order.bounded_orderMathlib.Order.BoundedOrder

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -94,7 +94,7 @@ noncomputable def topOrderOrNoTopOrder (α : Type _) [LE α] : PSum (OrderTop α
   by
   by_cases H : ∀ a : α, ∃ b, ¬b ≤ a
   · exact PSum.inr ⟨H⟩
-  · push_neg at H 
+  · push_neg at H
     exact PSum.inl ⟨_, Classical.choose_spec H⟩
 #align top_order_or_no_top_order topOrderOrNoTopOrder
 -/
@@ -314,7 +314,7 @@ noncomputable def botOrderOrNoBotOrder (α : Type _) [LE α] : PSum (OrderBot α
   by
   by_cases H : ∀ a : α, ∃ b, ¬a ≤ b
   · exact PSum.inr ⟨H⟩
-  · push_neg at H 
+  · push_neg at H
     exact PSum.inl ⟨_, Classical.choose_spec H⟩
 #align bot_order_or_no_bot_order botOrderOrNoBotOrder
 -/
Diff
@@ -289,7 +289,6 @@ theorem OrderTop.ext_top {α} {hA : PartialOrder α} (A : OrderTop α) {hB : Par
 #align order_top.ext_top OrderTop.ext_top
 -/
 
-#print OrderTop.ext /-
 theorem OrderTop.ext {α} [PartialOrder α] {A B : OrderTop α} : A = B :=
   by
   have tt := OrderTop.ext_top A B fun _ _ => Iff.rfl
@@ -297,7 +296,6 @@ theorem OrderTop.ext {α} [PartialOrder α] {A B : OrderTop α} : A = B :=
   congr
   exact le_antisymm (hb _) (ha _)
 #align order_top.ext OrderTop.ext
--/
 
 #print OrderBot /-
 /-- An order is an `order_bot` if it has a least element.
@@ -562,7 +560,6 @@ theorem OrderBot.ext_bot {α} {hA : PartialOrder α} (A : OrderBot α) {hB : Par
 #align order_bot.ext_bot OrderBot.ext_bot
 -/
 
-#print OrderBot.ext /-
 theorem OrderBot.ext {α} [PartialOrder α] {A B : OrderBot α} : A = B :=
   by
   have tt := OrderBot.ext_bot A B fun _ _ => Iff.rfl
@@ -570,7 +567,6 @@ theorem OrderBot.ext {α} [PartialOrder α] {A B : OrderBot α} : A = B :=
   congr
   exact le_antisymm (ha _) (hb _)
 #align order_bot.ext OrderBot.ext
--/
 
 section SemilatticeSupTop
 
@@ -678,7 +674,6 @@ class BoundedOrder (α : Type u) [LE α] extends OrderTop α, OrderBot α
 instance (α : Type u) [LE α] [BoundedOrder α] : BoundedOrder αᵒᵈ :=
   { OrderDual.orderTop α, OrderDual.orderBot α with }
 
-#print BoundedOrder.ext /-
 theorem BoundedOrder.ext {α} [PartialOrder α] {A B : BoundedOrder α} : A = B :=
   by
   have ht : @BoundedOrder.toOrderTop α _ A = @BoundedOrder.toOrderTop α _ B := OrderTop.ext
@@ -691,7 +686,6 @@ theorem BoundedOrder.ext {α} [PartialOrder α] {A B : BoundedOrder α} : A = B
   · exact h.symm
   · exact h'.symm
 #align bounded_order.ext BoundedOrder.ext
--/
 
 section Logic
 
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import Mathbin.Order.Lattice
-import Mathbin.Data.Option.Basic
+import Order.Lattice
+import Data.Option.Basic
 
 #align_import order.bounded_order from "leanprover-community/mathlib"@"448144f7ae193a8990cb7473c9e9a01990f64ac7"
 
Diff
@@ -142,7 +142,7 @@ theorem ne_top_of_lt (h : a < b) : a ≠ ⊤ :=
 #align ne_top_of_lt ne_top_of_lt
 -/
 
-alias ne_top_of_lt ← LT.lt.ne_top
+alias LT.lt.ne_top := ne_top_of_lt
 #align has_lt.lt.ne_top LT.lt.ne_top
 
 end Preorder
@@ -175,10 +175,10 @@ theorem not_isTop_iff_ne_top : ¬IsTop a ↔ a ≠ ⊤ :=
 #align not_is_top_iff_ne_top not_isTop_iff_ne_top
 -/
 
-alias isMax_iff_eq_top ↔ IsMax.eq_top _
+alias ⟨IsMax.eq_top, _⟩ := isMax_iff_eq_top
 #align is_max.eq_top IsMax.eq_top
 
-alias isTop_iff_eq_top ↔ IsTop.eq_top _
+alias ⟨IsTop.eq_top, _⟩ := isTop_iff_eq_top
 #align is_top.eq_top IsTop.eq_top
 
 #print top_le_iff /-
@@ -410,7 +410,7 @@ theorem ne_bot_of_gt (h : a < b) : b ≠ ⊥ :=
 #align ne_bot_of_gt ne_bot_of_gt
 -/
 
-alias ne_bot_of_gt ← LT.lt.ne_bot
+alias LT.lt.ne_bot := ne_bot_of_gt
 #align has_lt.lt.ne_bot LT.lt.ne_bot
 
 end Preorder
@@ -443,10 +443,10 @@ theorem not_isBot_iff_ne_bot : ¬IsBot a ↔ a ≠ ⊥ :=
 #align not_is_bot_iff_ne_bot not_isBot_iff_ne_bot
 -/
 
-alias isMin_iff_eq_bot ↔ IsMin.eq_bot _
+alias ⟨IsMin.eq_bot, _⟩ := isMin_iff_eq_bot
 #align is_min.eq_bot IsMin.eq_bot
 
-alias isBot_iff_eq_bot ↔ IsBot.eq_bot _
+alias ⟨IsBot.eq_bot, _⟩ := isBot_iff_eq_bot
 #align is_bot.eq_bot IsBot.eq_bot
 
 #print le_bot_iff /-
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.bounded_order
-! leanprover-community/mathlib commit 448144f7ae193a8990cb7473c9e9a01990f64ac7
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.Lattice
 import Mathbin.Data.Option.Basic
 
+#align_import order.bounded_order from "leanprover-community/mathlib"@"448144f7ae193a8990cb7473c9e9a01990f64ac7"
+
 /-!
 # ⊤ and ⊥, bounded lattices and variants
 
Diff
@@ -62,10 +62,8 @@ class Bot (α : Type u) where
 #align has_bot Bot
 -/
 
--- mathport name: «expr⊤»
 notation "⊤" => Top.top
 
--- mathport name: «expr⊥»
 notation "⊥" => Bot.bot
 
 #print top_nonempty /-
@@ -108,14 +106,18 @@ section LE
 
 variable [LE α] [OrderTop α] {a : α}
 
+#print le_top /-
 @[simp]
 theorem le_top : a ≤ ⊤ :=
   OrderTop.le_top a
 #align le_top le_top
+-/
 
+#print isTop_top /-
 @[simp]
 theorem isTop_top : IsTop (⊤ : α) := fun _ => le_top
 #align is_top_top isTop_top
+-/
 
 end LE
 
@@ -123,19 +125,25 @@ section Preorder
 
 variable [Preorder α] [OrderTop α] {a b : α}
 
+#print isMax_top /-
 @[simp]
 theorem isMax_top : IsMax (⊤ : α) :=
   isTop_top.IsMax
 #align is_max_top isMax_top
+-/
 
+#print not_top_lt /-
 @[simp]
 theorem not_top_lt : ¬⊤ < a :=
   isMax_top.not_lt
 #align not_top_lt not_top_lt
+-/
 
+#print ne_top_of_lt /-
 theorem ne_top_of_lt (h : a < b) : a ≠ ⊤ :=
   (h.trans_le le_top).Ne
 #align ne_top_of_lt ne_top_of_lt
+-/
 
 alias ne_top_of_lt ← LT.lt.ne_top
 #align has_lt.lt.ne_top LT.lt.ne_top
@@ -144,23 +152,31 @@ end Preorder
 
 variable [PartialOrder α] [OrderTop α] [Preorder β] {f : α → β} {a b : α}
 
+#print isMax_iff_eq_top /-
 @[simp]
 theorem isMax_iff_eq_top : IsMax a ↔ a = ⊤ :=
   ⟨fun h => h.eq_of_le le_top, fun h b _ => h.symm ▸ le_top⟩
 #align is_max_iff_eq_top isMax_iff_eq_top
+-/
 
+#print isTop_iff_eq_top /-
 @[simp]
 theorem isTop_iff_eq_top : IsTop a ↔ a = ⊤ :=
   ⟨fun h => h.IsMax.eq_of_le le_top, fun h b => h.symm ▸ le_top⟩
 #align is_top_iff_eq_top isTop_iff_eq_top
+-/
 
+#print not_isMax_iff_ne_top /-
 theorem not_isMax_iff_ne_top : ¬IsMax a ↔ a ≠ ⊤ :=
   isMax_iff_eq_top.Not
 #align not_is_max_iff_ne_top not_isMax_iff_ne_top
+-/
 
+#print not_isTop_iff_ne_top /-
 theorem not_isTop_iff_ne_top : ¬IsTop a ↔ a ≠ ⊤ :=
   isTop_iff_eq_top.Not
 #align not_is_top_iff_ne_top not_isTop_iff_ne_top
+-/
 
 alias isMax_iff_eq_top ↔ IsMax.eq_top _
 #align is_max.eq_top IsMax.eq_top
@@ -168,70 +184,99 @@ alias isMax_iff_eq_top ↔ IsMax.eq_top _
 alias isTop_iff_eq_top ↔ IsTop.eq_top _
 #align is_top.eq_top IsTop.eq_top
 
+#print top_le_iff /-
 @[simp]
 theorem top_le_iff : ⊤ ≤ a ↔ a = ⊤ :=
   le_top.le_iff_eq.trans eq_comm
 #align top_le_iff top_le_iff
+-/
 
+#print top_unique /-
 theorem top_unique (h : ⊤ ≤ a) : a = ⊤ :=
   le_top.antisymm h
 #align top_unique top_unique
+-/
 
+#print eq_top_iff /-
 theorem eq_top_iff : a = ⊤ ↔ ⊤ ≤ a :=
   top_le_iff.symm
 #align eq_top_iff eq_top_iff
+-/
 
+#print eq_top_mono /-
 theorem eq_top_mono (h : a ≤ b) (h₂ : a = ⊤) : b = ⊤ :=
   top_unique <| h₂ ▸ h
 #align eq_top_mono eq_top_mono
+-/
 
+#print lt_top_iff_ne_top /-
 theorem lt_top_iff_ne_top : a < ⊤ ↔ a ≠ ⊤ :=
   le_top.lt_iff_ne
 #align lt_top_iff_ne_top lt_top_iff_ne_top
+-/
 
+#print not_lt_top_iff /-
 @[simp]
 theorem not_lt_top_iff : ¬a < ⊤ ↔ a = ⊤ :=
   lt_top_iff_ne_top.not_left
 #align not_lt_top_iff not_lt_top_iff
+-/
 
+#print eq_top_or_lt_top /-
 theorem eq_top_or_lt_top (a : α) : a = ⊤ ∨ a < ⊤ :=
   le_top.eq_or_lt
 #align eq_top_or_lt_top eq_top_or_lt_top
+-/
 
+#print Ne.lt_top /-
 theorem Ne.lt_top (h : a ≠ ⊤) : a < ⊤ :=
   lt_top_iff_ne_top.mpr h
 #align ne.lt_top Ne.lt_top
+-/
 
+#print Ne.lt_top' /-
 theorem Ne.lt_top' (h : ⊤ ≠ a) : a < ⊤ :=
   h.symm.lt_top
 #align ne.lt_top' Ne.lt_top'
+-/
 
+#print ne_top_of_le_ne_top /-
 theorem ne_top_of_le_ne_top (hb : b ≠ ⊤) (hab : a ≤ b) : a ≠ ⊤ :=
   (hab.trans_lt hb.lt_top).Ne
 #align ne_top_of_le_ne_top ne_top_of_le_ne_top
+-/
 
+#print StrictMono.apply_eq_top_iff /-
 theorem StrictMono.apply_eq_top_iff (hf : StrictMono f) : f a = f ⊤ ↔ a = ⊤ :=
   ⟨fun h => not_lt_top_iff.1 fun ha => (hf ha).Ne h, congr_arg _⟩
 #align strict_mono.apply_eq_top_iff StrictMono.apply_eq_top_iff
+-/
 
+#print StrictAnti.apply_eq_top_iff /-
 theorem StrictAnti.apply_eq_top_iff (hf : StrictAnti f) : f a = f ⊤ ↔ a = ⊤ :=
   ⟨fun h => not_lt_top_iff.1 fun ha => (hf ha).ne' h, congr_arg _⟩
 #align strict_anti.apply_eq_top_iff StrictAnti.apply_eq_top_iff
+-/
 
 variable [Nontrivial α]
 
+#print not_isMin_top /-
 theorem not_isMin_top : ¬IsMin (⊤ : α) := fun h =>
   let ⟨a, ha⟩ := exists_ne (⊤ : α)
   ha <| top_le_iff.1 <| h le_top
 #align not_is_min_top not_isMin_top
+-/
 
 end OrderTop
 
+#print StrictMono.maximal_preimage_top /-
 theorem StrictMono.maximal_preimage_top [LinearOrder α] [Preorder β] [OrderTop β] {f : α → β}
     (H : StrictMono f) {a} (h_top : f a = ⊤) (x : α) : x ≤ a :=
   H.maximal_of_maximal_image (fun p => by rw [h_top]; exact le_top) x
 #align strict_mono.maximal_preimage_top StrictMono.maximal_preimage_top
+-/
 
+#print OrderTop.ext_top /-
 theorem OrderTop.ext_top {α} {hA : PartialOrder α} (A : OrderTop α) {hB : PartialOrder α}
     (B : OrderTop α)
     (H :
@@ -245,6 +290,7 @@ theorem OrderTop.ext_top {α} {hA : PartialOrder α} (A : OrderTop α) {hB : Par
       ⊤ :=
   top_unique <| by rw [← H] <;> apply le_top
 #align order_top.ext_top OrderTop.ext_top
+-/
 
 #print OrderTop.ext /-
 theorem OrderTop.ext {α} [PartialOrder α] {A B : OrderTop α} : A = B :=
@@ -282,14 +328,18 @@ section LE
 
 variable [LE α] [OrderBot α] {a : α}
 
+#print bot_le /-
 @[simp]
 theorem bot_le : ⊥ ≤ a :=
   OrderBot.bot_le a
 #align bot_le bot_le
+-/
 
+#print isBot_bot /-
 @[simp]
 theorem isBot_bot : IsBot (⊥ : α) := fun _ => bot_le
 #align is_bot_bot isBot_bot
+-/
 
 end LE
 
@@ -343,19 +393,25 @@ section Preorder
 
 variable [Preorder α] [OrderBot α] {a b : α}
 
+#print isMin_bot /-
 @[simp]
 theorem isMin_bot : IsMin (⊥ : α) :=
   isBot_bot.IsMin
 #align is_min_bot isMin_bot
+-/
 
+#print not_lt_bot /-
 @[simp]
 theorem not_lt_bot : ¬a < ⊥ :=
   isMin_bot.not_lt
 #align not_lt_bot not_lt_bot
+-/
 
+#print ne_bot_of_gt /-
 theorem ne_bot_of_gt (h : a < b) : b ≠ ⊥ :=
   (bot_le.trans_lt h).ne'
 #align ne_bot_of_gt ne_bot_of_gt
+-/
 
 alias ne_bot_of_gt ← LT.lt.ne_bot
 #align has_lt.lt.ne_bot LT.lt.ne_bot
@@ -364,23 +420,31 @@ end Preorder
 
 variable [PartialOrder α] [OrderBot α] [Preorder β] {f : α → β} {a b : α}
 
+#print isMin_iff_eq_bot /-
 @[simp]
 theorem isMin_iff_eq_bot : IsMin a ↔ a = ⊥ :=
   ⟨fun h => h.eq_of_ge bot_le, fun h b _ => h.symm ▸ bot_le⟩
 #align is_min_iff_eq_bot isMin_iff_eq_bot
+-/
 
+#print isBot_iff_eq_bot /-
 @[simp]
 theorem isBot_iff_eq_bot : IsBot a ↔ a = ⊥ :=
   ⟨fun h => h.IsMin.eq_of_ge bot_le, fun h b => h.symm ▸ bot_le⟩
 #align is_bot_iff_eq_bot isBot_iff_eq_bot
+-/
 
+#print not_isMin_iff_ne_bot /-
 theorem not_isMin_iff_ne_bot : ¬IsMin a ↔ a ≠ ⊥ :=
   isMin_iff_eq_bot.Not
 #align not_is_min_iff_ne_bot not_isMin_iff_ne_bot
+-/
 
+#print not_isBot_iff_ne_bot /-
 theorem not_isBot_iff_ne_bot : ¬IsBot a ↔ a ≠ ⊥ :=
   isBot_iff_eq_bot.Not
 #align not_is_bot_iff_ne_bot not_isBot_iff_ne_bot
+-/
 
 alias isMin_iff_eq_bot ↔ IsMin.eq_bot _
 #align is_min.eq_bot IsMin.eq_bot
@@ -388,73 +452,104 @@ alias isMin_iff_eq_bot ↔ IsMin.eq_bot _
 alias isBot_iff_eq_bot ↔ IsBot.eq_bot _
 #align is_bot.eq_bot IsBot.eq_bot
 
+#print le_bot_iff /-
 @[simp]
 theorem le_bot_iff : a ≤ ⊥ ↔ a = ⊥ :=
   bot_le.le_iff_eq
 #align le_bot_iff le_bot_iff
+-/
 
+#print bot_unique /-
 theorem bot_unique (h : a ≤ ⊥) : a = ⊥ :=
   h.antisymm bot_le
 #align bot_unique bot_unique
+-/
 
+#print eq_bot_iff /-
 theorem eq_bot_iff : a = ⊥ ↔ a ≤ ⊥ :=
   le_bot_iff.symm
 #align eq_bot_iff eq_bot_iff
+-/
 
+#print eq_bot_mono /-
 theorem eq_bot_mono (h : a ≤ b) (h₂ : b = ⊥) : a = ⊥ :=
   bot_unique <| h₂ ▸ h
 #align eq_bot_mono eq_bot_mono
+-/
 
+#print bot_lt_iff_ne_bot /-
 theorem bot_lt_iff_ne_bot : ⊥ < a ↔ a ≠ ⊥ :=
   bot_le.lt_iff_ne.trans ne_comm
 #align bot_lt_iff_ne_bot bot_lt_iff_ne_bot
+-/
 
+#print not_bot_lt_iff /-
 @[simp]
 theorem not_bot_lt_iff : ¬⊥ < a ↔ a = ⊥ :=
   bot_lt_iff_ne_bot.not_left
 #align not_bot_lt_iff not_bot_lt_iff
+-/
 
+#print eq_bot_or_bot_lt /-
 theorem eq_bot_or_bot_lt (a : α) : a = ⊥ ∨ ⊥ < a :=
   bot_le.eq_or_gt
 #align eq_bot_or_bot_lt eq_bot_or_bot_lt
+-/
 
+#print eq_bot_of_minimal /-
 theorem eq_bot_of_minimal (h : ∀ b, ¬b < a) : a = ⊥ :=
   (eq_bot_or_bot_lt a).resolve_right (h ⊥)
 #align eq_bot_of_minimal eq_bot_of_minimal
+-/
 
+#print Ne.bot_lt /-
 theorem Ne.bot_lt (h : a ≠ ⊥) : ⊥ < a :=
   bot_lt_iff_ne_bot.mpr h
 #align ne.bot_lt Ne.bot_lt
+-/
 
+#print Ne.bot_lt' /-
 theorem Ne.bot_lt' (h : ⊥ ≠ a) : ⊥ < a :=
   h.symm.bot_lt
 #align ne.bot_lt' Ne.bot_lt'
+-/
 
+#print ne_bot_of_le_ne_bot /-
 theorem ne_bot_of_le_ne_bot (hb : b ≠ ⊥) (hab : b ≤ a) : a ≠ ⊥ :=
   (hb.bot_lt.trans_le hab).ne'
 #align ne_bot_of_le_ne_bot ne_bot_of_le_ne_bot
+-/
 
+#print StrictMono.apply_eq_bot_iff /-
 theorem StrictMono.apply_eq_bot_iff (hf : StrictMono f) : f a = f ⊥ ↔ a = ⊥ :=
   hf.dual.apply_eq_top_iff
 #align strict_mono.apply_eq_bot_iff StrictMono.apply_eq_bot_iff
+-/
 
+#print StrictAnti.apply_eq_bot_iff /-
 theorem StrictAnti.apply_eq_bot_iff (hf : StrictAnti f) : f a = f ⊥ ↔ a = ⊥ :=
   hf.dual.apply_eq_top_iff
 #align strict_anti.apply_eq_bot_iff StrictAnti.apply_eq_bot_iff
+-/
 
 variable [Nontrivial α]
 
+#print not_isMax_bot /-
 theorem not_isMax_bot : ¬IsMax (⊥ : α) :=
   @not_isMin_top αᵒᵈ _ _ _
 #align not_is_max_bot not_isMax_bot
+-/
 
 end OrderBot
 
+#print StrictMono.minimal_preimage_bot /-
 theorem StrictMono.minimal_preimage_bot [LinearOrder α] [PartialOrder β] [OrderBot β] {f : α → β}
     (H : StrictMono f) {a} (h_bot : f a = ⊥) (x : α) : a ≤ x :=
   H.minimal_of_minimal_image (fun p => by rw [h_bot]; exact bot_le) x
 #align strict_mono.minimal_preimage_bot StrictMono.minimal_preimage_bot
+-/
 
+#print OrderBot.ext_bot /-
 theorem OrderBot.ext_bot {α} {hA : PartialOrder α} (A : OrderBot α) {hB : PartialOrder α}
     (B : OrderBot α)
     (H :
@@ -468,6 +563,7 @@ theorem OrderBot.ext_bot {α} {hA : PartialOrder α} (A : OrderBot α) {hB : Par
       ⊥ :=
   bot_unique <| by rw [← H] <;> apply bot_le
 #align order_bot.ext_bot OrderBot.ext_bot
+-/
 
 #print OrderBot.ext /-
 theorem OrderBot.ext {α} [PartialOrder α] {A B : OrderBot α} : A = B :=
@@ -483,15 +579,19 @@ section SemilatticeSupTop
 
 variable [SemilatticeSup α] [OrderTop α] {a : α}
 
+#print top_sup_eq /-
 @[simp]
 theorem top_sup_eq : ⊤ ⊔ a = ⊤ :=
   sup_of_le_left le_top
 #align top_sup_eq top_sup_eq
+-/
 
+#print sup_top_eq /-
 @[simp]
 theorem sup_top_eq : a ⊔ ⊤ = ⊤ :=
   sup_of_le_right le_top
 #align sup_top_eq sup_top_eq
+-/
 
 end SemilatticeSupTop
 
@@ -499,19 +599,25 @@ section SemilatticeSupBot
 
 variable [SemilatticeSup α] [OrderBot α] {a b : α}
 
+#print bot_sup_eq /-
 @[simp]
 theorem bot_sup_eq : ⊥ ⊔ a = a :=
   sup_of_le_right bot_le
 #align bot_sup_eq bot_sup_eq
+-/
 
+#print sup_bot_eq /-
 @[simp]
 theorem sup_bot_eq : a ⊔ ⊥ = a :=
   sup_of_le_left bot_le
 #align sup_bot_eq sup_bot_eq
+-/
 
