order.complete_boolean_algebraMathlib.Order.CompleteBooleanAlgebra

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

chore(order/category): Partially revert categories (#18690)

It was pointed out in leanprover-community/mathlib4#3164 that certain changes in #18657 were unsound. This PR reverts those unsound changes.

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -18,7 +18,7 @@ distributive Boolean algebras.
 
 ## Typeclasses
 
-* `order.frame`: Frm: A complete lattice whose `⊓` distributes over `⨆`.
+* `order.frame`: Frame: A complete lattice whose `⊓` distributes over `⨆`.
 * `order.coframe`: Coframe: A complete lattice whose `⊔` distributes over `⨅`.
 * `complete_distrib_lattice`: Completely distributive lattices: A complete lattice whose `⊓` and `⊔`
   distribute over `⨆` and `⨅` respectively.

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

chore(order/category): Rename categories (#18657)

The Lean 4 naming convention forces us to rename the categories of orders. Instead of blankly appending Cat to the names, we proactively shorten the names. Incidentally, this gets them closer to the way they're referred in the literature.

  • PreorderPreord (the literature name is Ord, but Lean 4 already takes it)
  • PartialOrderPartOrd
  • BoundedOrderBddOrd
  • FinPartialOrderFinPartOrd
  • SemilatticeSupSemilatSup
  • SemilatticeInfSemilatInf
  • LatticeLat
  • DistribLatticeDistLat
  • BoundedLatticeBddLat
  • BoundedDistribLatticeBddDistLat
  • LinearOrderLinOrd
  • CompleteLatticeCompleteLat
  • FrameFrm (the corresponding class is Order.Frame, but better be safe)

Co-authored-by: Jeremy Tan Jie Rui <e0191785@u.nus.edu>

Diff
@@ -18,7 +18,7 @@ distributive Boolean algebras.
 
 ## Typeclasses
 
-* `order.frame`: Frame: A complete lattice whose `⊓` distributes over `⨆`.
+* `order.frame`: Frm: A complete lattice whose `⊓` distributes over `⨆`.
 * `order.coframe`: Coframe: A complete lattice whose `⊔` distributes over `⨅`.
 * `complete_distrib_lattice`: Completely distributive lattices: A complete lattice whose `⊓` and `⊔`
   distribute over `⨆` and `⨅` respectively.

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -85,10 +85,10 @@ section Frame
 
 variable [Frame α] {s t : Set α} {a b : α}
 
-#print OrderDual.coframe /-
-instance OrderDual.coframe : Coframe αᵒᵈ :=
+#print OrderDual.instCoframe /-
+instance OrderDual.instCoframe : Coframe αᵒᵈ :=
   { OrderDual.completeLattice α with iInf_sup_le_sup_inf := Frame.inf_sup_le_iSup_inf }
-#align order_dual.coframe OrderDual.coframe
+#align order_dual.coframe OrderDual.instCoframe
 -/
 
 #print inf_sSup_eq /-
@@ -212,13 +212,13 @@ theorem iSup_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (
 #align supr_inf_of_antitone iSup_inf_of_antitone
 -/
 
-#print Pi.frame /-
-instance Pi.frame {ι : Type _} {π : ι → Type _} [∀ i, Frame (π i)] : Frame (∀ i, π i) :=
-  { Pi.completeLattice with
+#print Pi.instFrame /-
+instance Pi.instFrame {ι : Type _} {π : ι → Type _} [∀ i, Frame (π i)] : Frame (∀ i, π i) :=
+  { Pi.instCompleteLattice with
     inf_sup_le_iSup_inf := fun a s i => by
       simp only [CompleteLattice.sup, sSup_apply, iSup_apply, Pi.inf_apply, inf_iSup_eq, ←
         iSup_subtype''] }
-#align pi.frame Pi.frame
+#align pi.frame Pi.instFrame
 -/
 
 #print Frame.toDistribLattice /-
@@ -235,10 +235,10 @@ section Coframe
 
 variable [Coframe α] {s t : Set α} {a b : α}
 
-#print OrderDual.frame /-
-instance OrderDual.frame : Frame αᵒᵈ :=
+#print OrderDual.instFrame /-
+instance OrderDual.instFrame : Frame αᵒᵈ :=
   { OrderDual.completeLattice α with inf_sup_le_iSup_inf := Coframe.iInf_sup_le_sup_inf }
-#align order_dual.frame OrderDual.frame
+#align order_dual.frame OrderDual.instFrame
 -/
 
 #print sup_sInf_eq /-
@@ -317,13 +317,13 @@ theorem iInf_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤
 #align infi_sup_of_antitone iInf_sup_of_antitone
 -/
 
-#print Pi.coframe /-
-instance Pi.coframe {ι : Type _} {π : ι → Type _} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) :=
-  { Pi.completeLattice with
+#print Pi.instCoframe /-
+instance Pi.instCoframe {ι : Type _} {π : ι → Type _} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) :=
+  { Pi.instCompleteLattice with
     sInf := sInf
     iInf_sup_le_sup_inf := fun a s i => by
       simp only [← sup_iInf_eq, sInf_apply, ← iInf_subtype'', iInf_apply, Pi.sup_apply] }
-#align pi.coframe Pi.coframe
+#align pi.coframe Pi.instCoframe
 -/
 
 #print Coframe.toDistribLattice /-
@@ -342,13 +342,13 @@ section CompleteDistribLattice
 variable [CompleteDistribLattice α] {a b : α} {s t : Set α}
 
 instance : CompleteDistribLattice αᵒᵈ :=
-  { OrderDual.frame, OrderDual.coframe with }
+  { OrderDual.instFrame, OrderDual.instCoframe with }
 
-#print Pi.completeDistribLattice /-
-instance Pi.completeDistribLattice {ι : Type _} {π : ι → Type _}
+#print Pi.instCompleteDistribLattice /-
+instance Pi.instCompleteDistribLattice {ι : Type _} {π : ι → Type _}
     [∀ i, CompleteDistribLattice (π i)] : CompleteDistribLattice (∀ i, π i) :=
-  { Pi.frame, Pi.coframe with }
-#align pi.complete_distrib_lattice Pi.completeDistribLattice
+  { Pi.instFrame, Pi.instCoframe with }
+#align pi.complete_distrib_lattice Pi.instCompleteDistribLattice
 -/
 
 end CompleteDistribLattice
@@ -359,22 +359,22 @@ class CompleteBooleanAlgebra (α) extends BooleanAlgebra α, CompleteDistribLatt
 #align complete_boolean_algebra CompleteBooleanAlgebra
 -/
 
-#print Pi.completeBooleanAlgebra /-
-instance Pi.completeBooleanAlgebra {ι : Type _} {π : ι → Type _}
+#print Pi.instCompleteBooleanAlgebra /-
+instance Pi.instCompleteBooleanAlgebra {ι : Type _} {π : ι → Type _}
     [∀ i, CompleteBooleanAlgebra (π i)] : CompleteBooleanAlgebra (∀ i, π i) :=
-  { Pi.booleanAlgebra, Pi.completeDistribLattice with }
-#align pi.complete_boolean_algebra Pi.completeBooleanAlgebra
+  { Pi.instBooleanAlgebra, Pi.instCompleteDistribLattice with }
+#align pi.complete_boolean_algebra Pi.instCompleteBooleanAlgebra
 -/
 
-#print Prop.completeBooleanAlgebra /-
-instance Prop.completeBooleanAlgebra : CompleteBooleanAlgebra Prop :=
-  { Prop.booleanAlgebra,
-    Prop.completeLattice with
+#print Prop.instCompleteBooleanAlgebra /-
+instance Prop.instCompleteBooleanAlgebra : CompleteBooleanAlgebra Prop :=
+  { Prop.instBooleanAlgebra,
+    Prop.instCompleteLattice with
     iInf_sup_le_sup_inf := fun p s =>
       Iff.mp <| by simp only [forall_or_left, CompleteLattice.inf, iInf_Prop_eq, sup_Prop_eq]
     inf_sup_le_iSup_inf := fun p s =>
       Iff.mp <| by simp only [CompleteLattice.sup, exists_and_left, inf_Prop_eq, iSup_Prop_eq] }
-#align Prop.complete_boolean_algebra Prop.completeBooleanAlgebra
+#align Prop.complete_boolean_algebra Prop.instCompleteBooleanAlgebra
 -/
 
 section CompleteBooleanAlgebra
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Yaël Dillies
 -/
-import Mathbin.Order.CompleteLattice
-import Mathbin.Order.Directed
-import Mathbin.Logic.Equiv.Set
+import Order.CompleteLattice
+import Order.Directed
+import Logic.Equiv.Set
 
 #align_import order.complete_boolean_algebra from "leanprover-community/mathlib"@"71b36b6f3bbe3b44e6538673819324d3ee9fcc96"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Yaël Dillies
-
-! This file was ported from Lean 3 source module order.complete_boolean_algebra
-! leanprover-community/mathlib commit 71b36b6f3bbe3b44e6538673819324d3ee9fcc96
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.CompleteLattice
 import Mathbin.Order.Directed
 import Mathbin.Logic.Equiv.Set
 
+#align_import order.complete_boolean_algebra from "leanprover-community/mathlib"@"71b36b6f3bbe3b44e6538673819324d3ee9fcc96"
+
 /-!
 # Frames, completely distributive lattices and Boolean algebras
 
Diff
@@ -94,78 +94,109 @@ instance OrderDual.coframe : Coframe αᵒᵈ :=
 #align order_dual.coframe OrderDual.coframe
 -/
 
+#print inf_sSup_eq /-
 theorem inf_sSup_eq : a ⊓ sSup s = ⨆ b ∈ s, a ⊓ b :=
   (Frame.inf_sup_le_iSup_inf _ _).antisymm iSup_inf_le_inf_sSup
 #align inf_Sup_eq inf_sSup_eq
+-/
 
+#print sSup_inf_eq /-
 theorem sSup_inf_eq : sSup s ⊓ b = ⨆ a ∈ s, a ⊓ b := by
   simpa only [inf_comm] using @inf_sSup_eq α _ s b
 #align Sup_inf_eq sSup_inf_eq
+-/
 
+#print iSup_inf_eq /-
 theorem iSup_inf_eq (f : ι → α) (a : α) : (⨆ i, f i) ⊓ a = ⨆ i, f i ⊓ a := by
   rw [iSup, sSup_inf_eq, iSup_range]
 #align supr_inf_eq iSup_inf_eq
+-/
 
+#print inf_iSup_eq /-
 theorem inf_iSup_eq (a : α) (f : ι → α) : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓ f i := by
   simpa only [inf_comm] using iSup_inf_eq f a
 #align inf_supr_eq inf_iSup_eq
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iSup₂_inf_eq /-
 theorem iSup₂_inf_eq {f : ∀ i, κ i → α} (a : α) : (⨆ (i) (j), f i j) ⊓ a = ⨆ (i) (j), f i j ⊓ a :=
   by simp only [iSup_inf_eq]
 #align bsupr_inf_eq iSup₂_inf_eq
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print inf_iSup₂_eq /-
 theorem inf_iSup₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊓ ⨆ (i) (j), f i j) = ⨆ (i) (j), a ⊓ f i j :=
   by simp only [inf_iSup_eq]
 #align inf_bsupr_eq inf_iSup₂_eq
+-/
 
+#print iSup_inf_iSup /-
 theorem iSup_inf_iSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
     ((⨆ i, f i) ⊓ ⨆ j, g j) = ⨆ i : ι × ι', f i.1 ⊓ g i.2 := by
   simp only [inf_iSup_eq, iSup_inf_eq, iSup_prod]
 #align supr_inf_supr iSup_inf_iSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print biSup_inf_biSup /-
 theorem biSup_inf_biSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
     ((⨆ i ∈ s, f i) ⊓ ⨆ j ∈ t, g j) = ⨆ p ∈ s ×ˢ t, f (p : ι × ι').1 ⊓ g p.2 :=
   by
   simp only [iSup_subtype', iSup_inf_iSup]
   exact (Equiv.surjective _).iSup_congr (Equiv.Set.prod s t).symm fun x => rfl
 #align bsupr_inf_bsupr biSup_inf_biSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print sSup_inf_sSup /-
 theorem sSup_inf_sSup : sSup s ⊓ sSup t = ⨆ p ∈ s ×ˢ t, (p : α × α).1 ⊓ p.2 := by
   simp only [sSup_eq_iSup, biSup_inf_biSup]
 #align Sup_inf_Sup sSup_inf_sSup
+-/
 
+#print iSup_disjoint_iff /-
 theorem iSup_disjoint_iff {f : ι → α} : Disjoint (⨆ i, f i) a ↔ ∀ i, Disjoint (f i) a := by
   simp only [disjoint_iff, iSup_inf_eq, iSup_eq_bot]
 #align supr_disjoint_iff iSup_disjoint_iff
+-/
 
+#print disjoint_iSup_iff /-
 theorem disjoint_iSup_iff {f : ι → α} : Disjoint a (⨆ i, f i) ↔ ∀ i, Disjoint a (f i) := by
   simpa only [disjoint_comm] using iSup_disjoint_iff
 #align disjoint_supr_iff disjoint_iSup_iff
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iSup₂_disjoint_iff /-
 theorem iSup₂_disjoint_iff {f : ∀ i, κ i → α} :
     Disjoint (⨆ (i) (j), f i j) a ↔ ∀ i j, Disjoint (f i j) a := by simp_rw [iSup_disjoint_iff]
 #align supr₂_disjoint_iff iSup₂_disjoint_iff
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print disjoint_iSup₂_iff /-
 theorem disjoint_iSup₂_iff {f : ∀ i, κ i → α} :
     Disjoint a (⨆ (i) (j), f i j) ↔ ∀ i j, Disjoint a (f i j) := by simp_rw [disjoint_iSup_iff]
 #align disjoint_supr₂_iff disjoint_iSup₂_iff
+-/
 
+#print sSup_disjoint_iff /-
 theorem sSup_disjoint_iff {s : Set α} : Disjoint (sSup s) a ↔ ∀ b ∈ s, Disjoint b a := by
   simp only [disjoint_iff, sSup_inf_eq, iSup_eq_bot]
 #align Sup_disjoint_iff sSup_disjoint_iff
+-/
 
+#print disjoint_sSup_iff /-
 theorem disjoint_sSup_iff {s : Set α} : Disjoint a (sSup s) ↔ ∀ b ∈ s, Disjoint a b := by
   simpa only [disjoint_comm] using sSup_disjoint_iff
 #align disjoint_Sup_iff disjoint_sSup_iff
+-/
 
+#print iSup_inf_of_monotone /-
 theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
   by
@@ -175,11 +206,14 @@ theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤
   rcases directed_of (· ≤ ·) i.1 i.2 with ⟨j, h₁, h₂⟩
   exact ⟨j, inf_le_inf (hf h₁) (hg h₂)⟩
 #align supr_inf_of_monotone iSup_inf_of_monotone
+-/
 
+#print iSup_inf_of_antitone /-
 theorem iSup_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
   @iSup_inf_of_monotone α _ ιᵒᵈ _ _ f g hf.dual_left hg.dual_left
 #align supr_inf_of_antitone iSup_inf_of_antitone
+-/
 
 #print Pi.frame /-
 instance Pi.frame {ι : Type _} {π : ι → Type _} [∀ i, Frame (π i)] : Frame (∀ i, π i) :=
@@ -210,59 +244,81 @@ instance OrderDual.frame : Frame αᵒᵈ :=
 #align order_dual.frame OrderDual.frame
 -/
 
+#print sup_sInf_eq /-
 theorem sup_sInf_eq : a ⊔ sInf s = ⨅ b ∈ s, a ⊔ b :=
   @inf_sSup_eq αᵒᵈ _ _ _
 #align sup_Inf_eq sup_sInf_eq
+-/
 
+#print sInf_sup_eq /-
 theorem sInf_sup_eq : sInf s ⊔ b = ⨅ a ∈ s, a ⊔ b :=
   @sSup_inf_eq αᵒᵈ _ _ _
 #align Inf_sup_eq sInf_sup_eq
+-/
 
+#print iInf_sup_eq /-
 theorem iInf_sup_eq (f : ι → α) (a : α) : (⨅ i, f i) ⊔ a = ⨅ i, f i ⊔ a :=
   @iSup_inf_eq αᵒᵈ _ _ _ _
 #align infi_sup_eq iInf_sup_eq
+-/
 
+#print sup_iInf_eq /-
 theorem sup_iInf_eq (a : α) (f : ι → α) : (a ⊔ ⨅ i, f i) = ⨅ i, a ⊔ f i :=
   @inf_iSup_eq αᵒᵈ _ _ _ _
 #align sup_infi_eq sup_iInf_eq
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iInf₂_sup_eq /-
 theorem iInf₂_sup_eq {f : ∀ i, κ i → α} (a : α) : (⨅ (i) (j), f i j) ⊔ a = ⨅ (i) (j), f i j ⊔ a :=
   @iSup₂_inf_eq αᵒᵈ _ _ _ _ _
 #align binfi_sup_eq iInf₂_sup_eq
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print sup_iInf₂_eq /-
 theorem sup_iInf₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊔ ⨅ (i) (j), f i j) = ⨅ (i) (j), a ⊔ f i j :=
   @inf_iSup₂_eq αᵒᵈ _ _ _ _ _
 #align sup_binfi_eq sup_iInf₂_eq
+-/
 
+#print iInf_sup_iInf /-
 theorem iInf_sup_iInf {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
     ((⨅ i, f i) ⊔ ⨅ i, g i) = ⨅ i : ι × ι', f i.1 ⊔ g i.2 :=
   @iSup_inf_iSup αᵒᵈ _ _ _ _ _
 #align infi_sup_infi iInf_sup_iInf
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print biInf_sup_biInf /-
 theorem biInf_sup_biInf {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
     ((⨅ i ∈ s, f i) ⊔ ⨅ j ∈ t, g j) = ⨅ p ∈ s ×ˢ t, f (p : ι × ι').1 ⊔ g p.2 :=
   @biSup_inf_biSup αᵒᵈ _ _ _ _ _ _ _
 #align binfi_sup_binfi biInf_sup_biInf
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print sInf_sup_sInf /-
 theorem sInf_sup_sInf : sInf s ⊔ sInf t = ⨅ p ∈ s ×ˢ t, (p : α × α).1 ⊔ p.2 :=
   @sSup_inf_sSup αᵒᵈ _ _ _
 #align Inf_sup_Inf sInf_sup_sInf
+-/
 
+#print iInf_sup_of_monotone /-
 theorem iInf_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
   iSup_inf_of_antitone hf.dual_right hg.dual_right
 #align infi_sup_of_monotone iInf_sup_of_monotone
+-/
 
+#print iInf_sup_of_antitone /-
 theorem iInf_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
   iSup_inf_of_monotone hf.dual_right hg.dual_right
 #align infi_sup_of_antitone iInf_sup_of_antitone
+-/
 
 #print Pi.coframe /-
 instance Pi.coframe {ι : Type _} {π : ι → Type _} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) :=
@@ -328,34 +384,47 @@ section CompleteBooleanAlgebra
 
 variable [CompleteBooleanAlgebra α] {a b : α} {s : Set α} {f : ι → α}
 
+#print compl_iInf /-
 theorem compl_iInf : iInf fᶜ = ⨆ i, f iᶜ :=
   le_antisymm
     (compl_le_of_compl_le <| le_iInf fun i => compl_le_of_compl_le <| le_iSup (compl ∘ f) i)
     (iSup_le fun i => compl_le_compl <| iInf_le _ _)
 #align compl_infi compl_iInf
+-/
 
+#print compl_iSup /-
 theorem compl_iSup : iSup fᶜ = ⨅ i, f iᶜ :=
   compl_injective (by simp [compl_iInf])
 #align compl_supr compl_iSup
+-/
 
+#print compl_sInf /-
 theorem compl_sInf : sInf sᶜ = ⨆ i ∈ s, iᶜ := by simp only [sInf_eq_iInf, compl_iInf]
 #align compl_Inf compl_sInf
+-/
 
+#print compl_sSup /-
 theorem compl_sSup : sSup sᶜ = ⨅ i ∈ s, iᶜ := by simp only [sSup_eq_iSup, compl_iSup]
 #align compl_Sup compl_sSup
+-/
 
+#print compl_sInf' /-
 theorem compl_sInf' : sInf sᶜ = sSup (compl '' s) :=
   compl_sInf.trans sSup_image.symm
 #align compl_Inf' compl_sInf'
+-/
 
+#print compl_sSup' /-
 theorem compl_sSup' : sSup sᶜ = sInf (compl '' s) :=
   compl_sSup.trans sInf_image.symm
 #align compl_Sup' compl_sSup'
+-/
 
 end CompleteBooleanAlgebra
 
 section lift
 
+#print Function.Injective.frame /-
 -- See note [reducible non-instances]
 /-- Pullback an `order.frame` along an injection. -/
 @[reducible]
@@ -370,7 +439,9 @@ protected def Function.Injective.frame [Sup α] [Inf α] [SupSet α] [InfSet α]
       simp_rw [← map_inf]
       exact ((map_Sup _).trans iSup_image).ge }
 #align function.injective.frame Function.Injective.frame
+-/
 
+#print Function.Injective.coframe /-
 -- See note [reducible non-instances]
 /-- Pullback an `order.coframe` along an injection. -/
 @[reducible]
@@ -386,7 +457,9 @@ protected def Function.Injective.coframe [Sup α] [Inf α] [SupSet α] [InfSet 
       simp_rw [← map_sup]
       exact ((map_Inf _).trans iInf_image).le }
 #align function.injective.coframe Function.Injective.coframe
+-/
 
+#print Function.Injective.completeDistribLattice /-
 -- See note [reducible non-instances]
 /-- Pullback a `complete_distrib_lattice` along an injection. -/
 @[reducible]
@@ -398,7 +471,9 @@ protected def Function.Injective.completeDistribLattice [Sup α] [Inf α] [SupSe
   { hf.Frame f map_sup map_inf map_Sup map_Inf map_top map_bot,
     hf.Coframe f map_sup map_inf map_Sup map_Inf map_top map_bot with }
 #align function.injective.complete_distrib_lattice Function.Injective.completeDistribLattice
+-/
 
+#print Function.Injective.completeBooleanAlgebra /-
 -- See note [reducible non-instances]
 /-- Pullback a `complete_boolean_algebra` along an injection. -/
 @[reducible]
@@ -412,6 +487,7 @@ protected def Function.Injective.completeBooleanAlgebra [Sup α] [Inf α] [SupSe
   { hf.CompleteDistribLattice f map_sup map_inf map_Sup map_Inf map_top map_bot,
     hf.BooleanAlgebra f map_sup map_inf map_top map_bot map_compl map_sdiff with }
 #align function.injective.complete_boolean_algebra Function.Injective.completeBooleanAlgebra
+-/
 
 end lift
 
Diff
@@ -425,7 +425,9 @@ instance : CompleteBooleanAlgebra PUnit := by
           sSup := fun _ => star
           sInf := fun _ => star } <;>
       intros <;>
-    first |trivial|simp only [eq_iff_true_of_subsingleton, not_true, and_false_iff]
+    first
+    | trivial
+    | simp only [eq_iff_true_of_subsingleton, not_true, and_false_iff]
 
 #print PUnit.sSup_eq /-
 @[simp]
Diff
@@ -94,87 +94,39 @@ instance OrderDual.coframe : Coframe αᵒᵈ :=
 #align order_dual.coframe OrderDual.coframe
 -/
 
-/- warning: inf_Sup_eq -> inf_sSup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s)) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) α (fun (b : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s)) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) α (fun (b : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b)))
-Case conversion may be inaccurate. Consider using '#align inf_Sup_eq inf_sSup_eqₓ'. -/
 theorem inf_sSup_eq : a ⊓ sSup s = ⨆ b ∈ s, a ⊓ b :=
   (Frame.inf_sup_le_iSup_inf _ _).antisymm iSup_inf_le_inf_sSup
 #align inf_Sup_eq inf_sSup_eq
 
-/- warning: Sup_inf_eq -> sSup_inf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) b) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) α (fun (a : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) b) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) α (fun (a : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b)))
-Case conversion may be inaccurate. Consider using '#align Sup_inf_eq sSup_inf_eqₓ'. -/
 theorem sSup_inf_eq : sSup s ⊓ b = ⨆ a ∈ s, a ⊓ b := by
   simpa only [inf_comm] using @inf_sSup_eq α _ s b
 #align Sup_inf_eq sSup_inf_eq
 
-/- warning: supr_inf_eq -> iSup_inf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align supr_inf_eq iSup_inf_eqₓ'. -/
 theorem iSup_inf_eq (f : ι → α) (a : α) : (⨆ i, f i) ⊓ a = ⨆ i, f i ⊓ a := by
   rw [iSup, sSup_inf_eq, iSup_range]
 #align supr_inf_eq iSup_inf_eq
 
-/- warning: inf_supr_eq -> inf_iSup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i)))
-Case conversion may be inaccurate. Consider using '#align inf_supr_eq inf_iSup_eqₓ'. -/
 theorem inf_iSup_eq (a : α) (f : ι → α) : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓ f i := by
   simpa only [inf_comm] using iSup_inf_eq f a
 #align inf_supr_eq inf_iSup_eq
 
-/- warning: bsupr_inf_eq -> iSup₂_inf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i j) a)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i j) a)))
-Case conversion may be inaccurate. Consider using '#align bsupr_inf_eq iSup₂_inf_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iSup₂_inf_eq {f : ∀ i, κ i → α} (a : α) : (⨆ (i) (j), f i j) ⊓ a = ⨆ (i) (j), f i j ⊓ a :=
   by simp only [iSup_inf_eq]
 #align bsupr_inf_eq iSup₂_inf_eq
 
-/- warning: inf_bsupr_eq -> inf_iSup₂_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (f i j))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (f i j))))
-Case conversion may be inaccurate. Consider using '#align inf_bsupr_eq inf_iSup₂_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem inf_iSup₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊓ ⨆ (i) (j), f i j) = ⨆ (i) (j), a ⊓ f i j :=
   by simp only [inf_iSup_eq]
 #align inf_bsupr_eq inf_iSup₂_eq
 
-/- warning: supr_inf_supr -> iSup_inf_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => g j))) (iSup.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (i : Prod.{u2, u3} ι ι') => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' i)) (g (Prod.snd.{u2, u3} ι ι' i))))
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Frame.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u3} α (Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (iSup.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u3, succ u1} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => g j))) (iSup.{u3, max (succ u2) (succ u1)} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (i : Prod.{u2, u1} ι ι') => Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (f (Prod.fst.{u2, u1} ι ι' i)) (g (Prod.snd.{u2, u1} ι ι' i))))
-Case conversion may be inaccurate. Consider using '#align supr_inf_supr iSup_inf_iSupₓ'. -/
 theorem iSup_inf_iSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
     ((⨆ i, f i) ⊓ ⨆ j, g j) = ⨆ i : ι × ι', f i.1 ⊓ g i.2 := by
   simp only [inf_iSup_eq, iSup_inf_eq, iSup_prod]
 #align supr_inf_supr iSup_inf_iSup
 
-/- warning: bsupr_inf_bsupr -> biSup_inf_biSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u3} ι'}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => f i))) (iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) (fun (H : Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) => g j)))) (iSup.{u1, succ (max u2 u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (p : Prod.{u2, u3} ι ι') => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' p)) (g (Prod.snd.{u2, u3} ι ι' p)))))
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Frame.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u1} ι'}, Eq.{succ u3} α (Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (iSup.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => iSup.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (iSup.{u3, succ u1} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => iSup.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) (iSup.{u3, succ (max u2 u1)} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (p : Prod.{u2, u1} ι ι') => iSup.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) (fun (H : Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) => Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (f (Prod.fst.{u2, u1} ι ι' p)) (g (Prod.snd.{u2, u1} ι ι' p)))))
-Case conversion may be inaccurate. Consider using '#align bsupr_inf_bsupr biSup_inf_biSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem biSup_inf_biSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
     ((⨆ i ∈ s, f i) ⊓ ⨆ j ∈ t, g j) = ⨆ p ∈ s ×ˢ t, f (p : ι × ι').1 ⊓ g p.2 :=
@@ -183,85 +135,37 @@ theorem biSup_inf_biSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s :
   exact (Equiv.surjective _).iSup_congr (Equiv.Set.prod s t).symm fun x => rfl
 #align bsupr_inf_bsupr biSup_inf_biSup
 
-/- warning: Sup_inf_Sup -> sSup_inf_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) t)) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) t)) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
-Case conversion may be inaccurate. Consider using '#align Sup_inf_Sup sSup_inf_sSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem sSup_inf_sSup : sSup s ⊓ sSup t = ⨆ p ∈ s ×ˢ t, (p : α × α).1 ⊓ p.2 := by
   simp only [sSup_eq_iSup, biSup_inf_biSup]
 #align Sup_inf_Sup sSup_inf_sSup
 
-/- warning: supr_disjoint_iff -> iSup_disjoint_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a)
-Case conversion may be inaccurate. Consider using '#align supr_disjoint_iff iSup_disjoint_iffₓ'. -/
 theorem iSup_disjoint_iff {f : ι → α} : Disjoint (⨆ i, f i) a ↔ ∀ i, Disjoint (f i) a := by
   simp only [disjoint_iff, iSup_inf_eq, iSup_eq_bot]
 #align supr_disjoint_iff iSup_disjoint_iff
 
-/- warning: disjoint_supr_iff -> disjoint_iSup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i))
-Case conversion may be inaccurate. Consider using '#align disjoint_supr_iff disjoint_iSup_iffₓ'. -/
 theorem disjoint_iSup_iff {f : ι → α} : Disjoint a (⨆ i, f i) ↔ ∀ i, Disjoint a (f i) := by
   simpa only [disjoint_comm] using iSup_disjoint_iff
 #align disjoint_supr_iff disjoint_iSup_iff
 
-/- warning: supr₂_disjoint_iff -> iSup₂_disjoint_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i j) a)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i j) a)
-Case conversion may be inaccurate. Consider using '#align supr₂_disjoint_iff iSup₂_disjoint_iffₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iSup₂_disjoint_iff {f : ∀ i, κ i → α} :
     Disjoint (⨆ (i) (j), f i j) a ↔ ∀ i j, Disjoint (f i j) a := by simp_rw [iSup_disjoint_iff]
 #align supr₂_disjoint_iff iSup₂_disjoint_iff
 
-/- warning: disjoint_supr₂_iff -> disjoint_iSup₂_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i j))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (f i j))
-Case conversion may be inaccurate. Consider using '#align disjoint_supr₂_iff disjoint_iSup₂_iffₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem disjoint_iSup₂_iff {f : ∀ i, κ i → α} :
     Disjoint a (⨆ (i) (j), f i j) ↔ ∀ i j, Disjoint a (f i j) := by simp_rw [disjoint_iSup_iff]
 #align disjoint_supr₂_iff disjoint_iSup₂_iff
 
-/- warning: Sup_disjoint_iff -> sSup_disjoint_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) b a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) b a))
-Case conversion may be inaccurate. Consider using '#align Sup_disjoint_iff sSup_disjoint_iffₓ'. -/
 theorem sSup_disjoint_iff {s : Set α} : Disjoint (sSup s) a ↔ ∀ b ∈ s, Disjoint b a := by
   simp only [disjoint_iff, sSup_inf_eq, iSup_eq_bot]
 #align Sup_disjoint_iff sSup_disjoint_iff
 
-/- warning: disjoint_Sup_iff -> disjoint_sSup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align disjoint_Sup_iff disjoint_sSup_iffₓ'. -/
 theorem disjoint_sSup_iff {s : Set α} : Disjoint a (sSup s) ↔ ∀ b ∈ s, Disjoint a b := by
   simpa only [disjoint_comm] using sSup_disjoint_iff
 #align disjoint_Sup_iff disjoint_sSup_iff
 
-/- warning: supr_inf_of_monotone -> iSup_inf_of_monotone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toHasLe.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1516 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1518 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1516 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1518)] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
-Case conversion may be inaccurate. Consider using '#align supr_inf_of_monotone iSup_inf_of_monotoneₓ'. -/
 theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
   by
@@ -272,12 +176,6 @@ theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤
   exact ⟨j, inf_le_inf (hf h₁) (hg h₂)⟩
 #align supr_inf_of_monotone iSup_inf_of_monotone
 
-/- warning: supr_inf_of_antitone -> iSup_inf_of_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toHasLe.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1711 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1713 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1711 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1713))] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
-Case conversion may be inaccurate. Consider using '#align supr_inf_of_antitone iSup_inf_of_antitoneₓ'. -/
 theorem iSup_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
   @iSup_inf_of_monotone α _ ιᵒᵈ _ _ f g hf.dual_left hg.dual_left
@@ -312,121 +210,55 @@ instance OrderDual.frame : Frame αᵒᵈ :=
 #align order_dual.frame OrderDual.frame
 -/
 
-/- warning: sup_Inf_eq -> sup_sInf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) α (fun (b : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s)) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) α (fun (b : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
-Case conversion may be inaccurate. Consider using '#align sup_Inf_eq sup_sInf_eqₓ'. -/
 theorem sup_sInf_eq : a ⊔ sInf s = ⨅ b ∈ s, a ⊔ b :=
   @inf_sSup_eq αᵒᵈ _ _ _
 #align sup_Inf_eq sup_sInf_eq
 
-/- warning: Inf_sup_eq -> sInf_sup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s) b) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) α (fun (a : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s) b) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) α (fun (a : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
-Case conversion may be inaccurate. Consider using '#align Inf_sup_eq sInf_sup_eqₓ'. -/
 theorem sInf_sup_eq : sInf s ⊔ b = ⨅ a ∈ s, a ⊔ b :=
   @sSup_inf_eq αᵒᵈ _ _ _
 #align Inf_sup_eq sInf_sup_eq
 
-/- warning: infi_sup_eq -> iInf_sup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align infi_sup_eq iInf_sup_eqₓ'. -/
 theorem iInf_sup_eq (f : ι → α) (a : α) : (⨅ i, f i) ⊔ a = ⨅ i, f i ⊔ a :=
   @iSup_inf_eq αᵒᵈ _ _ _ _
 #align infi_sup_eq iInf_sup_eq
 
-/- warning: sup_infi_eq -> sup_iInf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
-Case conversion may be inaccurate. Consider using '#align sup_infi_eq sup_iInf_eqₓ'. -/
 theorem sup_iInf_eq (a : α) (f : ι → α) : (a ⊔ ⨅ i, f i) = ⨅ i, a ⊔ f i :=
   @inf_iSup_eq αᵒᵈ _ _ _ _
 #align sup_infi_eq sup_iInf_eq
 
-/- warning: binfi_sup_eq -> iInf₂_sup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Coframe.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i j) a)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Coframe.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i j) a)))
-Case conversion may be inaccurate. Consider using '#align binfi_sup_eq iInf₂_sup_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iInf₂_sup_eq {f : ∀ i, κ i → α} (a : α) : (⨅ (i) (j), f i j) ⊔ a = ⨅ (i) (j), f i j ⊔ a :=
   @iSup₂_inf_eq αᵒᵈ _ _ _ _ _
 #align binfi_sup_eq iInf₂_sup_eq
 
-/- warning: sup_binfi_eq -> sup_iInf₂_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Coframe.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i j))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Coframe.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) a (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) a (f i j))))
-Case conversion may be inaccurate. Consider using '#align sup_binfi_eq sup_iInf₂_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem sup_iInf₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊔ ⨅ (i) (j), f i j) = ⨅ (i) (j), a ⊔ f i j :=
   @inf_iSup₂_eq αᵒᵈ _ _ _ _ _
 #align sup_binfi_eq sup_iInf₂_eq
 
-/- warning: infi_sup_infi -> iInf_sup_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι' (fun (i : ι') => g i))) (iInf.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (i : Prod.{u2, u3} ι ι') => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' i)) (g (Prod.snd.{u2, u3} ι ι' i))))
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Coframe.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u3} α (Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (iInf.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u3, succ u1} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι' (fun (i : ι') => g i))) (iInf.{u3, max (succ u2) (succ u1)} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (i : Prod.{u2, u1} ι ι') => Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (f (Prod.fst.{u2, u1} ι ι' i)) (g (Prod.snd.{u2, u1} ι ι' i))))
-Case conversion may be inaccurate. Consider using '#align infi_sup_infi iInf_sup_iInfₓ'. -/
 theorem iInf_sup_iInf {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
     ((⨅ i, f i) ⊔ ⨅ i, g i) = ⨅ i : ι × ι', f i.1 ⊔ g i.2 :=
   @iSup_inf_iSup αᵒᵈ _ _ _ _ _
 #align infi_sup_infi iInf_sup_iInf
 
-/- warning: binfi_sup_binfi -> biInf_sup_biInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u3} ι'}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => f i))) (iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) (fun (H : Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) => g j)))) (iInf.{u1, succ (max u2 u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (p : Prod.{u2, u3} ι ι') => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' p)) (g (Prod.snd.{u2, u3} ι ι' p)))))
-but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Coframe.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u1} ι'}, Eq.{succ u3} α (Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (iInf.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => iInf.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (iInf.{u3, succ u1} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => iInf.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) (iInf.{u3, succ (max u2 u1)} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (p : Prod.{u2, u1} ι ι') => iInf.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) (fun (H : Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) => Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (f (Prod.fst.{u2, u1} ι ι' p)) (g (Prod.snd.{u2, u1} ι ι' p)))))
-Case conversion may be inaccurate. Consider using '#align binfi_sup_binfi biInf_sup_biInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem biInf_sup_biInf {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
     ((⨅ i ∈ s, f i) ⊔ ⨅ j ∈ t, g j) = ⨅ p ∈ s ×ˢ t, f (p : ι × ι').1 ⊔ g p.2 :=
   @biSup_inf_biSup αᵒᵈ _ _ _ _ _ _ _
 #align binfi_sup_binfi biInf_sup_biInf
 
-/- warning: Inf_sup_Inf -> sInf_sup_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) t)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) t)) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
-Case conversion may be inaccurate. Consider using '#align Inf_sup_Inf sInf_sup_sInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem sInf_sup_sInf : sInf s ⊔ sInf t = ⨅ p ∈ s ×ˢ t, (p : α × α).1 ⊔ p.2 :=
   @sSup_inf_sSup αᵒᵈ _ _ _
 #align Inf_sup_Inf sInf_sup_sInf
 
-/- warning: infi_sup_of_monotone -> iInf_sup_of_monotone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toHasLe.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2832 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2834 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2832 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2834))] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
-Case conversion may be inaccurate. Consider using '#align infi_sup_of_monotone iInf_sup_of_monotoneₓ'. -/
 theorem iInf_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
   iSup_inf_of_antitone hf.dual_right hg.dual_right
 #align infi_sup_of_monotone iInf_sup_of_monotone
 
-/- warning: infi_sup_of_antitone -> iInf_sup_of_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toHasLe.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
-but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2954 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2956 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2954 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2956)] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
-Case conversion may be inaccurate. Consider using '#align infi_sup_of_antitone iInf_sup_of_antitoneₓ'. -/
 theorem iInf_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
   iSup_inf_of_monotone hf.dual_right hg.dual_right
@@ -496,62 +328,26 @@ section CompleteBooleanAlgebra
 
 variable [CompleteBooleanAlgebra α] {a b : α} {s : Set α} {f : ι → α}
 
-/- warning: compl_infi -> compl_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι f)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (iInf.{u1, u2} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) ι f)) (iSup.{u1, u2} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
-Case conversion may be inaccurate. Consider using '#align compl_infi compl_iInfₓ'. -/
 theorem compl_iInf : iInf fᶜ = ⨆ i, f iᶜ :=
   le_antisymm
     (compl_le_of_compl_le <| le_iInf fun i => compl_le_of_compl_le <| le_iSup (compl ∘ f) i)
     (iSup_le fun i => compl_le_compl <| iInf_le _ _)
 #align compl_infi compl_iInf
 
-/- warning: compl_supr -> compl_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι f)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (iSup.{u1, u2} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) ι f)) (iInf.{u1, u2} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
-Case conversion may be inaccurate. Consider using '#align compl_supr compl_iSupₓ'. -/
 theorem compl_iSup : iSup fᶜ = ⨅ i, f iᶜ :=
   compl_injective (by simp [compl_iInf])
 #align compl_supr compl_iSup
 
-/- warning: compl_Inf -> compl_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) α (fun (i : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.sInf.{u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) s)) (iSup.{u1, succ u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) α (fun (i : α) => iSup.{u1, 0} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
-Case conversion may be inaccurate. Consider using '#align compl_Inf compl_sInfₓ'. -/
 theorem compl_sInf : sInf sᶜ = ⨆ i ∈ s, iᶜ := by simp only [sInf_eq_iInf, compl_iInf]
 #align compl_Inf compl_sInf
 
-/- warning: compl_Sup -> compl_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) α (fun (i : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) s)) (iInf.{u1, succ u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) α (fun (i : α) => iInf.{u1, 0} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
-Case conversion may be inaccurate. Consider using '#align compl_Sup compl_sSupₓ'. -/
 theorem compl_sSup : sSup sᶜ = ⨅ i ∈ s, iᶜ := by simp only [sSup_eq_iSup, compl_iSup]
 #align compl_Sup compl_sSup
 
-/- warning: compl_Inf' -> compl_sInf' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.sInf.{u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) s)) (SupSet.sSup.{u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
-Case conversion may be inaccurate. Consider using '#align compl_Inf' compl_sInf'ₓ'. -/
 theorem compl_sInf' : sInf sᶜ = sSup (compl '' s) :=
   compl_sInf.trans sSup_image.symm
 #align compl_Inf' compl_sInf'
 
-/- warning: compl_Sup' -> compl_sSup' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) s)) (InfSet.sInf.{u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
-Case conversion may be inaccurate. Consider using '#align compl_Sup' compl_sSup'ₓ'. -/
 theorem compl_sSup' : sSup sᶜ = sInf (compl '' s) :=
   compl_sSup.trans sInf_image.symm
 #align compl_Sup' compl_sSup'
@@ -560,12 +356,6 @@ end CompleteBooleanAlgebra
 
 section lift
 
-/- warning: function.injective.frame -> Function.Injective.frame is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Frame.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Frame.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Frame.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Frame.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.frame Function.Injective.frameₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback an `order.frame` along an injection. -/
 @[reducible]
@@ -581,12 +371,6 @@ protected def Function.Injective.frame [Sup α] [Inf α] [SupSet α] [InfSet α]
       exact ((map_Sup _).trans iSup_image).ge }
 #align function.injective.frame Function.Injective.frame
 
-/- warning: function.injective.coframe -> Function.Injective.coframe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Coframe.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Coframe.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Coframe.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Coframe.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.coframe Function.Injective.coframeₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback an `order.coframe` along an injection. -/
 @[reducible]
@@ -603,12 +387,6 @@ protected def Function.Injective.coframe [Sup α] [Inf α] [SupSet α] [InfSet 
       exact ((map_Inf _).trans iInf_image).le }
 #align function.injective.coframe Function.Injective.coframe
 
-/- warning: function.injective.complete_distrib_lattice -> Function.Injective.completeDistribLattice is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteDistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (CompleteDistribLattice.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteDistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (CompleteDistribLattice.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.complete_distrib_lattice Function.Injective.completeDistribLatticeₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `complete_distrib_lattice` along an injection. -/
 @[reducible]
@@ -621,12 +399,6 @@ protected def Function.Injective.completeDistribLattice [Sup α] [Inf α] [SupSe
     hf.Coframe f map_sup map_inf map_Sup map_Inf map_top map_bot with }
 #align function.injective.complete_distrib_lattice Function.Injective.completeDistribLattice
 
-/- warning: function.injective.complete_boolean_algebra -> Function.Injective.completeBooleanAlgebra is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : HasCompl.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : CompleteBooleanAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_7 a)) (HasCompl.compl.{u2} β (BooleanAlgebra.toHasCompl.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BooleanAlgebra.toHasSdiff.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a) (f b))) -> (CompleteBooleanAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : HasCompl.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : CompleteBooleanAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteBooleanAlgebra.toSupSet.{u2} β _inst_9) α (fun (a : α) => iSup.{u2, 0} β (CompleteBooleanAlgebra.toSupSet.{u2} β _inst_9) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteBooleanAlgebra.toInfSet.{u2} β _inst_9) α (fun (a : α) => iInf.{u2, 0} β (CompleteBooleanAlgebra.toInfSet.{u2} β _inst_9) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_7 a)) (HasCompl.compl.{u2} β (BooleanAlgebra.toHasCompl.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BooleanAlgebra.toSDiff.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a) (f b))) -> (CompleteBooleanAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.complete_boolean_algebra Function.Injective.completeBooleanAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `complete_boolean_algebra` along an injection. -/
 @[reducible]
Diff
@@ -196,7 +196,7 @@ theorem sSup_inf_sSup : sSup s ⊓ sSup t = ⨆ p ∈ s ×ˢ t, (p : α × α).1
 
 /- warning: supr_disjoint_iff -> iSup_disjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a)
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a)
 Case conversion may be inaccurate. Consider using '#align supr_disjoint_iff iSup_disjoint_iffₓ'. -/
@@ -206,7 +206,7 @@ theorem iSup_disjoint_iff {f : ι → α} : Disjoint (⨆ i, f i) a ↔ ∀ i, D
 
 /- warning: disjoint_supr_iff -> disjoint_iSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i))
 Case conversion may be inaccurate. Consider using '#align disjoint_supr_iff disjoint_iSup_iffₓ'. -/
@@ -216,7 +216,7 @@ theorem disjoint_iSup_iff {f : ι → α} : Disjoint a (⨆ i, f i) ↔ ∀ i, D
 
 /- warning: supr₂_disjoint_iff -> iSup₂_disjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i j) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i j) a)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i j) a)
 Case conversion may be inaccurate. Consider using '#align supr₂_disjoint_iff iSup₂_disjoint_iffₓ'. -/
@@ -227,7 +227,7 @@ theorem iSup₂_disjoint_iff {f : ∀ i, κ i → α} :
 
 /- warning: disjoint_supr₂_iff -> disjoint_iSup₂_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i j))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i j))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (f i j))
 Case conversion may be inaccurate. Consider using '#align disjoint_supr₂_iff disjoint_iSup₂_iffₓ'. -/
@@ -238,7 +238,7 @@ theorem disjoint_iSup₂_iff {f : ∀ i, κ i → α} :
 
 /- warning: Sup_disjoint_iff -> sSup_disjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) b a))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) b a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) b a))
 Case conversion may be inaccurate. Consider using '#align Sup_disjoint_iff sSup_disjoint_iffₓ'. -/
@@ -248,7 +248,7 @@ theorem sSup_disjoint_iff {s : Set α} : Disjoint (sSup s) a ↔ ∀ b ∈ s, Di
 
 /- warning: disjoint_Sup_iff -> disjoint_sSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b))
 Case conversion may be inaccurate. Consider using '#align disjoint_Sup_iff disjoint_sSup_iffₓ'. -/
@@ -258,7 +258,7 @@ theorem disjoint_sSup_iff {s : Set α} : Disjoint a (sSup s) ↔ ∀ b ∈ s, Di
 
 /- warning: supr_inf_of_monotone -> iSup_inf_of_monotone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toHasLe.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1516 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1518 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1516 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1518)] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align supr_inf_of_monotone iSup_inf_of_monotoneₓ'. -/
@@ -274,7 +274,7 @@ theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤
 
 /- warning: supr_inf_of_antitone -> iSup_inf_of_antitone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toHasLe.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1711 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1713 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1711 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1713))] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align supr_inf_of_antitone iSup_inf_of_antitoneₓ'. -/
@@ -412,7 +412,7 @@ theorem sInf_sup_sInf : sInf s ⊔ sInf t = ⨅ p ∈ s ×ˢ t, (p : α × α).1
 
 /- warning: infi_sup_of_monotone -> iInf_sup_of_monotone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toHasLe.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2832 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2834 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2832 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2834))] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align infi_sup_of_monotone iInf_sup_of_monotoneₓ'. -/
@@ -423,7 +423,7 @@ theorem iInf_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (
 
 /- warning: infi_sup_of_antitone -> iInf_sup_of_antitone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toHasLe.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
   forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2954 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2956 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2954 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2956)] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align infi_sup_of_antitone iInf_sup_of_antitoneₓ'. -/
Diff
@@ -54,7 +54,7 @@ variable {α : Type u} {β : Type v} {ι : Sort w} {κ : ι → Sort _}
 #print Order.Frame /-
 /-- A frame, aka complete Heyting algebra, is a complete lattice whose `⊓` distributes over `⨆`. -/
 class Order.Frame (α : Type _) extends CompleteLattice α where
-  inf_sup_le_supᵢ_inf (a : α) (s : Set α) : a ⊓ Sup s ≤ ⨆ b ∈ s, a ⊓ b
+  inf_sup_le_iSup_inf (a : α) (s : Set α) : a ⊓ Sup s ≤ ⨆ b ∈ s, a ⊓ b
 #align order.frame Order.Frame
 -/
 
@@ -62,7 +62,7 @@ class Order.Frame (α : Type _) extends CompleteLattice α where
 /-- A coframe, aka complete Brouwer algebra or complete co-Heyting algebra, is a complete lattice
 whose `⊔` distributes over `⨅`. -/
 class Order.Coframe (α : Type _) extends CompleteLattice α where
-  infᵢ_sup_le_sup_inf (a : α) (s : Set α) : (⨅ b ∈ s, a ⊔ b) ≤ a ⊔ Inf s
+  iInf_sup_le_sup_inf (a : α) (s : Set α) : (⨅ b ∈ s, a ⊔ b) ≤ a ⊔ Inf s
 #align order.coframe Order.Coframe
 -/
 
@@ -72,7 +72,7 @@ open Order
 /-- A completely distributive lattice is a complete lattice whose `⊔` and `⊓` respectively
 distribute over `⨅` and `⨆`. -/
 class CompleteDistribLattice (α : Type _) extends Frame α where
-  infᵢ_sup_le_sup_inf : ∀ a s, (⨅ b ∈ s, a ⊔ b) ≤ a ⊔ Inf s
+  iInf_sup_le_sup_inf : ∀ a s, (⨅ b ∈ s, a ⊔ b) ≤ a ⊔ Inf s
 #align complete_distrib_lattice CompleteDistribLattice
 -/
 
@@ -90,205 +90,205 @@ variable [Frame α] {s t : Set α} {a b : α}
 
 #print OrderDual.coframe /-
 instance OrderDual.coframe : Coframe αᵒᵈ :=
-  { OrderDual.completeLattice α with infᵢ_sup_le_sup_inf := Frame.inf_sup_le_supᵢ_inf }
+  { OrderDual.completeLattice α with iInf_sup_le_sup_inf := Frame.inf_sup_le_iSup_inf }
 #align order_dual.coframe OrderDual.coframe
 -/
 
-/- warning: inf_Sup_eq -> inf_supₛ_eq is a dubious translation:
+/- warning: inf_Sup_eq -> inf_sSup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s)) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s)) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) α (fun (b : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s)) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b)))
-Case conversion may be inaccurate. Consider using '#align inf_Sup_eq inf_supₛ_eqₓ'. -/
-theorem inf_supₛ_eq : a ⊓ supₛ s = ⨆ b ∈ s, a ⊓ b :=
-  (Frame.inf_sup_le_supᵢ_inf _ _).antisymm supᵢ_inf_le_inf_supₛ
-#align inf_Sup_eq inf_supₛ_eq
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s)) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) α (fun (b : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b)))
+Case conversion may be inaccurate. Consider using '#align inf_Sup_eq inf_sSup_eqₓ'. -/
+theorem inf_sSup_eq : a ⊓ sSup s = ⨆ b ∈ s, a ⊓ b :=
+  (Frame.inf_sup_le_iSup_inf _ _).antisymm iSup_inf_le_inf_sSup
+#align inf_Sup_eq inf_sSup_eq
 
-/- warning: Sup_inf_eq -> supₛ_inf_eq is a dubious translation:
+/- warning: Sup_inf_eq -> sSup_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) b) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) α (fun (a : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) b) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) α (fun (a : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) b) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) α (fun (a : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b)))
-Case conversion may be inaccurate. Consider using '#align Sup_inf_eq supₛ_inf_eqₓ'. -/
-theorem supₛ_inf_eq : supₛ s ⊓ b = ⨆ a ∈ s, a ⊓ b := by
-  simpa only [inf_comm] using @inf_supₛ_eq α _ s b
-#align Sup_inf_eq supₛ_inf_eq
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) b) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) α (fun (a : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b)))
+Case conversion may be inaccurate. Consider using '#align Sup_inf_eq sSup_inf_eqₓ'. -/
+theorem sSup_inf_eq : sSup s ⊓ b = ⨆ a ∈ s, a ⊓ b := by
+  simpa only [inf_comm] using @inf_sSup_eq α _ s b
+#align Sup_inf_eq sSup_inf_eq
 
-/- warning: supr_inf_eq -> supᵢ_inf_eq is a dubious translation:
+/- warning: supr_inf_eq -> iSup_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align supr_inf_eq supᵢ_inf_eqₓ'. -/
-theorem supᵢ_inf_eq (f : ι → α) (a : α) : (⨆ i, f i) ⊓ a = ⨆ i, f i ⊓ a := by
-  rw [supᵢ, supₛ_inf_eq, supᵢ_range]
-#align supr_inf_eq supᵢ_inf_eq
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a))
+Case conversion may be inaccurate. Consider using '#align supr_inf_eq iSup_inf_eqₓ'. -/
+theorem iSup_inf_eq (f : ι → α) (a : α) : (⨆ i, f i) ⊓ a = ⨆ i, f i ⊓ a := by
+  rw [iSup, sSup_inf_eq, iSup_range]
+#align supr_inf_eq iSup_inf_eq
 
-/- warning: inf_supr_eq -> inf_supᵢ_eq is a dubious translation:
+/- warning: inf_supr_eq -> inf_iSup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i)))
-Case conversion may be inaccurate. Consider using '#align inf_supr_eq inf_supᵢ_eqₓ'. -/
-theorem inf_supᵢ_eq (a : α) (f : ι → α) : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓ f i := by
-  simpa only [inf_comm] using supᵢ_inf_eq f a
-#align inf_supr_eq inf_supᵢ_eq
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i)))
+Case conversion may be inaccurate. Consider using '#align inf_supr_eq inf_iSup_eqₓ'. -/
+theorem inf_iSup_eq (a : α) (f : ι → α) : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓ f i := by
+  simpa only [inf_comm] using iSup_inf_eq f a
+#align inf_supr_eq inf_iSup_eq
 
-/- warning: bsupr_inf_eq -> supᵢ₂_inf_eq is a dubious translation:
+/- warning: bsupr_inf_eq -> iSup₂_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i j) a)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i j) a)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i j) a)))
-Case conversion may be inaccurate. Consider using '#align bsupr_inf_eq supᵢ₂_inf_eqₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i j) a)))
+Case conversion may be inaccurate. Consider using '#align bsupr_inf_eq iSup₂_inf_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem supᵢ₂_inf_eq {f : ∀ i, κ i → α} (a : α) : (⨆ (i) (j), f i j) ⊓ a = ⨆ (i) (j), f i j ⊓ a :=
-  by simp only [supᵢ_inf_eq]
-#align bsupr_inf_eq supᵢ₂_inf_eq
+theorem iSup₂_inf_eq {f : ∀ i, κ i → α} (a : α) : (⨆ (i) (j), f i j) ⊓ a = ⨆ (i) (j), f i j ⊓ a :=
+  by simp only [iSup_inf_eq]
+#align bsupr_inf_eq iSup₂_inf_eq
 
-/- warning: inf_bsupr_eq -> inf_supᵢ₂_eq is a dubious translation:
+/- warning: inf_bsupr_eq -> inf_iSup₂_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (f i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (f i j))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (f i j))))
-Case conversion may be inaccurate. Consider using '#align inf_bsupr_eq inf_supᵢ₂_eqₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (f i j))))
+Case conversion may be inaccurate. Consider using '#align inf_bsupr_eq inf_iSup₂_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem inf_supᵢ₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊓ ⨆ (i) (j), f i j) = ⨆ (i) (j), a ⊓ f i j :=
-  by simp only [inf_supᵢ_eq]
-#align inf_bsupr_eq inf_supᵢ₂_eq
+theorem inf_iSup₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊓ ⨆ (i) (j), f i j) = ⨆ (i) (j), a ⊓ f i j :=
+  by simp only [inf_iSup_eq]
+#align inf_bsupr_eq inf_iSup₂_eq
 
-/- warning: supr_inf_supr -> supᵢ_inf_supᵢ is a dubious translation:
+/- warning: supr_inf_supr -> iSup_inf_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => g j))) (supᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (i : Prod.{u2, u3} ι ι') => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' i)) (g (Prod.snd.{u2, u3} ι ι' i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => g j))) (iSup.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (i : Prod.{u2, u3} ι ι') => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' i)) (g (Prod.snd.{u2, u3} ι ι' i))))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Frame.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u3} α (Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (supᵢ.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u3, succ u1} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => g j))) (supᵢ.{u3, max (succ u2) (succ u1)} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (i : Prod.{u2, u1} ι ι') => Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (f (Prod.fst.{u2, u1} ι ι' i)) (g (Prod.snd.{u2, u1} ι ι' i))))
-Case conversion may be inaccurate. Consider using '#align supr_inf_supr supᵢ_inf_supᵢₓ'. -/
-theorem supᵢ_inf_supᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
+  forall {α : Type.{u3}} [_inst_1 : Order.Frame.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u3} α (Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (iSup.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u3, succ u1} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => g j))) (iSup.{u3, max (succ u2) (succ u1)} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (i : Prod.{u2, u1} ι ι') => Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (f (Prod.fst.{u2, u1} ι ι' i)) (g (Prod.snd.{u2, u1} ι ι' i))))
+Case conversion may be inaccurate. Consider using '#align supr_inf_supr iSup_inf_iSupₓ'. -/
+theorem iSup_inf_iSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
     ((⨆ i, f i) ⊓ ⨆ j, g j) = ⨆ i : ι × ι', f i.1 ⊓ g i.2 := by
-  simp only [inf_supᵢ_eq, supᵢ_inf_eq, supᵢ_prod]
-#align supr_inf_supr supᵢ_inf_supᵢ
+  simp only [inf_iSup_eq, iSup_inf_eq, iSup_prod]
+#align supr_inf_supr iSup_inf_iSup
 
-/- warning: bsupr_inf_bsupr -> bsupᵢ_inf_bsupᵢ is a dubious translation:
+/- warning: bsupr_inf_bsupr -> biSup_inf_biSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u3} ι'}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => f i))) (supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) (fun (H : Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) => g j)))) (supᵢ.{u1, succ (max u2 u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (p : Prod.{u2, u3} ι ι') => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' p)) (g (Prod.snd.{u2, u3} ι ι' p)))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u3} ι'}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => f i))) (iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) (fun (H : Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) => g j)))) (iSup.{u1, succ (max u2 u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (p : Prod.{u2, u3} ι ι') => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' p)) (g (Prod.snd.{u2, u3} ι ι' p)))))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Frame.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u1} ι'}, Eq.{succ u3} α (Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (supᵢ.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => supᵢ.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (supᵢ.{u3, succ u1} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => supᵢ.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) (supᵢ.{u3, succ (max u2 u1)} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (p : Prod.{u2, u1} ι ι') => supᵢ.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) (fun (H : Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) => Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (f (Prod.fst.{u2, u1} ι ι' p)) (g (Prod.snd.{u2, u1} ι ι' p)))))
-Case conversion may be inaccurate. Consider using '#align bsupr_inf_bsupr bsupᵢ_inf_bsupᵢₓ'. -/
+  forall {α : Type.{u3}} [_inst_1 : Order.Frame.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u1} ι'}, Eq.{succ u3} α (Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (iSup.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => iSup.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (iSup.{u3, succ u1} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => iSup.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) (iSup.{u3, succ (max u2 u1)} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (p : Prod.{u2, u1} ι ι') => iSup.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) (fun (H : Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) => Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (f (Prod.fst.{u2, u1} ι ι' p)) (g (Prod.snd.{u2, u1} ι ι' p)))))
+Case conversion may be inaccurate. Consider using '#align bsupr_inf_bsupr biSup_inf_biSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem bsupᵢ_inf_bsupᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
+theorem biSup_inf_biSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
     ((⨆ i ∈ s, f i) ⊓ ⨆ j ∈ t, g j) = ⨆ p ∈ s ×ˢ t, f (p : ι × ι').1 ⊓ g p.2 :=
   by
-  simp only [supᵢ_subtype', supᵢ_inf_supᵢ]
-  exact (Equiv.surjective _).supᵢ_congr (Equiv.Set.prod s t).symm fun x => rfl
-#align bsupr_inf_bsupr bsupᵢ_inf_bsupᵢ
+  simp only [iSup_subtype', iSup_inf_iSup]
+  exact (Equiv.surjective _).iSup_congr (Equiv.Set.prod s t).symm fun x => rfl
+#align bsupr_inf_bsupr biSup_inf_biSup
 
-/- warning: Sup_inf_Sup -> supₛ_inf_supₛ is a dubious translation:
+/- warning: Sup_inf_Sup -> sSup_inf_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) t)) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) t)) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) t)) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
-Case conversion may be inaccurate. Consider using '#align Sup_inf_Sup supₛ_inf_supₛₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) t)) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
+Case conversion may be inaccurate. Consider using '#align Sup_inf_Sup sSup_inf_sSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem supₛ_inf_supₛ : supₛ s ⊓ supₛ t = ⨆ p ∈ s ×ˢ t, (p : α × α).1 ⊓ p.2 := by
-  simp only [supₛ_eq_supᵢ, bsupᵢ_inf_bsupᵢ]
-#align Sup_inf_Sup supₛ_inf_supₛ
+theorem sSup_inf_sSup : sSup s ⊓ sSup t = ⨆ p ∈ s ×ˢ t, (p : α × α).1 ⊓ p.2 := by
+  simp only [sSup_eq_iSup, biSup_inf_biSup]
+#align Sup_inf_Sup sSup_inf_sSup
 
-/- warning: supr_disjoint_iff -> supᵢ_disjoint_iff is a dubious translation:
+/- warning: supr_disjoint_iff -> iSup_disjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a)
-Case conversion may be inaccurate. Consider using '#align supr_disjoint_iff supᵢ_disjoint_iffₓ'. -/
-theorem supᵢ_disjoint_iff {f : ι → α} : Disjoint (⨆ i, f i) a ↔ ∀ i, Disjoint (f i) a := by
-  simp only [disjoint_iff, supᵢ_inf_eq, supᵢ_eq_bot]
-#align supr_disjoint_iff supᵢ_disjoint_iff
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a)
+Case conversion may be inaccurate. Consider using '#align supr_disjoint_iff iSup_disjoint_iffₓ'. -/
+theorem iSup_disjoint_iff {f : ι → α} : Disjoint (⨆ i, f i) a ↔ ∀ i, Disjoint (f i) a := by
+  simp only [disjoint_iff, iSup_inf_eq, iSup_eq_bot]
+#align supr_disjoint_iff iSup_disjoint_iff
 
-/- warning: disjoint_supr_iff -> disjoint_supᵢ_iff is a dubious translation:
+/- warning: disjoint_supr_iff -> disjoint_iSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i))
-Case conversion may be inaccurate. Consider using '#align disjoint_supr_iff disjoint_supᵢ_iffₓ'. -/
-theorem disjoint_supᵢ_iff {f : ι → α} : Disjoint a (⨆ i, f i) ↔ ∀ i, Disjoint a (f i) := by
-  simpa only [disjoint_comm] using supᵢ_disjoint_iff
-#align disjoint_supr_iff disjoint_supᵢ_iff
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : ι -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (forall (i : ι), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i))
+Case conversion may be inaccurate. Consider using '#align disjoint_supr_iff disjoint_iSup_iffₓ'. -/
+theorem disjoint_iSup_iff {f : ι → α} : Disjoint a (⨆ i, f i) ↔ ∀ i, Disjoint a (f i) := by
+  simpa only [disjoint_comm] using iSup_disjoint_iff
+#align disjoint_supr_iff disjoint_iSup_iff
 
-/- warning: supr₂_disjoint_iff -> supᵢ₂_disjoint_iff is a dubious translation:
+/- warning: supr₂_disjoint_iff -> iSup₂_disjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i j) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i j) a)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i j) a)
-Case conversion may be inaccurate. Consider using '#align supr₂_disjoint_iff supᵢ₂_disjoint_iffₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i j) a)
+Case conversion may be inaccurate. Consider using '#align supr₂_disjoint_iff iSup₂_disjoint_iffₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem supᵢ₂_disjoint_iff {f : ∀ i, κ i → α} :
-    Disjoint (⨆ (i) (j), f i j) a ↔ ∀ i j, Disjoint (f i j) a := by simp_rw [supᵢ_disjoint_iff]
-#align supr₂_disjoint_iff supᵢ₂_disjoint_iff
+theorem iSup₂_disjoint_iff {f : ∀ i, κ i → α} :
+    Disjoint (⨆ (i) (j), f i j) a ↔ ∀ i j, Disjoint (f i j) a := by simp_rw [iSup_disjoint_iff]
+#align supr₂_disjoint_iff iSup₂_disjoint_iff
 
-/- warning: disjoint_supr₂_iff -> disjoint_supᵢ₂_iff is a dubious translation:
+/- warning: disjoint_supr₂_iff -> disjoint_iSup₂_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i j))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i j))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (f i j))
-Case conversion may be inaccurate. Consider using '#align disjoint_supr₂_iff disjoint_supᵢ₂_iffₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), Disjoint.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (BoundedOrder.toOrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (f i j))
+Case conversion may be inaccurate. Consider using '#align disjoint_supr₂_iff disjoint_iSup₂_iffₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem disjoint_supᵢ₂_iff {f : ∀ i, κ i → α} :
-    Disjoint a (⨆ (i) (j), f i j) ↔ ∀ i j, Disjoint a (f i j) := by simp_rw [disjoint_supᵢ_iff]
-#align disjoint_supr₂_iff disjoint_supᵢ₂_iff
+theorem disjoint_iSup₂_iff {f : ∀ i, κ i → α} :
+    Disjoint a (⨆ (i) (j), f i j) ↔ ∀ i j, Disjoint a (f i j) := by simp_rw [disjoint_iSup_iff]
+#align disjoint_supr₂_iff disjoint_iSup₂_iff
 
-/- warning: Sup_disjoint_iff -> supₛ_disjoint_iff is a dubious translation:
+/- warning: Sup_disjoint_iff -> sSup_disjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) b a))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) b a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) b a))
-Case conversion may be inaccurate. Consider using '#align Sup_disjoint_iff supₛ_disjoint_iffₓ'. -/
-theorem supₛ_disjoint_iff {s : Set α} : Disjoint (supₛ s) a ↔ ∀ b ∈ s, Disjoint b a := by
-  simp only [disjoint_iff, supₛ_inf_eq, supᵢ_eq_bot]
-#align Sup_disjoint_iff supₛ_disjoint_iff
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) b a))
+Case conversion may be inaccurate. Consider using '#align Sup_disjoint_iff sSup_disjoint_iffₓ'. -/
+theorem sSup_disjoint_iff {s : Set α} : Disjoint (sSup s) a ↔ ∀ b ∈ s, Disjoint b a := by
+  simp only [disjoint_iff, sSup_inf_eq, iSup_eq_bot]
+#align Sup_disjoint_iff sSup_disjoint_iff
 
-/- warning: disjoint_Sup_iff -> disjoint_supₛ_iff is a dubious translation:
+/- warning: disjoint_Sup_iff -> disjoint_sSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align disjoint_Sup_iff disjoint_supₛ_iffₓ'. -/
-theorem disjoint_supₛ_iff {s : Set α} : Disjoint a (supₛ s) ↔ ∀ b ∈ s, Disjoint a b := by
-  simpa only [disjoint_comm] using supₛ_disjoint_iff
-#align disjoint_Sup_iff disjoint_supₛ_iff
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {a : α} {s : Set.{u1} α}, Iff (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))))) (CompleteLattice.toBoundedOrder.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b))
+Case conversion may be inaccurate. Consider using '#align disjoint_Sup_iff disjoint_sSup_iffₓ'. -/
+theorem disjoint_sSup_iff {s : Set α} : Disjoint a (sSup s) ↔ ∀ b ∈ s, Disjoint a b := by
+  simpa only [disjoint_comm] using sSup_disjoint_iff
+#align disjoint_Sup_iff disjoint_sSup_iff
 
-/- warning: supr_inf_of_monotone -> supᵢ_inf_of_monotone is a dubious translation:
+/- warning: supr_inf_of_monotone -> iSup_inf_of_monotone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1516 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1518 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1516 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1518)] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
-Case conversion may be inaccurate. Consider using '#align supr_inf_of_monotone supᵢ_inf_of_monotoneₓ'. -/
-theorem supᵢ_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
+  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1516 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1518 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1516 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1518)] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+Case conversion may be inaccurate. Consider using '#align supr_inf_of_monotone iSup_inf_of_monotoneₓ'. -/
+theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
   by
-  refine' (le_supᵢ_inf_supᵢ f g).antisymm _
-  rw [supᵢ_inf_supᵢ]
-  refine' supᵢ_mono' fun i => _
+  refine' (le_iSup_inf_iSup f g).antisymm _
+  rw [iSup_inf_iSup]
+  refine' iSup_mono' fun i => _
   rcases directed_of (· ≤ ·) i.1 i.2 with ⟨j, h₁, h₂⟩
   exact ⟨j, inf_le_inf (hf h₁) (hg h₂)⟩
-#align supr_inf_of_monotone supᵢ_inf_of_monotone
+#align supr_inf_of_monotone iSup_inf_of_monotone
 
-/- warning: supr_inf_of_antitone -> supᵢ_inf_of_antitone is a dubious translation:
+/- warning: supr_inf_of_antitone -> iSup_inf_of_antitone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1711 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1713 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1711 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1713))] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
-Case conversion may be inaccurate. Consider using '#align supr_inf_of_antitone supᵢ_inf_of_antitoneₓ'. -/
-theorem supᵢ_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
+  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1711 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1713 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1711 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1713))] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+Case conversion may be inaccurate. Consider using '#align supr_inf_of_antitone iSup_inf_of_antitoneₓ'. -/
+theorem iSup_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
-  @supᵢ_inf_of_monotone α _ ιᵒᵈ _ _ f g hf.dual_left hg.dual_left
-#align supr_inf_of_antitone supᵢ_inf_of_antitone
+  @iSup_inf_of_monotone α _ ιᵒᵈ _ _ f g hf.dual_left hg.dual_left
+#align supr_inf_of_antitone iSup_inf_of_antitone
 
 #print Pi.frame /-
 instance Pi.frame {ι : Type _} {π : ι → Type _} [∀ i, Frame (π i)] : Frame (∀ i, π i) :=
   { Pi.completeLattice with
-    inf_sup_le_supᵢ_inf := fun a s i => by
-      simp only [CompleteLattice.sup, supₛ_apply, supᵢ_apply, Pi.inf_apply, inf_supᵢ_eq, ←
-        supᵢ_subtype''] }
+    inf_sup_le_iSup_inf := fun a s i => by
+      simp only [CompleteLattice.sup, sSup_apply, iSup_apply, Pi.inf_apply, inf_iSup_eq, ←
+        iSup_subtype''] }
 #align pi.frame Pi.frame
 -/
 
@@ -296,7 +296,7 @@ instance Pi.frame {ι : Type _} {π : ι → Type _} [∀ i, Frame (π i)] : Fra
 -- see Note [lower instance priority]
 instance (priority := 100) Frame.toDistribLattice : DistribLattice α :=
   DistribLattice.ofInfSupLe fun a b c => by
-    rw [← supₛ_pair, ← supₛ_pair, inf_supₛ_eq, ← supₛ_image, image_pair]
+    rw [← sSup_pair, ← sSup_pair, inf_sSup_eq, ← sSup_image, image_pair]
 #align frame.to_distrib_lattice Frame.toDistribLattice
 -/
 
@@ -308,136 +308,136 @@ variable [Coframe α] {s t : Set α} {a b : α}
 
 #print OrderDual.frame /-
 instance OrderDual.frame : Frame αᵒᵈ :=
-  { OrderDual.completeLattice α with inf_sup_le_supᵢ_inf := Coframe.infᵢ_sup_le_sup_inf }
+  { OrderDual.completeLattice α with inf_sup_le_iSup_inf := Coframe.iInf_sup_le_sup_inf }
 #align order_dual.frame OrderDual.frame
 -/
 
-/- warning: sup_Inf_eq -> sup_infₛ_eq is a dubious translation:
+/- warning: sup_Inf_eq -> sup_sInf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) α (fun (b : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
-Case conversion may be inaccurate. Consider using '#align sup_Inf_eq sup_infₛ_eqₓ'. -/
-theorem sup_infₛ_eq : a ⊔ infₛ s = ⨅ b ∈ s, a ⊔ b :=
-  @inf_supₛ_eq αᵒᵈ _ _ _
-#align sup_Inf_eq sup_infₛ_eq
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s)) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) α (fun (b : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
+Case conversion may be inaccurate. Consider using '#align sup_Inf_eq sup_sInf_eqₓ'. -/
+theorem sup_sInf_eq : a ⊔ sInf s = ⨅ b ∈ s, a ⊔ b :=
+  @inf_sSup_eq αᵒᵈ _ _ _
+#align sup_Inf_eq sup_sInf_eq
 
-/- warning: Inf_sup_eq -> infₛ_sup_eq is a dubious translation:
+/- warning: Inf_sup_eq -> sInf_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s) b) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) α (fun (a : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s) b) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) α (fun (a : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s) b) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) α (fun (a : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
-Case conversion may be inaccurate. Consider using '#align Inf_sup_eq infₛ_sup_eqₓ'. -/
-theorem infₛ_sup_eq : infₛ s ⊔ b = ⨅ a ∈ s, a ⊔ b :=
-  @supₛ_inf_eq αᵒᵈ _ _ _
-#align Inf_sup_eq infₛ_sup_eq
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s) b) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) α (fun (a : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
+Case conversion may be inaccurate. Consider using '#align Inf_sup_eq sInf_sup_eqₓ'. -/
+theorem sInf_sup_eq : sInf s ⊔ b = ⨅ a ∈ s, a ⊔ b :=
+  @sSup_inf_eq αᵒᵈ _ _ _
+#align Inf_sup_eq sInf_sup_eq
 
-/- warning: infi_sup_eq -> infᵢ_sup_eq is a dubious translation:
+/- warning: infi_sup_eq -> iInf_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align infi_sup_eq infᵢ_sup_eqₓ'. -/
-theorem infᵢ_sup_eq (f : ι → α) (a : α) : (⨅ i, f i) ⊔ a = ⨅ i, f i ⊔ a :=
-  @supᵢ_inf_eq αᵒᵈ _ _ _ _
-#align infi_sup_eq infᵢ_sup_eq
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
+Case conversion may be inaccurate. Consider using '#align infi_sup_eq iInf_sup_eqₓ'. -/
+theorem iInf_sup_eq (f : ι → α) (a : α) : (⨅ i, f i) ⊔ a = ⨅ i, f i ⊔ a :=
+  @iSup_inf_eq αᵒᵈ _ _ _ _
+#align infi_sup_eq iInf_sup_eq
 
-/- warning: sup_infi_eq -> sup_infᵢ_eq is a dubious translation:
+/- warning: sup_infi_eq -> sup_iInf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
-Case conversion may be inaccurate. Consider using '#align sup_infi_eq sup_infᵢ_eqₓ'. -/
-theorem sup_infᵢ_eq (a : α) (f : ι → α) : (a ⊔ ⨅ i, f i) = ⨅ i, a ⊔ f i :=
-  @inf_supᵢ_eq αᵒᵈ _ _ _ _
-#align sup_infi_eq sup_infᵢ_eq
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
+Case conversion may be inaccurate. Consider using '#align sup_infi_eq sup_iInf_eqₓ'. -/
+theorem sup_iInf_eq (a : α) (f : ι → α) : (a ⊔ ⨅ i, f i) = ⨅ i, a ⊔ f i :=
+  @inf_iSup_eq αᵒᵈ _ _ _ _
+#align sup_infi_eq sup_iInf_eq
 
-/- warning: binfi_sup_eq -> infᵢ₂_sup_eq is a dubious translation:
+/- warning: binfi_sup_eq -> iInf₂_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Coframe.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i j) a)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Coframe.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i j) a)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Coframe.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i j) a)))
-Case conversion may be inaccurate. Consider using '#align binfi_sup_eq infᵢ₂_sup_eqₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Coframe.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i j) a)))
+Case conversion may be inaccurate. Consider using '#align binfi_sup_eq iInf₂_sup_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem infᵢ₂_sup_eq {f : ∀ i, κ i → α} (a : α) : (⨅ (i) (j), f i j) ⊔ a = ⨅ (i) (j), f i j ⊔ a :=
-  @supᵢ₂_inf_eq αᵒᵈ _ _ _ _ _
-#align binfi_sup_eq infᵢ₂_sup_eq
+theorem iInf₂_sup_eq {f : ∀ i, κ i → α} (a : α) : (⨅ (i) (j), f i j) ⊔ a = ⨅ (i) (j), f i j ⊔ a :=
+  @iSup₂_inf_eq αᵒᵈ _ _ _ _ _
+#align binfi_sup_eq iInf₂_sup_eq
 
-/- warning: sup_binfi_eq -> sup_infᵢ₂_eq is a dubious translation:
+/- warning: sup_binfi_eq -> sup_iInf₂_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Coframe.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Coframe.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i j))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Coframe.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) a (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) a (f i j))))
-Case conversion may be inaccurate. Consider using '#align sup_binfi_eq sup_infᵢ₂_eqₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Coframe.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) a (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) a (f i j))))
+Case conversion may be inaccurate. Consider using '#align sup_binfi_eq sup_iInf₂_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem sup_infᵢ₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊔ ⨅ (i) (j), f i j) = ⨅ (i) (j), a ⊔ f i j :=
-  @inf_supᵢ₂_eq αᵒᵈ _ _ _ _ _
-#align sup_binfi_eq sup_infᵢ₂_eq
+theorem sup_iInf₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊔ ⨅ (i) (j), f i j) = ⨅ (i) (j), a ⊔ f i j :=
+  @inf_iSup₂_eq αᵒᵈ _ _ _ _ _
+#align sup_binfi_eq sup_iInf₂_eq
 
-/- warning: infi_sup_infi -> infᵢ_sup_infᵢ is a dubious translation:
+/- warning: infi_sup_infi -> iInf_sup_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι' (fun (i : ι') => g i))) (infᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (i : Prod.{u2, u3} ι ι') => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' i)) (g (Prod.snd.{u2, u3} ι ι' i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι' (fun (i : ι') => g i))) (iInf.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (i : Prod.{u2, u3} ι ι') => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' i)) (g (Prod.snd.{u2, u3} ι ι' i))))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Coframe.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u3} α (Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (infᵢ.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u3, succ u1} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι' (fun (i : ι') => g i))) (infᵢ.{u3, max (succ u2) (succ u1)} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (i : Prod.{u2, u1} ι ι') => Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (f (Prod.fst.{u2, u1} ι ι' i)) (g (Prod.snd.{u2, u1} ι ι' i))))
-Case conversion may be inaccurate. Consider using '#align infi_sup_infi infᵢ_sup_infᵢₓ'. -/
-theorem infᵢ_sup_infᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
+  forall {α : Type.{u3}} [_inst_1 : Order.Coframe.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u3} α (Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (iInf.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u3, succ u1} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι' (fun (i : ι') => g i))) (iInf.{u3, max (succ u2) (succ u1)} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (i : Prod.{u2, u1} ι ι') => Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (f (Prod.fst.{u2, u1} ι ι' i)) (g (Prod.snd.{u2, u1} ι ι' i))))
+Case conversion may be inaccurate. Consider using '#align infi_sup_infi iInf_sup_iInfₓ'. -/
+theorem iInf_sup_iInf {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
     ((⨅ i, f i) ⊔ ⨅ i, g i) = ⨅ i : ι × ι', f i.1 ⊔ g i.2 :=
-  @supᵢ_inf_supᵢ αᵒᵈ _ _ _ _ _
-#align infi_sup_infi infᵢ_sup_infᵢ
+  @iSup_inf_iSup αᵒᵈ _ _ _ _ _
+#align infi_sup_infi iInf_sup_iInf
 
-/- warning: binfi_sup_binfi -> binfᵢ_sup_binfᵢ is a dubious translation:
+/- warning: binfi_sup_binfi -> biInf_sup_biInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u3} ι'}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => f i))) (infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) (fun (H : Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) => g j)))) (infᵢ.{u1, succ (max u2 u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (p : Prod.{u2, u3} ι ι') => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' p)) (g (Prod.snd.{u2, u3} ι ι' p)))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u3} ι'}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => f i))) (iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) (fun (H : Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) => g j)))) (iInf.{u1, succ (max u2 u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (p : Prod.{u2, u3} ι ι') => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' p)) (g (Prod.snd.{u2, u3} ι ι' p)))))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Coframe.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u1} ι'}, Eq.{succ u3} α (Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (infᵢ.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => infᵢ.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (infᵢ.{u3, succ u1} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => infᵢ.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) (infᵢ.{u3, succ (max u2 u1)} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (p : Prod.{u2, u1} ι ι') => infᵢ.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) (fun (H : Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) => Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (f (Prod.fst.{u2, u1} ι ι' p)) (g (Prod.snd.{u2, u1} ι ι' p)))))
-Case conversion may be inaccurate. Consider using '#align binfi_sup_binfi binfᵢ_sup_binfᵢₓ'. -/
+  forall {α : Type.{u3}} [_inst_1 : Order.Coframe.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u1} ι'}, Eq.{succ u3} α (Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (iInf.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => iInf.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (iInf.{u3, succ u1} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => iInf.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) (iInf.{u3, succ (max u2 u1)} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (p : Prod.{u2, u1} ι ι') => iInf.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) (fun (H : Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) => Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (f (Prod.fst.{u2, u1} ι ι' p)) (g (Prod.snd.{u2, u1} ι ι' p)))))
+Case conversion may be inaccurate. Consider using '#align binfi_sup_binfi biInf_sup_biInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem binfᵢ_sup_binfᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
+theorem biInf_sup_biInf {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
     ((⨅ i ∈ s, f i) ⊔ ⨅ j ∈ t, g j) = ⨅ p ∈ s ×ˢ t, f (p : ι × ι').1 ⊔ g p.2 :=
-  @bsupᵢ_inf_bsupᵢ αᵒᵈ _ _ _ _ _ _ _
-#align binfi_sup_binfi binfᵢ_sup_binfᵢ
+  @biSup_inf_biSup αᵒᵈ _ _ _ _ _ _ _
+#align binfi_sup_binfi biInf_sup_biInf
 
-/- warning: Inf_sup_Inf -> infₛ_sup_infₛ is a dubious translation:
+/- warning: Inf_sup_Inf -> sInf_sup_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) t)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) t)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) t)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
-Case conversion may be inaccurate. Consider using '#align Inf_sup_Inf infₛ_sup_infₛₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) t)) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
+Case conversion may be inaccurate. Consider using '#align Inf_sup_Inf sInf_sup_sInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem infₛ_sup_infₛ : infₛ s ⊔ infₛ t = ⨅ p ∈ s ×ˢ t, (p : α × α).1 ⊔ p.2 :=
-  @supₛ_inf_supₛ αᵒᵈ _ _ _
-#align Inf_sup_Inf infₛ_sup_infₛ
+theorem sInf_sup_sInf : sInf s ⊔ sInf t = ⨅ p ∈ s ×ˢ t, (p : α × α).1 ⊔ p.2 :=
+  @sSup_inf_sSup αᵒᵈ _ _ _
+#align Inf_sup_Inf sInf_sup_sInf
 
-/- warning: infi_sup_of_monotone -> infᵢ_sup_of_monotone is a dubious translation:
+/- warning: infi_sup_of_monotone -> iInf_sup_of_monotone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2832 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2834 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2832 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2834))] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
-Case conversion may be inaccurate. Consider using '#align infi_sup_of_monotone infᵢ_sup_of_monotoneₓ'. -/
-theorem infᵢ_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
+  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2832 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2834 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2832 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2834))] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+Case conversion may be inaccurate. Consider using '#align infi_sup_of_monotone iInf_sup_of_monotoneₓ'. -/
+theorem iInf_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
-  supᵢ_inf_of_antitone hf.dual_right hg.dual_right
-#align infi_sup_of_monotone infᵢ_sup_of_monotone
+  iSup_inf_of_antitone hf.dual_right hg.dual_right
+#align infi_sup_of_monotone iInf_sup_of_monotone
 
-/- warning: infi_sup_of_antitone -> infᵢ_sup_of_antitone is a dubious translation:
+/- warning: infi_sup_of_antitone -> iInf_sup_of_antitone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2954 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2956 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2954 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2956)] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
-Case conversion may be inaccurate. Consider using '#align infi_sup_of_antitone infᵢ_sup_of_antitoneₓ'. -/
-theorem infᵢ_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
+  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2954 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2956 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2954 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2956)] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+Case conversion may be inaccurate. Consider using '#align infi_sup_of_antitone iInf_sup_of_antitoneₓ'. -/
+theorem iInf_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
-  supᵢ_inf_of_monotone hf.dual_right hg.dual_right
-#align infi_sup_of_antitone infᵢ_sup_of_antitone
+  iSup_inf_of_monotone hf.dual_right hg.dual_right
+#align infi_sup_of_antitone iInf_sup_of_antitone
 
 #print Pi.coframe /-
 instance Pi.coframe {ι : Type _} {π : ι → Type _} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) :=
   { Pi.completeLattice with
-    infₛ := infₛ
-    infᵢ_sup_le_sup_inf := fun a s i => by
-      simp only [← sup_infᵢ_eq, infₛ_apply, ← infᵢ_subtype'', infᵢ_apply, Pi.sup_apply] }
+    sInf := sInf
+    iInf_sup_le_sup_inf := fun a s i => by
+      simp only [← sup_iInf_eq, sInf_apply, ← iInf_subtype'', iInf_apply, Pi.sup_apply] }
 #align pi.coframe Pi.coframe
 -/
 
@@ -446,7 +446,7 @@ instance Pi.coframe {ι : Type _} {π : ι → Type _} [∀ i, Coframe (π i)] :
 instance (priority := 100) Coframe.toDistribLattice : DistribLattice α :=
   { ‹Coframe α› with
     le_sup_inf := fun a b c => by
-      rw [← infₛ_pair, ← infₛ_pair, sup_infₛ_eq, ← infₛ_image, image_pair] }
+      rw [← sInf_pair, ← sInf_pair, sup_sInf_eq, ← sInf_image, image_pair] }
 #align coframe.to_distrib_lattice Coframe.toDistribLattice
 -/
 
@@ -485,10 +485,10 @@ instance Pi.completeBooleanAlgebra {ι : Type _} {π : ι → Type _}
 instance Prop.completeBooleanAlgebra : CompleteBooleanAlgebra Prop :=
   { Prop.booleanAlgebra,
     Prop.completeLattice with
-    infᵢ_sup_le_sup_inf := fun p s =>
-      Iff.mp <| by simp only [forall_or_left, CompleteLattice.inf, infᵢ_Prop_eq, sup_Prop_eq]
-    inf_sup_le_supᵢ_inf := fun p s =>
-      Iff.mp <| by simp only [CompleteLattice.sup, exists_and_left, inf_Prop_eq, supᵢ_Prop_eq] }
+    iInf_sup_le_sup_inf := fun p s =>
+      Iff.mp <| by simp only [forall_or_left, CompleteLattice.inf, iInf_Prop_eq, sup_Prop_eq]
+    inf_sup_le_iSup_inf := fun p s =>
+      Iff.mp <| by simp only [CompleteLattice.sup, exists_and_left, inf_Prop_eq, iSup_Prop_eq] }
 #align Prop.complete_boolean_algebra Prop.completeBooleanAlgebra
 -/
 
@@ -496,65 +496,65 @@ section CompleteBooleanAlgebra
 
 variable [CompleteBooleanAlgebra α] {a b : α} {s : Set α} {f : ι → α}
 
-/- warning: compl_infi -> compl_infᵢ is a dubious translation:
+/- warning: compl_infi -> compl_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι f)) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι f)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (infᵢ.{u1, u2} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) ι f)) (supᵢ.{u1, u2} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
-Case conversion may be inaccurate. Consider using '#align compl_infi compl_infᵢₓ'. -/
-theorem compl_infᵢ : infᵢ fᶜ = ⨆ i, f iᶜ :=
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (iInf.{u1, u2} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) ι f)) (iSup.{u1, u2} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
+Case conversion may be inaccurate. Consider using '#align compl_infi compl_iInfₓ'. -/
+theorem compl_iInf : iInf fᶜ = ⨆ i, f iᶜ :=
   le_antisymm
-    (compl_le_of_compl_le <| le_infᵢ fun i => compl_le_of_compl_le <| le_supᵢ (compl ∘ f) i)
-    (supᵢ_le fun i => compl_le_compl <| infᵢ_le _ _)
-#align compl_infi compl_infᵢ
+    (compl_le_of_compl_le <| le_iInf fun i => compl_le_of_compl_le <| le_iSup (compl ∘ f) i)
+    (iSup_le fun i => compl_le_compl <| iInf_le _ _)
+#align compl_infi compl_iInf
 
-/- warning: compl_supr -> compl_supᵢ is a dubious translation:
+/- warning: compl_supr -> compl_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι f)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι f)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (supᵢ.{u1, u2} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) ι f)) (infᵢ.{u1, u2} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
-Case conversion may be inaccurate. Consider using '#align compl_supr compl_supᵢₓ'. -/
-theorem compl_supᵢ : supᵢ fᶜ = ⨅ i, f iᶜ :=
-  compl_injective (by simp [compl_infᵢ])
-#align compl_supr compl_supᵢ
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {f : ι -> α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (iSup.{u1, u2} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) ι f)) (iInf.{u1, u2} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (f i)))
+Case conversion may be inaccurate. Consider using '#align compl_supr compl_iSupₓ'. -/
+theorem compl_iSup : iSup fᶜ = ⨅ i, f iᶜ :=
+  compl_injective (by simp [compl_iInf])
+#align compl_supr compl_iSup
 
-/- warning: compl_Inf -> compl_infₛ is a dubious translation:
+/- warning: compl_Inf -> compl_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) α (fun (i : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) α (fun (i : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.infₛ.{u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) s)) (supᵢ.{u1, succ u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) α (fun (i : α) => supᵢ.{u1, 0} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
-Case conversion may be inaccurate. Consider using '#align compl_Inf compl_infₛₓ'. -/
-theorem compl_infₛ : infₛ sᶜ = ⨆ i ∈ s, iᶜ := by simp only [infₛ_eq_infᵢ, compl_infᵢ]
-#align compl_Inf compl_infₛ
+  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.sInf.{u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) s)) (iSup.{u1, succ u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) α (fun (i : α) => iSup.{u1, 0} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
+Case conversion may be inaccurate. Consider using '#align compl_Inf compl_sInfₓ'. -/
+theorem compl_sInf : sInf sᶜ = ⨆ i ∈ s, iᶜ := by simp only [sInf_eq_iInf, compl_iInf]
+#align compl_Inf compl_sInf
 
-/- warning: compl_Sup -> compl_supₛ is a dubious translation:
+/- warning: compl_Sup -> compl_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) α (fun (i : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) α (fun (i : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) s)) (infᵢ.{u1, succ u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) α (fun (i : α) => infᵢ.{u1, 0} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
-Case conversion may be inaccurate. Consider using '#align compl_Sup compl_supₛₓ'. -/
-theorem compl_supₛ : supₛ sᶜ = ⨅ i ∈ s, iᶜ := by simp only [supₛ_eq_supᵢ, compl_supᵢ]
-#align compl_Sup compl_supₛ
+  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) s)) (iInf.{u1, succ u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) α (fun (i : α) => iInf.{u1, 0} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i s) => HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) i)))
+Case conversion may be inaccurate. Consider using '#align compl_Sup compl_sSupₓ'. -/
+theorem compl_sSup : sSup sᶜ = ⨅ i ∈ s, iᶜ := by simp only [sSup_eq_iSup, compl_iSup]
+#align compl_Sup compl_sSup
 
-/- warning: compl_Inf' -> compl_infₛ' is a dubious translation:
+/- warning: compl_Inf' -> compl_sInf' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.infₛ.{u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) s)) (SupSet.supₛ.{u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
-Case conversion may be inaccurate. Consider using '#align compl_Inf' compl_infₛ'ₓ'. -/
-theorem compl_infₛ' : infₛ sᶜ = supₛ (compl '' s) :=
-  compl_infₛ.trans supₛ_image.symm
-#align compl_Inf' compl_infₛ'
+  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (InfSet.sInf.{u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) s)) (SupSet.sSup.{u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
+Case conversion may be inaccurate. Consider using '#align compl_Inf' compl_sInf'ₓ'. -/
+theorem compl_sInf' : sInf sᶜ = sSup (compl '' s) :=
+  compl_sInf.trans sSup_image.symm
+#align compl_Inf' compl_sInf'
 
-/- warning: compl_Sup' -> compl_supₛ' is a dubious translation:
+/- warning: compl_Sup' -> compl_sSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) s)) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α (CompleteDistribLattice.toCoframe.{u1} α (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} α _inst_1))))) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) s)) (InfSet.infₛ.{u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
-Case conversion may be inaccurate. Consider using '#align compl_Sup' compl_supₛ'ₓ'. -/
-theorem compl_supₛ' : supₛ sᶜ = infₛ (compl '' s) :=
-  compl_supₛ.trans infₛ_image.symm
-#align compl_Sup' compl_supₛ'
+  forall {α : Type.{u1}} [_inst_1 : CompleteBooleanAlgebra.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteBooleanAlgebra.toSupSet.{u1} α _inst_1) s)) (InfSet.sInf.{u1} α (CompleteBooleanAlgebra.toInfSet.{u1} α _inst_1) (Set.image.{u1, u1} α α (HasCompl.compl.{u1} α (BooleanAlgebra.toHasCompl.{u1} α (CompleteBooleanAlgebra.toBooleanAlgebra.{u1} α _inst_1))) s))
+Case conversion may be inaccurate. Consider using '#align compl_Sup' compl_sSup'ₓ'. -/
+theorem compl_sSup' : sSup sᶜ = sInf (compl '' s) :=
+  compl_sSup.trans sInf_image.symm
+#align compl_Sup' compl_sSup'
 
 end CompleteBooleanAlgebra
 
@@ -562,52 +562,52 @@ section lift
 
 /- warning: function.injective.frame -> Function.Injective.frame is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Frame.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Frame.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Frame.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Frame.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Frame.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Frame.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Frame.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Frame.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.frame Function.Injective.frameₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback an `order.frame` along an injection. -/
 @[reducible]
 protected def Function.Injective.frame [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α] [Bot α]
     [Frame β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
-    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
-    (map_Inf : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : Frame α :=
+    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
+    (map_Inf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : Frame α :=
   { hf.CompleteLattice f map_sup map_inf map_Sup map_Inf map_top map_bot with
-    inf_sup_le_supᵢ_inf := fun a s => by
+    inf_sup_le_iSup_inf := fun a s => by
       change f (a ⊓ Sup s) ≤ f _
-      rw [← supₛ_image, map_inf, map_Sup s, inf_supᵢ₂_eq]
+      rw [← sSup_image, map_inf, map_Sup s, inf_iSup₂_eq]
       simp_rw [← map_inf]
-      exact ((map_Sup _).trans supᵢ_image).ge }
+      exact ((map_Sup _).trans iSup_image).ge }
 #align function.injective.frame Function.Injective.frame
 
 /- warning: function.injective.coframe -> Function.Injective.coframe is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Coframe.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Coframe.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Coframe.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Coframe.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Coframe.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Coframe.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Coframe.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Coframe.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.coframe Function.Injective.coframeₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback an `order.coframe` along an injection. -/
 @[reducible]
 protected def Function.Injective.coframe [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α] [Bot α]
     [Coframe β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
-    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
-    (map_Inf : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
+    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
+    (map_Inf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
     Coframe α :=
   { hf.CompleteLattice f map_sup map_inf map_Sup map_Inf map_top map_bot with
-    infᵢ_sup_le_sup_inf := fun a s => by
+    iInf_sup_le_sup_inf := fun a s => by
       change f _ ≤ f (a ⊔ Inf s)
-      rw [← infₛ_image, map_sup, map_Inf s, sup_infᵢ₂_eq]
+      rw [← sInf_image, map_sup, map_Inf s, sup_iInf₂_eq]
       simp_rw [← map_sup]
-      exact ((map_Inf _).trans infᵢ_image).le }
+      exact ((map_Inf _).trans iInf_image).le }
 #align function.injective.coframe Function.Injective.coframe
 
 /- warning: function.injective.complete_distrib_lattice -> Function.Injective.completeDistribLattice is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteDistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (CompleteDistribLattice.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteDistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (CompleteDistribLattice.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteDistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (CompleteDistribLattice.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteDistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (CompleteDistribLattice.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.complete_distrib_lattice Function.Injective.completeDistribLatticeₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `complete_distrib_lattice` along an injection. -/
@@ -615,7 +615,7 @@ Case conversion may be inaccurate. Consider using '#align function.injective.com
 protected def Function.Injective.completeDistribLattice [Sup α] [Inf α] [SupSet α] [InfSet α]
     [Top α] [Bot α] [CompleteDistribLattice β] (f : α → β) (hf : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
-    (map_Sup : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a) (map_Inf : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a)
+    (map_Sup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a) (map_Inf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a)
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : CompleteDistribLattice α :=
   { hf.Frame f map_sup map_inf map_Sup map_Inf map_top map_bot,
     hf.Coframe f map_sup map_inf map_Sup map_Inf map_top map_bot with }
@@ -623,9 +623,9 @@ protected def Function.Injective.completeDistribLattice [Sup α] [Inf α] [SupSe
 
 /- warning: function.injective.complete_boolean_algebra -> Function.Injective.completeBooleanAlgebra is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : HasCompl.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : CompleteBooleanAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_7 a)) (HasCompl.compl.{u2} β (BooleanAlgebra.toHasCompl.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BooleanAlgebra.toHasSdiff.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a) (f b))) -> (CompleteBooleanAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : HasCompl.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : CompleteBooleanAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_7 a)) (HasCompl.compl.{u2} β (BooleanAlgebra.toHasCompl.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BooleanAlgebra.toHasSdiff.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a) (f b))) -> (CompleteBooleanAlgebra.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : HasCompl.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : CompleteBooleanAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteBooleanAlgebra.toSupSet.{u2} β _inst_9) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteBooleanAlgebra.toSupSet.{u2} β _inst_9) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteBooleanAlgebra.toInfSet.{u2} β _inst_9) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteBooleanAlgebra.toInfSet.{u2} β _inst_9) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_7 a)) (HasCompl.compl.{u2} β (BooleanAlgebra.toHasCompl.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BooleanAlgebra.toSDiff.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a) (f b))) -> (CompleteBooleanAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : HasCompl.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : CompleteBooleanAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteBooleanAlgebra.toSupSet.{u2} β _inst_9) α (fun (a : α) => iSup.{u2, 0} β (CompleteBooleanAlgebra.toSupSet.{u2} β _inst_9) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteBooleanAlgebra.toInfSet.{u2} β _inst_9) α (fun (a : α) => iInf.{u2, 0} β (CompleteBooleanAlgebra.toInfSet.{u2} β _inst_9) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_7 a)) (HasCompl.compl.{u2} β (BooleanAlgebra.toHasCompl.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BooleanAlgebra.toSDiff.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a) (f b))) -> (CompleteBooleanAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.complete_boolean_algebra Function.Injective.completeBooleanAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `complete_boolean_algebra` along an injection. -/
@@ -633,8 +633,8 @@ Case conversion may be inaccurate. Consider using '#align function.injective.com
 protected def Function.Injective.completeBooleanAlgebra [Sup α] [Inf α] [SupSet α] [InfSet α]
     [Top α] [Bot α] [HasCompl α] [SDiff α] [CompleteBooleanAlgebra β] (f : α → β)
     (hf : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
-    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
-    (map_Inf : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥)
+    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
+    (map_Inf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥)
     (map_compl : ∀ a, f (aᶜ) = f aᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
     CompleteBooleanAlgebra α :=
   { hf.CompleteDistribLattice f map_sup map_inf map_Sup map_Inf map_top map_bot,
@@ -650,23 +650,23 @@ variable (s : Set PUnit.{u + 1}) (x y : PUnit.{u + 1})
 instance : CompleteBooleanAlgebra PUnit := by
   refine_struct
         { PUnit.booleanAlgebra with
-          supₛ := fun _ => star
-          infₛ := fun _ => star } <;>
+          sSup := fun _ => star
+          sInf := fun _ => star } <;>
       intros <;>
     first |trivial|simp only [eq_iff_true_of_subsingleton, not_true, and_false_iff]
 
-#print PUnit.supₛ_eq /-
+#print PUnit.sSup_eq /-
 @[simp]
-theorem supₛ_eq : supₛ s = unit :=
+theorem sSup_eq : sSup s = unit :=
   rfl
-#align punit.Sup_eq PUnit.supₛ_eq
+#align punit.Sup_eq PUnit.sSup_eq
 -/
 
-#print PUnit.infₛ_eq /-
+#print PUnit.sInf_eq /-
 @[simp]
-theorem infₛ_eq : infₛ s = unit :=
+theorem sInf_eq : sInf s = unit :=
   rfl
-#align punit.Inf_eq PUnit.infₛ_eq
+#align punit.Inf_eq PUnit.sInf_eq
 -/
 
 end PUnit
Diff
@@ -260,7 +260,7 @@ theorem disjoint_supₛ_iff {s : Set α} : Disjoint a (supₛ s) ↔ ∀ b ∈ s
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1522 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1524 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1522 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1524)] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1516 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1518 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1516 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1518)] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align supr_inf_of_monotone supᵢ_inf_of_monotoneₓ'. -/
 theorem supᵢ_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
@@ -276,7 +276,7 @@ theorem supᵢ_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· 
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1717 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1719 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1717 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1719))] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1711 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1713 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1711 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1713))] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align supr_inf_of_antitone supᵢ_inf_of_antitoneₓ'. -/
 theorem supᵢ_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
@@ -414,7 +414,7 @@ theorem infₛ_sup_infₛ : infₛ s ⊔ infₛ t = ⨅ p ∈ s ×ˢ t, (p : α
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2838 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2840 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2838 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2840))] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2832 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2834 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2832 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2834))] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align infi_sup_of_monotone infᵢ_sup_of_monotoneₓ'. -/
 theorem infᵢ_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
@@ -425,7 +425,7 @@ theorem infᵢ_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2960 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2962 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2960 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2962)] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2954 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2956 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2954 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2956)] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align infi_sup_of_antitone infᵢ_sup_of_antitoneₓ'. -/
 theorem infᵢ_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Yaël Dillies
 
 ! This file was ported from Lean 3 source module order.complete_boolean_algebra
-! leanprover-community/mathlib commit e8ac6315bcfcbaf2d19a046719c3b553206dac75
+! leanprover-community/mathlib commit 71b36b6f3bbe3b44e6538673819324d3ee9fcc96
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -23,7 +23,7 @@ distributive Boolean algebras.
 
 ## Typeclasses
 
-* `order.frame`: Frm: A complete lattice whose `⊓` distributes over `⨆`.
+* `order.frame`: Frame: A complete lattice whose `⊓` distributes over `⨆`.
 * `order.coframe`: Coframe: A complete lattice whose `⊔` distributes over `⨅`.
 * `complete_distrib_lattice`: Completely distributive lattices: A complete lattice whose `⊓` and `⊔`
   distribute over `⨆` and `⨅` respectively.
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Yaël Dillies
 
 ! This file was ported from Lean 3 source module order.complete_boolean_algebra
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
+! leanprover-community/mathlib commit e8ac6315bcfcbaf2d19a046719c3b553206dac75
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -23,7 +23,7 @@ distributive Boolean algebras.
 
 ## Typeclasses
 
-* `order.frame`: Frame: A complete lattice whose `⊓` distributes over `⨆`.
+* `order.frame`: Frm: A complete lattice whose `⊓` distributes over `⨆`.
 * `order.coframe`: Coframe: A complete lattice whose `⊔` distributes over `⨅`.
 * `complete_distrib_lattice`: Completely distributive lattices: A complete lattice whose `⊓` and `⊔`
   distribute over `⨆` and `⨅` respectively.
Diff
@@ -260,7 +260,7 @@ theorem disjoint_supₛ_iff {s : Set α} : Disjoint a (supₛ s) ↔ ∀ b ∈ s
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1521 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1523 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1521 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1523)] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1522 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1524 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1522 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1524)] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align supr_inf_of_monotone supᵢ_inf_of_monotoneₓ'. -/
 theorem supᵢ_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
@@ -276,7 +276,7 @@ theorem supᵢ_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· 
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1716 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1718 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1716 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1718))] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1717 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1719 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1717 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1719))] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align supr_inf_of_antitone supᵢ_inf_of_antitoneₓ'. -/
 theorem supᵢ_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
@@ -414,7 +414,7 @@ theorem infₛ_sup_infₛ : infₛ s ⊔ infₛ t = ⨅ p ∈ s ×ˢ t, (p : α
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2837 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2839 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2837 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2839))] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2838 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2840 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2838 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2840))] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align infi_sup_of_monotone infᵢ_sup_of_monotoneₓ'. -/
 theorem infᵢ_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
@@ -425,7 +425,7 @@ theorem infᵢ_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2959 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2961 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2959 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2961)] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2960 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2962 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2960 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2962)] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align infi_sup_of_antitone infᵢ_sup_of_antitoneₓ'. -/
 theorem infᵢ_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
Diff
@@ -96,9 +96,9 @@ instance OrderDual.coframe : Coframe αᵒᵈ :=
 
 /- warning: inf_Sup_eq -> inf_supₛ_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s)) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s)) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s)) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s)) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b)))
 Case conversion may be inaccurate. Consider using '#align inf_Sup_eq inf_supₛ_eqₓ'. -/
 theorem inf_supₛ_eq : a ⊓ supₛ s = ⨆ b ∈ s, a ⊓ b :=
   (Frame.inf_sup_le_supᵢ_inf _ _).antisymm supᵢ_inf_le_inf_supₛ
@@ -106,9 +106,9 @@ theorem inf_supₛ_eq : a ⊓ supₛ s = ⨆ b ∈ s, a ⊓ b :=
 
 /- warning: Sup_inf_eq -> supₛ_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) b) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) α (fun (a : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) b) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) α (fun (a : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) b) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) α (fun (a : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) b) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) α (fun (a : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a b)))
 Case conversion may be inaccurate. Consider using '#align Sup_inf_eq supₛ_inf_eqₓ'. -/
 theorem supₛ_inf_eq : supₛ s ⊓ b = ⨆ a ∈ s, a ⊓ b := by
   simpa only [inf_comm] using @inf_supₛ_eq α _ s b
@@ -116,9 +116,9 @@ theorem supₛ_inf_eq : supₛ s ⊓ b = ⨆ a ∈ s, a ⊓ b := by
 
 /- warning: supr_inf_eq -> supᵢ_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (f i) a))
 Case conversion may be inaccurate. Consider using '#align supr_inf_eq supᵢ_inf_eqₓ'. -/
 theorem supᵢ_inf_eq (f : ι → α) (a : α) : (⨆ i, f i) ⊓ a = ⨆ i, f i ⊓ a := by
   rw [supᵢ, supₛ_inf_eq, supᵢ_range]
@@ -126,9 +126,9 @@ theorem supᵢ_inf_eq (f : ι → α) (a : α) : (⨆ i, f i) ⊓ a = ⨆ i, f i
 
 /- warning: inf_supr_eq -> inf_supᵢ_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Frame.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) a (f i)))
 Case conversion may be inaccurate. Consider using '#align inf_supr_eq inf_supᵢ_eqₓ'. -/
 theorem inf_supᵢ_eq (a : α) (f : ι → α) : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓ f i := by
   simpa only [inf_comm] using supᵢ_inf_eq f a
@@ -136,9 +136,9 @@ theorem inf_supᵢ_eq (a : α) (f : ι → α) : (a ⊓ ⨆ i, f i) = ⨆ i, a 
 
 /- warning: bsupr_inf_eq -> supᵢ₂_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i j) a)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i j) a)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i j) a)))
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i j) a)))
 Case conversion may be inaccurate. Consider using '#align bsupr_inf_eq supᵢ₂_inf_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
@@ -148,9 +148,9 @@ theorem supᵢ₂_inf_eq {f : ∀ i, κ i → α} (a : α) : (⨆ (i) (j), f i j
 
 /- warning: inf_bsupr_eq -> inf_supᵢ₂_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (f i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Frame.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) a (f i j))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (f i j))))
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Frame.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) a (f i j))))
 Case conversion may be inaccurate. Consider using '#align inf_bsupr_eq inf_supᵢ₂_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
@@ -160,9 +160,9 @@ theorem inf_supᵢ₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊓ ⨆ (i) (j),
 
 /- warning: supr_inf_supr -> supᵢ_inf_supