._@.Mathlib.Order.Bounded._hyg.3967) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3923 : α) (x._@.Mathlib.Order.Bounded._hyg.3925 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3923 x._@.Mathlib.Order.Bounded._hyg.3925) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3959 : α) (x._@.Mathlib.Order.Bounded._hyg.3961 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3959 x._@.Mathlib.Order.Bounded._hyg.3961) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_not_lt Set.bounded_lt_inter_not_ltₓ'. -/
 theorem bounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
     Bounded (· < ·) (s ∩ { b | ¬b < a }) ↔ Bounded (· < ·) s :=
@@ -567,7 +567,7 @@ theorem bounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4026 : α) (x._@.Mathlib.Order.Bounded._hyg.4028 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4026 x._@.Mathlib.Order.Bounded._hyg.4028) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4062 : α) (x._@.Mathlib.Order.Bounded._hyg.4064 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4062 x._@.Mathlib.Order.Bounded._hyg.4064) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4020 : α) (x._@.Mathlib.Order.Bounded._hyg.4022 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4020 x._@.Mathlib.Order.Bounded._hyg.4022) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4056 : α) (x._@.Mathlib.Order.Bounded._hyg.4058 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4056 x._@.Mathlib.Order.Bounded._hyg.4058) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_not_lt Set.unbounded_lt_inter_not_ltₓ'. -/
 theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | ¬b < a }) ↔ Unbounded (· < ·) s :=
@@ -580,7 +580,7 @@ theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4135 : α) (x._@.Mathlib.Order.Bounded._hyg.4137 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4135 x._@.Mathlib.Order.Bounded._hyg.4137) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4168 : α) (x._@.Mathlib.Order.Bounded._hyg.4170 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4168 x._@.Mathlib.Order.Bounded._hyg.4170) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4129 : α) (x._@.Mathlib.Order.Bounded._hyg.4131 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4129 x._@.Mathlib.Order.Bounded._hyg.4131) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4162 : α) (x._@.Mathlib.Order.Bounded._hyg.4164 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4162 x._@.Mathlib.Order.Bounded._hyg.4164) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_le Set.bounded_lt_inter_leₓ'. -/
 theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
     Bounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· < ·) s :=
@@ -594,7 +594,7 @@ theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4278 : α) (x._@.Mathlib.Order.Bounded._hyg.4280 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4278 x._@.Mathlib.Order.Bounded._hyg.4280) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4311 : α) (x._@.Mathlib.Order.Bounded._hyg.4313 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4311 x._@.Mathlib.Order.Bounded._hyg.4313) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4272 : α) (x._@.Mathlib.Order.Bounded._hyg.4274 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4272 x._@.Mathlib.Order.Bounded._hyg.4274) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4305 : α) (x._@.Mathlib.Order.Bounded._hyg.4307 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4305 x._@.Mathlib.Order.Bounded._hyg.4307) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_le Set.unbounded_lt_inter_leₓ'. -/
 theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· < ·) s :=
@@ -608,7 +608,7 @@ theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4424 : α) (x._@.Mathlib.Order.Bounded._hyg.4426 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4424 x._@.Mathlib.Order.Bounded._hyg.4426) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4457 : α) (x._@.Mathlib.Order.Bounded._hyg.4459 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4457 x._@.Mathlib.Order.Bounded._hyg.4459) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4418 : α) (x._@.Mathlib.Order.Bounded._hyg.4420 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4418 x._@.Mathlib.Order.Bounded._hyg.4420) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4451 : α) (x._@.Mathlib.Order.Bounded._hyg.4453 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4451 x._@.Mathlib.Order.Bounded._hyg.4453) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_lt Set.bounded_lt_inter_ltₓ'. -/
 theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
     Bounded (· < ·) (s ∩ { b | a < b }) ↔ Bounded (· < ·) s :=
@@ -621,7 +621,7 @@ theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4532 : α) (x._@.Mathlib.Order.Bounded._hyg.4534 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4532 x._@.Mathlib.Order.Bounded._hyg.4534) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4565 : α) (x._@.Mathlib.Order.Bounded._hyg.4567 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4565 x._@.Mathlib.Order.Bounded._hyg.4567) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4526 : α) (x._@.Mathlib.Order.Bounded._hyg.4528 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4526 x._@.Mathlib.Order.Bounded._hyg.4528) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4559 : α) (x._@.Mathlib.Order.Bounded._hyg.4561 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4559 x._@.Mathlib.Order.Bounded._hyg.4561) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_lt Set.unbounded_lt_inter_ltₓ'. -/
 theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | a < b }) ↔ Unbounded (· < ·) s :=
@@ -637,7 +637,7 @@ theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4639 : α) (x._@.Mathlib.Order.Bounded._hyg.4641 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4639 x._@.Mathlib.Order.Bounded._hyg.4641) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4675 : α) (x._@.Mathlib.Order.Bounded._hyg.4677 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4675 x._@.Mathlib.Order.Bounded._hyg.4677) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4633 : α) (x._@.Mathlib.Order.Bounded._hyg.4635 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4633 x._@.Mathlib.Order.Bounded._hyg.4635) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4669 : α) (x._@.Mathlib.Order.Bounded._hyg.4671 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4669 x._@.Mathlib.Order.Bounded._hyg.4671) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_not_ge Set.bounded_ge_inter_not_geₓ'. -/
 theorem bounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | ¬a ≤ b }) ↔ Bounded (· ≥ ·) s :=
@@ -648,7 +648,7 @@ theorem bounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4718 : α) (x._@.Mathlib.Order.Bounded._hyg.4720 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4718 x._@.Mathlib.Order.Bounded._hyg.4720) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4754 : α) (x._@.Mathlib.Order.Bounded._hyg.4756 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4754 x._@.Mathlib.Order.Bounded._hyg.4756) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4712 : α) (x._@.Mathlib.Order.Bounded._hyg.4714 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4712 x._@.Mathlib.Order.Bounded._hyg.4714) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4748 : α) (x._@.Mathlib.Order.Bounded._hyg.4750 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4748 x._@.Mathlib.Order.Bounded._hyg.4750) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_inter_not_ge Set.unbounded_ge_inter_not_geₓ'. -/
 theorem unbounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | ¬a ≤ b }) ↔ Unbounded (· ≥ ·) s :=
@@ -659,7 +659,7 @@ theorem unbounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4797 : α) (x._@.Mathlib.Order.Bounded._hyg.4799 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4797 x._@.Mathlib.Order.Bounded._hyg.4799) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4830 : α) (x._@.Mathlib.Order.Bounded._hyg.4832 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4830 x._@.Mathlib.Order.Bounded._hyg.4832) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4791 : α) (x._@.Mathlib.Order.Bounded._hyg.4793 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4791 x._@.Mathlib.Order.Bounded._hyg.4793) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4824 : α) (x._@.Mathlib.Order.Bounded._hyg.4826 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4824 x._@.Mathlib.Order.Bounded._hyg.4826) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_gt Set.bounded_ge_inter_gtₓ'. -/
 theorem bounded_ge_inter_gt [LinearOrder α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | b < a }) ↔ Bounded (· ≥ ·) s :=
@@ -670,7 +670,7 @@ theorem bounded_ge_inter_gt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4873 : α) (x._@.Mathlib.Order.Bounded._hyg.4875 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4873 x._@.Mathlib.Order.Bounded._hyg.4875) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4906 : α) (x._@.Mathlib.Order.Bounded._hyg.4908 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4906 x._@.Mathlib.Order.Bounded._hyg.4908) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4867 : α) (x._@.Mathlib.Order.Bounded._hyg.4869 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4867 x._@.Mathlib.Order.Bounded._hyg.4869) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4900 : α) (x._@.Mathlib.Order.Bounded._hyg.4902 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4900 x._@.Mathlib.Order.Bounded._hyg.4902) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_inter_gt Set.unbounded_ge_inter_gtₓ'. -/
 theorem unbounded_ge_inter_gt [LinearOrder α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | b < a }) ↔ Unbounded (· ≥ ·) s :=
@@ -681,7 +681,7 @@ theorem unbounded_ge_inter_gt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4949 : α) (x._@.Mathlib.Order.Bounded._hyg.4951 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4949 x._@.Mathlib.Order.Bounded._hyg.4951) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4982 : α) (x._@.Mathlib.Order.Bounded._hyg.4984 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4982 x._@.Mathlib.Order.Bounded._hyg.4984) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4943 : α) (x._@.Mathlib.Order.Bounded._hyg.4945 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4943 x._@.Mathlib.Order.Bounded._hyg.4945) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4976 : α) (x._@.Mathlib.Order.Bounded._hyg.4978 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4976 x._@.Mathlib.Order.Bounded._hyg.4978) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_ge Set.bounded_ge_inter_geₓ'. -/
 theorem bounded_ge_inter_ge [LinearOrder α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | b ≤ a }) ↔ Bounded (· ≥ ·) s :=
@@ -692,7 +692,7 @@ theorem bounded_ge_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5025 : α) (x._@.Mathlib.Order.Bounded._hyg.5027 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5025 x._@.Mathlib.Order.Bounded._hyg.5027) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5058 : α) (x._@.Mathlib.Order.Bounded._hyg.5060 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5058 x._@.Mathlib.Order.Bounded._hyg.5060) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5019 : α) (x._@.Mathlib.Order.Bounded._hyg.5021 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5019 x._@.Mathlib.Order.Bounded._hyg.5021) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5052 : α) (x._@.Mathlib.Order.Bounded._hyg.5054 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5052 x._@.Mathlib.Order.Bounded._hyg.5054) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_iff_unbounded_inter_ge Set.unbounded_ge_iff_unbounded_inter_geₓ'. -/
 theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | b ≤ a }) ↔ Unbounded (· ≥ ·) s :=
@@ -706,7 +706,7 @@ theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5102 : α) (x._@.Mathlib.Order.Bounded._hyg.5104 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5102 x._@.Mathlib.Order.Bounded._hyg.5104) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5138 : α) (x._@.Mathlib.Order.Bounded._hyg.5140 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5138 x._@.Mathlib.Order.Bounded._hyg.5140) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5096 : α) (x._@.Mathlib.Order.Bounded._hyg.5098 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5096 x._@.Mathlib.Order.Bounded._hyg.5098) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5132 : α) (x._@.Mathlib.Order.Bounded._hyg.5134 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5132 x._@.Mathlib.Order.Bounded._hyg.5134) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_not_gt Set.bounded_gt_inter_not_gtₓ'. -/
 theorem bounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
     Bounded (· > ·) (s ∩ { b | ¬a < b }) ↔ Bounded (· > ·) s :=
@@ -717,7 +717,7 @@ theorem bounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5181 : α) (x._@.Mathlib.Order.Bounded._hyg.5183 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5181 x._@.Mathlib.Order.Bounded._hyg.5183) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5217 : α) (x._@.Mathlib.Order.Bounded._hyg.5219 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5217 x._@.Mathlib.Order.Bounded._hyg.5219) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5175 : α) (x._@.Mathlib.Order.Bounded._hyg.5177 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5175 x._@.Mathlib.Order.Bounded._hyg.5177) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5211 : α) (x._@.Mathlib.Order.Bounded._hyg.5213 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5211 x._@.Mathlib.Order.Bounded._hyg.5213) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_inter_not_gt Set.unbounded_gt_inter_not_gtₓ'. -/
 theorem unbounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | ¬a < b }) ↔ Unbounded (· > ·) s :=
@@ -728,7 +728,7 @@ theorem unbounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5260 : α) (x._@.Mathlib.Order.Bounded._hyg.5262 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5260 x._@.Mathlib.Order.Bounded._hyg.5262) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5293 : α) (x._@.Mathlib.Order.Bounded._hyg.5295 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5293 x._@.Mathlib.Order.Bounded._hyg.5295) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5254 : α) (x._@.Mathlib.Order.Bounded._hyg.5256 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5254 x._@.Mathlib.Order.Bounded._hyg.5256) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5287 : α) (x._@.Mathlib.Order.Bounded._hyg.5289 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5287 x._@.Mathlib.Order.Bounded._hyg.5289) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_ge Set.bounded_gt_inter_geₓ'. -/
 theorem bounded_gt_inter_ge [LinearOrder α] (a : α) :
     Bounded (· > ·) (s ∩ { b | b ≤ a }) ↔ Bounded (· > ·) s :=
@@ -739,7 +739,7 @@ theorem bounded_gt_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5336 : α) (x._@.Mathlib.Order.Bounded._hyg.5338 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5336 x._@.Mathlib.Order.Bounded._hyg.5338) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5369 : α) (x._@.Mathlib.Order.Bounded._hyg.5371 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5369 x._@.Mathlib.Order.Bounded._hyg.5371) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5330 : α) (x._@.Mathlib.Order.Bounded._hyg.5332 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5330 x._@.Mathlib.Order.Bounded._hyg.5332) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5363 : α) (x._@.Mathlib.Order.Bounded._hyg.5365 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5363 x._@.Mathlib.Order.Bounded._hyg.5365) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_inter_ge Set.unbounded_inter_geₓ'. -/
 theorem unbounded_inter_ge [LinearOrder α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | b ≤ a }) ↔ Unbounded (· > ·) s :=
@@ -750,7 +750,7 @@ theorem unbounded_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5415 : α) (x._@.Mathlib.Order.Bounded._hyg.5417 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5415 x._@.Mathlib.Order.Bounded._hyg.5417) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5448 : α) (x._@.Mathlib.Order.Bounded._hyg.5450 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5448 x._@.Mathlib.Order.Bounded._hyg.5450) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5409 : α) (x._@.Mathlib.Order.Bounded._hyg.5411 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5409 x._@.Mathlib.Order.Bounded._hyg.5411) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5442 : α) (x._@.Mathlib.Order.Bounded._hyg.5444 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5442 x._@.Mathlib.Order.Bounded._hyg.5444) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_gt Set.bounded_gt_inter_gtₓ'. -/
 theorem bounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
     Bounded (· > ·) (s ∩ { b | b < a }) ↔ Bounded (· > ·) s :=
@@ -761,7 +761,7 @@ theorem bounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5494 : α) (x._@.Mathlib.Order.Bounded._hyg.5496 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5494 x._@.Mathlib.Order.Bounded._hyg.5496) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5527 : α) (x._@.Mathlib.Order.Bounded._hyg.5529 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5527 x._@.Mathlib.Order.Bounded._hyg.5529) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5488 : α) (x._@.Mathlib.Order.Bounded._hyg.5490 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5488 x._@.Mathlib.Order.Bounded._hyg.5490) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5521 : α) (x._@.Mathlib.Order.Bounded._hyg.5523 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5521 x._@.Mathlib.Order.Bounded._hyg.5523) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_inter_gt Set.unbounded_gt_inter_gtₓ'. -/
 theorem unbounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | b < a }) ↔ Unbounded (· > ·) s :=
Diff
@@ -526,7 +526,7 @@ theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3623 : α) (x._@.Mathlib.Order.Bounded._hyg.3625 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3623 x._@.Mathlib.Order.Bounded._hyg.3625) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3656 : α) (x._@.Mathlib.Order.Bounded._hyg.3658 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3656 x._@.Mathlib.Order.Bounded._hyg.3658) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3680 : α) (x._@.Mathlib.Order.Bounded._hyg.3682 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3680 x._@.Mathlib.Order.Bounded._hyg.3682) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3713 : α) (x._@.Mathlib.Order.Bounded._hyg.3715 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3713 x._@.Mathlib.Order.Bounded._hyg.3715) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_le Set.bounded_le_inter_leₓ'. -/
 theorem bounded_le_inter_le [LinearOrder α] (a : α) :
     Bounded (· ≤ ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· ≤ ·) s :=
@@ -540,7 +540,7 @@ theorem bounded_le_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3765 : α) (x._@.Mathlib.Order.Bounded._hyg.3767 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3765 x._@.Mathlib.Order.Bounded._hyg.3767) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3798 : α) (x._@.Mathlib.Order.Bounded._hyg.3800 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3798 x._@.Mathlib.Order.Bounded._hyg.3800) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3822 : α) (x._@.Mathlib.Order.Bounded._hyg.3824 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3822 x._@.Mathlib.Order.Bounded._hyg.3824) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3855 : α) (x._@.Mathlib.Order.Bounded._hyg.3857 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3855 x._@.Mathlib.Order.Bounded._hyg.3857) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_le Set.unbounded_le_inter_leₓ'. -/
 theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· ≤ ·) s :=
@@ -556,7 +556,7 @@ theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3872 : α) (x._@.Mathlib.Order.Bounded._hyg.3874 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3872 x._@.Mathlib.Order.Bounded._hyg.3874) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3908 : α) (x._@.Mathlib.Order.Bounded._hyg.3910 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3908 x._@.Mathlib.Order.Bounded._hyg.3910) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3929 : α) (x._@.Mathlib.Order.Bounded._hyg.3931 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3929 x._@.Mathlib.Order.Bounded._hyg.3931) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3965 : α) (x._@.Mathlib.Order.Bounded._hyg.3967 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3965 x._@.Mathlib.Order.Bounded._hyg.3967) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_not_lt Set.bounded_lt_inter_not_ltₓ'. -/
 theorem bounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
     Bounded (· < ·) (s ∩ { b | ¬b < a }) ↔ Bounded (· < ·) s :=
@@ -567,7 +567,7 @@ theorem bounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3969 : α) (x._@.Mathlib.Order.Bounded._hyg.3971 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3969 x._@.Mathlib.Order.Bounded._hyg.3971) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4005 : α) (x._@.Mathlib.Order.Bounded._hyg.4007 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4005 x._@.Mathlib.Order.Bounded._hyg.4007) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4026 : α) (x._@.Mathlib.Order.Bounded._hyg.4028 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4026 x._@.Mathlib.Order.Bounded._hyg.4028) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4062 : α) (x._@.Mathlib.Order.Bounded._hyg.4064 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4062 x._@.Mathlib.Order.Bounded._hyg.4064) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_not_lt Set.unbounded_lt_inter_not_ltₓ'. -/
 theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | ¬b < a }) ↔ Unbounded (· < ·) s :=
@@ -580,7 +580,7 @@ theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4078 : α) (x._@.Mathlib.Order.Bounded._hyg.4080 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4078 x._@.Mathlib.Order.Bounded._hyg.4080) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4111 : α) (x._@.Mathlib.Order.Bounded._hyg.4113 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4111 x._@.Mathlib.Order.Bounded._hyg.4113) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4135 : α) (x._@.Mathlib.Order.Bounded._hyg.4137 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4135 x._@.Mathlib.Order.Bounded._hyg.4137) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4168 : α) (x._@.Mathlib.Order.Bounded._hyg.4170 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4168 x._@.Mathlib.Order.Bounded._hyg.4170) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_le Set.bounded_lt_inter_leₓ'. -/
 theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
     Bounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· < ·) s :=
@@ -594,7 +594,7 @@ theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4164 : α) (x._@.Mathlib.Order.Bounded._hyg.4166 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4164 x._@.Mathlib.Order.Bounded._hyg.4166) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4197 : α) (x._@.Mathlib.Order.Bounded._hyg.4199 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4197 x._@.Mathlib.Order.Bounded._hyg.4199) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4278 : α) (x._@.Mathlib.Order.Bounded._hyg.4280 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4278 x._@.Mathlib.Order.Bounded._hyg.4280) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4311 : α) (x._@.Mathlib.Order.Bounded._hyg.4313 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4311 x._@.Mathlib.Order.Bounded._hyg.4313) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_le Set.unbounded_lt_inter_leₓ'. -/
 theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· < ·) s :=
@@ -608,7 +608,7 @@ theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4253 : α) (x._@.Mathlib.Order.Bounded._hyg.4255 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4253 x._@.Mathlib.Order.Bounded._hyg.4255) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4286 : α) (x._@.Mathlib.Order.Bounded._hyg.4288 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4286 x._@.Mathlib.Order.Bounded._hyg.4288) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4424 : α) (x._@.Mathlib.Order.Bounded._hyg.4426 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4424 x._@.Mathlib.Order.Bounded._hyg.4426) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4457 : α) (x._@.Mathlib.Order.Bounded._hyg.4459 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4457 x._@.Mathlib.Order.Bounded._hyg.4459) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_lt Set.bounded_lt_inter_ltₓ'. -/
 theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
     Bounded (· < ·) (s ∩ { b | a < b }) ↔ Bounded (· < ·) s :=
@@ -621,7 +621,7 @@ theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4361 : α) (x._@.Mathlib.Order.Bounded._hyg.4363 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4361 x._@.Mathlib.Order.Bounded._hyg.4363) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4394 : α) (x._@.Mathlib.Order.Bounded._hyg.4396 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4394 x._@.Mathlib.Order.Bounded._hyg.4396) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4532 : α) (x._@.Mathlib.Order.Bounded._hyg.4534 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4532 x._@.Mathlib.Order.Bounded._hyg.4534) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4565 : α) (x._@.Mathlib.Order.Bounded._hyg.4567 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4565 x._@.Mathlib.Order.Bounded._hyg.4567) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_lt Set.unbounded_lt_inter_ltₓ'. -/
 theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | a < b }) ↔ Unbounded (· < ·) s :=
@@ -637,7 +637,7 @@ theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4468 : α) (x._@.Mathlib.Order.Bounded._hyg.4470 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4468 x._@.Mathlib.Order.Bounded._hyg.4470) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4504 : α) (x._@.Mathlib.Order.Bounded._hyg.4506 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4504 x._@.Mathlib.Order.Bounded._hyg.4506) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4639 : α) (x._@.Mathlib.Order.Bounded._hyg.4641 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4639 x._@.Mathlib.Order.Bounded._hyg.4641) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4675 : α) (x._@.Mathlib.Order.Bounded._hyg.4677 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4675 x._@.Mathlib.Order.Bounded._hyg.4677) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_not_ge Set.bounded_ge_inter_not_geₓ'. -/
 theorem bounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | ¬a ≤ b }) ↔ Bounded (· ≥ ·) s :=
@@ -648,7 +648,7 @@ theorem bounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4547 : α) (x._@.Mathlib.Order.Bounded._hyg.4549 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4547 x._@.Mathlib.Order.Bounded._hyg.4549) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4583 : α) (x._@.Mathlib.Order.Bounded._hyg.4585 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4583 x._@.Mathlib.Order.Bounded._hyg.4585) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4718 : α) (x._@.Mathlib.Order.Bounded._hyg.4720 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4718 x._@.Mathlib.Order.Bounded._hyg.4720) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4754 : α) (x._@.Mathlib.Order.Bounded._hyg.4756 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4754 x._@.Mathlib.Order.Bounded._hyg.4756) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_inter_not_ge Set.unbounded_ge_inter_not_geₓ'. -/
 theorem unbounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | ¬a ≤ b }) ↔ Unbounded (· ≥ ·) s :=
@@ -659,7 +659,7 @@ theorem unbounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4626 : α) (x._@.Mathlib.Order.Bounded._hyg.4628 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4626 x._@.Mathlib.Order.Bounded._hyg.4628) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4659 : α) (x._@.Mathlib.Order.Bounded._hyg.4661 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4659 x._@.Mathlib.Order.Bounded._hyg.4661) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4797 : α) (x._@.Mathlib.Order.Bounded._hyg.4799 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4797 x._@.Mathlib.Order.Bounded._hyg.4799) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4830 : α) (x._@.Mathlib.Order.Bounded._hyg.4832 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4830 x._@.Mathlib.Order.Bounded._hyg.4832) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_gt Set.bounded_ge_inter_gtₓ'. -/
 theorem bounded_ge_inter_gt [LinearOrder α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | b < a }) ↔ Bounded (· ≥ ·) s :=
@@ -670,7 +670,7 @@ theorem bounded_ge_inter_gt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4702 : α) (x._@.Mathlib.Order.Bounded._hyg.4704 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4702 x._@.Mathlib.Order.Bounded._hyg.4704) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4735 : α) (x._@.Mathlib.Order.Bounded._hyg.4737 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4735 x._@.Mathlib.Order.Bounded._hyg.4737) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4873 : α) (x._@.Mathlib.Order.Bounded._hyg.4875 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4873 x._@.Mathlib.Order.Bounded._hyg.4875) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4906 : α) (x._@.Mathlib.Order.Bounded._hyg.4908 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4906 x._@.Mathlib.Order.Bounded._hyg.4908) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_inter_gt Set.unbounded_ge_inter_gtₓ'. -/
 theorem unbounded_ge_inter_gt [LinearOrder α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | b < a }) ↔ Unbounded (· ≥ ·) s :=
@@ -681,7 +681,7 @@ theorem unbounded_ge_inter_gt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4778 : α) (x._@.Mathlib.Order.Bounded._hyg.4780 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4778 x._@.Mathlib.Order.Bounded._hyg.4780) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4811 : α) (x._@.Mathlib.Order.Bounded._hyg.4813 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4811 x._@.Mathlib.Order.Bounded._hyg.4813) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4949 : α) (x._@.Mathlib.Order.Bounded._hyg.4951 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4949 x._@.Mathlib.Order.Bounded._hyg.4951) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4982 : α) (x._@.Mathlib.Order.Bounded._hyg.4984 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4982 x._@.Mathlib.Order.Bounded._hyg.4984) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_ge Set.bounded_ge_inter_geₓ'. -/
 theorem bounded_ge_inter_ge [LinearOrder α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | b ≤ a }) ↔ Bounded (· ≥ ·) s :=
@@ -692,7 +692,7 @@ theorem bounded_ge_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4854 : α) (x._@.Mathlib.Order.Bounded._hyg.4856 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4854 x._@.Mathlib.Order.Bounded._hyg.4856) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4887 : α) (x._@.Mathlib.Order.Bounded._hyg.4889 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4887 x._@.Mathlib.Order.Bounded._hyg.4889) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5025 : α) (x._@.Mathlib.Order.Bounded._hyg.5027 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5025 x._@.Mathlib.Order.Bounded._hyg.5027) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5058 : α) (x._@.Mathlib.Order.Bounded._hyg.5060 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5058 x._@.Mathlib.Order.Bounded._hyg.5060) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_iff_unbounded_inter_ge Set.unbounded_ge_iff_unbounded_inter_geₓ'. -/
 theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | b ≤ a }) ↔ Unbounded (· ≥ ·) s :=
@@ -706,7 +706,7 @@ theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4931 : α) (x._@.Mathlib.Order.Bounded._hyg.4933 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4931 x._@.Mathlib.Order.Bounded._hyg.4933) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4967 : α) (x._@.Mathlib.Order.Bounded._hyg.4969 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4967 x._@.Mathlib.Order.Bounded._hyg.4969) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5102 : α) (x._@.Mathlib.Order.Bounded._hyg.5104 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5102 x._@.Mathlib.Order.Bounded._hyg.5104) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5138 : α) (x._@.Mathlib.Order.Bounded._hyg.5140 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5138 x._@.Mathlib.Order.Bounded._hyg.5140) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_not_gt Set.bounded_gt_inter_not_gtₓ'. -/
 theorem bounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
     Bounded (· > ·) (s ∩ { b | ¬a < b }) ↔ Bounded (· > ·) s :=
@@ -717,7 +717,7 @@ theorem bounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5010 : α) (x._@.Mathlib.Order.Bounded._hyg.5012 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5010 x._@.Mathlib.Order.Bounded._hyg.5012) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5046 : α) (x._@.Mathlib.Order.Bounded._hyg.5048 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5046 x._@.Mathlib.Order.Bounded._hyg.5048) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5181 : α) (x._@.Mathlib.Order.Bounded._hyg.5183 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5181 x._@.Mathlib.Order.Bounded._hyg.5183) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5217 : α) (x._@.Mathlib.Order.Bounded._hyg.5219 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5217 x._@.Mathlib.Order.Bounded._hyg.5219) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_inter_not_gt Set.unbounded_gt_inter_not_gtₓ'. -/
 theorem unbounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | ¬a < b }) ↔ Unbounded (· > ·) s :=
@@ -728,7 +728,7 @@ theorem unbounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5089 : α) (x._@.Mathlib.Order.Bounded._hyg.5091 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5089 x._@.Mathlib.Order.Bounded._hyg.5091) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5122 : α) (x._@.Mathlib.Order.Bounded._hyg.5124 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5122 x._@.Mathlib.Order.Bounded._hyg.5124) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5260 : α) (x._@.Mathlib.Order.Bounded._hyg.5262 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5260 x._@.Mathlib.Order.Bounded._hyg.5262) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5293 : α) (x._@.Mathlib.Order.Bounded._hyg.5295 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5293 x._@.Mathlib.Order.Bounded._hyg.5295) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_ge Set.bounded_gt_inter_geₓ'. -/
 theorem bounded_gt_inter_ge [LinearOrder α] (a : α) :
     Bounded (· > ·) (s ∩ { b | b ≤ a }) ↔ Bounded (· > ·) s :=
@@ -739,7 +739,7 @@ theorem bounded_gt_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5165 : α) (x._@.Mathlib.Order.Bounded._hyg.5167 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5165 x._@.Mathlib.Order.Bounded._hyg.5167) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5198 : α) (x._@.Mathlib.Order.Bounded._hyg.5200 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5198 x._@.Mathlib.Order.Bounded._hyg.5200) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5336 : α) (x._@.Mathlib.Order.Bounded._hyg.5338 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5336 x._@.Mathlib.Order.Bounded._hyg.5338) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5369 : α) (x._@.Mathlib.Order.Bounded._hyg.5371 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5369 x._@.Mathlib.Order.Bounded._hyg.5371) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_inter_ge Set.unbounded_inter_geₓ'. -/
 theorem unbounded_inter_ge [LinearOrder α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | b ≤ a }) ↔ Unbounded (· > ·) s :=
@@ -750,7 +750,7 @@ theorem unbounded_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5244 : α) (x._@.Mathlib.Order.Bounded._hyg.5246 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5244 x._@.Mathlib.Order.Bounded._hyg.5246) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5277 : α) (x._@.Mathlib.Order.Bounded._hyg.5279 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5277 x._@.Mathlib.Order.Bounded._hyg.5279) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5415 : α) (x._@.Mathlib.Order.Bounded._hyg.5417 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5415 x._@.Mathlib.Order.Bounded._hyg.5417) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5448 : α) (x._@.Mathlib.Order.Bounded._hyg.5450 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5448 x._@.Mathlib.Order.Bounded._hyg.5450) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_gt Set.bounded_gt_inter_gtₓ'. -/
 theorem bounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
     Bounded (· > ·) (s ∩ { b | b < a }) ↔ Bounded (· > ·) s :=
@@ -761,7 +761,7 @@ theorem bounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5323 : α) (x._@.Mathlib.Order.Bounded._hyg.5325 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5323 x._@.Mathlib.Order.Bounded._hyg.5325) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5356 : α) (x._@.Mathlib.Order.Bounded._hyg.5358 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5356 x._@.Mathlib.Order.Bounded._hyg.5358) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5494 : α) (x._@.Mathlib.Order.Bounded._hyg.5496 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5494 x._@.Mathlib.Order.Bounded._hyg.5496) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5527 : α) (x._@.Mathlib.Order.Bounded._hyg.5529 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5527 x._@.Mathlib.Order.Bounded._hyg.5529) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_inter_gt Set.unbounded_gt_inter_gtₓ'. -/
 theorem unbounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | b < a }) ↔ Unbounded (· > ·) s :=
Diff
@@ -488,7 +488,7 @@ theorem bounded_le_inter_not_le [SemilatticeSup α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3348 : α) (x._@.Mathlib.Order.Bounded._hyg.3350 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3348 x._@.Mathlib.Order.Bounded._hyg.3350) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3384 : α) (x._@.Mathlib.Order.Bounded._hyg.3386 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3384 x._@.Mathlib.Order.Bounded._hyg.3386) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3350 : α) (x._@.Mathlib.Order.Bounded._hyg.3352 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3350 x._@.Mathlib.Order.Bounded._hyg.3352) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3386 : α) (x._@.Mathlib.Order.Bounded._hyg.3388 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3386 x._@.Mathlib.Order.Bounded._hyg.3388) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_not_le Set.unbounded_le_inter_not_leₓ'. -/
 theorem unbounded_le_inter_not_le [SemilatticeSup α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | ¬b ≤ a }) ↔ Unbounded (· ≤ ·) s :=
@@ -501,7 +501,7 @@ theorem unbounded_le_inter_not_le [SemilatticeSup α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3457 : α) (x._@.Mathlib.Order.Bounded._hyg.3459 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3457 x._@.Mathlib.Order.Bounded._hyg.3459) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3490 : α) (x._@.Mathlib.Order.Bounded._hyg.3492 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3490 x._@.Mathlib.Order.Bounded._hyg.3492) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3459 : α) (x._@.Mathlib.Order.Bounded._hyg.3461 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3459 x._@.Mathlib.Order.Bounded._hyg.3461) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3492 : α) (x._@.Mathlib.Order.Bounded._hyg.3494 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3492 x._@.Mathlib.Order.Bounded._hyg.3494) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_lt Set.bounded_le_inter_ltₓ'. -/
 theorem bounded_le_inter_lt [LinearOrder α] (a : α) :
     Bounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Bounded (· ≤ ·) s := by
@@ -512,7 +512,7 @@ theorem bounded_le_inter_lt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3535 : α) (x._@.Mathlib.Order.Bounded._hyg.3537 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3535 x._@.Mathlib.Order.Bounded._hyg.3537) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3568 : α) (x._@.Mathlib.Order.Bounded._hyg.3570 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3568 x._@.Mathlib.Order.Bounded._hyg.3570) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3537 : α) (x._@.Mathlib.Order.Bounded._hyg.3539 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3537 x._@.Mathlib.Order.Bounded._hyg.3539) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3570 : α) (x._@.Mathlib.Order.Bounded._hyg.3572 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3570 x._@.Mathlib.Order.Bounded._hyg.3572) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_lt Set.unbounded_le_inter_ltₓ'. -/
 theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Unbounded (· ≤ ·) s :=
@@ -526,7 +526,7 @@ theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3621 : α) (x._@.Mathlib.Order.Bounded._hyg.3623 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3621 x._@.Mathlib.Order.Bounded._hyg.3623) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3654 : α) (x._@.Mathlib.Order.Bounded._hyg.3656 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3654 x._@.Mathlib.Order.Bounded._hyg.3656) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3623 : α) (x._@.Mathlib.Order.Bounded._hyg.3625 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3623 x._@.Mathlib.Order.Bounded._hyg.3625) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3656 : α) (x._@.Mathlib.Order.Bounded._hyg.3658 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3656 x._@.Mathlib.Order.Bounded._hyg.3658) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_le_inter_le Set.bounded_le_inter_leₓ'. -/
 theorem bounded_le_inter_le [LinearOrder α] (a : α) :
     Bounded (· ≤ ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· ≤ ·) s :=
@@ -540,7 +540,7 @@ theorem bounded_le_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3763 : α) (x._@.Mathlib.Order.Bounded._hyg.3765 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3763 x._@.Mathlib.Order.Bounded._hyg.3765) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3796 : α) (x._@.Mathlib.Order.Bounded._hyg.3798 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3796 x._@.Mathlib.Order.Bounded._hyg.3798) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3765 : α) (x._@.Mathlib.Order.Bounded._hyg.3767 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3765 x._@.Mathlib.Order.Bounded._hyg.3767) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3798 : α) (x._@.Mathlib.Order.Bounded._hyg.3800 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.3798 x._@.Mathlib.Order.Bounded._hyg.3800) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_le_inter_le Set.unbounded_le_inter_leₓ'. -/
 theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· ≤ ·) s :=
@@ -556,7 +556,7 @@ theorem unbounded_le_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3870 : α) (x._@.Mathlib.Order.Bounded._hyg.3872 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3870 x._@.Mathlib.Order.Bounded._hyg.3872) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3906 : α) (x._@.Mathlib.Order.Bounded._hyg.3908 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3906 x._@.Mathlib.Order.Bounded._hyg.3908) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3872 : α) (x._@.Mathlib.Order.Bounded._hyg.3874 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3872 x._@.Mathlib.Order.Bounded._hyg.3874) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3908 : α) (x._@.Mathlib.Order.Bounded._hyg.3910 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3908 x._@.Mathlib.Order.Bounded._hyg.3910) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_not_lt Set.bounded_lt_inter_not_ltₓ'. -/
 theorem bounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
     Bounded (· < ·) (s ∩ { b | ¬b < a }) ↔ Bounded (· < ·) s :=
@@ -567,7 +567,7 @@ theorem bounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3965 : α) (x._@.Mathlib.Order.Bounded._hyg.3967 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3965 x._@.Mathlib.Order.Bounded._hyg.3967) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4001 : α) (x._@.Mathlib.Order.Bounded._hyg.4003 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4001 x._@.Mathlib.Order.Bounded._hyg.4003) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeSup.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.3969 : α) (x._@.Mathlib.Order.Bounded._hyg.3971 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.3969 x._@.Mathlib.Order.Bounded._hyg.3971) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4005 : α) (x._@.Mathlib.Order.Bounded._hyg.4007 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4005 x._@.Mathlib.Order.Bounded._hyg.4007) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_not_lt Set.unbounded_lt_inter_not_ltₓ'. -/
 theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | ¬b < a }) ↔ Unbounded (· < ·) s :=
@@ -580,7 +580,7 @@ theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4074 : α) (x._@.Mathlib.Order.Bounded._hyg.4076 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4074 x._@.Mathlib.Order.Bounded._hyg.4076) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4107 : α) (x._@.Mathlib.Order.Bounded._hyg.4109 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4107 x._@.Mathlib.Order.Bounded._hyg.4109) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4078 : α) (x._@.Mathlib.Order.Bounded._hyg.4080 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4078 x._@.Mathlib.Order.Bounded._hyg.4080) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4111 : α) (x._@.Mathlib.Order.Bounded._hyg.4113 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4111 x._@.Mathlib.Order.Bounded._hyg.4113) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_le Set.bounded_lt_inter_leₓ'. -/
 theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
     Bounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· < ·) s :=
@@ -594,7 +594,7 @@ theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4160 : α) (x._@.Mathlib.Order.Bounded._hyg.4162 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4160 x._@.Mathlib.Order.Bounded._hyg.4162) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4193 : α) (x._@.Mathlib.Order.Bounded._hyg.4195 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4193 x._@.Mathlib.Order.Bounded._hyg.4195) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4164 : α) (x._@.Mathlib.Order.Bounded._hyg.4166 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4164 x._@.Mathlib.Order.Bounded._hyg.4166) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4197 : α) (x._@.Mathlib.Order.Bounded._hyg.4199 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4197 x._@.Mathlib.Order.Bounded._hyg.4199) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_le Set.unbounded_lt_inter_leₓ'. -/
 theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· < ·) s :=
@@ -608,7 +608,7 @@ theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Bounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4249 : α) (x._@.Mathlib.Order.Bounded._hyg.4251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4249 x._@.Mathlib.Order.Bounded._hyg.4251) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4282 : α) (x._@.Mathlib.Order.Bounded._hyg.4284 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4282 x._@.Mathlib.Order.Bounded._hyg.4284) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4253 : α) (x._@.Mathlib.Order.Bounded._hyg.4255 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4253 x._@.Mathlib.Order.Bounded._hyg.4255) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4286 : α) (x._@.Mathlib.Order.Bounded._hyg.4288 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4286 x._@.Mathlib.Order.Bounded._hyg.4288) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_lt_inter_lt Set.bounded_lt_inter_ltₓ'. -/
 theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
     Bounded (· < ·) (s ∩ { b | a < b }) ↔ Bounded (· < ·) s :=
@@ -621,7 +621,7 @@ theorem bounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b)))) (Set.Unbounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4357 : α) (x._@.Mathlib.Order.Bounded._hyg.4359 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4357 x._@.Mathlib.Order.Bounded._hyg.4359) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4390 : α) (x._@.Mathlib.Order.Bounded._hyg.4392 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4390 x._@.Mathlib.Order.Bounded._hyg.4392) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4361 : α) (x._@.Mathlib.Order.Bounded._hyg.4363 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4361 x._@.Mathlib.Order.Bounded._hyg.4363) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4394 : α) (x._@.Mathlib.Order.Bounded._hyg.4396 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4394 x._@.Mathlib.Order.Bounded._hyg.4396) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_lt_inter_lt Set.unbounded_lt_inter_ltₓ'. -/
 theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | a < b }) ↔ Unbounded (· < ·) s :=
@@ -637,7 +637,7 @@ theorem unbounded_lt_inter_lt [LinearOrder α] [NoMaxOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4464 : α) (x._@.Mathlib.Order.Bounded._hyg.4466 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4464 x._@.Mathlib.Order.Bounded._hyg.4466) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4500 : α) (x._@.Mathlib.Order.Bounded._hyg.4502 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4500 x._@.Mathlib.Order.Bounded._hyg.4502) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4468 : α) (x._@.Mathlib.Order.Bounded._hyg.4470 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4468 x._@.Mathlib.Order.Bounded._hyg.4470) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4504 : α) (x._@.Mathlib.Order.Bounded._hyg.4506 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4504 x._@.Mathlib.Order.Bounded._hyg.4506) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_not_ge Set.bounded_ge_inter_not_geₓ'. -/
 theorem bounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | ¬a ≤ b }) ↔ Bounded (· ≥ ·) s :=
@@ -648,7 +648,7 @@ theorem bounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4543 : α) (x._@.Mathlib.Order.Bounded._hyg.4545 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4543 x._@.Mathlib.Order.Bounded._hyg.4545) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4579 : α) (x._@.Mathlib.Order.Bounded._hyg.4581 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4579 x._@.Mathlib.Order.Bounded._hyg.4581) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4547 : α) (x._@.Mathlib.Order.Bounded._hyg.4549 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4547 x._@.Mathlib.Order.Bounded._hyg.4549) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4583 : α) (x._@.Mathlib.Order.Bounded._hyg.4585 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4583 x._@.Mathlib.Order.Bounded._hyg.4585) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_inter_not_ge Set.unbounded_ge_inter_not_geₓ'. -/
 theorem unbounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | ¬a ≤ b }) ↔ Unbounded (· ≥ ·) s :=
@@ -659,7 +659,7 @@ theorem unbounded_ge_inter_not_ge [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4622 : α) (x._@.Mathlib.Order.Bounded._hyg.4624 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4622 x._@.Mathlib.Order.Bounded._hyg.4624) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4655 : α) (x._@.Mathlib.Order.Bounded._hyg.4657 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4655 x._@.Mathlib.Order.Bounded._hyg.4657) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4626 : α) (x._@.Mathlib.Order.Bounded._hyg.4628 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4626 x._@.Mathlib.Order.Bounded._hyg.4628) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4659 : α) (x._@.Mathlib.Order.Bounded._hyg.4661 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4659 x._@.Mathlib.Order.Bounded._hyg.4661) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_gt Set.bounded_ge_inter_gtₓ'. -/
 theorem bounded_ge_inter_gt [LinearOrder α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | b < a }) ↔ Bounded (· ≥ ·) s :=
@@ -670,7 +670,7 @@ theorem bounded_ge_inter_gt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4698 : α) (x._@.Mathlib.Order.Bounded._hyg.4700 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4698 x._@.Mathlib.Order.Bounded._hyg.4700) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4731 : α) (x._@.Mathlib.Order.Bounded._hyg.4733 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4731 x._@.Mathlib.Order.Bounded._hyg.4733) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4702 : α) (x._@.Mathlib.Order.Bounded._hyg.4704 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4702 x._@.Mathlib.Order.Bounded._hyg.4704) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4735 : α) (x._@.Mathlib.Order.Bounded._hyg.4737 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4735 x._@.Mathlib.Order.Bounded._hyg.4737) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_inter_gt Set.unbounded_ge_inter_gtₓ'. -/
 theorem unbounded_ge_inter_gt [LinearOrder α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | b < a }) ↔ Unbounded (· ≥ ·) s :=
@@ -681,7 +681,7 @@ theorem unbounded_ge_inter_gt [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4774 : α) (x._@.Mathlib.Order.Bounded._hyg.4776 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4774 x._@.Mathlib.Order.Bounded._hyg.4776) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4807 : α) (x._@.Mathlib.Order.Bounded._hyg.4809 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4807 x._@.Mathlib.Order.Bounded._hyg.4809) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4778 : α) (x._@.Mathlib.Order.Bounded._hyg.4780 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4778 x._@.Mathlib.Order.Bounded._hyg.4780) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4811 : α) (x._@.Mathlib.Order.Bounded._hyg.4813 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4811 x._@.Mathlib.Order.Bounded._hyg.4813) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_ge_inter_ge Set.bounded_ge_inter_geₓ'. -/
 theorem bounded_ge_inter_ge [LinearOrder α] (a : α) :
     Bounded (· ≥ ·) (s ∩ { b | b ≤ a }) ↔ Bounded (· ≥ ·) s :=
@@ -692,7 +692,7 @@ theorem bounded_ge_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4850 : α) (x._@.Mathlib.Order.Bounded._hyg.4852 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4850 x._@.Mathlib.Order.Bounded._hyg.4852) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4883 : α) (x._@.Mathlib.Order.Bounded._hyg.4885 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4883 x._@.Mathlib.Order.Bounded._hyg.4885) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4854 : α) (x._@.Mathlib.Order.Bounded._hyg.4856 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4854 x._@.Mathlib.Order.Bounded._hyg.4856) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4887 : α) (x._@.Mathlib.Order.Bounded._hyg.4889 : α) => GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.4887 x._@.Mathlib.Order.Bounded._hyg.4889) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_ge_iff_unbounded_inter_ge Set.unbounded_ge_iff_unbounded_inter_geₓ'. -/
 theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
     Unbounded (· ≥ ·) (s ∩ { b | b ≤ a }) ↔ Unbounded (· ≥ ·) s :=
@@ -706,7 +706,7 @@ theorem unbounded_ge_iff_unbounded_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4927 : α) (x._@.Mathlib.Order.Bounded._hyg.4929 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4927 x._@.Mathlib.Order.Bounded._hyg.4929) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4963 : α) (x._@.Mathlib.Order.Bounded._hyg.4965 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4963 x._@.Mathlib.Order.Bounded._hyg.4965) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4931 : α) (x._@.Mathlib.Order.Bounded._hyg.4933 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4931 x._@.Mathlib.Order.Bounded._hyg.4933) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.4967 : α) (x._@.Mathlib.Order.Bounded._hyg.4969 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.4967 x._@.Mathlib.Order.Bounded._hyg.4969) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_not_gt Set.bounded_gt_inter_not_gtₓ'. -/
 theorem bounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
     Bounded (· > ·) (s ∩ { b | ¬a < b }) ↔ Bounded (· > ·) s :=
@@ -717,7 +717,7 @@ theorem bounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5006 : α) (x._@.Mathlib.Order.Bounded._hyg.5008 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5006 x._@.Mathlib.Order.Bounded._hyg.5008) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5042 : α) (x._@.Mathlib.Order.Bounded._hyg.5044 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5042 x._@.Mathlib.Order.Bounded._hyg.5044) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : SemilatticeInf.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5010 : α) (x._@.Mathlib.Order.Bounded._hyg.5012 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5010 x._@.Mathlib.Order.Bounded._hyg.5012) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5046 : α) (x._@.Mathlib.Order.Bounded._hyg.5048 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x._@.Mathlib.Order.Bounded._hyg.5046 x._@.Mathlib.Order.Bounded._hyg.5048) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_inter_not_gt Set.unbounded_gt_inter_not_gtₓ'. -/
 theorem unbounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | ¬a < b }) ↔ Unbounded (· > ·) s :=
@@ -728,7 +728,7 @@ theorem unbounded_gt_inter_not_gt [SemilatticeInf α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5085 : α) (x._@.Mathlib.Order.Bounded._hyg.5087 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5085 x._@.Mathlib.Order.Bounded._hyg.5087) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5118 : α) (x._@.Mathlib.Order.Bounded._hyg.5120 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5118 x._@.Mathlib.Order.Bounded._hyg.5120) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5089 : α) (x._@.Mathlib.Order.Bounded._hyg.5091 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5089 x._@.Mathlib.Order.Bounded._hyg.5091) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5122 : α) (x._@.Mathlib.Order.Bounded._hyg.5124 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5122 x._@.Mathlib.Order.Bounded._hyg.5124) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_ge Set.bounded_gt_inter_geₓ'. -/
 theorem bounded_gt_inter_ge [LinearOrder α] (a : α) :
     Bounded (· > ·) (s ∩ { b | b ≤ a }) ↔ Bounded (· > ·) s :=
@@ -739,7 +739,7 @@ theorem bounded_gt_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5161 : α) (x._@.Mathlib.Order.Bounded._hyg.5163 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5161 x._@.Mathlib.Order.Bounded._hyg.5163) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5194 : α) (x._@.Mathlib.Order.Bounded._hyg.5196 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5194 x._@.Mathlib.Order.Bounded._hyg.5196) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5165 : α) (x._@.Mathlib.Order.Bounded._hyg.5167 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5165 x._@.Mathlib.Order.Bounded._hyg.5167) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5198 : α) (x._@.Mathlib.Order.Bounded._hyg.5200 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5198 x._@.Mathlib.Order.Bounded._hyg.5200) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_inter_ge Set.unbounded_inter_geₓ'. -/
 theorem unbounded_inter_ge [LinearOrder α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | b ≤ a }) ↔ Unbounded (· > ·) s :=
@@ -750,7 +750,7 @@ theorem unbounded_inter_ge [LinearOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Bounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5240 : α) (x._@.Mathlib.Order.Bounded._hyg.5242 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5240 x._@.Mathlib.Order.Bounded._hyg.5242) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5273 : α) (x._@.Mathlib.Order.Bounded._hyg.5275 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5273 x._@.Mathlib.Order.Bounded._hyg.5275) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5244 : α) (x._@.Mathlib.Order.Bounded._hyg.5246 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5244 x._@.Mathlib.Order.Bounded._hyg.5246) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Bounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5277 : α) (x._@.Mathlib.Order.Bounded._hyg.5279 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5277 x._@.Mathlib.Order.Bounded._hyg.5279) s)
 Case conversion may be inaccurate. Consider using '#align set.bounded_gt_inter_gt Set.bounded_gt_inter_gtₓ'. -/
 theorem bounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
     Bounded (· > ·) (s ∩ { b | b < a }) ↔ Bounded (· > ·) s :=
@@ -761,7 +761,7 @@ theorem bounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Iff (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b a)))) (Set.Unbounded.{u1} α (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))) s)
 but is expected to have type
-  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5319 : α) (x._@.Mathlib.Order.Bounded._hyg.5321 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5319 x._@.Mathlib.Order.Bounded._hyg.5321) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5352 : α) (x._@.Mathlib.Order.Bounded._hyg.5354 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5352 x._@.Mathlib.Order.Bounded._hyg.5354) s)
+  forall {α : Type.{u1}} {s : Set.{u1} α} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Iff (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5323 : α) (x._@.Mathlib.Order.Bounded._hyg.5325 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5323 x._@.Mathlib.Order.Bounded._hyg.5325) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (b : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b a)))) (Set.Unbounded.{u1} α (fun (x._@.Mathlib.Order.Bounded._hyg.5356 : α) (x._@.Mathlib.Order.Bounded._hyg.5358 : α) => GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.Bounded._hyg.5356 x._@.Mathlib.Order.Bounded._hyg.5358) s)
 Case conversion may be inaccurate. Consider using '#align set.unbounded_gt_inter_gt Set.unbounded_gt_inter_gtₓ'. -/
 theorem unbounded_gt_inter_gt [LinearOrder α] [NoMinOrder α] (a : α) :
     Unbounded (· > ·) (s ∩ { b | b < a }) ↔ Unbounded (· > ·) s :=

Changes in mathlib4

mathlib3
mathlib4
chore: Move intervals (#11765)

Move Set.Ixx, Finset.Ixx, Multiset.Ixx together under two different folders:

  • Order.Interval for their definition and basic properties
  • Algebra.Order.Interval for their algebraic properties

Move the definitions of Multiset.Ixx to what is now Order.Interval.Multiset. I believe we could just delete this file in a later PR as nothing uses it (and I already had doubts when defining Multiset.Ixx three years ago).

Move the algebraic results out of what is now Order.Interval.Finset.Basic to a new file Algebra.Order.Interval.Finset.Basic.

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Violeta Hernández Palacios
 -/
 import Mathlib.Order.RelClasses
-import Mathlib.Data.Set.Intervals.Basic
+import Mathlib.Order.Interval.Set.Basic
 
 #align_import order.bounded from "leanprover-community/mathlib"@"aba57d4d3dae35460225919dcd82fe91355162f9"
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -18,7 +18,7 @@ different general ideas.
 
 namespace Set
 
-variable {α : Type _} {r : α → α → Prop} {s t : Set α}
+variable {α : Type*} {r : α → α → Prop} {s t : Set α}
 
 /-! ### Subsets of bounded and unbounded sets -/
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,12 @@
 Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Violeta Hernández Palacios
-! This file was ported from Lean 3 source module order.bounded
-! leanprover-community/mathlib commit aba57d4d3dae35460225919dcd82fe91355162f9
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.RelClasses
 import Mathlib.Data.Set.Intervals.Basic
 
+#align_import order.bounded from "leanprover-community/mathlib"@"aba57d4d3dae35460225919dcd82fe91355162f9"
+
 /-!
 # Bounded and unbounded sets
 We prove miscellaneous lemmas about bounded and unbounded sets. Many of these are just variations on
feat: improvements to congr! and convert (#2606)
  • There is now configuration for congr!, convert, and convert_to to control parts of the congruence algorithm, in particular transparency settings when applying congruence lemmas.
  • congr! now applies congruence lemmas with reducible transparency by default. This prevents it from unfolding definitions when applying congruence lemmas. It also now tries both the LHS-biased and RHS-biased simp congruence lemmas, with a configuration option to set which it should try first.
  • There is now a new HEq congruence lemma generator that gives each hypothesis access to the proofs of previous hypotheses. This means that if you have an equality ⊢ ⟨a, x⟩ = ⟨b, y⟩ of sigma types, congr! turns this into goals ⊢ a = b and ⊢ a = b → HEq x y (note that congr! will also auto-introduce a = b for you in the second goal). This congruence lemma generator applies to more cases than the simp congruence lemma generator does.
  • congr! (and hence convert) are more careful about applying lemmas that don't force definitions to unfold. There were a number of cases in mathlib where the implementation of congr was being abused to unfold definitions.
  • With set_option trace.congr! true you can see what congr! sees when it is deciding on congruence lemmas.
  • There is also a bug fix in convert_to to do using 1 when there is no using clause, to match its documentation.

Note that congr! is more capable than congr at finding a way to equate left-hand sides and right-hand sides, so you will frequently need to limit its depth with a using clause. However, there is also a new heuristic to prevent considering unlikely-to-be-provable type equalities (controlled by the typeEqs option), which can help limit the depth automatically.

There is also a predefined configuration that you can invoke with, for example, convert (config := .unfoldSameFun) h, that causes it to behave more like congr, including using default transparency when unfolding.

Diff
@@ -335,7 +335,6 @@ theorem bounded_le_inter_lt [LinearOrder α] (a : α) :
 theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
     Unbounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Unbounded (· ≤ ·) s := by
   convert @unbounded_le_inter_not_le _ s _ a
-  ext
   exact lt_iff_not_le
 #align set.unbounded_le_inter_lt Set.unbounded_le_inter_lt
 
@@ -369,14 +368,12 @@ theorem unbounded_lt_inter_not_lt [SemilatticeSup α] (a : α) :
 theorem bounded_lt_inter_le [LinearOrder α] (a : α) :
     Bounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Bounded (· < ·) s := by
   convert @bounded_lt_inter_not_lt _ s _ a
-  ext
   exact not_lt.symm
 #align set.bounded_lt_inter_le Set.bounded_lt_inter_le
 
 theorem unbounded_lt_inter_le [LinearOrder α] (a : α) :
     Unbounded (· < ·) (s ∩ { b | a ≤ b }) ↔ Unbounded (· < ·) s := by
   convert @unbounded_lt_inter_not_lt _ s _ a
-  ext
   exact not_lt.symm
 #align set.unbounded_lt_inter_le Set.unbounded_lt_inter_le
 
chore: remove iff_self from simp only after lean4#1933 (#1406)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -44,7 +44,7 @@ theorem unbounded_le_of_forall_exists_lt [Preorder α] (h : ∀ a, ∃ b ∈ s,
 #align set.unbounded_le_of_forall_exists_lt Set.unbounded_le_of_forall_exists_lt
 
 theorem unbounded_le_iff [LinearOrder α] : Unbounded (· ≤ ·) s ↔ ∀ a, ∃ b ∈ s, a < b := by
-  simp only [Unbounded, not_le, iff_self]
+  simp only [Unbounded, not_le]
 #align set.unbounded_le_iff Set.unbounded_le_iff
 
 theorem unbounded_lt_of_forall_exists_le [Preorder α] (h : ∀ a, ∃ b ∈ s, a ≤ b) :
@@ -54,7 +54,7 @@ theorem unbounded_lt_of_forall_exists_le [Preorder α] (h : ∀ a, ∃ b ∈ s,
 #align set.unbounded_lt_of_forall_exists_le Set.unbounded_lt_of_forall_exists_le
 
 theorem unbounded_lt_iff [LinearOrder α] : Unbounded (· < ·) s ↔ ∀ a, ∃ b ∈ s, a ≤ b := by
-  simp only [Unbounded, not_lt, iff_self]
+  simp only [Unbounded, not_lt]
 #align set.unbounded_lt_iff Set.unbounded_lt_iff
 
 theorem unbounded_ge_of_forall_exists_gt [Preorder α] (h : ∀ a, ∃ b ∈ s, b < a) :
chore: update lean4/std4 (#1096)
Diff
@@ -117,7 +117,7 @@ theorem bounded_le_iff_bounded_lt [Preorder α] [NoMaxOrder α] :
 
 theorem unbounded_lt_iff_unbounded_le [Preorder α] [NoMaxOrder α] :
     Unbounded (· < ·) s ↔ Unbounded (· ≤ ·) s := by
-  simp_rw [← not_bounded_iff, bounded_le_iff_bounded_lt, iff_self]
+  simp_rw [← not_bounded_iff, bounded_le_iff_bounded_lt]
 #align set.unbounded_lt_iff_unbounded_le Set.unbounded_lt_iff_unbounded_le
 
 /-! #### Greater and greater or equal -/
@@ -310,7 +310,7 @@ theorem bounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m)
 
 theorem unbounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m) (a : α) :
     Unbounded r (s ∩ { b | ¬r b a }) ↔ Unbounded r s := by
-  simp_rw [← not_bounded_iff, bounded_inter_not H, iff_self]
+  simp_rw [← not_bounded_iff, bounded_inter_not H]
 #align set.unbounded_inter_not Set.unbounded_inter_not
 
 /-! #### Less or equal -/
@@ -329,7 +329,7 @@ theorem unbounded_le_inter_not_le [SemilatticeSup α] (a : α) :
 
 theorem bounded_le_inter_lt [LinearOrder α] (a : α) :
     Bounded (· ≤ ·) (s ∩ { b | a < b }) ↔ Bounded (· ≤ ·) s := by
-  simp_rw [← not_le, bounded_le_inter_not_le, iff_self]
+  simp_rw [← not_le, bounded_le_inter_not_le]
 #align set.bounded_le_inter_lt Set.bounded_le_inter_lt
 
 theorem unbounded_le_inter_lt [LinearOrder α] (a : α) :
feat: port Order.Bounded (#1042)

aba57d4d

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Dependencies 40

41 files ported (100.0%)
23277 lines ported (100.0%)

All dependencies are ported!