+#print sup_eq_bot_iff /-
 @[simp]
 theorem sup_eq_bot_iff : a ⊔ b = ⊥ ↔ a = ⊥ ∧ b = ⊥ := by rw [eq_bot_iff, sup_le_iff] <;> simp
 #align sup_eq_bot_iff sup_eq_bot_iff
+-/
 
 end SemilatticeSupBot
 
@@ -519,20 +625,26 @@ section SemilatticeInfTop
 
 variable [SemilatticeInf α] [OrderTop α] {a b : α}
 
+#print top_inf_eq /-
 @[simp]
 theorem top_inf_eq : ⊤ ⊓ a = a :=
   inf_of_le_right le_top
 #align top_inf_eq top_inf_eq
+-/
 
+#print inf_top_eq /-
 @[simp]
 theorem inf_top_eq : a ⊓ ⊤ = a :=
   inf_of_le_left le_top
 #align inf_top_eq inf_top_eq
+-/
 
+#print inf_eq_top_iff /-
 @[simp]
 theorem inf_eq_top_iff : a ⊓ b = ⊤ ↔ a = ⊤ ∧ b = ⊤ :=
   @sup_eq_bot_iff αᵒᵈ _ _ _ _
 #align inf_eq_top_iff inf_eq_top_iff
+-/
 
 end SemilatticeInfTop
 
@@ -540,15 +652,19 @@ section SemilatticeInfBot
 
 variable [SemilatticeInf α] [OrderBot α] {a : α}
 
+#print bot_inf_eq /-
 @[simp]
 theorem bot_inf_eq : ⊥ ⊓ a = ⊥ :=
   inf_of_le_left bot_le
 #align bot_inf_eq bot_inf_eq
+-/
 
+#print inf_bot_eq /-
 @[simp]
 theorem inf_bot_eq : a ⊓ ⊥ = ⊥ :=
   inf_of_le_right bot_le
 #align inf_bot_eq inf_bot_eq
+-/
 
 end SemilatticeInfBot
 
@@ -732,31 +848,42 @@ section Subsingleton
 
 variable [PartialOrder α] [BoundedOrder α]
 
+#print eq_bot_of_bot_eq_top /-
 theorem eq_bot_of_bot_eq_top (hα : (⊥ : α) = ⊤) (x : α) : x = (⊥ : α) :=
   eq_bot_mono le_top (Eq.symm hα)
 #align eq_bot_of_bot_eq_top eq_bot_of_bot_eq_top
+-/
 
+#print eq_top_of_bot_eq_top /-
 theorem eq_top_of_bot_eq_top (hα : (⊥ : α) = ⊤) (x : α) : x = (⊤ : α) :=
   eq_top_mono bot_le hα
 #align eq_top_of_bot_eq_top eq_top_of_bot_eq_top
+-/
 
+#print subsingleton_of_top_le_bot /-
 theorem subsingleton_of_top_le_bot (h : (⊤ : α) ≤ (⊥ : α)) : Subsingleton α :=
   ⟨fun a b =>
     le_antisymm (le_trans le_top <| le_trans h bot_le) (le_trans le_top <| le_trans h bot_le)⟩
 #align subsingleton_of_top_le_bot subsingleton_of_top_le_bot
+-/
 
+#print subsingleton_of_bot_eq_top /-
 theorem subsingleton_of_bot_eq_top (hα : (⊥ : α) = (⊤ : α)) : Subsingleton α :=
   subsingleton_of_top_le_bot (ge_of_eq hα)
 #align subsingleton_of_bot_eq_top subsingleton_of_bot_eq_top
+-/
 
+#print subsingleton_iff_bot_eq_top /-
 theorem subsingleton_iff_bot_eq_top : (⊥ : α) = (⊤ : α) ↔ Subsingleton α :=
   ⟨subsingleton_of_bot_eq_top, fun h => Subsingleton.elim ⊥ ⊤⟩
 #align subsingleton_iff_bot_eq_top subsingleton_iff_bot_eq_top
+-/
 
 end Subsingleton
 
 section lift
 
+#print OrderTop.lift /-
 -- See note [reducible non-instances]
 /-- Pullback an `order_top`. -/
 @[reducible]
@@ -764,7 +891,9 @@ def OrderTop.lift [LE α] [Top α] [LE β] [OrderTop β] (f : α → β) (map_le
     (map_top : f ⊤ = ⊤) : OrderTop α :=
   ⟨⊤, fun a => map_le _ _ <| by rw [map_top]; exact le_top⟩
 #align order_top.lift OrderTop.lift
+-/
 
+#print OrderBot.lift /-
 -- See note [reducible non-instances]
 /-- Pullback an `order_bot`. -/
 @[reducible]
@@ -772,7 +901,9 @@ def OrderBot.lift [LE α] [Bot α] [LE β] [OrderBot β] (f : α → β) (map_le
     (map_bot : f ⊥ = ⊥) : OrderBot α :=
   ⟨⊥, fun a => map_le _ _ <| by rw [map_bot]; exact bot_le⟩
 #align order_bot.lift OrderBot.lift
+-/
 
+#print BoundedOrder.lift /-
 -- See note [reducible non-instances]
 /-- Pullback a `bounded_order`. -/
 @[reducible]
@@ -780,6 +911,7 @@ def BoundedOrder.lift [LE α] [Top α] [Bot α] [LE β] [BoundedOrder β] (f : 
     (map_le : ∀ a b, f a ≤ f b → a ≤ b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : BoundedOrder α :=
   { OrderTop.lift f map_le map_top, OrderBot.lift f map_le map_bot with }
 #align bounded_order.lift BoundedOrder.lift
+-/
 
 end lift
 
@@ -790,6 +922,7 @@ namespace Subtype
 
 variable {p : α → Prop}
 
+#print Subtype.orderBot /-
 -- See note [reducible non-instances]
 /-- A subtype remains a `⊥`-order if the property holds at `⊥`. -/
 @[reducible]
@@ -798,7 +931,9 @@ protected def orderBot [LE α] [OrderBot α] (hbot : p ⊥) : OrderBot { x : α
   bot := ⟨⊥, hbot⟩
   bot_le _ := bot_le
 #align subtype.order_bot Subtype.orderBot
+-/
 
+#print Subtype.orderTop /-
 -- See note [reducible non-instances]
 /-- A subtype remains a `⊤`-order if the property holds at `⊤`. -/
 @[reducible]
@@ -807,7 +942,9 @@ protected def orderTop [LE α] [OrderTop α] (htop : p ⊤) : OrderTop { x : α
   top := ⟨⊤, htop⟩
   le_top _ := le_top
 #align subtype.order_top Subtype.orderTop
+-/
 
+#print Subtype.boundedOrder /-
 -- See note [reducible non-instances]
 /-- A subtype remains a bounded order if the property holds at `⊥` and `⊤`. -/
 @[reducible]
@@ -815,48 +952,65 @@ protected def boundedOrder [LE α] [BoundedOrder α] (hbot : p ⊥) (htop : p 
     BoundedOrder (Subtype p) :=
   { Subtype.orderTop htop, Subtype.orderBot hbot with }
 #align subtype.bounded_order Subtype.boundedOrder
+-/
 
 variable [PartialOrder α]
 
+#print Subtype.mk_bot /-
 @[simp]
 theorem mk_bot [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) : mk ⊥ hbot = ⊥ :=
   le_bot_iff.1 <| coe_le_coe.1 bot_le
 #align subtype.mk_bot Subtype.mk_bot
+-/
 
+#print Subtype.mk_top /-
 @[simp]
 theorem mk_top [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) : mk ⊤ htop = ⊤ :=
   top_le_iff.1 <| coe_le_coe.1 le_top
 #align subtype.mk_top Subtype.mk_top
+-/
 
+#print Subtype.coe_bot /-
 theorem coe_bot [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) : ((⊥ : Subtype p) : α) = ⊥ :=
   congr_arg coe (mk_bot hbot).symm
 #align subtype.coe_bot Subtype.coe_bot
+-/
 
+#print Subtype.coe_top /-
 theorem coe_top [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) : ((⊤ : Subtype p) : α) = ⊤ :=
   congr_arg coe (mk_top htop).symm
 #align subtype.coe_top Subtype.coe_top
+-/
 
+#print Subtype.coe_eq_bot_iff /-
 @[simp]
 theorem coe_eq_bot_iff [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) {x : { x // p x }} :
     (x : α) = ⊥ ↔ x = ⊥ := by rw [← coe_bot hbot, ext_iff]
 #align subtype.coe_eq_bot_iff Subtype.coe_eq_bot_iff
+-/
 
+#print Subtype.coe_eq_top_iff /-
 @[simp]
 theorem coe_eq_top_iff [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) {x : { x // p x }} :
     (x : α) = ⊤ ↔ x = ⊤ := by rw [← coe_top htop, ext_iff]
 #align subtype.coe_eq_top_iff Subtype.coe_eq_top_iff
+-/
 
+#print Subtype.mk_eq_bot_iff /-
 @[simp]
 theorem mk_eq_bot_iff [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) {x : α} (hx : p x) :
     (⟨x, hx⟩ : Subtype p) = ⊥ ↔ x = ⊥ :=
   (coe_eq_bot_iff hbot).symm
 #align subtype.mk_eq_bot_iff Subtype.mk_eq_bot_iff
+-/
 
+#print Subtype.mk_eq_top_iff /-
 @[simp]
 theorem mk_eq_top_iff [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) {x : α} (hx : p x) :
     (⟨x, hx⟩ : Subtype p) = ⊤ ↔ x = ⊤ :=
   (coe_eq_top_iff htop).symm
 #align subtype.mk_eq_top_iff Subtype.mk_eq_top_iff
+-/
 
 end Subtype
 
@@ -885,58 +1039,82 @@ section LinearOrder
 
 variable [LinearOrder α]
 
+#print min_bot_left /-
 -- `simp` can prove these, so they shouldn't be simp-lemmas.
 theorem min_bot_left [OrderBot α] (a : α) : min ⊥ a = ⊥ :=
   bot_inf_eq
 #align min_bot_left min_bot_left
+-/
 
+#print max_top_left /-
 theorem max_top_left [OrderTop α] (a : α) : max ⊤ a = ⊤ :=
   top_sup_eq
 #align max_top_left max_top_left
+-/
 
+#print min_top_left /-
 theorem min_top_left [OrderTop α] (a : α) : min ⊤ a = a :=
   top_inf_eq
 #align min_top_left min_top_left
+-/
 
+#print max_bot_left /-
 theorem max_bot_left [OrderBot α] (a : α) : max ⊥ a = a :=
   bot_sup_eq
 #align max_bot_left max_bot_left
+-/
 
+#print min_top_right /-
 theorem min_top_right [OrderTop α] (a : α) : min a ⊤ = a :=
   inf_top_eq
 #align min_top_right min_top_right
+-/
 
+#print max_bot_right /-
 theorem max_bot_right [OrderBot α] (a : α) : max a ⊥ = a :=
   sup_bot_eq
 #align max_bot_right max_bot_right
+-/
 
+#print min_bot_right /-
 theorem min_bot_right [OrderBot α] (a : α) : min a ⊥ = ⊥ :=
   inf_bot_eq
 #align min_bot_right min_bot_right
+-/
 
+#print max_top_right /-
 theorem max_top_right [OrderTop α] (a : α) : max a ⊤ = ⊤ :=
   sup_top_eq
 #align max_top_right max_top_right
+-/
 
+#print min_eq_bot /-
 @[simp]
 theorem min_eq_bot [OrderBot α] {a b : α} : min a b = ⊥ ↔ a = ⊥ ∨ b = ⊥ := by
   simp only [← inf_eq_min, ← le_bot_iff, inf_le_iff]
 #align min_eq_bot min_eq_bot
+-/
 
+#print max_eq_top /-
 @[simp]
 theorem max_eq_top [OrderTop α] {a b : α} : max a b = ⊤ ↔ a = ⊤ ∨ b = ⊤ :=
   @min_eq_bot αᵒᵈ _ _ a b
 #align max_eq_top max_eq_top
+-/
 
+#print max_eq_bot /-
 @[simp]
 theorem max_eq_bot [OrderBot α] {a b : α} : max a b = ⊥ ↔ a = ⊥ ∧ b = ⊥ :=
   sup_eq_bot_iff
 #align max_eq_bot max_eq_bot
+-/
 
+#print min_eq_top /-
 @[simp]
 theorem min_eq_top [OrderTop α] {a b : α} : min a b = ⊤ ↔ a = ⊤ ∧ b = ⊤ :=
   inf_eq_top_iff
 #align min_eq_top min_eq_top
+-/
 
 end LinearOrder
 
@@ -944,19 +1122,25 @@ section Nontrivial
 
 variable [PartialOrder α] [BoundedOrder α] [Nontrivial α]
 
+#print bot_ne_top /-
 @[simp]
 theorem bot_ne_top : (⊥ : α) ≠ ⊤ := fun h => not_subsingleton _ <| subsingleton_of_bot_eq_top h
 #align bot_ne_top bot_ne_top
+-/
 
+#print top_ne_bot /-
 @[simp]
 theorem top_ne_bot : (⊤ : α) ≠ ⊥ :=
   bot_ne_top.symm
 #align top_ne_bot top_ne_bot
+-/
 
+#print bot_lt_top /-
 @[simp]
 theorem bot_lt_top : (⊥ : α) < ⊤ :=
   lt_top_iff_ne_top.2 bot_ne_top
 #align bot_lt_top bot_lt_top
+-/
 
 end Nontrivial
 
@@ -970,15 +1154,19 @@ instance : BoundedOrder Bool where
   bot := false
   bot_le x := false_le
 
+#print top_eq_true /-
 @[simp]
 theorem top_eq_true : ⊤ = true :=
   rfl
 #align top_eq_tt top_eq_true
+-/
 
+#print bot_eq_false /-
 @[simp]
 theorem bot_eq_false : ⊥ = false :=
   rfl
 #align bot_eq_ff bot_eq_false
+-/
 
 end Bool
 
Diff
@@ -99,7 +99,7 @@ noncomputable def topOrderOrNoTopOrder (α : Type _) [LE α] : PSum (OrderTop α
   by
   by_cases H : ∀ a : α, ∃ b, ¬b ≤ a
   · exact PSum.inr ⟨H⟩
-  · push_neg  at H 
+  · push_neg at H 
     exact PSum.inl ⟨_, Classical.choose_spec H⟩
 #align top_order_or_no_top_order topOrderOrNoTopOrder
 -/
@@ -273,7 +273,7 @@ noncomputable def botOrderOrNoBotOrder (α : Type _) [LE α] : PSum (OrderBot α
   by
   by_cases H : ∀ a : α, ∃ b, ¬a ≤ b
   · exact PSum.inr ⟨H⟩
-  · push_neg  at H 
+  · push_neg at H 
     exact PSum.inl ⟨_, Classical.choose_spec H⟩
 #align bot_order_or_no_bot_order botOrderOrNoBotOrder
 -/
Diff
@@ -99,7 +99,7 @@ noncomputable def topOrderOrNoTopOrder (α : Type _) [LE α] : PSum (OrderTop α
   by
   by_cases H : ∀ a : α, ∃ b, ¬b ≤ a
   · exact PSum.inr ⟨H⟩
-  · push_neg  at H
+  · push_neg  at H 
     exact PSum.inl ⟨_, Classical.choose_spec H⟩
 #align top_order_or_no_top_order topOrderOrNoTopOrder
 -/
@@ -273,7 +273,7 @@ noncomputable def botOrderOrNoBotOrder (α : Type _) [LE α] : PSum (OrderBot α
   by
   by_cases H : ∀ a : α, ∃ b, ¬a ≤ b
   · exact PSum.inr ⟨H⟩
-  · push_neg  at H
+  · push_neg  at H 
     exact PSum.inl ⟨_, Classical.choose_spec H⟩
 #align bot_order_or_no_bot_order botOrderOrNoBotOrder
 -/
Diff
@@ -246,6 +246,7 @@ theorem OrderTop.ext_top {α} {hA : PartialOrder α} (A : OrderTop α) {hB : Par
   top_unique <| by rw [← H] <;> apply le_top
 #align order_top.ext_top OrderTop.ext_top
 
+#print OrderTop.ext /-
 theorem OrderTop.ext {α} [PartialOrder α] {A B : OrderTop α} : A = B :=
   by
   have tt := OrderTop.ext_top A B fun _ _ => Iff.rfl
@@ -253,6 +254,7 @@ theorem OrderTop.ext {α} [PartialOrder α] {A B : OrderTop α} : A = B :=
   congr
   exact le_antisymm (hb _) (ha _)
 #align order_top.ext OrderTop.ext
+-/
 
 #print OrderBot /-
 /-- An order is an `order_bot` if it has a least element.
@@ -467,6 +469,7 @@ theorem OrderBot.ext_bot {α} {hA : PartialOrder α} (A : OrderBot α) {hB : Par
   bot_unique <| by rw [← H] <;> apply bot_le
 #align order_bot.ext_bot OrderBot.ext_bot
 
+#print OrderBot.ext /-
 theorem OrderBot.ext {α} [PartialOrder α] {A B : OrderBot α} : A = B :=
   by
   have tt := OrderBot.ext_bot A B fun _ _ => Iff.rfl
@@ -474,6 +477,7 @@ theorem OrderBot.ext {α} [PartialOrder α] {A B : OrderBot α} : A = B :=
   congr
   exact le_antisymm (ha _) (hb _)
 #align order_bot.ext OrderBot.ext
+-/
 
 section SemilatticeSupTop
 
@@ -561,6 +565,7 @@ class BoundedOrder (α : Type u) [LE α] extends OrderTop α, OrderBot α
 instance (α : Type u) [LE α] [BoundedOrder α] : BoundedOrder αᵒᵈ :=
   { OrderDual.orderTop α, OrderDual.orderBot α with }
 
+#print BoundedOrder.ext /-
 theorem BoundedOrder.ext {α} [PartialOrder α] {A B : BoundedOrder α} : A = B :=
   by
   have ht : @BoundedOrder.toOrderTop α _ A = @BoundedOrder.toOrderTop α _ B := OrderTop.ext
@@ -573,6 +578,7 @@ theorem BoundedOrder.ext {α} [PartialOrder α] {A B : BoundedOrder α} : A = B
   · exact h.symm
   · exact h'.symm
 #align bounded_order.ext BoundedOrder.ext
+-/
 
 section Logic
 
@@ -598,17 +604,25 @@ theorem monotone_or {p q : α → Prop} (m_p : Monotone p) (m_q : Monotone q) :
 #align monotone_or monotone_or
 -/
 
+#print monotone_le /-
 theorem monotone_le {x : α} : Monotone ((· ≤ ·) x) := fun y z h' h => h.trans h'
 #align monotone_le monotone_le
+-/
 
+#print monotone_lt /-
 theorem monotone_lt {x : α} : Monotone ((· < ·) x) := fun y z h' h => h.trans_le h'
 #align monotone_lt monotone_lt
+-/
 
+#print antitone_le /-
 theorem antitone_le {x : α} : Antitone (· ≤ x) := fun y z h' h => h'.trans h
 #align antitone_le antitone_le
+-/
 
+#print antitone_lt /-
 theorem antitone_lt {x : α} : Antitone (· < x) := fun y z h' h => h'.trans_lt h
 #align antitone_lt antitone_lt
+-/
 
 #print Monotone.forall /-
 theorem Monotone.forall {P : β → α → Prop} (hP : ∀ x, Monotone (P x)) :
@@ -640,10 +654,12 @@ section SemilatticeSup
 
 variable [SemilatticeSup α]
 
+#print exists_ge_and_iff_exists /-
 theorem exists_ge_and_iff_exists {P : α → Prop} {x₀ : α} (hP : Monotone P) :
     (∃ x, x₀ ≤ x ∧ P x) ↔ ∃ x, P x :=
   ⟨fun h => h.imp fun x h => h.2, fun ⟨x, hx⟩ => ⟨x ⊔ x₀, le_sup_right, hP le_sup_left hx⟩⟩
 #align exists_ge_and_iff_exists exists_ge_and_iff_exists
+-/
 
 end SemilatticeSup
 
@@ -651,10 +667,12 @@ section SemilatticeInf
 
 variable [SemilatticeInf α]
 
+#print exists_le_and_iff_exists /-
 theorem exists_le_and_iff_exists {P : α → Prop} {x₀ : α} (hP : Antitone P) :
     (∃ x, x ≤ x₀ ∧ P x) ↔ ∃ x, P x :=
   exists_ge_and_iff_exists hP.dual_left
 #align exists_le_and_iff_exists exists_le_and_iff_exists
+-/
 
 end SemilatticeInf
 
Diff
@@ -108,23 +108,11 @@ section LE
 
 variable [LE α] [OrderTop α] {a : α}
 
-/- warning: le_top -> le_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] [_inst_2 : OrderTop.{u1} α _inst_1] {a : α}, LE.le.{u1} α _inst_1 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α _inst_1 _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] [_inst_2 : OrderTop.{u1} α _inst_1] {a : α}, LE.le.{u1} α _inst_1 a (Top.top.{u1} α (OrderTop.toTop.{u1} α _inst_1 _inst_2))
-Case conversion may be inaccurate. Consider using '#align le_top le_topₓ'. -/
 @[simp]
 theorem le_top : a ≤ ⊤ :=
   OrderTop.le_top a
 #align le_top le_top
 
-/- warning: is_top_top -> isTop_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] [_inst_2 : OrderTop.{u1} α _inst_1], IsTop.{u1} α _inst_1 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α _inst_1 _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] [_inst_2 : OrderTop.{u1} α _inst_1], IsTop.{u1} α _inst_1 (Top.top.{u1} α (OrderTop.toTop.{u1} α _inst_1 _inst_2))
-Case conversion may be inaccurate. Consider using '#align is_top_top isTop_topₓ'. -/
 @[simp]
 theorem isTop_top : IsTop (⊤ : α) := fun _ => le_top
 #align is_top_top isTop_top
@@ -135,44 +123,20 @@ section Preorder
 
 variable [Preorder α] [OrderTop α] {a b : α}
 
-/- warning: is_max_top -> isMax_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], IsMax.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)], IsMax.{u1} α (Preorder.toLE.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2))
-Case conversion may be inaccurate. Consider using '#align is_max_top isMax_topₓ'. -/
 @[simp]
 theorem isMax_top : IsMax (⊤ : α) :=
   isTop_top.IsMax
 #align is_max_top isMax_top
 
-/- warning: not_top_lt -> not_top_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α}, Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α}, Not (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)) a)
-Case conversion may be inaccurate. Consider using '#align not_top_lt not_top_ltₓ'. -/
 @[simp]
 theorem not_top_lt : ¬⊤ < a :=
   isMax_top.not_lt
 #align not_top_lt not_top_lt
 
-/- warning: ne_top_of_lt -> ne_top_of_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align ne_top_of_lt ne_top_of_ltₓ'. -/
 theorem ne_top_of_lt (h : a < b) : a ≠ ⊤ :=
   (h.trans_le le_top).Ne
 #align ne_top_of_lt ne_top_of_lt
 
-/- warning: has_lt.lt.ne_top -> LT.lt.ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align has_lt.lt.ne_top LT.lt.ne_topₓ'. -/
 alias ne_top_of_lt ← LT.lt.ne_top
 #align has_lt.lt.ne_top LT.lt.ne_top
 
@@ -180,196 +144,82 @@ end Preorder
 
 variable [PartialOrder α] [OrderTop α] [Preorder β] {f : α → β} {a b : α}
 
-/- warning: is_max_iff_eq_top -> isMax_iff_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsMax.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align is_max_iff_eq_top isMax_iff_eq_topₓ'. -/
 @[simp]
 theorem isMax_iff_eq_top : IsMax a ↔ a = ⊤ :=
   ⟨fun h => h.eq_of_le le_top, fun h b _ => h.symm ▸ le_top⟩
 #align is_max_iff_eq_top isMax_iff_eq_top
 
-/- warning: is_top_iff_eq_top -> isTop_iff_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align is_top_iff_eq_top isTop_iff_eq_topₓ'. -/
 @[simp]
 theorem isTop_iff_eq_top : IsTop a ↔ a = ⊤ :=
   ⟨fun h => h.IsMax.eq_of_le le_top, fun h b => h.symm ▸ le_top⟩
 #align is_top_iff_eq_top isTop_iff_eq_top
 
-/- warning: not_is_max_iff_ne_top -> not_isMax_iff_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsMax.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align not_is_max_iff_ne_top not_isMax_iff_ne_topₓ'. -/
 theorem not_isMax_iff_ne_top : ¬IsMax a ↔ a ≠ ⊤ :=
   isMax_iff_eq_top.Not
 #align not_is_max_iff_ne_top not_isMax_iff_ne_top
 
-/- warning: not_is_top_iff_ne_top -> not_isTop_iff_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align not_is_top_iff_ne_top not_isTop_iff_ne_topₓ'. -/
 theorem not_isTop_iff_ne_top : ¬IsTop a ↔ a ≠ ⊤ :=
   isTop_iff_eq_top.Not
 #align not_is_top_iff_ne_top not_isTop_iff_ne_top
 
-/- warning: is_max.eq_top -> IsMax.eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsMax.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align is_max.eq_top IsMax.eq_topₓ'. -/
 alias isMax_iff_eq_top ↔ IsMax.eq_top _
 #align is_max.eq_top IsMax.eq_top
 
-/- warning: is_top.eq_top -> IsTop.eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align is_top.eq_top IsTop.eq_topₓ'. -/
 alias isTop_iff_eq_top ↔ IsTop.eq_top _
 #align is_top.eq_top IsTop.eq_top
 
-/- warning: top_le_iff -> top_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align top_le_iff top_le_iffₓ'. -/
 @[simp]
 theorem top_le_iff : ⊤ ≤ a ↔ a = ⊤ :=
   le_top.le_iff_eq.trans eq_comm
 #align top_le_iff top_le_iff
 
-/- warning: top_unique -> top_unique is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align top_unique top_uniqueₓ'. -/
 theorem top_unique (h : ⊤ ≤ a) : a = ⊤ :=
   le_top.antisymm h
 #align top_unique top_unique
 
-/- warning: eq_top_iff -> eq_top_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
-Case conversion may be inaccurate. Consider using '#align eq_top_iff eq_top_iffₓ'. -/
 theorem eq_top_iff : a = ⊤ ↔ ⊤ ≤ a :=
   top_le_iff.symm
 #align eq_top_iff eq_top_iff
 
-/- warning: eq_top_mono -> eq_top_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align eq_top_mono eq_top_monoₓ'. -/
 theorem eq_top_mono (h : a ≤ b) (h₂ : a = ⊤) : b = ⊤ :=
   top_unique <| h₂ ▸ h
 #align eq_top_mono eq_top_mono
 
-/- warning: lt_top_iff_ne_top -> lt_top_iff_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align lt_top_iff_ne_top lt_top_iff_ne_topₓ'. -/
 theorem lt_top_iff_ne_top : a < ⊤ ↔ a ≠ ⊤ :=
   le_top.lt_iff_ne
 #align lt_top_iff_ne_top lt_top_iff_ne_top
 
-/- warning: not_lt_top_iff -> not_lt_top_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align not_lt_top_iff not_lt_top_iffₓ'. -/
 @[simp]
 theorem not_lt_top_iff : ¬a < ⊤ ↔ a = ⊤ :=
   lt_top_iff_ne_top.not_left
 #align not_lt_top_iff not_lt_top_iff
 
-/- warning: eq_top_or_lt_top -> eq_top_or_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] (a : α), Or (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] (a : α), Or (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align eq_top_or_lt_top eq_top_or_lt_topₓ'. -/
 theorem eq_top_or_lt_top (a : α) : a = ⊤ ∨ a < ⊤ :=
   le_top.eq_or_lt
 #align eq_top_or_lt_top eq_top_or_lt_top
 
-/- warning: ne.lt_top -> Ne.lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align ne.lt_top Ne.lt_topₓ'. -/
 theorem Ne.lt_top (h : a ≠ ⊤) : a < ⊤ :=
   lt_top_iff_ne_top.mpr h
 #align ne.lt_top Ne.lt_top
 
-/- warning: ne.lt_top' -> Ne.lt_top' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align ne.lt_top' Ne.lt_top'ₓ'. -/
 theorem Ne.lt_top' (h : ⊤ ≠ a) : a < ⊤ :=
   h.symm.lt_top
 #align ne.lt_top' Ne.lt_top'
 
-/- warning: ne_top_of_le_ne_top -> ne_top_of_le_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align ne_top_of_le_ne_top ne_top_of_le_ne_topₓ'. -/
 theorem ne_top_of_le_ne_top (hb : b ≠ ⊤) (hab : a ≤ b) : a ≠ ⊤ :=
   (hab.trans_lt hb.lt_top).Ne
 #align ne_top_of_le_ne_top ne_top_of_le_ne_top
 
-/- warning: strict_mono.apply_eq_top_iff -> StrictMono.apply_eq_top_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align strict_mono.apply_eq_top_iff StrictMono.apply_eq_top_iffₓ'. -/
 theorem StrictMono.apply_eq_top_iff (hf : StrictMono f) : f a = f ⊤ ↔ a = ⊤ :=
   ⟨fun h => not_lt_top_iff.1 fun ha => (hf ha).Ne h, congr_arg _⟩
 #align strict_mono.apply_eq_top_iff StrictMono.apply_eq_top_iff
 
-/- warning: strict_anti.apply_eq_top_iff -> StrictAnti.apply_eq_top_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictAnti.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictAnti.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align strict_anti.apply_eq_top_iff StrictAnti.apply_eq_top_iffₓ'. -/
 theorem StrictAnti.apply_eq_top_iff (hf : StrictAnti f) : f a = f ⊤ ↔ a = ⊤ :=
   ⟨fun h => not_lt_top_iff.1 fun ha => (hf ha).ne' h, congr_arg _⟩
 #align strict_anti.apply_eq_top_iff StrictAnti.apply_eq_top_iff
 
 variable [Nontrivial α]
 
-/- warning: not_is_min_top -> not_isMin_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : Nontrivial.{u1} α], Not (IsMin.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : Nontrivial.{u1} α], Not (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align not_is_min_top not_isMin_topₓ'. -/
 theorem not_isMin_top : ¬IsMin (⊤ : α) := fun h =>
   let ⟨a, ha⟩ := exists_ne (⊤ : α)
   ha <| top_le_iff.1 <| h le_top
@@ -377,23 +227,11 @@ theorem not_isMin_top : ¬IsMin (⊤ : α) := fun h =>
 
 end OrderTop
 
-/- warning: strict_mono.maximal_preimage_top -> StrictMono.maximal_preimage_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β _inst_2)] {f : α -> β}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) _inst_2 f) -> (forall {a : α}, (Eq.{succ u2} β (f a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) -> (forall (x : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) x a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u2} β (Preorder.toLE.{u2} β _inst_2)] {f : α -> β}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) _inst_2 f) -> (forall {a : α}, (Eq.{succ u2} β (f a) (Top.top.{u2} β (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β _inst_2) _inst_3))) -> (forall (x : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x a))
-Case conversion may be inaccurate. Consider using '#align strict_mono.maximal_preimage_top StrictMono.maximal_preimage_topₓ'. -/
 theorem StrictMono.maximal_preimage_top [LinearOrder α] [Preorder β] [OrderTop β] {f : α → β}
     (H : StrictMono f) {a} (h_top : f a = ⊤) (x : α) : x ≤ a :=
   H.maximal_of_maximal_image (fun p => by rw [h_top]; exact le_top) x
 #align strict_mono.maximal_preimage_top StrictMono.maximal_preimage_top
 
-/- warning: order_top.ext_top -> OrderTop.ext_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {hA : PartialOrder.{u1} α} (A : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA))) {hB : PartialOrder.{u1} α} (B : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB))), (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA)) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB)) x y)) -> (Eq.{succ u1} α (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA)) A)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB)) B)))
-but is expected to have type
-  forall {α : Type.{u1}} {hA : PartialOrder.{u1} α} (A : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA))) {hB : PartialOrder.{u1} α} (B : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB))), (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) x y)) -> (Eq.{succ u1} α (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) A)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) B)))
-Case conversion may be inaccurate. Consider using '#align order_top.ext_top OrderTop.ext_topₓ'. -/
 theorem OrderTop.ext_top {α} {hA : PartialOrder α} (A : OrderTop α) {hB : PartialOrder α}
     (B : OrderTop α)
     (H :
@@ -408,12 +246,6 @@ theorem OrderTop.ext_top {α} {hA : PartialOrder α} (A : OrderTop α) {hB : Par
   top_unique <| by rw [← H] <;> apply le_top
 #align order_top.ext_top OrderTop.ext_top
 
-/- warning: order_top.ext -> OrderTop.ext is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
-Case conversion may be inaccurate. Consider using '#align order_top.ext OrderTop.extₓ'. -/
 theorem OrderTop.ext {α} [PartialOrder α] {A B : OrderTop α} : A = B :=
   by
   have tt := OrderTop.ext_top A B fun _ _ => Iff.rfl
@@ -448,23 +280,11 @@ section LE
 
 variable [LE α] [OrderBot α] {a : α}
 
-/- warning: bot_le -> bot_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] [_inst_2 : OrderBot.{u1} α _inst_1] {a : α}, LE.le.{u1} α _inst_1 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α _inst_1 _inst_2)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] [_inst_2 : OrderBot.{u1} α _inst_1] {a : α}, LE.le.{u1} α _inst_1 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α _inst_1 _inst_2)) a
-Case conversion may be inaccurate. Consider using '#align bot_le bot_leₓ'. -/
 @[simp]
 theorem bot_le : ⊥ ≤ a :=
   OrderBot.bot_le a
 #align bot_le bot_le
 
-/- warning: is_bot_bot -> isBot_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] [_inst_2 : OrderBot.{u1} α _inst_1], IsBot.{u1} α _inst_1 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α _inst_1 _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LE.{u1} α] [_inst_2 : OrderBot.{u1} α _inst_1], IsBot.{u1} α _inst_1 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α _inst_1 _inst_2))
-Case conversion may be inaccurate. Consider using '#align is_bot_bot isBot_botₓ'. -/
 @[simp]
 theorem isBot_bot : IsBot (⊥ : α) := fun _ => bot_le
 #align is_bot_bot isBot_bot
@@ -521,44 +341,20 @@ section Preorder
 
 variable [Preorder α] [OrderBot α] {a b : α}
 
-/- warning: is_min_bot -> isMin_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], IsMin.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)], IsMin.{u1} α (Preorder.toLE.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2))
-Case conversion may be inaccurate. Consider using '#align is_min_bot isMin_botₓ'. -/
 @[simp]
 theorem isMin_bot : IsMin (⊥ : α) :=
   isBot_bot.IsMin
 #align is_min_bot isMin_bot
 
-/- warning: not_lt_bot -> not_lt_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α}, Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α}, Not (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align not_lt_bot not_lt_botₓ'. -/
 @[simp]
 theorem not_lt_bot : ¬a < ⊥ :=
   isMin_bot.not_lt
 #align not_lt_bot not_lt_bot
 
-/- warning: ne_bot_of_gt -> ne_bot_of_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align ne_bot_of_gt ne_bot_of_gtₓ'. -/
 theorem ne_bot_of_gt (h : a < b) : b ≠ ⊥ :=
   (bot_le.trans_lt h).ne'
 #align ne_bot_of_gt ne_bot_of_gt
 
-/- warning: has_lt.lt.ne_bot -> LT.lt.ne_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align has_lt.lt.ne_bot LT.lt.ne_botₓ'. -/
 alias ne_bot_of_gt ← LT.lt.ne_bot
 #align has_lt.lt.ne_bot LT.lt.ne_bot
 
@@ -566,229 +362,97 @@ end Preorder
 
 variable [PartialOrder α] [OrderBot α] [Preorder β] {f : α → β} {a b : α}
 
-/- warning: is_min_iff_eq_bot -> isMin_iff_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsMin.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align is_min_iff_eq_bot isMin_iff_eq_botₓ'. -/
 @[simp]
 theorem isMin_iff_eq_bot : IsMin a ↔ a = ⊥ :=
   ⟨fun h => h.eq_of_ge bot_le, fun h b _ => h.symm ▸ bot_le⟩
 #align is_min_iff_eq_bot isMin_iff_eq_bot
 
-/- warning: is_bot_iff_eq_bot -> isBot_iff_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align is_bot_iff_eq_bot isBot_iff_eq_botₓ'. -/
 @[simp]
 theorem isBot_iff_eq_bot : IsBot a ↔ a = ⊥ :=
   ⟨fun h => h.IsMin.eq_of_ge bot_le, fun h b => h.symm ▸ bot_le⟩
 #align is_bot_iff_eq_bot isBot_iff_eq_bot
 
-/- warning: not_is_min_iff_ne_bot -> not_isMin_iff_ne_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsMin.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align not_is_min_iff_ne_bot not_isMin_iff_ne_botₓ'. -/
 theorem not_isMin_iff_ne_bot : ¬IsMin a ↔ a ≠ ⊥ :=
   isMin_iff_eq_bot.Not
 #align not_is_min_iff_ne_bot not_isMin_iff_ne_bot
 
-/- warning: not_is_bot_iff_ne_bot -> not_isBot_iff_ne_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align not_is_bot_iff_ne_bot not_isBot_iff_ne_botₓ'. -/
 theorem not_isBot_iff_ne_bot : ¬IsBot a ↔ a ≠ ⊥ :=
   isBot_iff_eq_bot.Not
 #align not_is_bot_iff_ne_bot not_isBot_iff_ne_bot
 
-/- warning: is_min.eq_bot -> IsMin.eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsMin.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align is_min.eq_bot IsMin.eq_botₓ'. -/
 alias isMin_iff_eq_bot ↔ IsMin.eq_bot _
 #align is_min.eq_bot IsMin.eq_bot
 
-/- warning: is_bot.eq_bot -> IsBot.eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align is_bot.eq_bot IsBot.eq_botₓ'. -/
 alias isBot_iff_eq_bot ↔ IsBot.eq_bot _
 #align is_bot.eq_bot IsBot.eq_bot
 
-/- warning: le_bot_iff -> le_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align le_bot_iff le_bot_iffₓ'. -/
 @[simp]
 theorem le_bot_iff : a ≤ ⊥ ↔ a = ⊥ :=
   bot_le.le_iff_eq
 #align le_bot_iff le_bot_iff
 
-/- warning: bot_unique -> bot_unique is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align bot_unique bot_uniqueₓ'. -/
 theorem bot_unique (h : a ≤ ⊥) : a = ⊥ :=
   h.antisymm bot_le
 #align bot_unique bot_unique
 
-/- warning: eq_bot_iff -> eq_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align eq_bot_iff eq_bot_iffₓ'. -/
 theorem eq_bot_iff : a = ⊥ ↔ a ≤ ⊥ :=
   le_bot_iff.symm
 #align eq_bot_iff eq_bot_iff
 
-/- warning: eq_bot_mono -> eq_bot_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align eq_bot_mono eq_bot_monoₓ'. -/
 theorem eq_bot_mono (h : a ≤ b) (h₂ : b = ⊥) : a = ⊥ :=
   bot_unique <| h₂ ▸ h
 #align eq_bot_mono eq_bot_mono
 
-/- warning: bot_lt_iff_ne_bot -> bot_lt_iff_ne_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align bot_lt_iff_ne_bot bot_lt_iff_ne_botₓ'. -/
 theorem bot_lt_iff_ne_bot : ⊥ < a ↔ a ≠ ⊥ :=
   bot_le.lt_iff_ne.trans ne_comm
 #align bot_lt_iff_ne_bot bot_lt_iff_ne_bot
 
-/- warning: not_bot_lt_iff -> not_bot_lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align not_bot_lt_iff not_bot_lt_iffₓ'. -/
 @[simp]
 theorem not_bot_lt_iff : ¬⊥ < a ↔ a = ⊥ :=
   bot_lt_iff_ne_bot.not_left
 #align not_bot_lt_iff not_bot_lt_iff
 
-/- warning: eq_bot_or_bot_lt -> eq_bot_or_bot_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] (a : α), Or (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] (a : α), Or (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
-Case conversion may be inaccurate. Consider using '#align eq_bot_or_bot_lt eq_bot_or_bot_ltₓ'. -/
 theorem eq_bot_or_bot_lt (a : α) : a = ⊥ ∨ ⊥ < a :=
   bot_le.eq_or_gt
 #align eq_bot_or_bot_lt eq_bot_or_bot_lt
 
-/- warning: eq_bot_of_minimal -> eq_bot_of_minimal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (forall (b : α), Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a)) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (forall (b : α), Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a)) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align eq_bot_of_minimal eq_bot_of_minimalₓ'. -/
 theorem eq_bot_of_minimal (h : ∀ b, ¬b < a) : a = ⊥ :=
   (eq_bot_or_bot_lt a).resolve_right (h ⊥)
 #align eq_bot_of_minimal eq_bot_of_minimal
 
-/- warning: ne.bot_lt -> Ne.bot_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
-Case conversion may be inaccurate. Consider using '#align ne.bot_lt Ne.bot_ltₓ'. -/
 theorem Ne.bot_lt (h : a ≠ ⊥) : ⊥ < a :=
   bot_lt_iff_ne_bot.mpr h
 #align ne.bot_lt Ne.bot_lt
 
-/- warning: ne.bot_lt' -> Ne.bot_lt' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
-Case conversion may be inaccurate. Consider using '#align ne.bot_lt' Ne.bot_lt'ₓ'. -/
 theorem Ne.bot_lt' (h : ⊥ ≠ a) : ⊥ < a :=
   h.symm.bot_lt
 #align ne.bot_lt' Ne.bot_lt'
 
-/- warning: ne_bot_of_le_ne_bot -> ne_bot_of_le_ne_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align ne_bot_of_le_ne_bot ne_bot_of_le_ne_botₓ'. -/
 theorem ne_bot_of_le_ne_bot (hb : b ≠ ⊥) (hab : b ≤ a) : a ≠ ⊥ :=
   (hb.bot_lt.trans_le hab).ne'
 #align ne_bot_of_le_ne_bot ne_bot_of_le_ne_bot
 
-/- warning: strict_mono.apply_eq_bot_iff -> StrictMono.apply_eq_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align strict_mono.apply_eq_bot_iff StrictMono.apply_eq_bot_iffₓ'. -/
 theorem StrictMono.apply_eq_bot_iff (hf : StrictMono f) : f a = f ⊥ ↔ a = ⊥ :=
   hf.dual.apply_eq_top_iff
 #align strict_mono.apply_eq_bot_iff StrictMono.apply_eq_bot_iff
 
-/- warning: strict_anti.apply_eq_bot_iff -> StrictAnti.apply_eq_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictAnti.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictAnti.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align strict_anti.apply_eq_bot_iff StrictAnti.apply_eq_bot_iffₓ'. -/
 theorem StrictAnti.apply_eq_bot_iff (hf : StrictAnti f) : f a = f ⊥ ↔ a = ⊥ :=
   hf.dual.apply_eq_top_iff
 #align strict_anti.apply_eq_bot_iff StrictAnti.apply_eq_bot_iff
 
 variable [Nontrivial α]
 
-/- warning: not_is_max_bot -> not_isMax_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : Nontrivial.{u1} α], Not (IsMax.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : Nontrivial.{u1} α], Not (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align not_is_max_bot not_isMax_botₓ'. -/
 theorem not_isMax_bot : ¬IsMax (⊥ : α) :=
   @not_isMin_top αᵒᵈ _ _ _
 #align not_is_max_bot not_isMax_bot
 
 end OrderBot
 
-/- warning: strict_mono.minimal_preimage_bot -> StrictMono.minimal_preimage_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {f : α -> β}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β _inst_2) f) -> (forall {a : α}, (Eq.{succ u2} β (f a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3))) -> (forall (x : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a x))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {f : α -> β}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β _inst_2) f) -> (forall {a : α}, (Eq.{succ u2} β (f a) (Bot.bot.{u2} β (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3))) -> (forall (x : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a x))
-Case conversion may be inaccurate. Consider using '#align strict_mono.minimal_preimage_bot StrictMono.minimal_preimage_botₓ'. -/
 theorem StrictMono.minimal_preimage_bot [LinearOrder α] [PartialOrder β] [OrderBot β] {f : α → β}
     (H : StrictMono f) {a} (h_bot : f a = ⊥) (x : α) : a ≤ x :=
   H.minimal_of_minimal_image (fun p => by rw [h_bot]; exact bot_le) x
 #align strict_mono.minimal_preimage_bot StrictMono.minimal_preimage_bot
 
-/- warning: order_bot.ext_bot -> OrderBot.ext_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {hA : PartialOrder.{u1} α} (A : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA))) {hB : PartialOrder.{u1} α} (B : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB))), (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA)) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB)) x y)) -> (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA)) A)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB)) B)))
-but is expected to have type
-  forall {α : Type.{u1}} {hA : PartialOrder.{u1} α} (A : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA))) {hB : PartialOrder.{u1} α} (B : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB))), (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) x y)) -> (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) A)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) B)))
-Case conversion may be inaccurate. Consider using '#align order_bot.ext_bot OrderBot.ext_botₓ'. -/
 theorem OrderBot.ext_bot {α} {hA : PartialOrder α} (A : OrderBot α) {hB : PartialOrder α}
     (B : OrderBot α)
     (H :
@@ -803,12 +467,6 @@ theorem OrderBot.ext_bot {α} {hA : PartialOrder α} (A : OrderBot α) {hB : Par
   bot_unique <| by rw [← H] <;> apply bot_le
 #align order_bot.ext_bot OrderBot.ext_bot
 
-/- warning: order_bot.ext -> OrderBot.ext is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
-Case conversion may be inaccurate. Consider using '#align order_bot.ext OrderBot.extₓ'. -/
 theorem OrderBot.ext {α} [PartialOrder α] {A B : OrderBot α} : A = B :=
   by
   have tt := OrderBot.ext_bot A B fun _ _ => Iff.rfl
@@ -821,23 +479,11 @@ section SemilatticeSupTop
 
 variable [SemilatticeSup α] [OrderTop α] {a : α}
 
-/- warning: top_sup_eq -> top_sup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
-Case conversion may be inaccurate. Consider using '#align top_sup_eq top_sup_eqₓ'. -/
 @[simp]
 theorem top_sup_eq : ⊤ ⊔ a = ⊤ :=
   sup_of_le_left le_top
 #align top_sup_eq top_sup_eq
 
-/- warning: sup_top_eq -> sup_top_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
-Case conversion may be inaccurate. Consider using '#align sup_top_eq sup_top_eqₓ'. -/
 @[simp]
 theorem sup_top_eq : a ⊔ ⊤ = ⊤ :=
   sup_of_le_right le_top
@@ -849,34 +495,16 @@ section SemilatticeSupBot
 
 variable [SemilatticeSup α] [OrderBot α] {a b : α}
 
-/- warning: bot_sup_eq -> bot_sup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
-Case conversion may be inaccurate. Consider using '#align bot_sup_eq bot_sup_eqₓ'. -/
 @[simp]
 theorem bot_sup_eq : ⊥ ⊔ a = a :=
   sup_of_le_right bot_le
 #align bot_sup_eq bot_sup_eq
 
-/- warning: sup_bot_eq -> sup_bot_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
-Case conversion may be inaccurate. Consider using '#align sup_bot_eq sup_bot_eqₓ'. -/
 @[simp]
 theorem sup_bot_eq : a ⊔ ⊥ = a :=
   sup_of_le_left bot_le
 #align sup_bot_eq sup_bot_eq
 
-/- warning: sup_eq_bot_iff -> sup_eq_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align sup_eq_bot_iff sup_eq_bot_iffₓ'. -/
 @[simp]
 theorem sup_eq_bot_iff : a ⊔ b = ⊥ ↔ a = ⊥ ∧ b = ⊥ := by rw [eq_bot_iff, sup_le_iff] <;> simp
 #align sup_eq_bot_iff sup_eq_bot_iff
@@ -887,34 +515,16 @@ section SemilatticeInfTop
 
 variable [SemilatticeInf α] [OrderTop α] {a b : α}
 
-/- warning: top_inf_eq -> top_inf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
-Case conversion may be inaccurate. Consider using '#align top_inf_eq top_inf_eqₓ'. -/
 @[simp]
 theorem top_inf_eq : ⊤ ⊓ a = a :=
   inf_of_le_right le_top
 #align top_inf_eq top_inf_eq
 
-/- warning: inf_top_eq -> inf_top_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
-Case conversion may be inaccurate. Consider using '#align inf_top_eq inf_top_eqₓ'. -/
 @[simp]
 theorem inf_top_eq : a ⊓ ⊤ = a :=
   inf_of_le_left le_top
 #align inf_top_eq inf_top_eq
 
-/- warning: inf_eq_top_iff -> inf_eq_top_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align inf_eq_top_iff inf_eq_top_iffₓ'. -/
 @[simp]
 theorem inf_eq_top_iff : a ⊓ b = ⊤ ↔ a = ⊤ ∧ b = ⊤ :=
   @sup_eq_bot_iff αᵒᵈ _ _ _ _
@@ -926,23 +536,11 @@ section SemilatticeInfBot
 
 variable [SemilatticeInf α] [OrderBot α] {a : α}
 
-/- warning: bot_inf_eq -> bot_inf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
-Case conversion may be inaccurate. Consider using '#align bot_inf_eq bot_inf_eqₓ'. -/
 @[simp]
 theorem bot_inf_eq : ⊥ ⊓ a = ⊥ :=
   inf_of_le_left bot_le
 #align bot_inf_eq bot_inf_eq
 
-/- warning: inf_bot_eq -> inf_bot_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
-Case conversion may be inaccurate. Consider using '#align inf_bot_eq inf_bot_eqₓ'. -/
 @[simp]
 theorem inf_bot_eq : a ⊓ ⊥ = ⊥ :=
   inf_of_le_right bot_le
@@ -963,12 +561,6 @@ class BoundedOrder (α : Type u) [LE α] extends OrderTop α, OrderBot α
 instance (α : Type u) [LE α] [BoundedOrder α] : BoundedOrder αᵒᵈ :=
   { OrderDual.orderTop α, OrderDual.orderBot α with }
 
-/- warning: bounded_order.ext -> BoundedOrder.ext is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
-Case conversion may be inaccurate. Consider using '#align bounded_order.ext BoundedOrder.extₓ'. -/
 theorem BoundedOrder.ext {α} [PartialOrder α] {A B : BoundedOrder α} : A = B :=
   by
   have ht : @BoundedOrder.toOrderTop α _ A = @BoundedOrder.toOrderTop α _ B := OrderTop.ext
@@ -1006,39 +598,15 @@ theorem monotone_or {p q : α → Prop} (m_p : Monotone p) (m_q : Monotone q) :
 #align monotone_or monotone_or
 -/
 
-/- warning: monotone_le -> monotone_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) ((fun (x._@.Mathlib.Order.BoundedOrder._hyg.4319 : α) (x._@.Mathlib.Order.BoundedOrder._hyg.4321 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.BoundedOrder._hyg.4319 x._@.Mathlib.Order.BoundedOrder._hyg.4321) x)
-Case conversion may be inaccurate. Consider using '#align monotone_le monotone_leₓ'. -/
 theorem monotone_le {x : α} : Monotone ((· ≤ ·) x) := fun y z h' h => h.trans h'
 #align monotone_le monotone_le
 
-/- warning: monotone_lt -> monotone_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) ((fun (x._@.Mathlib.Order.BoundedOrder._hyg.4359 : α) (x._@.Mathlib.Order.BoundedOrder._hyg.4361 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.BoundedOrder._hyg.4359 x._@.Mathlib.Order.BoundedOrder._hyg.4361) x)
-Case conversion may be inaccurate. Consider using '#align monotone_lt monotone_ltₓ'. -/
 theorem monotone_lt {x : α} : Monotone ((· < ·) x) := fun y z h' h => h.trans_le h'
 #align monotone_lt monotone_lt
 
-/- warning: antitone_le -> antitone_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Antitone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (fun (_x : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _x x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Antitone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (fun (_x : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) _x x)
-Case conversion may be inaccurate. Consider using '#align antitone_le antitone_leₓ'. -/
 theorem antitone_le {x : α} : Antitone (· ≤ x) := fun y z h' h => h'.trans h
 #align antitone_le antitone_le
 
-/- warning: antitone_lt -> antitone_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Antitone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (fun (_x : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) _x x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Antitone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (fun (_x : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) _x x)
-Case conversion may be inaccurate. Consider using '#align antitone_lt antitone_ltₓ'. -/
 theorem antitone_lt {x : α} : Antitone (· < x) := fun y z h' h => h'.trans_lt h
 #align antitone_lt antitone_lt
 
@@ -1072,12 +640,6 @@ section SemilatticeSup
 
 variable [SemilatticeSup α]
 
-/- warning: exists_ge_and_iff_exists -> exists_ge_and_iff_exists is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} {x₀ : α}, (Monotone.{u1, 0} α Prop (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) P) -> (Iff (Exists.{succ u1} α (fun (x : α) => And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x₀ x) (P x))) (Exists.{succ u1} α (fun (x : α) => P x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} {x₀ : α}, (Monotone.{u1, 0} α Prop (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) P) -> (Iff (Exists.{succ u1} α (fun (x : α) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x₀ x) (P x))) (Exists.{succ u1} α (fun (x : α) => P x)))
-Case conversion may be inaccurate. Consider using '#align exists_ge_and_iff_exists exists_ge_and_iff_existsₓ'. -/
 theorem exists_ge_and_iff_exists {P : α → Prop} {x₀ : α} (hP : Monotone P) :
     (∃ x, x₀ ≤ x ∧ P x) ↔ ∃ x, P x :=
   ⟨fun h => h.imp fun x h => h.2, fun ⟨x, hx⟩ => ⟨x ⊔ x₀, le_sup_right, hP le_sup_left hx⟩⟩
@@ -1089,12 +651,6 @@ section SemilatticeInf
 
 variable [SemilatticeInf α]
 
-/- warning: exists_le_and_iff_exists -> exists_le_and_iff_exists is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} {x₀ : α}, (Antitone.{u1, 0} α Prop (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) P) -> (Iff (Exists.{succ u1} α (fun (x : α) => And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x x₀) (P x))) (Exists.{succ u1} α (fun (x : α) => P x)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} {x₀ : α}, (Antitone.{u1, 0} α Prop (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) P) -> (Iff (Exists.{succ u1} α (fun (x : α) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x x₀) (P x))) (Exists.{succ u1} α (fun (x : α) => P x)))
-Case conversion may be inaccurate. Consider using '#align exists_le_and_iff_exists exists_le_and_iff_existsₓ'. -/
 theorem exists_le_and_iff_exists {P : α → Prop} {x₀ : α} (hP : Antitone P) :
     (∃ x, x ≤ x₀ ∧ P x) ↔ ∃ x, P x :=
   exists_ge_and_iff_exists hP.dual_left
@@ -1158,53 +714,23 @@ section Subsingleton
 
 variable [PartialOrder α] [BoundedOrder α]
 
-/- warning: eq_bot_of_bot_eq_top -> eq_bot_of_bot_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (forall (x : α), Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (forall (x : α), Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align eq_bot_of_bot_eq_top eq_bot_of_bot_eq_topₓ'. -/
 theorem eq_bot_of_bot_eq_top (hα : (⊥ : α) = ⊤) (x : α) : x = (⊥ : α) :=
   eq_bot_mono le_top (Eq.symm hα)
 #align eq_bot_of_bot_eq_top eq_bot_of_bot_eq_top
 
-/- warning: eq_top_of_bot_eq_top -> eq_top_of_bot_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (forall (x : α), Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (forall (x : α), Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align eq_top_of_bot_eq_top eq_top_of_bot_eq_topₓ'. -/
 theorem eq_top_of_bot_eq_top (hα : (⊥ : α) = ⊤) (x : α) : x = (⊤ : α) :=
   eq_top_mono bot_le hα
 #align eq_top_of_bot_eq_top eq_top_of_bot_eq_top
 
-/- warning: subsingleton_of_top_le_bot -> subsingleton_of_top_le_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (Subsingleton.{succ u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (Subsingleton.{succ u1} α)
-Case conversion may be inaccurate. Consider using '#align subsingleton_of_top_le_bot subsingleton_of_top_le_botₓ'. -/
 theorem subsingleton_of_top_le_bot (h : (⊤ : α) ≤ (⊥ : α)) : Subsingleton α :=
   ⟨fun a b =>
     le_antisymm (le_trans le_top <| le_trans h bot_le) (le_trans le_top <| le_trans h bot_le)⟩
 #align subsingleton_of_top_le_bot subsingleton_of_top_le_bot
 
-/- warning: subsingleton_of_bot_eq_top -> subsingleton_of_bot_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (Subsingleton.{succ u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (Subsingleton.{succ u1} α)
-Case conversion may be inaccurate. Consider using '#align subsingleton_of_bot_eq_top subsingleton_of_bot_eq_topₓ'. -/
 theorem subsingleton_of_bot_eq_top (hα : (⊥ : α) = (⊤ : α)) : Subsingleton α :=
   subsingleton_of_top_le_bot (ge_of_eq hα)
 #align subsingleton_of_bot_eq_top subsingleton_of_bot_eq_top
 
-/- warning: subsingleton_iff_bot_eq_top -> subsingleton_iff_bot_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Iff (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Subsingleton.{succ u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Iff (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Subsingleton.{succ u1} α)
-Case conversion may be inaccurate. Consider using '#align subsingleton_iff_bot_eq_top subsingleton_iff_bot_eq_topₓ'. -/
 theorem subsingleton_iff_bot_eq_top : (⊥ : α) = (⊤ : α) ↔ Subsingleton α :=
   ⟨subsingleton_of_bot_eq_top, fun h => Subsingleton.elim ⊥ ⊤⟩
 #align subsingleton_iff_bot_eq_top subsingleton_iff_bot_eq_top
@@ -1213,12 +739,6 @@ end Subsingleton
 
 section lift
 
-/- warning: order_top.lift -> OrderTop.lift is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : LE.{u2} β] [_inst_4 : OrderTop.{u2} β _inst_3] (f : α -> β), (forall (a : α) (b : α), (LE.le.{u2} β _inst_3 (f a) (f b)) -> (LE.le.{u1} α _inst_1 a b)) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_2)) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β _inst_3 _inst_4))) -> (OrderTop.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : LE.{u2} β] [_inst_4 : OrderTop.{u2} β _inst_3] (f : α -> β), (forall (a : α) (b : α), (LE.le.{u2} β _inst_3 (f a) (f b)) -> (LE.le.{u1} α _inst_1 a b)) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_2)) (Top.top.{u2} β (OrderTop.toTop.{u2} β _inst_3 _inst_4))) -> (OrderTop.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align order_top.lift OrderTop.liftₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback an `order_top`. -/
 @[reducible]
@@ -1227,12 +747,6 @@ def OrderTop.lift [LE α] [Top α] [LE β] [OrderTop β] (f : α → β) (map_le
   ⟨⊤, fun a => map_le _ _ <| by rw [map_top]; exact le_top⟩
 #align order_top.lift OrderTop.lift
 
-/- warning: order_bot.lift -> OrderBot.lift is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : LE.{u2} β] [_inst_4 : OrderBot.{u2} β _inst_3] (f : α -> β), (forall (a : α) (b : α), (LE.le.{u2} β _inst_3 (f a) (f b)) -> (LE.le.{u1} α _inst_1 a b)) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_2)) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β _inst_3 _inst_4))) -> (OrderBot.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : Bot.{u1} α] [_inst_3 : LE.{u2} β] [_inst_4 : OrderBot.{u2} β _inst_3] (f : α -> β), (forall (a : α) (b : α), (LE.le.{u2} β _inst_3 (f a) (f b)) -> (LE.le.{u1} α _inst_1 a b)) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_2)) (Bot.bot.{u2} β (OrderBot.toBot.{u2} β _inst_3 _inst_4))) -> (OrderBot.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align order_bot.lift OrderBot.liftₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback an `order_bot`. -/
 @[reducible]
@@ -1241,12 +755,6 @@ def OrderBot.lift [LE α] [Bot α] [LE β] [OrderBot β] (f : α → β) (map_le
   ⟨⊥, fun a => map_le _ _ <| by rw [map_bot]; exact bot_le⟩
 #align order_bot.lift OrderBot.lift
 
-/- warning: bounded_order.lift -> BoundedOrder.lift is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Bot.{u1} α] [_inst_4 : LE.{u2} β] [_inst_5 : BoundedOrder.{u2} β _inst_4] (f : α -> β), (forall (a : α) (b : α), (LE.le.{u2} β _inst_4 (f a) (f b)) -> (LE.le.{u1} α _inst_1 a b)) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_2)) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β _inst_4 (BoundedOrder.toOrderTop.{u2} β _inst_4 _inst_5)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_3)) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β _inst_4 (BoundedOrder.toOrderBot.{u2} β _inst_4 _inst_5)))) -> (BoundedOrder.{u1} α _inst_1)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LE.{u1} α] [_inst_2 : Top.{u1} α] [_inst_3 : Bot.{u1} α] [_inst_4 : LE.{u2} β] [_inst_5 : BoundedOrder.{u2} β _inst_4] (f : α -> β), (forall (a : α) (b : α), (LE.le.{u2} β _inst_4 (f a) (f b)) -> (LE.le.{u1} α _inst_1 a b)) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_2)) (Top.top.{u2} β (OrderTop.toTop.{u2} β _inst_4 (BoundedOrder.toOrderTop.{u2} β _inst_4 _inst_5)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_3)) (Bot.bot.{u2} β (OrderBot.toBot.{u2} β _inst_4 (BoundedOrder.toOrderBot.{u2} β _inst_4 _inst_5)))) -> (BoundedOrder.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align bounded_order.lift BoundedOrder.liftₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `bounded_order`. -/
 @[reducible]
@@ -1264,12 +772,6 @@ namespace Subtype
 
 variable {p : α → Prop}
 
-/- warning: subtype.order_bot -> Subtype.orderBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : LE.{u1} α] [_inst_2 : OrderBot.{u1} α _inst_1], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α _inst_1 _inst_2))) -> (OrderBot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.hasLe.{u1} α _inst_1 (fun (x : α) => p x)))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : LE.{u1} α] [_inst_2 : OrderBot.{u1} α _inst_1], (p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α _inst_1 _inst_2))) -> (OrderBot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.le.{u1} α _inst_1 (fun (x : α) => p x)))
-Case conversion may be inaccurate. Consider using '#align subtype.order_bot Subtype.orderBotₓ'. -/
 -- See note [reducible non-instances]
 /-- A subtype remains a `⊥`-order if the property holds at `⊥`. -/
 @[reducible]
@@ -1279,12 +781,6 @@ protected def orderBot [LE α] [OrderBot α] (hbot : p ⊥) : OrderBot { x : α
   bot_le _ := bot_le
 #align subtype.order_bot Subtype.orderBot
 
-/- warning: subtype.order_top -> Subtype.orderTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : LE.{u1} α] [_inst_2 : OrderTop.{u1} α _inst_1], (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α _inst_1 _inst_2))) -> (OrderTop.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.hasLe.{u1} α _inst_1 (fun (x : α) => p x)))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : LE.{u1} α] [_inst_2 : OrderTop.{u1} α _inst_1], (p (Top.top.{u1} α (OrderTop.toTop.{u1} α _inst_1 _inst_2))) -> (OrderTop.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.le.{u1} α _inst_1 (fun (x : α) => p x)))
-Case conversion may be inaccurate. Consider using '#align subtype.order_top Subtype.orderTopₓ'. -/
 -- See note [reducible non-instances]
 /-- A subtype remains a `⊤`-order if the property holds at `⊤`. -/
 @[reducible]
@@ -1294,12 +790,6 @@ protected def orderTop [LE α] [OrderTop α] (htop : p ⊤) : OrderTop { x : α
   le_top _ := le_top
 #align subtype.order_top Subtype.orderTop
 
-/- warning: subtype.bounded_order -> Subtype.boundedOrder is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : LE.{u1} α] [_inst_2 : BoundedOrder.{u1} α _inst_1], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α _inst_1 _inst_2)))) -> (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α _inst_1 _inst_2)))) -> (BoundedOrder.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α _inst_1 p))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : LE.{u1} α] [_inst_2 : BoundedOrder.{u1} α _inst_1], (p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α _inst_1 _inst_2)))) -> (p (Top.top.{u1} α (OrderTop.toTop.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α _inst_1 _inst_2)))) -> (BoundedOrder.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α _inst_1 p))
-Case conversion may be inaccurate. Consider using '#align subtype.bounded_order Subtype.boundedOrderₓ'. -/
 -- See note [reducible non-instances]
 /-- A subtype remains a bounded order if the property holds at `⊥` and `⊤`. -/
 @[reducible]
@@ -1310,88 +800,40 @@ protected def boundedOrder [LE α] [BoundedOrder α] (hbot : p ⊥) (htop : p 
 
 variable [PartialOrder α]
 
-/- warning: subtype.mk_bot -> Subtype.mk_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)] (hbot : p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))), Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) hbot) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)] (hbot : p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))), Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) hbot) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))
-Case conversion may be inaccurate. Consider using '#align subtype.mk_bot Subtype.mk_botₓ'. -/
 @[simp]
 theorem mk_bot [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) : mk ⊥ hbot = ⊥ :=
   le_bot_iff.1 <| coe_le_coe.1 bot_le
 #align subtype.mk_bot Subtype.mk_bot
 
-/- warning: subtype.mk_top -> Subtype.mk_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)] (htop : p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))), Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) htop) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)] (htop : p (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))), Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) htop) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))
-Case conversion may be inaccurate. Consider using '#align subtype.mk_top Subtype.mk_topₓ'. -/
 @[simp]
 theorem mk_top [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) : mk ⊤ htop = ⊤ :=
   top_le_iff.1 <| coe_le_coe.1 le_top
 #align subtype.mk_top Subtype.mk_top
 
-/- warning: subtype.coe_bot -> Subtype.coe_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α (Subtype.val.{succ u1} α p (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align subtype.coe_bot Subtype.coe_botₓ'. -/
 theorem coe_bot [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) : ((⊥ : Subtype p) : α) = ⊥ :=
   congr_arg coe (mk_bot hbot).symm
 #align subtype.coe_bot Subtype.coe_bot
 
-/- warning: subtype.coe_top -> Subtype.coe_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α (Subtype.val.{succ u1} α p (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align subtype.coe_top Subtype.coe_topₓ'. -/
 theorem coe_top [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) : ((⊤ : Subtype p) : α) = ⊤ :=
   congr_arg coe (mk_top htop).symm
 #align subtype.coe_top Subtype.coe_top
 
-/- warning: subtype.coe_eq_bot_iff -> Subtype.coe_eq_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : Subtype.{succ u1} α (fun (x : α) => p x)}, Iff (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α (fun (x : α) => p x)) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) x) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) x (Bot.bot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : Subtype.{succ u1} α (fun (x : α) => p x)}, Iff (Eq.{succ u1} α (Subtype.val.{succ u1} α (fun (x : α) => p x) x) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) x (Bot.bot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (OrderBot.toBot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (fun (x : α) => p x)) _inst_3))))
-Case conversion may be inaccurate. Consider using '#align subtype.coe_eq_bot_iff Subtype.coe_eq_bot_iffₓ'. -/
 @[simp]
 theorem coe_eq_bot_iff [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) {x : { x // p x }} :
     (x : α) = ⊥ ↔ x = ⊥ := by rw [← coe_bot hbot, ext_iff]
 #align subtype.coe_eq_bot_iff Subtype.coe_eq_bot_iff
 
-/- warning: subtype.coe_eq_top_iff -> Subtype.coe_eq_top_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : Subtype.{succ u1} α (fun (x : α) => p x)}, Iff (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α (fun (x : α) => p x)) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) x) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) x (Top.top.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : Subtype.{succ u1} α (fun (x : α) => p x)}, Iff (Eq.{succ u1} α (Subtype.val.{succ u1} α (fun (x : α) => p x) x) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) x (Top.top.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (OrderTop.toTop.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (fun (x : α) => p x)) _inst_3))))
-Case conversion may be inaccurate. Consider using '#align subtype.coe_eq_top_iff Subtype.coe_eq_top_iffₓ'. -/
 @[simp]
 theorem coe_eq_top_iff [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) {x : { x // p x }} :
     (x : α) = ⊤ ↔ x = ⊤ := by rw [← coe_top htop, ext_iff]
 #align subtype.coe_eq_top_iff Subtype.coe_eq_top_iff
 
-/- warning: subtype.mk_eq_bot_iff -> Subtype.mk_eq_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : α} (hx : p x), Iff (Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p x hx) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : α} (hx : p x), Iff (Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p x hx) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align subtype.mk_eq_bot_iff Subtype.mk_eq_bot_iffₓ'. -/
 @[simp]
 theorem mk_eq_bot_iff [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) {x : α} (hx : p x) :
     (⟨x, hx⟩ : Subtype p) = ⊥ ↔ x = ⊥ :=
   (coe_eq_bot_iff hbot).symm
 #align subtype.mk_eq_bot_iff Subtype.mk_eq_bot_iff
 
-/- warning: subtype.mk_eq_top_iff -> Subtype.mk_eq_top_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : α} (hx : p x), Iff (Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p x hx) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : α} (hx : p x), Iff (Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p x hx) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align subtype.mk_eq_top_iff Subtype.mk_eq_top_iffₓ'. -/
 @[simp]
 theorem mk_eq_top_iff [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) {x : α} (hx : p x) :
     (⟨x, hx⟩ : Subtype p) = ⊤ ↔ x = ⊤ :=
@@ -1425,126 +867,54 @@ section LinearOrder
 
 variable [LinearOrder α]
 
-/- warning: min_bot_left -> min_bot_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))
-Case conversion may be inaccurate. Consider using '#align min_bot_left min_bot_leftₓ'. -/
 -- `simp` can prove these, so they shouldn't be simp-lemmas.
 theorem min_bot_left [OrderBot α] (a : α) : min ⊥ a = ⊥ :=
   bot_inf_eq
 #align min_bot_left min_bot_left
 
-/- warning: max_top_left -> max_top_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))
-Case conversion may be inaccurate. Consider using '#align max_top_left max_top_leftₓ'. -/
 theorem max_top_left [OrderTop α] (a : α) : max ⊤ a = ⊤ :=
   top_sup_eq
 #align max_top_left max_top_left
 
-/- warning: min_top_left -> min_top_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2)) a) a
-Case conversion may be inaccurate. Consider using '#align min_top_left min_top_leftₓ'. -/
 theorem min_top_left [OrderTop α] (a : α) : min ⊤ a = a :=
   top_inf_eq
 #align min_top_left min_top_left
 
-/- warning: max_bot_left -> max_bot_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2)) a) a
-Case conversion may be inaccurate. Consider using '#align max_bot_left max_bot_leftₓ'. -/
 theorem max_bot_left [OrderBot α] (a : α) : max ⊥ a = a :=
   bot_sup_eq
 #align max_bot_left max_bot_left
 
-/- warning: min_top_right -> min_top_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) a
-Case conversion may be inaccurate. Consider using '#align min_top_right min_top_rightₓ'. -/
 theorem min_top_right [OrderTop α] (a : α) : min a ⊤ = a :=
   inf_top_eq
 #align min_top_right min_top_right
 
-/- warning: max_bot_right -> max_bot_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) a
-Case conversion may be inaccurate. Consider using '#align max_bot_right max_bot_rightₓ'. -/
 theorem max_bot_right [OrderBot α] (a : α) : max a ⊥ = a :=
   sup_bot_eq
 #align max_bot_right max_bot_right
 
-/- warning: min_bot_right -> min_bot_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))
-Case conversion may be inaccurate. Consider using '#align min_bot_right min_bot_rightₓ'. -/
 theorem min_bot_right [OrderBot α] (a : α) : min a ⊥ = ⊥ :=
   inf_bot_eq
 #align min_bot_right min_bot_right
 
-/- warning: max_top_right -> max_top_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))
-Case conversion may be inaccurate. Consider using '#align max_top_right max_top_rightₓ'. -/
 theorem max_top_right [OrderTop α] (a : α) : max a ⊤ = ⊤ :=
   sup_top_eq
 #align max_top_right max_top_right
 
-/- warning: min_eq_bot -> min_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Or (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Or (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align min_eq_bot min_eq_botₓ'. -/
 @[simp]
 theorem min_eq_bot [OrderBot α] {a b : α} : min a b = ⊥ ↔ a = ⊥ ∨ b = ⊥ := by
   simp only [← inf_eq_min, ← le_bot_iff, inf_le_iff]
 #align min_eq_bot min_eq_bot
 
-/- warning: max_eq_top -> max_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Or (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Or (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align max_eq_top max_eq_topₓ'. -/
 @[simp]
 theorem max_eq_top [OrderTop α] {a b : α} : max a b = ⊤ ↔ a = ⊤ ∨ b = ⊤ :=
   @min_eq_bot αᵒᵈ _ _ a b
 #align max_eq_top max_eq_top
 
-/- warning: max_eq_bot -> max_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align max_eq_bot max_eq_botₓ'. -/
 @[simp]
 theorem max_eq_bot [OrderBot α] {a b : α} : max a b = ⊥ ↔ a = ⊥ ∧ b = ⊥ :=
   sup_eq_bot_iff
 #align max_eq_bot max_eq_bot
 
-/- warning: min_eq_top -> min_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align min_eq_top min_eq_topₓ'. -/
 @[simp]
 theorem min_eq_top [OrderTop α] {a b : α} : min a b = ⊤ ↔ a = ⊤ ∧ b = ⊤ :=
   inf_eq_top_iff
@@ -1556,33 +926,15 @@ section Nontrivial
 
 variable [PartialOrder α] [BoundedOrder α] [Nontrivial α]
 
-/- warning: bot_ne_top -> bot_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], Ne.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], Ne.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align bot_ne_top bot_ne_topₓ'. -/
 @[simp]
 theorem bot_ne_top : (⊥ : α) ≠ ⊤ := fun h => not_subsingleton _ <| subsingleton_of_bot_eq_top h
 #align bot_ne_top bot_ne_top
 
-/- warning: top_ne_bot -> top_ne_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], Ne.{succ u1} α (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], Ne.{succ u1} α (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align top_ne_bot top_ne_botₓ'. -/
 @[simp]
 theorem top_ne_bot : (⊤ : α) ≠ ⊥ :=
   bot_ne_top.symm
 #align top_ne_bot top_ne_bot
 
-/- warning: bot_lt_top -> bot_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align bot_lt_top bot_lt_topₓ'. -/
 @[simp]
 theorem bot_lt_top : (⊥ : α) < ⊤ :=
   lt_top_iff_ne_top.2 bot_ne_top
@@ -1600,23 +952,11 @@ instance : BoundedOrder Bool where
   bot := false
   bot_le x := false_le
 
-/- warning: top_eq_tt -> top_eq_true is a dubious translation:
-lean 3 declaration is
-  Eq.{1} Bool (Top.top.{0} Bool (OrderTop.toHasTop.{0} Bool (Preorder.toHasLe.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) (BoundedOrder.toOrderTop.{0} Bool (Preorder.toHasLe.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) Bool.boundedOrder))) Bool.true
-but is expected to have type
-  Eq.{1} Bool (Top.top.{0} Bool (OrderTop.toTop.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (DistribLattice.toLattice.{0} Bool instDistribLatticeBool))))) (BoundedOrder.toOrderTop.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (DistribLattice.toLattice.{0} Bool instDistribLatticeBool))))) Bool.boundedOrder))) Bool.true
-Case conversion may be inaccurate. Consider using '#align top_eq_tt top_eq_trueₓ'. -/
 @[simp]
 theorem top_eq_true : ⊤ = true :=
   rfl
 #align top_eq_tt top_eq_true
 
-/- warning: bot_eq_ff -> bot_eq_false is a dubious translation:
-lean 3 declaration is
-  Eq.{1} Bool (Bot.bot.{0} Bool (OrderBot.toHasBot.{0} Bool (Preorder.toHasLe.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) (BoundedOrder.toOrderBot.{0} Bool (Preorder.toHasLe.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) Bool.boundedOrder))) Bool.false
-but is expected to have type
-  Eq.{1} Bool (Bot.bot.{0} Bool (OrderBot.toBot.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (DistribLattice.toLattice.{0} Bool instDistribLatticeBool))))) (BoundedOrder.toOrderBot.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (DistribLattice.toLattice.{0} Bool instDistribLatticeBool))))) Bool.boundedOrder))) Bool.false
-Case conversion may be inaccurate. Consider using '#align bot_eq_ff bot_eq_falseₓ'. -/
 @[simp]
 theorem bot_eq_false : ⊥ = false :=
   rfl
Diff
@@ -385,11 +385,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align strict_mono.maximal_preimage_top StrictMono.maximal_preimage_topₓ'. -/
 theorem StrictMono.maximal_preimage_top [LinearOrder α] [Preorder β] [OrderTop β] {f : α → β}
     (H : StrictMono f) {a} (h_top : f a = ⊤) (x : α) : x ≤ a :=
-  H.maximal_of_maximal_image
-    (fun p => by
-      rw [h_top]
-      exact le_top)
-    x
+  H.maximal_of_maximal_image (fun p => by rw [h_top]; exact le_top) x
 #align strict_mono.maximal_preimage_top StrictMono.maximal_preimage_top
 
 /- warning: order_top.ext_top -> OrderTop.ext_top is a dubious translation:
@@ -784,11 +780,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align strict_mono.minimal_preimage_bot StrictMono.minimal_preimage_botₓ'. -/
 theorem StrictMono.minimal_preimage_bot [LinearOrder α] [PartialOrder β] [OrderBot β] {f : α → β}
     (H : StrictMono f) {a} (h_bot : f a = ⊥) (x : α) : a ≤ x :=
-  H.minimal_of_minimal_image
-    (fun p => by
-      rw [h_bot]
-      exact bot_le)
-    x
+  H.minimal_of_minimal_image (fun p => by rw [h_bot]; exact bot_le) x
 #align strict_mono.minimal_preimage_bot StrictMono.minimal_preimage_bot
 
 /- warning: order_bot.ext_bot -> OrderBot.ext_bot is a dubious translation:
@@ -1232,10 +1224,7 @@ Case conversion may be inaccurate. Consider using '#align order_top.lift OrderTo
 @[reducible]
 def OrderTop.lift [LE α] [Top α] [LE β] [OrderTop β] (f : α → β) (map_le : ∀ a b, f a ≤ f b → a ≤ b)
     (map_top : f ⊤ = ⊤) : OrderTop α :=
-  ⟨⊤, fun a =>
-    map_le _ _ <| by
-      rw [map_top]
-      exact le_top⟩
+  ⟨⊤, fun a => map_le _ _ <| by rw [map_top]; exact le_top⟩
 #align order_top.lift OrderTop.lift
 
 /- warning: order_bot.lift -> OrderBot.lift is a dubious translation:
@@ -1249,10 +1238,7 @@ Case conversion may be inaccurate. Consider using '#align order_bot.lift OrderBo
 @[reducible]
 def OrderBot.lift [LE α] [Bot α] [LE β] [OrderBot β] (f : α → β) (map_le : ∀ a b, f a ≤ f b → a ≤ b)
     (map_bot : f ⊥ = ⊥) : OrderBot α :=
-  ⟨⊥, fun a =>
-    map_le _ _ <| by
-      rw [map_bot]
-      exact bot_le⟩
+  ⟨⊥, fun a => map_le _ _ <| by rw [map_bot]; exact bot_le⟩
 #align order_bot.lift OrderBot.lift
 
 /- warning: bounded_order.lift -> BoundedOrder.lift is a dubious translation:
Diff
@@ -1018,7 +1018,7 @@ theorem monotone_or {p q : α → Prop} (m_p : Monotone p) (m_q : Monotone q) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) ((fun (x._@.Mathlib.Order.BoundedOrder._hyg.4313 : α) (x._@.Mathlib.Order.BoundedOrder._hyg.4315 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.BoundedOrder._hyg.4313 x._@.Mathlib.Order.BoundedOrder._hyg.4315) x)
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) ((fun (x._@.Mathlib.Order.BoundedOrder._hyg.4319 : α) (x._@.Mathlib.Order.BoundedOrder._hyg.4321 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.BoundedOrder._hyg.4319 x._@.Mathlib.Order.BoundedOrder._hyg.4321) x)
 Case conversion may be inaccurate. Consider using '#align monotone_le monotone_leₓ'. -/
 theorem monotone_le {x : α} : Monotone ((· ≤ ·) x) := fun y z h' h => h.trans h'
 #align monotone_le monotone_le
@@ -1027,7 +1027,7 @@ theorem monotone_le {x : α} : Monotone ((· ≤ ·) x) := fun y z h' h => h.tra
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) ((fun (x._@.Mathlib.Order.BoundedOrder._hyg.4353 : α) (x._@.Mathlib.Order.BoundedOrder._hyg.4355 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.BoundedOrder._hyg.4353 x._@.Mathlib.Order.BoundedOrder._hyg.4355) x)
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) ((fun (x._@.Mathlib.Order.BoundedOrder._hyg.4359 : α) (x._@.Mathlib.Order.BoundedOrder._hyg.4361 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.BoundedOrder._hyg.4359 x._@.Mathlib.Order.BoundedOrder._hyg.4361) x)
 Case conversion may be inaccurate. Consider using '#align monotone_lt monotone_ltₓ'. -/
 theorem monotone_lt {x : α} : Monotone ((· < ·) x) := fun y z h' h => h.trans_le h'
 #align monotone_lt monotone_lt
Diff
@@ -137,7 +137,7 @@ variable [Preorder α] [OrderTop α] {a b : α}
 
 /- warning: is_max_top -> isMax_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)], IsMax.{u1} α (Preorder.toLE.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], IsMax.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)], IsMax.{u1} α (Preorder.toLE.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2))
 Case conversion may be inaccurate. Consider using '#align is_max_top isMax_topₓ'. -/
@@ -148,7 +148,7 @@ theorem isMax_top : IsMax (⊤ : α) :=
 
 /- warning: not_top_lt -> not_top_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α}, Not (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)) a)
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α}, Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α}, Not (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)) a)
 Case conversion may be inaccurate. Consider using '#align not_top_lt not_top_ltₓ'. -/
@@ -159,7 +159,7 @@ theorem not_top_lt : ¬⊤ < a :=
 
 /- warning: ne_top_of_lt -> ne_top_of_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align ne_top_of_lt ne_top_of_ltₓ'. -/
@@ -169,7 +169,7 @@ theorem ne_top_of_lt (h : a < b) : a ≠ ⊤ :=
 
 /- warning: has_lt.lt.ne_top -> LT.lt.ne_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align has_lt.lt.ne_top LT.lt.ne_topₓ'. -/
@@ -182,7 +182,7 @@ variable [PartialOrder α] [OrderTop α] [Preorder β] {f : α → β} {a b : α
 
 /- warning: is_max_iff_eq_top -> isMax_iff_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsMax.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align is_max_iff_eq_top isMax_iff_eq_topₓ'. -/
@@ -193,7 +193,7 @@ theorem isMax_iff_eq_top : IsMax a ↔ a = ⊤ :=
 
 /- warning: is_top_iff_eq_top -> isTop_iff_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align is_top_iff_eq_top isTop_iff_eq_topₓ'. -/
@@ -204,7 +204,7 @@ theorem isTop_iff_eq_top : IsTop a ↔ a = ⊤ :=
 
 /- warning: not_is_max_iff_ne_top -> not_isMax_iff_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsMax.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align not_is_max_iff_ne_top not_isMax_iff_ne_topₓ'. -/
@@ -214,7 +214,7 @@ theorem not_isMax_iff_ne_top : ¬IsMax a ↔ a ≠ ⊤ :=
 
 /- warning: not_is_top_iff_ne_top -> not_isTop_iff_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align not_is_top_iff_ne_top not_isTop_iff_ne_topₓ'. -/
@@ -224,7 +224,7 @@ theorem not_isTop_iff_ne_top : ¬IsTop a ↔ a ≠ ⊤ :=
 
 /- warning: is_max.eq_top -> IsMax.eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsMax.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align is_max.eq_top IsMax.eq_topₓ'. -/
@@ -233,7 +233,7 @@ alias isMax_iff_eq_top ↔ IsMax.eq_top _
 
 /- warning: is_top.eq_top -> IsTop.eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align is_top.eq_top IsTop.eq_topₓ'. -/
@@ -242,7 +242,7 @@ alias isTop_iff_eq_top ↔ IsTop.eq_top _
 
 /- warning: top_le_iff -> top_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align top_le_iff top_le_iffₓ'. -/
@@ -253,7 +253,7 @@ theorem top_le_iff : ⊤ ≤ a ↔ a = ⊤ :=
 
 /- warning: top_unique -> top_unique is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align top_unique top_uniqueₓ'. -/
@@ -263,7 +263,7 @@ theorem top_unique (h : ⊤ ≤ a) : a = ⊤ :=
 
 /- warning: eq_top_iff -> eq_top_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
 Case conversion may be inaccurate. Consider using '#align eq_top_iff eq_top_iffₓ'. -/
@@ -273,7 +273,7 @@ theorem eq_top_iff : a = ⊤ ↔ ⊤ ≤ a :=
 
 /- warning: eq_top_mono -> eq_top_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align eq_top_mono eq_top_monoₓ'. -/
@@ -283,7 +283,7 @@ theorem eq_top_mono (h : a ≤ b) (h₂ : a = ⊤) : b = ⊤ :=
 
 /- warning: lt_top_iff_ne_top -> lt_top_iff_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align lt_top_iff_ne_top lt_top_iff_ne_topₓ'. -/
@@ -293,7 +293,7 @@ theorem lt_top_iff_ne_top : a < ⊤ ↔ a ≠ ⊤ :=
 
 /- warning: not_lt_top_iff -> not_lt_top_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align not_lt_top_iff not_lt_top_iffₓ'. -/
@@ -304,7 +304,7 @@ theorem not_lt_top_iff : ¬a < ⊤ ↔ a = ⊤ :=
 
 /- warning: eq_top_or_lt_top -> eq_top_or_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] (a : α), Or (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] (a : α), Or (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] (a : α), Or (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align eq_top_or_lt_top eq_top_or_lt_topₓ'. -/
@@ -314,7 +314,7 @@ theorem eq_top_or_lt_top (a : α) : a = ⊤ ∨ a < ⊤ :=
 
 /- warning: ne.lt_top -> Ne.lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align ne.lt_top Ne.lt_topₓ'. -/
@@ -324,7 +324,7 @@ theorem Ne.lt_top (h : a ≠ ⊤) : a < ⊤ :=
 
 /- warning: ne.lt_top' -> Ne.lt_top' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align ne.lt_top' Ne.lt_top'ₓ'. -/
@@ -334,7 +334,7 @@ theorem Ne.lt_top' (h : ⊤ ≠ a) : a < ⊤ :=
 
 /- warning: ne_top_of_le_ne_top -> ne_top_of_le_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align ne_top_of_le_ne_top ne_top_of_le_ne_topₓ'. -/
@@ -344,7 +344,7 @@ theorem ne_top_of_le_ne_top (hb : b ≠ ⊤) (hab : a ≤ b) : a ≠ ⊤ :=
 
 /- warning: strict_mono.apply_eq_top_iff -> StrictMono.apply_eq_top_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align strict_mono.apply_eq_top_iff StrictMono.apply_eq_top_iffₓ'. -/
@@ -354,7 +354,7 @@ theorem StrictMono.apply_eq_top_iff (hf : StrictMono f) : f a = f ⊤ ↔ a = 
 
 /- warning: strict_anti.apply_eq_top_iff -> StrictAnti.apply_eq_top_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictAnti.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictAnti.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictAnti.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align strict_anti.apply_eq_top_iff StrictAnti.apply_eq_top_iffₓ'. -/
@@ -366,7 +366,7 @@ variable [Nontrivial α]
 
 /- warning: not_is_min_top -> not_isMin_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : Nontrivial.{u1} α], Not (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : Nontrivial.{u1} α], Not (IsMin.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : Nontrivial.{u1} α], Not (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align not_is_min_top not_isMin_topₓ'. -/
@@ -379,7 +379,7 @@ end OrderTop
 
 /- warning: strict_mono.maximal_preimage_top -> StrictMono.maximal_preimage_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u2} β (Preorder.toLE.{u2} β _inst_2)] {f : α -> β}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) _inst_2 f) -> (forall {a : α}, (Eq.{succ u2} β (f a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β _inst_2) _inst_3))) -> (forall (x : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) x a))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β _inst_2)] {f : α -> β}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) _inst_2 f) -> (forall {a : α}, (Eq.{succ u2} β (f a) (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) -> (forall (x : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) x a))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u2} β (Preorder.toLE.{u2} β _inst_2)] {f : α -> β}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) _inst_2 f) -> (forall {a : α}, (Eq.{succ u2} β (f a) (Top.top.{u2} β (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β _inst_2) _inst_3))) -> (forall (x : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x a))
 Case conversion may be inaccurate. Consider using '#align strict_mono.maximal_preimage_top StrictMono.maximal_preimage_topₓ'. -/
@@ -394,7 +394,7 @@ theorem StrictMono.maximal_preimage_top [LinearOrder α] [Preorder β] [OrderTop
 
 /- warning: order_top.ext_top -> OrderTop.ext_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {hA : PartialOrder.{u1} α} (A : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA))) {hB : PartialOrder.{u1} α} (B : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB))), (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) x y)) -> (Eq.{succ u1} α (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) A)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) B)))
+  forall {α : Type.{u1}} {hA : PartialOrder.{u1} α} (A : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA))) {hB : PartialOrder.{u1} α} (B : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB))), (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA)) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB)) x y)) -> (Eq.{succ u1} α (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA)) A)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB)) B)))
 but is expected to have type
   forall {α : Type.{u1}} {hA : PartialOrder.{u1} α} (A : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA))) {hB : PartialOrder.{u1} α} (B : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB))), (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) x y)) -> (Eq.{succ u1} α (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) A)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) B)))
 Case conversion may be inaccurate. Consider using '#align order_top.ext_top OrderTop.ext_topₓ'. -/
@@ -412,7 +412,12 @@ theorem OrderTop.ext_top {α} {hA : PartialOrder α} (A : OrderTop α) {hB : Par
   top_unique <| by rw [← H] <;> apply le_top
 #align order_top.ext_top OrderTop.ext_top
 
-#print OrderTop.ext /-
+/- warning: order_top.ext -> OrderTop.ext is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
+Case conversion may be inaccurate. Consider using '#align order_top.ext OrderTop.extₓ'. -/
 theorem OrderTop.ext {α} [PartialOrder α] {A B : OrderTop α} : A = B :=
   by
   have tt := OrderTop.ext_top A B fun _ _ => Iff.rfl
@@ -420,7 +425,6 @@ theorem OrderTop.ext {α} [PartialOrder α] {A B : OrderTop α} : A = B :=
   congr
   exact le_antisymm (hb _) (ha _)
 #align order_top.ext OrderTop.ext
--/
 
 #print OrderBot /-
 /-- An order is an `order_bot` if it has a least element.
@@ -523,7 +527,7 @@ variable [Preorder α] [OrderBot α] {a b : α}
 
 /- warning: is_min_bot -> isMin_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)], IsMin.{u1} α (Preorder.toLE.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], IsMin.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)], IsMin.{u1} α (Preorder.toLE.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2))
 Case conversion may be inaccurate. Consider using '#align is_min_bot isMin_botₓ'. -/
@@ -534,7 +538,7 @@ theorem isMin_bot : IsMin (⊥ : α) :=
 
 /- warning: not_lt_bot -> not_lt_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α}, Not (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α}, Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α}, Not (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align not_lt_bot not_lt_botₓ'. -/
@@ -545,7 +549,7 @@ theorem not_lt_bot : ¬a < ⊥ :=
 
 /- warning: ne_bot_of_gt -> ne_bot_of_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align ne_bot_of_gt ne_bot_of_gtₓ'. -/
@@ -555,7 +559,7 @@ theorem ne_bot_of_gt (h : a < b) : b ≠ ⊥ :=
 
 /- warning: has_lt.lt.ne_bot -> LT.lt.ne_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align has_lt.lt.ne_bot LT.lt.ne_botₓ'. -/
@@ -568,7 +572,7 @@ variable [PartialOrder α] [OrderBot α] [Preorder β] {f : α → β} {a b : α
 
 /- warning: is_min_iff_eq_bot -> isMin_iff_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsMin.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align is_min_iff_eq_bot isMin_iff_eq_botₓ'. -/
@@ -579,7 +583,7 @@ theorem isMin_iff_eq_bot : IsMin a ↔ a = ⊥ :=
 
 /- warning: is_bot_iff_eq_bot -> isBot_iff_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (IsBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align is_bot_iff_eq_bot isBot_iff_eq_botₓ'. -/
@@ -590,7 +594,7 @@ theorem isBot_iff_eq_bot : IsBot a ↔ a = ⊥ :=
 
 /- warning: not_is_min_iff_ne_bot -> not_isMin_iff_ne_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsMin.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align not_is_min_iff_ne_bot not_isMin_iff_ne_botₓ'. -/
@@ -600,7 +604,7 @@ theorem not_isMin_iff_ne_bot : ¬IsMin a ↔ a ≠ ⊥ :=
 
 /- warning: not_is_bot_iff_ne_bot -> not_isBot_iff_ne_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (IsBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a)) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align not_is_bot_iff_ne_bot not_isBot_iff_ne_botₓ'. -/
@@ -610,7 +614,7 @@ theorem not_isBot_iff_ne_bot : ¬IsBot a ↔ a ≠ ⊥ :=
 
 /- warning: is_min.eq_bot -> IsMin.eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsMin.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsMin.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align is_min.eq_bot IsMin.eq_botₓ'. -/
@@ -619,7 +623,7 @@ alias isMin_iff_eq_bot ↔ IsMin.eq_bot _
 
 /- warning: is_bot.eq_bot -> IsBot.eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (IsBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align is_bot.eq_bot IsBot.eq_botₓ'. -/
@@ -628,7 +632,7 @@ alias isBot_iff_eq_bot ↔ IsBot.eq_bot _
 
 /- warning: le_bot_iff -> le_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align le_bot_iff le_bot_iffₓ'. -/
@@ -639,7 +643,7 @@ theorem le_bot_iff : a ≤ ⊥ ↔ a = ⊥ :=
 
 /- warning: bot_unique -> bot_unique is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align bot_unique bot_uniqueₓ'. -/
@@ -649,7 +653,7 @@ theorem bot_unique (h : a ≤ ⊥) : a = ⊥ :=
 
 /- warning: eq_bot_iff -> eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align eq_bot_iff eq_bot_iffₓ'. -/
@@ -659,7 +663,7 @@ theorem eq_bot_iff : a = ⊥ ↔ a ≤ ⊥ :=
 
 /- warning: eq_bot_mono -> eq_bot_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align eq_bot_mono eq_bot_monoₓ'. -/
@@ -669,7 +673,7 @@ theorem eq_bot_mono (h : a ≤ b) (h₂ : b = ⊥) : a = ⊥ :=
 
 /- warning: bot_lt_iff_ne_bot -> bot_lt_iff_ne_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align bot_lt_iff_ne_bot bot_lt_iff_ne_botₓ'. -/
@@ -679,7 +683,7 @@ theorem bot_lt_iff_ne_bot : ⊥ < a ↔ a ≠ ⊥ :=
 
 /- warning: not_bot_lt_iff -> not_bot_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align not_bot_lt_iff not_bot_lt_iffₓ'. -/
@@ -690,7 +694,7 @@ theorem not_bot_lt_iff : ¬⊥ < a ↔ a = ⊥ :=
 
 /- warning: eq_bot_or_bot_lt -> eq_bot_or_bot_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] (a : α), Or (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] (a : α), Or (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] (a : α), Or (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
 Case conversion may be inaccurate. Consider using '#align eq_bot_or_bot_lt eq_bot_or_bot_ltₓ'. -/
@@ -700,7 +704,7 @@ theorem eq_bot_or_bot_lt (a : α) : a = ⊥ ∨ ⊥ < a :=
 
 /- warning: eq_bot_of_minimal -> eq_bot_of_minimal is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (forall (b : α), Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a)) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (forall (b : α), Not (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a)) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (forall (b : α), Not (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a)) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align eq_bot_of_minimal eq_bot_of_minimalₓ'. -/
@@ -710,7 +714,7 @@ theorem eq_bot_of_minimal (h : ∀ b, ¬b < a) : a = ⊥ :=
 
 /- warning: ne.bot_lt -> Ne.bot_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
 Case conversion may be inaccurate. Consider using '#align ne.bot_lt Ne.bot_ltₓ'. -/
@@ -720,7 +724,7 @@ theorem Ne.bot_lt (h : a ≠ ⊥) : ⊥ < a :=
 
 /- warning: ne.bot_lt' -> Ne.bot_lt' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a)
 Case conversion may be inaccurate. Consider using '#align ne.bot_lt' Ne.bot_lt'ₓ'. -/
@@ -730,7 +734,7 @@ theorem Ne.bot_lt' (h : ⊥ ≠ a) : ⊥ < a :=
 
 /- warning: ne_bot_of_le_ne_bot -> ne_bot_of_le_ne_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align ne_bot_of_le_ne_bot ne_bot_of_le_ne_botₓ'. -/
@@ -740,7 +744,7 @@ theorem ne_bot_of_le_ne_bot (hb : b ≠ ⊥) (hab : b ≤ a) : a ≠ ⊥ :=
 
 /- warning: strict_mono.apply_eq_bot_iff -> StrictMono.apply_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align strict_mono.apply_eq_bot_iff StrictMono.apply_eq_bot_iffₓ'. -/
@@ -750,7 +754,7 @@ theorem StrictMono.apply_eq_bot_iff (hf : StrictMono f) : f a = f ⊥ ↔ a = 
 
 /- warning: strict_anti.apply_eq_bot_iff -> StrictAnti.apply_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictAnti.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictAnti.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Preorder.{u2} β] {f : α -> β} {a : α}, (StrictAnti.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_3 f) -> (Iff (Eq.{succ u2} β (f a) (f (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align strict_anti.apply_eq_bot_iff StrictAnti.apply_eq_bot_iffₓ'. -/
@@ -762,7 +766,7 @@ variable [Nontrivial α]
 
 /- warning: not_is_max_bot -> not_isMax_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : Nontrivial.{u1} α], Not (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : Nontrivial.{u1} α], Not (IsMax.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : Nontrivial.{u1} α], Not (IsMax.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align not_is_max_bot not_isMax_botₓ'. -/
@@ -774,7 +778,7 @@ end OrderBot
 
 /- warning: strict_mono.minimal_preimage_bot -> StrictMono.minimal_preimage_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {f : α -> β}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β _inst_2) f) -> (forall {a : α}, (Eq.{succ u2} β (f a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3))) -> (forall (x : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a x))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {f : α -> β}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β _inst_2) f) -> (forall {a : α}, (Eq.{succ u2} β (f a) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3))) -> (forall (x : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a x))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {f : α -> β}, (StrictMono.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β _inst_2) f) -> (forall {a : α}, (Eq.{succ u2} β (f a) (Bot.bot.{u2} β (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3))) -> (forall (x : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a x))
 Case conversion may be inaccurate. Consider using '#align strict_mono.minimal_preimage_bot StrictMono.minimal_preimage_botₓ'. -/
@@ -789,7 +793,7 @@ theorem StrictMono.minimal_preimage_bot [LinearOrder α] [PartialOrder β] [Orde
 
 /- warning: order_bot.ext_bot -> OrderBot.ext_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {hA : PartialOrder.{u1} α} (A : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA))) {hB : PartialOrder.{u1} α} (B : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB))), (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) x y)) -> (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) A)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) B)))
+  forall {α : Type.{u1}} {hA : PartialOrder.{u1} α} (A : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA))) {hB : PartialOrder.{u1} α} (B : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB))), (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA)) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB)) x y)) -> (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hA)) A)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α hB)) B)))
 but is expected to have type
   forall {α : Type.{u1}} {hA : PartialOrder.{u1} α} (A : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA))) {hB : PartialOrder.{u1} α} (B : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB))), (forall (x : α) (y : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) x y)) -> (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hA)) A)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α hB)) B)))
 Case conversion may be inaccurate. Consider using '#align order_bot.ext_bot OrderBot.ext_botₓ'. -/
@@ -807,7 +811,12 @@ theorem OrderBot.ext_bot {α} {hA : PartialOrder α} (A : OrderBot α) {hB : Par
   bot_unique <| by rw [← H] <;> apply bot_le
 #align order_bot.ext_bot OrderBot.ext_bot
 
-#print OrderBot.ext /-
+/- warning: order_bot.ext -> OrderBot.ext is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
+Case conversion may be inaccurate. Consider using '#align order_bot.ext OrderBot.extₓ'. -/
 theorem OrderBot.ext {α} [PartialOrder α] {A B : OrderBot α} : A = B :=
   by
   have tt := OrderBot.ext_bot A B fun _ _ => Iff.rfl
@@ -815,7 +824,6 @@ theorem OrderBot.ext {α} [PartialOrder α] {A B : OrderBot α} : A = B :=
   congr
   exact le_antisymm (ha _) (hb _)
 #align order_bot.ext OrderBot.ext
--/
 
 section SemilatticeSupTop
 
@@ -823,7 +831,7 @@ variable [SemilatticeSup α] [OrderTop α] {a : α}
 
 /- warning: top_sup_eq -> top_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align top_sup_eq top_sup_eqₓ'. -/
@@ -834,7 +842,7 @@ theorem top_sup_eq : ⊤ ⊔ a = ⊤ :=
 
 /- warning: sup_top_eq -> sup_top_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align sup_top_eq sup_top_eqₓ'. -/
@@ -851,7 +859,7 @@ variable [SemilatticeSup α] [OrderBot α] {a b : α}
 
 /- warning: bot_sup_eq -> bot_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
 Case conversion may be inaccurate. Consider using '#align bot_sup_eq bot_sup_eqₓ'. -/
@@ -862,7 +870,7 @@ theorem bot_sup_eq : ⊥ ⊔ a = a :=
 
 /- warning: sup_bot_eq -> sup_bot_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
 Case conversion may be inaccurate. Consider using '#align sup_bot_eq sup_bot_eqₓ'. -/
@@ -873,7 +881,7 @@ theorem sup_bot_eq : a ⊔ ⊥ = a :=
 
 /- warning: sup_eq_bot_iff -> sup_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align sup_eq_bot_iff sup_eq_bot_iffₓ'. -/
@@ -889,7 +897,7 @@ variable [SemilatticeInf α] [OrderTop α] {a b : α}
 
 /- warning: top_inf_eq -> top_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
 Case conversion may be inaccurate. Consider using '#align top_inf_eq top_inf_eqₓ'. -/
@@ -900,7 +908,7 @@ theorem top_inf_eq : ⊤ ⊓ a = a :=
 
 /- warning: inf_top_eq -> inf_top_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
 Case conversion may be inaccurate. Consider using '#align inf_top_eq inf_top_eqₓ'. -/
@@ -911,7 +919,7 @@ theorem inf_top_eq : a ⊓ ⊤ = a :=
 
 /- warning: inf_eq_top_iff -> inf_eq_top_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align inf_eq_top_iff inf_eq_top_iffₓ'. -/
@@ -928,7 +936,7 @@ variable [SemilatticeInf α] [OrderBot α] {a : α}
 
 /- warning: bot_inf_eq -> bot_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align bot_inf_eq bot_inf_eqₓ'. -/
@@ -939,7 +947,7 @@ theorem bot_inf_eq : ⊥ ⊓ a = ⊥ :=
 
 /- warning: inf_bot_eq -> inf_bot_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align inf_bot_eq inf_bot_eqₓ'. -/
@@ -963,7 +971,12 @@ class BoundedOrder (α : Type u) [LE α] extends OrderTop α, OrderBot α
 instance (α : Type u) [LE α] [BoundedOrder α] : BoundedOrder αᵒᵈ :=
   { OrderDual.orderTop α, OrderDual.orderBot α with }
 
-#print BoundedOrder.ext /-
+/- warning: bounded_order.ext -> BoundedOrder.ext is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {A : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))} {B : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))}, Eq.{succ u1} (BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))) A B
+Case conversion may be inaccurate. Consider using '#align bounded_order.ext BoundedOrder.extₓ'. -/
 theorem BoundedOrder.ext {α} [PartialOrder α] {A B : BoundedOrder α} : A = B :=
   by
   have ht : @BoundedOrder.toOrderTop α _ A = @BoundedOrder.toOrderTop α _ B := OrderTop.ext
@@ -976,7 +989,6 @@ theorem BoundedOrder.ext {α} [PartialOrder α] {A B : BoundedOrder α} : A = B
   · exact h.symm
   · exact h'.symm
 #align bounded_order.ext BoundedOrder.ext
--/
 
 section Logic
 
@@ -1002,25 +1014,41 @@ theorem monotone_or {p q : α → Prop} (m_p : Monotone p) (m_q : Monotone q) :
 #align monotone_or monotone_or
 -/
 
-#print monotone_le /-
+/- warning: monotone_le -> monotone_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) ((fun (x._@.Mathlib.Order.BoundedOrder._hyg.4313 : α) (x._@.Mathlib.Order.BoundedOrder._hyg.4315 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.BoundedOrder._hyg.4313 x._@.Mathlib.Order.BoundedOrder._hyg.4315) x)
+Case conversion may be inaccurate. Consider using '#align monotone_le monotone_leₓ'. -/
 theorem monotone_le {x : α} : Monotone ((· ≤ ·) x) := fun y z h' h => h.trans h'
 #align monotone_le monotone_le
--/
 
-#print monotone_lt /-
+/- warning: monotone_lt -> monotone_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Monotone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) ((fun (x._@.Mathlib.Order.BoundedOrder._hyg.4353 : α) (x._@.Mathlib.Order.BoundedOrder._hyg.4355 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.BoundedOrder._hyg.4353 x._@.Mathlib.Order.BoundedOrder._hyg.4355) x)
+Case conversion may be inaccurate. Consider using '#align monotone_lt monotone_ltₓ'. -/
 theorem monotone_lt {x : α} : Monotone ((· < ·) x) := fun y z h' h => h.trans_le h'
 #align monotone_lt monotone_lt
--/
 
-#print antitone_le /-
+/- warning: antitone_le -> antitone_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Antitone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (fun (_x : α) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _x x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Antitone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (fun (_x : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) _x x)
+Case conversion may be inaccurate. Consider using '#align antitone_le antitone_leₓ'. -/
 theorem antitone_le {x : α} : Antitone (· ≤ x) := fun y z h' h => h'.trans h
 #align antitone_le antitone_le
--/
 
-#print antitone_lt /-
+/- warning: antitone_lt -> antitone_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Antitone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (fun (_x : α) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) _x x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {x : α}, Antitone.{u1, 0} α Prop _inst_1 (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) (fun (_x : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) _x x)
+Case conversion may be inaccurate. Consider using '#align antitone_lt antitone_ltₓ'. -/
 theorem antitone_lt {x : α} : Antitone (· < x) := fun y z h' h => h'.trans_lt h
 #align antitone_lt antitone_lt
--/
 
 #print Monotone.forall /-
 theorem Monotone.forall {P : β → α → Prop} (hP : ∀ x, Monotone (P x)) :
@@ -1052,12 +1080,16 @@ section SemilatticeSup
 
 variable [SemilatticeSup α]
 
-#print exists_ge_and_iff_exists /-
+/- warning: exists_ge_and_iff_exists -> exists_ge_and_iff_exists is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} {x₀ : α}, (Monotone.{u1, 0} α Prop (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) P) -> (Iff (Exists.{succ u1} α (fun (x : α) => And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x₀ x) (P x))) (Exists.{succ u1} α (fun (x : α) => P x)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {P : α -> Prop} {x₀ : α}, (Monotone.{u1, 0} α Prop (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) P) -> (Iff (Exists.{succ u1} α (fun (x : α) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) x₀ x) (P x))) (Exists.{succ u1} α (fun (x : α) => P x)))
+Case conversion may be inaccurate. Consider using '#align exists_ge_and_iff_exists exists_ge_and_iff_existsₓ'. -/
 theorem exists_ge_and_iff_exists {P : α → Prop} {x₀ : α} (hP : Monotone P) :
     (∃ x, x₀ ≤ x ∧ P x) ↔ ∃ x, P x :=
   ⟨fun h => h.imp fun x h => h.2, fun ⟨x, hx⟩ => ⟨x ⊔ x₀, le_sup_right, hP le_sup_left hx⟩⟩
 #align exists_ge_and_iff_exists exists_ge_and_iff_exists
--/
 
 end SemilatticeSup
 
@@ -1065,12 +1097,16 @@ section SemilatticeInf
 
 variable [SemilatticeInf α]
 
-#print exists_le_and_iff_exists /-
+/- warning: exists_le_and_iff_exists -> exists_le_and_iff_exists is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} {x₀ : α}, (Antitone.{u1, 0} α Prop (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) P) -> (Iff (Exists.{succ u1} α (fun (x : α) => And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x x₀) (P x))) (Exists.{succ u1} α (fun (x : α) => P x)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {P : α -> Prop} {x₀ : α}, (Antitone.{u1, 0} α Prop (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{0} Prop Prop.partialOrder) P) -> (Iff (Exists.{succ u1} α (fun (x : α) => And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) x x₀) (P x))) (Exists.{succ u1} α (fun (x : α) => P x)))
+Case conversion may be inaccurate. Consider using '#align exists_le_and_iff_exists exists_le_and_iff_existsₓ'. -/
 theorem exists_le_and_iff_exists {P : α → Prop} {x₀ : α} (hP : Antitone P) :
     (∃ x, x ≤ x₀ ∧ P x) ↔ ∃ x, P x :=
   exists_ge_and_iff_exists hP.dual_left
 #align exists_le_and_iff_exists exists_le_and_iff_exists
--/
 
 end SemilatticeInf
 
@@ -1132,7 +1168,7 @@ variable [PartialOrder α] [BoundedOrder α]
 
 /- warning: eq_bot_of_bot_eq_top -> eq_bot_of_bot_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (forall (x : α), Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (forall (x : α), Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (forall (x : α), Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align eq_bot_of_bot_eq_top eq_bot_of_bot_eq_topₓ'. -/
@@ -1142,7 +1178,7 @@ theorem eq_bot_of_bot_eq_top (hα : (⊥ : α) = ⊤) (x : α) : x = (⊥ : α)
 
 /- warning: eq_top_of_bot_eq_top -> eq_top_of_bot_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (forall (x : α), Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (forall (x : α), Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (forall (x : α), Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align eq_top_of_bot_eq_top eq_top_of_bot_eq_topₓ'. -/
@@ -1152,7 +1188,7 @@ theorem eq_top_of_bot_eq_top (hα : (⊥ : α) = ⊤) (x : α) : x = (⊤ : α)
 
 /- warning: subsingleton_of_top_le_bot -> subsingleton_of_top_le_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (Subsingleton.{succ u1} α)
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (Subsingleton.{succ u1} α)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (Subsingleton.{succ u1} α)
 Case conversion may be inaccurate. Consider using '#align subsingleton_of_top_le_bot subsingleton_of_top_le_botₓ'. -/
@@ -1163,7 +1199,7 @@ theorem subsingleton_of_top_le_bot (h : (⊤ : α) ≤ (⊥ : α)) : Subsingleto
 
 /- warning: subsingleton_of_bot_eq_top -> subsingleton_of_bot_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (Subsingleton.{succ u1} α)
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (Subsingleton.{succ u1} α)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) -> (Subsingleton.{succ u1} α)
 Case conversion may be inaccurate. Consider using '#align subsingleton_of_bot_eq_top subsingleton_of_bot_eq_topₓ'. -/
@@ -1173,7 +1209,7 @@ theorem subsingleton_of_bot_eq_top (hα : (⊥ : α) = (⊤ : α)) : Subsingleto
 
 /- warning: subsingleton_iff_bot_eq_top -> subsingleton_iff_bot_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Iff (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Subsingleton.{succ u1} α)
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Iff (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Subsingleton.{succ u1} α)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Iff (Eq.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Subsingleton.{succ u1} α)
 Case conversion may be inaccurate. Consider using '#align subsingleton_iff_bot_eq_top subsingleton_iff_bot_eq_topₓ'. -/
@@ -1290,7 +1326,7 @@ variable [PartialOrder α]
 
 /- warning: subtype.mk_bot -> Subtype.mk_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)] (hbot : p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))), Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) hbot) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))
+  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)] (hbot : p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))), Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) hbot) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))
 but is expected to have type
   forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)] (hbot : p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))), Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) hbot) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))
 Case conversion may be inaccurate. Consider using '#align subtype.mk_bot Subtype.mk_botₓ'. -/
@@ -1301,7 +1337,7 @@ theorem mk_bot [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) : mk ⊥ hbot
 
 /- warning: subtype.mk_top -> Subtype.mk_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)] (htop : p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))), Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) htop) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))
+  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)] (htop : p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))), Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) htop) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))
 but is expected to have type
   forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)] (htop : p (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))), Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) htop) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))
 Case conversion may be inaccurate. Consider using '#align subtype.mk_top Subtype.mk_topₓ'. -/
@@ -1312,7 +1348,7 @@ theorem mk_top [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) : mk ⊤ htop
 
 /- warning: subtype.coe_bot -> Subtype.coe_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α (Subtype.val.{succ u1} α p (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align subtype.coe_bot Subtype.coe_botₓ'. -/
@@ -1322,7 +1358,7 @@ theorem coe_bot [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) : ((⊥ : Su
 
 /- warning: subtype.coe_top -> Subtype.coe_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α p) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α p) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α p) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Eq.{succ u1} α (Subtype.val.{succ u1} α p (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align subtype.coe_top Subtype.coe_topₓ'. -/
@@ -1332,7 +1368,7 @@ theorem coe_top [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) : ((⊤ : Su
 
 /- warning: subtype.coe_eq_bot_iff -> Subtype.coe_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : Subtype.{succ u1} α (fun (x : α) => p x)}, Iff (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α (fun (x : α) => p x)) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) x) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) x (Bot.bot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))))
+  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : Subtype.{succ u1} α (fun (x : α) => p x)}, Iff (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α (fun (x : α) => p x)) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) x) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) x (Bot.bot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))))
 but is expected to have type
   forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : Subtype.{succ u1} α (fun (x : α) => p x)}, Iff (Eq.{succ u1} α (Subtype.val.{succ u1} α (fun (x : α) => p x) x) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) x (Bot.bot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (OrderBot.toBot.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (fun (x : α) => p x)) _inst_3))))
 Case conversion may be inaccurate. Consider using '#align subtype.coe_eq_bot_iff Subtype.coe_eq_bot_iffₓ'. -/
@@ -1343,7 +1379,7 @@ theorem coe_eq_bot_iff [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) {x :
 
 /- warning: subtype.coe_eq_top_iff -> Subtype.coe_eq_top_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : Subtype.{succ u1} α (fun (x : α) => p x)}, Iff (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α (fun (x : α) => p x)) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) x) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) x (Top.top.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))))
+  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : Subtype.{succ u1} α (fun (x : α) => p x)}, Iff (Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Subtype.{succ u1} α (fun (x : α) => p x)) α (HasLiftT.mk.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (CoeTCₓ.coe.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeBase.{succ u1, succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) α (coeSubtype.{succ u1} α (fun (x : α) => p x))))) x) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) x (Top.top.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))))
 but is expected to have type
   forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : Subtype.{succ u1} α (fun (x : α) => p x)}, Iff (Eq.{succ u1} α (Subtype.val.{succ u1} α (fun (x : α) => p x) x) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Eq.{succ u1} (Subtype.{succ u1} α (fun (x : α) => p x)) x (Top.top.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (OrderTop.toTop.{u1} (Subtype.{succ u1} α (fun (x : α) => p x)) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (fun (x : α) => p x)) _inst_3))))
 Case conversion may be inaccurate. Consider using '#align subtype.coe_eq_top_iff Subtype.coe_eq_top_iffₓ'. -/
@@ -1354,7 +1390,7 @@ theorem coe_eq_top_iff [OrderTop α] [OrderTop (Subtype p)] (htop : p ⊤) {x :
 
 /- warning: subtype.mk_eq_bot_iff -> Subtype.mk_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : α} (hx : p x), Iff (Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p x hx) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : α} (hx : p x), Iff (Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p x hx) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toHasBot.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : α} (hx : p x), Iff (Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p x hx) (Bot.bot.{u1} (Subtype.{succ u1} α p) (OrderBot.toBot.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align subtype.mk_eq_bot_iff Subtype.mk_eq_bot_iffₓ'. -/
@@ -1366,7 +1402,7 @@ theorem mk_eq_bot_iff [OrderBot α] [OrderBot (Subtype p)] (hbot : p ⊥) {x : 
 
 /- warning: subtype.mk_eq_top_iff -> Subtype.mk_eq_top_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : α} (hx : p x), Iff (Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p x hx) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : α} (hx : p x), Iff (Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p x hx) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toHasTop.{u1} (Subtype.{succ u1} α p) (Subtype.hasLe.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} {p : α -> Prop} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : OrderTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p)], (p (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (forall {x : α} (hx : p x), Iff (Eq.{succ u1} (Subtype.{succ u1} α p) (Subtype.mk.{succ u1} α p x hx) (Top.top.{u1} (Subtype.{succ u1} α p) (OrderTop.toTop.{u1} (Subtype.{succ u1} α p) (Subtype.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) p) _inst_3))) (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align subtype.mk_eq_top_iff Subtype.mk_eq_top_iffₓ'. -/
@@ -1405,7 +1441,7 @@ variable [LinearOrder α]
 
 /- warning: min_bot_left -> min_bot_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align min_bot_left min_bot_leftₓ'. -/
@@ -1416,7 +1452,7 @@ theorem min_bot_left [OrderBot α] (a : α) : min ⊥ a = ⊥ :=
 
 /- warning: max_top_left -> max_top_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align max_top_left max_top_leftₓ'. -/
@@ -1426,7 +1462,7 @@ theorem max_top_left [OrderTop α] (a : α) : max ⊤ a = ⊤ :=
 
 /- warning: min_top_left -> min_top_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) a
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2)) a) a
 Case conversion may be inaccurate. Consider using '#align min_top_left min_top_leftₓ'. -/
@@ -1436,7 +1472,7 @@ theorem min_top_left [OrderTop α] (a : α) : min ⊤ a = a :=
 
 /- warning: max_bot_left -> max_bot_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) a
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2)) a) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2)) a) a
 Case conversion may be inaccurate. Consider using '#align max_bot_left max_bot_leftₓ'. -/
@@ -1446,7 +1482,7 @@ theorem max_bot_left [OrderBot α] (a : α) : max ⊥ a = a :=
 
 /- warning: min_top_right -> min_top_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) a
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) a
 Case conversion may be inaccurate. Consider using '#align min_top_right min_top_rightₓ'. -/
@@ -1456,7 +1492,7 @@ theorem min_top_right [OrderTop α] (a : α) : min a ⊤ = a :=
 
 /- warning: max_bot_right -> max_bot_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) a
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) a
 Case conversion may be inaccurate. Consider using '#align max_bot_right max_bot_rightₓ'. -/
@@ -1466,7 +1502,7 @@ theorem max_bot_right [OrderBot α] (a : α) : max a ⊥ = a :=
 
 /- warning: min_bot_right -> min_bot_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align min_bot_right min_bot_rightₓ'. -/
@@ -1476,7 +1512,7 @@ theorem min_bot_right [OrderBot α] (a : α) : min a ⊥ = ⊥ :=
 
 /- warning: max_top_right -> max_top_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] (a : α), Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] (a : α), Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align max_top_right max_top_rightₓ'. -/
@@ -1486,7 +1522,7 @@ theorem max_top_right [OrderTop α] (a : α) : max a ⊤ = ⊤ :=
 
 /- warning: min_eq_bot -> min_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Or (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Or (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Or (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align min_eq_bot min_eq_botₓ'. -/
@@ -1497,7 +1533,7 @@ theorem min_eq_bot [OrderBot α] {a b : α} : min a b = ⊥ ↔ a = ⊥ ∨ b =
 
 /- warning: max_eq_top -> max_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Or (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Or (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Or (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align max_eq_top max_eq_topₓ'. -/
@@ -1508,7 +1544,7 @@ theorem max_eq_top [OrderTop α] {a b : α} : max a b = ⊤ ↔ a = ⊤ ∨ b =
 
 /- warning: max_eq_bot -> max_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.max.{u1} α _inst_1 a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align max_eq_bot max_eq_botₓ'. -/
@@ -1519,7 +1555,7 @@ theorem max_eq_bot [OrderBot α] {a b : α} : max a b = ⊥ ↔ a = ⊥ ∧ b =
 
 /- warning: min_eq_top -> min_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (LinearOrder.min.{u1} α _inst_1 a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align min_eq_top min_eq_topₓ'. -/
@@ -1536,7 +1572,7 @@ variable [PartialOrder α] [BoundedOrder α] [Nontrivial α]
 
 /- warning: bot_ne_top -> bot_ne_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], Ne.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], Ne.{succ u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], Ne.{succ u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align bot_ne_top bot_ne_topₓ'. -/
@@ -1546,7 +1582,7 @@ theorem bot_ne_top : (⊥ : α) ≠ ⊤ := fun h => not_subsingleton _ <| subsin
 
 /- warning: top_ne_bot -> top_ne_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], Ne.{succ u1} α (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], Ne.{succ u1} α (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], Ne.{succ u1} α (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align top_ne_bot top_ne_botₓ'. -/
@@ -1557,7 +1593,7 @@ theorem top_ne_bot : (⊤ : α) ≠ ⊥ :=
 
 /- warning: bot_lt_top -> bot_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_3 : Nontrivial.{u1} α], LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align bot_lt_top bot_lt_topₓ'. -/
@@ -1580,7 +1616,7 @@ instance : BoundedOrder Bool where
 
 /- warning: top_eq_tt -> top_eq_true is a dubious translation:
 lean 3 declaration is
-  Eq.{1} Bool (Top.top.{0} Bool (OrderTop.toHasTop.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) (BoundedOrder.toOrderTop.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) Bool.boundedOrder))) Bool.true
+  Eq.{1} Bool (Top.top.{0} Bool (OrderTop.toHasTop.{0} Bool (Preorder.toHasLe.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) (BoundedOrder.toOrderTop.{0} Bool (Preorder.toHasLe.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) Bool.boundedOrder))) Bool.true
 but is expected to have type
   Eq.{1} Bool (Top.top.{0} Bool (OrderTop.toTop.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (DistribLattice.toLattice.{0} Bool instDistribLatticeBool))))) (BoundedOrder.toOrderTop.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (DistribLattice.toLattice.{0} Bool instDistribLatticeBool))))) Bool.boundedOrder))) Bool.true
 Case conversion may be inaccurate. Consider using '#align top_eq_tt top_eq_trueₓ'. -/
@@ -1591,7 +1627,7 @@ theorem top_eq_true : ⊤ = true :=
 
 /- warning: bot_eq_ff -> bot_eq_false is a dubious translation:
 lean 3 declaration is
-  Eq.{1} Bool (Bot.bot.{0} Bool (OrderBot.toHasBot.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) (BoundedOrder.toOrderBot.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) Bool.boundedOrder))) Bool.false
+  Eq.{1} Bool (Bot.bot.{0} Bool (OrderBot.toHasBot.{0} Bool (Preorder.toHasLe.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) (BoundedOrder.toOrderBot.{0} Bool (Preorder.toHasLe.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (LinearOrder.toLattice.{0} Bool Bool.linearOrder))))) Bool.boundedOrder))) Bool.false
 but is expected to have type
   Eq.{1} Bool (Bot.bot.{0} Bool (OrderBot.toBot.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (DistribLattice.toLattice.{0} Bool instDistribLatticeBool))))) (BoundedOrder.toOrderBot.{0} Bool (Preorder.toLE.{0} Bool (PartialOrder.toPreorder.{0} Bool (SemilatticeInf.toPartialOrder.{0} Bool (Lattice.toSemilatticeInf.{0} Bool (DistribLattice.toLattice.{0} Bool instDistribLatticeBool))))) Bool.boundedOrder))) Bool.false
 Case conversion may be inaccurate. Consider using '#align bot_eq_ff bot_eq_falseₓ'. -/
Diff
@@ -823,9 +823,9 @@ variable [SemilatticeSup α] [OrderTop α] {a : α}
 
 /- warning: top_sup_eq -> top_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align top_sup_eq top_sup_eqₓ'. -/
 @[simp]
 theorem top_sup_eq : ⊤ ⊔ a = ⊤ :=
@@ -834,9 +834,9 @@ theorem top_sup_eq : ⊤ ⊔ a = ⊤ :=
 
 /- warning: sup_top_eq -> sup_top_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align sup_top_eq sup_top_eqₓ'. -/
 @[simp]
 theorem sup_top_eq : a ⊔ ⊤ = ⊤ :=
@@ -851,9 +851,9 @@ variable [SemilatticeSup α] [OrderBot α] {a b : α}
 
 /- warning: bot_sup_eq -> bot_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
 Case conversion may be inaccurate. Consider using '#align bot_sup_eq bot_sup_eqₓ'. -/
 @[simp]
 theorem bot_sup_eq : ⊥ ⊔ a = a :=
@@ -862,9 +862,9 @@ theorem bot_sup_eq : ⊥ ⊔ a = a :=
 
 /- warning: sup_bot_eq -> sup_bot_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
 Case conversion may be inaccurate. Consider using '#align sup_bot_eq sup_bot_eqₓ'. -/
 @[simp]
 theorem sup_bot_eq : a ⊔ ⊥ = a :=
@@ -873,9 +873,9 @@ theorem sup_bot_eq : a ⊔ ⊥ = a :=
 
 /- warning: sup_eq_bot_iff -> sup_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align sup_eq_bot_iff sup_eq_bot_iffₓ'. -/
 @[simp]
 theorem sup_eq_bot_iff : a ⊔ b = ⊥ ↔ a = ⊥ ∧ b = ⊥ := by rw [eq_bot_iff, sup_le_iff] <;> simp
@@ -889,9 +889,9 @@ variable [SemilatticeInf α] [OrderTop α] {a b : α}
 
 /- warning: top_inf_eq -> top_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) a
 Case conversion may be inaccurate. Consider using '#align top_inf_eq top_inf_eqₓ'. -/
 @[simp]
 theorem top_inf_eq : ⊤ ⊓ a = a :=
@@ -900,9 +900,9 @@ theorem top_inf_eq : ⊤ ⊓ a = a :=
 
 /- warning: inf_top_eq -> inf_top_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) a
 Case conversion may be inaccurate. Consider using '#align inf_top_eq inf_top_eqₓ'. -/
 @[simp]
 theorem inf_top_eq : a ⊓ ⊤ = a :=
@@ -911,9 +911,9 @@ theorem inf_top_eq : a ⊓ ⊤ = a :=
 
 /- warning: inf_eq_top_iff -> inf_eq_top_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (And (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align inf_eq_top_iff inf_eq_top_iffₓ'. -/
 @[simp]
 theorem inf_eq_top_iff : a ⊓ b = ⊤ ↔ a = ⊤ ∧ b = ⊤ :=
@@ -928,9 +928,9 @@ variable [SemilatticeInf α] [OrderBot α] {a : α}
 
 /- warning: bot_inf_eq -> bot_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)) a) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align bot_inf_eq bot_inf_eqₓ'. -/
 @[simp]
 theorem bot_inf_eq : ⊥ ⊓ a = ⊥ :=
@@ -939,9 +939,9 @@ theorem bot_inf_eq : ⊥ ⊓ a = ⊥ :=
 
 /- warning: inf_bot_eq -> inf_bot_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2))
 Case conversion may be inaccurate. Consider using '#align inf_bot_eq inf_bot_eqₓ'. -/
 @[simp]
 theorem inf_bot_eq : a ⊓ ⊥ = ⊥ :=

Changes in mathlib4

mathlib3
mathlib4
chore(Order): add missing inst prefix to instance names (#11238)

This is not exhaustive; it largely does not rename instances that relate to algebra, and only focuses on the "core" order files.

Diff
@@ -235,17 +235,17 @@ namespace OrderDual
 
 variable (α)
 
-instance top [Bot α] : Top αᵒᵈ :=
+instance instTop [Bot α] : Top αᵒᵈ :=
   ⟨(⊥ : α)⟩
 
-instance bot [Top α] : Bot αᵒᵈ :=
+instance instBot [Top α] : Bot αᵒᵈ :=
   ⟨(⊤ : α)⟩
 
-instance orderTop [LE α] [OrderBot α] : OrderTop αᵒᵈ where
+instance instOrderTop [LE α] [OrderBot α] : OrderTop αᵒᵈ where
   __ := inferInstanceAs (Top αᵒᵈ)
   le_top := @bot_le α _ _
 
-instance orderBot [LE α] [OrderTop α] : OrderBot αᵒᵈ where
+instance instOrderBot [LE α] [OrderTop α] : OrderBot αᵒᵈ where
   __ := inferInstanceAs (Bot αᵒᵈ)
   bot_le := @le_top α _ _
 
@@ -475,7 +475,7 @@ end SemilatticeInfBot
 class BoundedOrder (α : Type u) [LE α] extends OrderTop α, OrderBot α
 #align bounded_order BoundedOrder
 
-instance OrderDual.boundedOrder (α : Type u) [LE α] [BoundedOrder α] : BoundedOrder αᵒᵈ where
+instance OrderDual.instBoundedOrder (α : Type u) [LE α] [BoundedOrder α] : BoundedOrder αᵒᵈ where
   __ := inferInstanceAs (OrderTop αᵒᵈ)
   __ := inferInstanceAs (OrderBot αᵒᵈ)
 
@@ -618,13 +618,14 @@ theorem top_def [∀ i, Top (α' i)] : (⊤ : ∀ i, α' i) = fun _ => ⊤ :=
   rfl
 #align pi.top_def Pi.top_def
 
-instance orderTop [∀ i, LE (α' i)] [∀ i, OrderTop (α' i)] : OrderTop (∀ i, α' i) where
+instance instOrderTop [∀ i, LE (α' i)] [∀ i, OrderTop (α' i)] : OrderTop (∀ i, α' i) where
   le_top _ := fun _ => le_top
 
-instance orderBot [∀ i, LE (α' i)] [∀ i, OrderBot (α' i)] : OrderBot (∀ i, α' i) where
+instance instOrderBot [∀ i, LE (α' i)] [∀ i, OrderBot (α' i)] : OrderBot (∀ i, α' i) where
   bot_le _ := fun _ => bot_le
 
-instance boundedOrder [∀ i, LE (α' i)] [∀ i, BoundedOrder (α' i)] : BoundedOrder (∀ i, α' i) where
+instance instBoundedOrder [∀ i, LE (α' i)] [∀ i, BoundedOrder (α' i)] :
+    BoundedOrder (∀ i, α' i) where
   __ := inferInstanceAs (OrderTop (∀ i, α' i))
   __ := inferInstanceAs (OrderBot (∀ i, α' i))
 
@@ -777,10 +778,10 @@ namespace Prod
 
 variable (α β)
 
-instance top [Top α] [Top β] : Top (α × β) :=
+instance instTop [Top α] [Top β] : Top (α × β) :=
   ⟨⟨⊤, ⊤⟩⟩
 
-instance bot [Bot α] [Bot β] : Bot (α × β) :=
+instance instBot [Bot α] [Bot β] : Bot (α × β) :=
   ⟨⟨⊥, ⊥⟩⟩
 
 theorem fst_top [Top α] [Top β] : (⊤ : α × β).fst = ⊤ := rfl
@@ -788,15 +789,16 @@ theorem snd_top [Top α] [Top β] : (⊤ : α × β).snd = ⊤ := rfl
 theorem fst_bot [Bot α] [Bot β] : (⊥ : α × β).fst = ⊥ := rfl
 theorem snd_bot [Bot α] [Bot β] : (⊥ : α × β).snd = ⊥ := rfl
 
-instance orderTop [LE α] [LE β] [OrderTop α] [OrderTop β] : OrderTop (α × β) where
+instance instOrderTop [LE α] [LE β] [OrderTop α] [OrderTop β] : OrderTop (α × β) where
   __ := inferInstanceAs (Top (α × β))
   le_top _ := ⟨le_top, le_top⟩
 
-instance orderBot [LE α] [LE β] [OrderBot α] [OrderBot β] : OrderBot (α × β) where
+instance instOrderBot [LE α] [LE β] [OrderBot α] [OrderBot β] : OrderBot (α × β) where
   __ := inferInstanceAs (Bot (α × β))
   bot_le _ := ⟨bot_le, bot_le⟩
 
-instance boundedOrder [LE α] [LE β] [BoundedOrder α] [BoundedOrder β] : BoundedOrder (α × β) where
+instance instBoundedOrder [LE α] [LE β] [BoundedOrder α] [BoundedOrder β] :
+    BoundedOrder (α × β) where
   __ := inferInstanceAs (OrderTop (α × β))
   __ := inferInstanceAs (OrderBot (α × β))
 
@@ -899,7 +901,7 @@ section Bool
 
 open Bool
 
-instance Bool.boundedOrder : BoundedOrder Bool where
+instance Bool.instBoundedOrder : BoundedOrder Bool where
   top := true
   le_top := Bool.le_true
   bot := false
chore(Order): Make more arguments explicit (#11033)

Those lemmas have historically been very annoying to use in rw since all their arguments were implicit. One too many people complained about it on Zulip, so I'm changing them.

Downstream code broken by this change can fix it by adding appropriately many _s.

Also marks CauSeq.ext @[ext].

Order.BoundedOrder

  • top_sup_eq
  • sup_top_eq
  • bot_sup_eq
  • sup_bot_eq
  • top_inf_eq
  • inf_top_eq
  • bot_inf_eq
  • inf_bot_eq

Order.Lattice

  • sup_idem
  • sup_comm
  • sup_assoc
  • sup_left_idem
  • sup_right_idem
  • inf_idem
  • inf_comm
  • inf_assoc
  • inf_left_idem
  • inf_right_idem
  • sup_inf_left
  • sup_inf_right
  • inf_sup_left
  • inf_sup_right

Order.MinMax

  • max_min_distrib_left
  • max_min_distrib_right
  • min_max_distrib_left
  • min_max_distrib_right

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -403,12 +403,12 @@ section SemilatticeSupTop
 variable [SemilatticeSup α] [OrderTop α] {a : α}
 
 -- Porting note: Not simp because simp can prove it
-theorem top_sup_eq : ⊤ ⊔ a = ⊤ :=
+theorem top_sup_eq (a : α) : ⊤ ⊔ a = ⊤ :=
   sup_of_le_left le_top
 #align top_sup_eq top_sup_eq
 
 -- Porting note: Not simp because simp can prove it
-theorem sup_top_eq : a ⊔ ⊤ = ⊤ :=
+theorem sup_top_eq (a : α) : a ⊔ ⊤ = ⊤ :=
   sup_of_le_right le_top
 #align sup_top_eq sup_top_eq
 
@@ -419,12 +419,12 @@ section SemilatticeSupBot
 variable [SemilatticeSup α] [OrderBot α] {a b : α}
 
 -- Porting note: Not simp because simp can prove it
-theorem bot_sup_eq : ⊥ ⊔ a = a :=
+theorem bot_sup_eq (a : α) : ⊥ ⊔ a = a :=
   sup_of_le_right bot_le
 #align bot_sup_eq bot_sup_eq
 
 -- Porting note: Not simp because simp can prove it
-theorem sup_bot_eq : a ⊔ ⊥ = a :=
+theorem sup_bot_eq (a : α) : a ⊔ ⊥ = a :=
   sup_of_le_left bot_le
 #align sup_bot_eq sup_bot_eq
 
@@ -439,13 +439,11 @@ section SemilatticeInfTop
 variable [SemilatticeInf α] [OrderTop α] {a b : α}
 
 -- Porting note: Not simp because simp can prove it
-theorem top_inf_eq : ⊤ ⊓ a = a :=
-  inf_of_le_right le_top
+lemma top_inf_eq (a : α) : ⊤ ⊓ a = a := inf_of_le_right le_top
 #align top_inf_eq top_inf_eq
 
 -- Porting note: Not simp because simp can prove it
-theorem inf_top_eq : a ⊓ ⊤ = a :=
-  inf_of_le_left le_top
+lemma inf_top_eq (a : α) : a ⊓ ⊤ = a := inf_of_le_left le_top
 #align inf_top_eq inf_top_eq
 
 @[simp]
@@ -460,13 +458,11 @@ section SemilatticeInfBot
 variable [SemilatticeInf α] [OrderBot α] {a : α}
 
 -- Porting note: Not simp because simp can prove it
-theorem bot_inf_eq : ⊥ ⊓ a = ⊥ :=
-  inf_of_le_left bot_le
+lemma bot_inf_eq (a : α) : ⊥ ⊓ a = ⊥ := inf_of_le_left bot_le
 #align bot_inf_eq bot_inf_eq
 
 -- Porting note: Not simp because simp can prove it
-theorem inf_bot_eq : a ⊓ ⊥ = ⊥ :=
-  inf_of_le_right bot_le
+lemma inf_bot_eq (a : α) : a ⊓ ⊥ = ⊥ := inf_of_le_right bot_le
 #align inf_bot_eq inf_bot_eq
 
 end SemilatticeInfBot
@@ -833,36 +829,28 @@ section LinearOrder
 variable [LinearOrder α]
 
 -- `simp` can prove these, so they shouldn't be simp-lemmas.
-theorem min_bot_left [OrderBot α] (a : α) : min ⊥ a = ⊥ :=
-  bot_inf_eq
+theorem min_bot_left [OrderBot α] (a : α) : min ⊥ a = ⊥ := bot_inf_eq _
 #align min_bot_left min_bot_left
 
-theorem max_top_left [OrderTop α] (a : α) : max ⊤ a = ⊤ :=
-  top_sup_eq
+theorem max_top_left [OrderTop α] (a : α) : max ⊤ a = ⊤ := top_sup_eq _
 #align max_top_left max_top_left
 
-theorem min_top_left [OrderTop α] (a : α) : min ⊤ a = a :=
-  top_inf_eq
+theorem min_top_left [OrderTop α] (a : α) : min ⊤ a = a := top_inf_eq _
 #align min_top_left min_top_left
 
-theorem max_bot_left [OrderBot α] (a : α) : max ⊥ a = a :=
-  bot_sup_eq
+theorem max_bot_left [OrderBot α] (a : α) : max ⊥ a = a := bot_sup_eq _
 #align max_bot_left max_bot_left
 
-theorem min_top_right [OrderTop α] (a : α) : min a ⊤ = a :=
-  inf_top_eq
+theorem min_top_right [OrderTop α] (a : α) : min a ⊤ = a := inf_top_eq _
 #align min_top_right min_top_right
 
-theorem max_bot_right [OrderBot α] (a : α) : max a ⊥ = a :=
-  sup_bot_eq
+theorem max_bot_right [OrderBot α] (a : α) : max a ⊥ = a := sup_bot_eq _
 #align max_bot_right max_bot_right
 
-theorem min_bot_right [OrderBot α] (a : α) : min a ⊥ = ⊥ :=
-  inf_bot_eq
+theorem min_bot_right [OrderBot α] (a : α) : min a ⊥ = ⊥ := inf_bot_eq _
 #align min_bot_right min_bot_right
 
-theorem max_top_right [OrderTop α] (a : α) : max a ⊤ = ⊤ :=
-  sup_top_eq
+theorem max_top_right [OrderTop α] (a : α) : max a ⊤ = ⊤ := sup_top_eq _
 #align max_top_right max_top_right
 
 @[simp]
style(Order): use where __ := x instead of := { x with } (#10588)

The former style encourages one parent per line, which is easier to review and see diffs of. It also allows a handful of := fun a b =>s to be replaced with the less noisy a b :=.

A small number of inferInstanceAs _ withs were removed, as they are automatic in those places anyway.

Diff
@@ -622,11 +622,11 @@ theorem top_def [∀ i, Top (α' i)] : (⊤ : ∀ i, α' i) = fun _ => ⊤ :=
   rfl
 #align pi.top_def Pi.top_def
 
-instance orderTop [∀ i, LE (α' i)] [∀ i, OrderTop (α' i)] : OrderTop (∀ i, α' i) :=
-  { inferInstanceAs (Top (∀ i, α' i)) with le_top := fun _ _ => le_top }
+instance orderTop [∀ i, LE (α' i)] [∀ i, OrderTop (α' i)] : OrderTop (∀ i, α' i) where
+  le_top _ := fun _ => le_top
 
-instance orderBot [∀ i, LE (α' i)] [∀ i, OrderBot (α' i)] : OrderBot (∀ i, α' i) :=
-  { inferInstanceAs (Bot (∀ i, α' i)) with bot_le := fun _ _ => bot_le }
+instance orderBot [∀ i, LE (α' i)] [∀ i, OrderBot (α' i)] : OrderBot (∀ i, α' i) where
+  bot_le _ := fun _ => bot_le
 
 instance boundedOrder [∀ i, LE (α' i)] [∀ i, BoundedOrder (α' i)] : BoundedOrder (∀ i, α' i) where
   __ := inferInstanceAs (OrderTop (∀ i, α' i))
@@ -691,8 +691,10 @@ def OrderBot.lift [LE α] [Bot α] [LE β] [OrderBot β] (f : α → β)
 /-- Pullback a `BoundedOrder`. -/
 @[reducible]
 def BoundedOrder.lift [LE α] [Top α] [Bot α] [LE β] [BoundedOrder β] (f : α → β)
-    (map_le : ∀ a b, f a ≤ f b → a ≤ b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : BoundedOrder α :=
-  { OrderTop.lift f map_le map_top, OrderBot.lift f map_le map_bot with }
+    (map_le : ∀ a b, f a ≤ f b → a ≤ b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
+    BoundedOrder α where
+  __ := OrderTop.lift f map_le map_top
+  __ := OrderBot.lift f map_le map_bot
 #align bounded_order.lift BoundedOrder.lift
 
 end lift
@@ -724,8 +726,9 @@ protected def orderTop [LE α] [OrderTop α] (htop : p ⊤) : OrderTop { x : α
 /-- A subtype remains a bounded order if the property holds at `⊥` and `⊤`. -/
 @[reducible]
 protected def boundedOrder [LE α] [BoundedOrder α] (hbot : p ⊥) (htop : p ⊤) :
-    BoundedOrder (Subtype p) :=
-  { Subtype.orderTop htop, Subtype.orderBot hbot with }
+    BoundedOrder (Subtype p) where
+  __ := Subtype.orderTop htop
+  __ := Subtype.orderBot hbot
 #align subtype.bounded_order Subtype.boundedOrder
 
 variable [PartialOrder α]
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -3,7 +3,6 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import Mathlib.Data.Option.Basic
 import Mathlib.Order.Lattice
 import Mathlib.Order.ULift
 import Mathlib.Tactic.PushNeg
chore(Order/Notation): move notation classes from other files (#9750)

With this change (and future similar changes), we can avoid importing heavier files if we only need notation, not lemmas.

Diff
@@ -40,37 +40,6 @@ variable {α : Type u} {β : Type v} {γ δ : Type*}
 
 /-! ### Top, bottom element -/
 
-
-/-- Typeclass for the `⊤` (`\top`) notation -/
-@[notation_class, ext]
-class Top (α : Type u) where
-  /-- The top (`⊤`, `\top`) element -/
-  top : α
-#align has_top Top
-
-/-- Typeclass for the `⊥` (`\bot`) notation -/
-@[notation_class, ext]
-class Bot (α : Type u) where
-  /-- The bot (`⊥`, `\bot`) element -/
-  bot : α
-#align has_bot Bot
-
-/-- The top (`⊤`, `\top`) element -/
-notation "⊤" => Top.top
-
-/-- The bot (`⊥`, `\bot`) element -/
-notation "⊥" => Bot.bot
-
-instance (priority := 100) top_nonempty (α : Type u) [Top α] : Nonempty α :=
-  ⟨⊤⟩
-#align has_top_nonempty top_nonempty
-
-instance (priority := 100) bot_nonempty (α : Type u) [Bot α] : Nonempty α :=
-  ⟨⊥⟩
-#align has_bot_nonempty bot_nonempty
-
-attribute [match_pattern] Bot.bot Top.top
-
 /-- An order is an `OrderTop` if it has a greatest element.
 We state this using a data mixin, holding the value of `⊤` and the greatest element constraint. -/
 class OrderTop (α : Type u) [LE α] extends Top α where
chore: Replace (· op ·) a by (a op ·) (#8843)

I used the regex \(\(· (.) ·\) (.)\), replacing with ($2 $1 ·).

Diff
@@ -551,10 +551,10 @@ theorem monotone_or {p q : α → Prop} (m_p : Monotone p) (m_q : Monotone q) :
   fun _ _ h => Or.imp (m_p h) (m_q h)
 #align monotone_or monotone_or
 
-theorem monotone_le {x : α} : Monotone ((· ≤ ·) x) := fun _ _ h' h => h.trans h'
+theorem monotone_le {x : α} : Monotone (x ≤ ·) := fun _ _ h' h => h.trans h'
 #align monotone_le monotone_le
 
-theorem monotone_lt {x : α} : Monotone ((· < ·) x) := fun _ _ h' h => h.trans_le h'
+theorem monotone_lt {x : α} : Monotone (x < ·) := fun _ _ h' h => h.trans_le h'
 #align monotone_lt monotone_lt
 
 theorem antitone_le {x : α} : Antitone (· ≤ x) := fun _ _ h' h => h'.trans h
chore: update Mathlib for leanprover/std4#183 (#7982)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -942,9 +942,9 @@ open Bool
 
 instance Bool.boundedOrder : BoundedOrder Bool where
   top := true
-  le_top _ := le_true
+  le_top := Bool.le_true
   bot := false
-  bot_le _ := false_le
+  bot_le := Bool.false_le
 
 @[simp]
 theorem top_eq_true : ⊤ = true :=
refactor: Change OrderBot ext lemma to Subsingleton (#7376)

This ext lemma had no assumption, so it can be turned into a Subsingleton instance.

Note that in Lean 3, subsingleton instances were a performance concern for simp. This concern is gone in Lean 4.

Diff
@@ -229,14 +229,6 @@ theorem OrderTop.ext_top {α} {hA : PartialOrder α} (A : OrderTop α) {hB : Par
   exact @le_top _ _ A _
 #align order_top.ext_top OrderTop.ext_top
 
-theorem OrderTop.ext {α} [PartialOrder α] {A B : OrderTop α} : A = B := by
-  rcases A with ⟨ha⟩
-  rcases B with ⟨hb⟩
-  congr
-  ext
-  exact le_antisymm (hb _) (ha _)
-#align order_top.ext OrderTop.ext
-
 /-- An order is an `OrderBot` if it has a least element.
 We state this using a data mixin, holding the value of `⊥` and the least element constraint. -/
 class OrderBot (α : Type u) [LE α] extends Bot α where
@@ -438,14 +430,6 @@ theorem OrderBot.ext_bot {α} {hA : PartialOrder α} (A : OrderBot α) {hB : Par
   exact @bot_le _ _ A _
 #align order_bot.ext_bot OrderBot.ext_bot
 
-theorem OrderBot.ext {α} [PartialOrder α] {A B : OrderBot α} : A = B := by
-  rcases A with ⟨ha⟩
-  rcases B with ⟨hb⟩
-  congr
-  ext
-  exact le_antisymm (ha _) (hb _)
-#align order_bot.ext OrderBot.ext
-
 section SemilatticeSupTop
 
 variable [SemilatticeSup α] [OrderTop α] {a : α}
@@ -531,13 +515,19 @@ instance OrderDual.boundedOrder (α : Type u) [LE α] [BoundedOrder α] : Bounde
   __ := inferInstanceAs (OrderTop αᵒᵈ)
   __ := inferInstanceAs (OrderBot αᵒᵈ)
 
-theorem BoundedOrder.ext {α} [PartialOrder α] {A B : BoundedOrder α} : A = B := by
-  have ht : @BoundedOrder.toOrderTop α _ A = @BoundedOrder.toOrderTop α _ B := OrderTop.ext
-  have hb : @BoundedOrder.toOrderBot α _ A = @BoundedOrder.toOrderBot α _ B := OrderBot.ext
-  cases A
-  cases B
-  congr
-#align bounded_order.ext BoundedOrder.ext
+section PartialOrder
+variable [PartialOrder α]
+
+instance OrderBot.instSubsingleton : Subsingleton (OrderBot α) where
+  allEq := by rintro @⟨⟨a⟩, ha⟩ @⟨⟨b⟩, hb⟩; congr; exact le_antisymm (ha _) (hb _)
+
+instance OrderTop.instSubsingleton : Subsingleton (OrderTop α) where
+  allEq := by rintro @⟨⟨a⟩, ha⟩ @⟨⟨b⟩, hb⟩; congr; exact le_antisymm (hb _) (ha _)
+
+instance BoundedOrder.instSubsingleton : Subsingleton (BoundedOrder α) where
+  allEq := by rintro ⟨⟩ ⟨⟩; congr <;> exact Subsingleton.elim _ _
+
+end PartialOrder
 
 section Logic
 
chore: delay import of Tactic.Common (#7000)

I know that this is contrary to what we've done previously, but:

  • I'm trying to upstream a great many tactics from Mathlib to Std (essentially, everything that non-mathematicians want too).
  • This makes it much easier for me to see what is going on, and understand the import requirements (particularly for the "big" tactics norm_num / ring / linarith)
  • It's actually not as bad as it looks here, because as these tactics move up to Std they will start disappearing again from explicit imports, but Mathlib can happily import all of Std.

(Oh

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -6,6 +6,7 @@ Authors: Johannes Hölzl
 import Mathlib.Data.Option.Basic
 import Mathlib.Order.Lattice
 import Mathlib.Order.ULift
+import Mathlib.Tactic.PushNeg
 
 #align_import order.bounded_order from "leanprover-community/mathlib"@"70d50ecfd4900dd6d328da39ab7ebd516abe4025"
 
chore: cleanup a few porting notes and friends relating to alias (#6790)
  • After the new alias command we can now do protected alias
  • alias at some point broke dot notation by unfolding (see #1022) this was fixed in #1058 but the library was not fixed up there
Diff
@@ -623,10 +623,9 @@ section SemilatticeInf
 
 variable [SemilatticeInf α]
 
--- Porting note: was `hP.dual_left`
 theorem exists_le_and_iff_exists {P : α → Prop} {x₀ : α} (hP : Antitone P) :
     (∃ x, x ≤ x₀ ∧ P x) ↔ ∃ x, P x :=
-  exists_ge_and_iff_exists <| Antitone.dual_left hP
+  exists_ge_and_iff_exists <| hP.dual_left
 #align exists_le_and_iff_exists exists_le_and_iff_exists
 
 end SemilatticeInf
feat: patch for new alias command (#6172)
Diff
@@ -122,7 +122,7 @@ theorem ne_top_of_lt (h : a < b) : a ≠ ⊤ :=
   (h.trans_le le_top).ne
 #align ne_top_of_lt ne_top_of_lt
 
-alias ne_top_of_lt ← LT.lt.ne_top
+alias LT.lt.ne_top := ne_top_of_lt
 
 end Preorder
 
@@ -146,10 +146,10 @@ theorem not_isTop_iff_ne_top : ¬IsTop a ↔ a ≠ ⊤ :=
   isTop_iff_eq_top.not
 #align not_is_top_iff_ne_top not_isTop_iff_ne_top
 
-alias isMax_iff_eq_top ↔ IsMax.eq_top _
+alias ⟨IsMax.eq_top, _⟩ := isMax_iff_eq_top
 #align is_max.eq_top IsMax.eq_top
 
-alias isTop_iff_eq_top ↔ IsTop.eq_top _
+alias ⟨IsTop.eq_top, _⟩ := isTop_iff_eq_top
 #align is_top.eq_top IsTop.eq_top
 
 @[simp]
@@ -328,7 +328,7 @@ theorem ne_bot_of_gt (h : a < b) : b ≠ ⊥ :=
   (bot_le.trans_lt h).ne'
 #align ne_bot_of_gt ne_bot_of_gt
 
-alias ne_bot_of_gt ← LT.lt.ne_bot
+alias LT.lt.ne_bot := ne_bot_of_gt
 
 end Preorder
 
@@ -352,10 +352,10 @@ theorem not_isBot_iff_ne_bot : ¬IsBot a ↔ a ≠ ⊥ :=
   isBot_iff_eq_bot.not
 #align not_is_bot_iff_ne_bot not_isBot_iff_ne_bot
 
-alias isMin_iff_eq_bot ↔ IsMin.eq_bot _
+alias ⟨IsMin.eq_bot, _⟩ := isMin_iff_eq_bot
 #align is_min.eq_bot IsMin.eq_bot
 
-alias isBot_iff_eq_bot ↔ IsBot.eq_bot _
+alias ⟨IsBot.eq_bot, _⟩ := isBot_iff_eq_bot
 #align is_bot.eq_bot IsBot.eq_bot
 
 @[simp]
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -35,7 +35,7 @@ open Function OrderDual
 
 universe u v
 
-variable {α : Type u} {β : Type v} {γ δ : Type _}
+variable {α : Type u} {β : Type v} {γ δ : Type*}
 
 /-! ### Top, bottom element -/
 
@@ -81,7 +81,7 @@ section OrderTop
 
 /-- An order is (noncomputably) either an `OrderTop` or a `NoTopOrder`. Use as
 `casesI topOrderOrNoTopOrder α`. -/
-noncomputable def topOrderOrNoTopOrder (α : Type _) [LE α] : PSum (OrderTop α) (NoTopOrder α) := by
+noncomputable def topOrderOrNoTopOrder (α : Type*) [LE α] : PSum (OrderTop α) (NoTopOrder α) := by
   by_cases H : ∀ a : α, ∃ b, ¬b ≤ a
   · exact PSum.inr ⟨H⟩
   · push_neg at H
@@ -247,7 +247,7 @@ section OrderBot
 
 /-- An order is (noncomputably) either an `OrderBot` or a `NoBotOrder`. Use as
 `casesI botOrderOrNoBotOrder α`. -/
-noncomputable def botOrderOrNoBotOrder (α : Type _) [LE α] : PSum (OrderBot α) (NoBotOrder α) := by
+noncomputable def botOrderOrNoBotOrder (α : Type*) [LE α] : PSum (OrderBot α) (NoBotOrder α) := by
   by_cases H : ∀ a : α, ∃ b, ¬a ≤ b
   · exact PSum.inr ⟨H⟩
   · push_neg at H
@@ -638,7 +638,7 @@ end Logic
 
 namespace Pi
 
-variable {ι : Type _} {α' : ι → Type _}
+variable {ι : Type*} {α' : ι → Type*}
 
 instance [∀ i, Bot (α' i)] : Bot (∀ i, α' i) :=
   ⟨fun _ => ⊥⟩
feat: characterizations of IsBigO along atTop (#6198)

This PR adds a way to characterize IsBigO along the atTop filter, for cases where we want the constant to depend on a "starting point" n₀.

It also adds the lemma tendsto_nhds_of_eventually_eq.

Diff
@@ -590,6 +590,22 @@ theorem Antitone.ball {P : β → α → Prop} {s : Set β} (hP : ∀ x ∈ s, A
     Antitone fun y => ∀ x ∈ s, P x y := fun _ _ hy h x hx => hP x hx hy (h x hx)
 #align antitone.ball Antitone.ball
 
+theorem Monotone.exists {P : β → α → Prop} (hP : ∀ x, Monotone (P x)) :
+    Monotone fun y => ∃ x, P x y :=
+  fun _ _ hy ⟨x, hx⟩ ↦ ⟨x, hP x hy hx⟩
+
+theorem Antitone.exists {P : β → α → Prop} (hP : ∀ x, Antitone (P x)) :
+    Antitone fun y => ∃ x, P x y :=
+  fun _ _ hy ⟨x, hx⟩ ↦ ⟨x, hP x hy hx⟩
+
+theorem forall_ge_iff {P : α → Prop} {x₀ : α} (hP : Monotone P) :
+    (∀ x ≥ x₀, P x) ↔ P x₀ :=
+  ⟨fun H ↦ H x₀ le_rfl, fun H _ hx ↦ hP hx H⟩
+
+theorem forall_le_iff {P : α → Prop} {x₀ : α} (hP : Antitone P) :
+    (∀ x ≤ x₀, P x) ↔ P x₀ :=
+  ⟨fun H ↦ H x₀ le_rfl, fun H _ hx ↦ hP hx H⟩
+
 end Preorder
 
 section SemilatticeSup
feat: Add basic order instances on ULift (#5998)

This adds:

  • Preorder
  • PartialOrder
  • SemilatticeSup
  • SemilatticeInf
  • Lattice
  • DistribLattice
  • CompleteLattice
  • LinearOrder
Diff
@@ -5,6 +5,7 @@ Authors: Johannes Hölzl
 -/
 import Mathlib.Data.Option.Basic
 import Mathlib.Order.Lattice
+import Mathlib.Order.ULift
 
 #align_import order.bounded_order from "leanprover-community/mathlib"@"70d50ecfd4900dd6d328da39ab7ebd516abe4025"
 
@@ -828,6 +829,28 @@ instance boundedOrder [LE α] [LE β] [BoundedOrder α] [BoundedOrder β] : Boun
 
 end Prod
 
+namespace ULift
+
+instance [Top α] : Top (ULift.{v} α) where top := up ⊤
+
+@[simp] theorem up_top [Top α] : up (⊤ : α) = ⊤ := rfl
+@[simp] theorem down_top [Top α] : down (⊤ : ULift α) = ⊤ := rfl
+
+instance [Bot α] : Bot (ULift.{v} α) where bot := up ⊥
+
+@[simp] theorem up_bot [Bot α] : up (⊥ : α) = ⊥ := rfl
+@[simp] theorem down_bot [Bot α] : down (⊥ : ULift α) = ⊥ := rfl
+
+instance [LE α] [OrderBot α] : OrderBot (ULift.{v} α) :=
+  OrderBot.lift ULift.down (fun _ _ => down_le.mp) down_bot
+
+instance [LE α] [OrderTop α] : OrderTop (ULift.{v} α) :=
+  OrderTop.lift ULift.down (fun _ _ => down_le.mp) down_top
+
+instance [LE α] [BoundedOrder α] : BoundedOrder (ULift.{v} α) where
+
+end ULift
+
 section LinearOrder
 
 variable [LinearOrder α]
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.bounded_order
-! leanprover-community/mathlib commit 70d50ecfd4900dd6d328da39ab7ebd516abe4025
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Option.Basic
 import Mathlib.Order.Lattice
 
+#align_import order.bounded_order from "leanprover-community/mathlib"@"70d50ecfd4900dd6d328da39ab7ebd516abe4025"
+
 /-!
 # ⊤ and ⊥, bounded lattices and variants
 
feat: CompletelyDistribLattice (#5238)

Adds new CompletelyDistribLattice/CompleteAtomicBooleanAlgebra classes for complete lattices / complete atomic Boolean algebras that are also completely distributive, and removes the misleading claim that CompleteDistribLattice/CompleteBooleanAlgebra are completely distributive.

  • Product/pi/order dual instances for completely distributive lattices, etc.
  • Every complete linear order is a completely distributive lattice.
  • Every atomic complete Boolean algebra is a complete atomic Boolean algebra.
  • Every complete atomic Boolean algebra is indeed (co)atom(ist)ic.
  • Atom(ist)ic orders are closed under pis.
  • All existing types with CompleteDistribLattice instances are upgraded to CompletelyDistribLattice.
  • All existing types with CompleteBooleanAlgebra instances are upgraded to CompleteAtomicBooleanAlgebra.

See related discussion on Zulip.

Diff
@@ -812,6 +812,11 @@ instance top [Top α] [Top β] : Top (α × β) :=
 instance bot [Bot α] [Bot β] : Bot (α × β) :=
   ⟨⟨⊥, ⊥⟩⟩
 
+theorem fst_top [Top α] [Top β] : (⊤ : α × β).fst = ⊤ := rfl
+theorem snd_top [Top α] [Top β] : (⊤ : α × β).snd = ⊤ := rfl
+theorem fst_bot [Bot α] [Bot β] : (⊥ : α × β).fst = ⊥ := rfl
+theorem snd_bot [Bot α] [Bot β] : (⊥ : α × β).snd = ⊥ := rfl
+
 instance orderTop [LE α] [LE β] [OrderTop α] [OrderTop β] : OrderTop (α × β) where
   __ := inferInstanceAs (Top (α × β))
   le_top _ := ⟨le_top, le_top⟩
feat: add Mathlib.Tactic.Common, and import (#4056)

This makes a mathlib4 version of mathlib3's tactic.basic, now called Mathlib.Tactic.Common, which imports all tactics which do not have significant theory requirements, and then is imported all across the base of the hierarchy.

This ensures that all common tactics are available nearly everywhere in the library, rather than having to be imported one-by-one as you need them.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -10,10 +10,6 @@ Authors: Johannes Hölzl
 -/
 import Mathlib.Data.Option.Basic
 import Mathlib.Order.Lattice
-import Mathlib.Tactic.Classical
-import Mathlib.Tactic.Convert
-import Mathlib.Tactic.PushNeg
-import Mathlib.Tactic.SimpRw
 
 /-!
 # ⊤ and ⊥, bounded lattices and variants
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -90,11 +90,9 @@ section OrderTop
 noncomputable def topOrderOrNoTopOrder (α : Type _) [LE α] : PSum (OrderTop α) (NoTopOrder α) := by
   by_cases H : ∀ a : α, ∃ b, ¬b ≤ a
   · exact PSum.inr ⟨H⟩
-
   · push_neg at H
     letI : Top α := ⟨Classical.choose H⟩
     exact PSum.inl ⟨Classical.choose_spec H⟩
-
 #align top_order_or_no_top_order topOrderOrNoTopOrder
 
 section LE
@@ -258,11 +256,9 @@ section OrderBot
 noncomputable def botOrderOrNoBotOrder (α : Type _) [LE α] : PSum (OrderBot α) (NoBotOrder α) := by
   by_cases H : ∀ a : α, ∃ b, ¬a ≤ b
   · exact PSum.inr ⟨H⟩
-
   · push_neg at H
     letI : Bot α := ⟨Classical.choose H⟩
     exact PSum.inl ⟨Classical.choose_spec H⟩
-
 #align bot_order_or_no_bot_order botOrderOrNoBotOrder
 
 section LE
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -155,8 +155,10 @@ theorem not_isTop_iff_ne_top : ¬IsTop a ↔ a ≠ ⊤ :=
 #align not_is_top_iff_ne_top not_isTop_iff_ne_top
 
 alias isMax_iff_eq_top ↔ IsMax.eq_top _
+#align is_max.eq_top IsMax.eq_top
 
 alias isTop_iff_eq_top ↔ IsTop.eq_top _
+#align is_top.eq_top IsTop.eq_top
 
 @[simp]
 theorem top_le_iff : ⊤ ≤ a ↔ a = ⊤ :=
@@ -361,8 +363,10 @@ theorem not_isBot_iff_ne_bot : ¬IsBot a ↔ a ≠ ⊥ :=
 #align not_is_bot_iff_ne_bot not_isBot_iff_ne_bot
 
 alias isMin_iff_eq_bot ↔ IsMin.eq_bot _
+#align is_min.eq_bot IsMin.eq_bot
 
 alias isBot_iff_eq_bot ↔ IsBot.eq_bot _
+#align is_bot.eq_bot IsBot.eq_bot
 
 @[simp]
 theorem le_bot_iff : a ≤ ⊥ ↔ a = ⊥ :=
chore: update lean4/std4 (#1096)
Diff
@@ -869,7 +869,7 @@ theorem max_top_right [OrderTop α] (a : α) : max a ⊤ = ⊤ :=
 
 @[simp]
 theorem min_eq_bot [OrderBot α] {a b : α} : min a b = ⊥ ↔ a = ⊥ ∨ b = ⊥ := by
-  simp only [← inf_eq_min, ← le_bot_iff, inf_le_iff]; rfl
+  simp only [← inf_eq_min, ← le_bot_iff, inf_le_iff]
 #align min_eq_bot min_eq_bot
 
 @[simp]
chore: add source headers to ported theory files (#1094)

The script used to do this is included. The yaml file was obtained from https://raw.githubusercontent.com/wiki/leanprover-community/mathlib/mathlib4-port-status.md

Diff
@@ -2,6 +2,11 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
+
+! This file was ported from Lean 3 source module order.bounded_order
+! leanprover-community/mathlib commit 70d50ecfd4900dd6d328da39ab7ebd516abe4025
+! Please do not edit these lines, except to modify the commit id
+! if you have ported upstream changes.
 -/
 import Mathlib.Data.Option.Basic
 import Mathlib.Order.Lattice

Dependencies 22

23 files ported (100.0%)
11336 lines ported (100.0%)

All dependencies are ported!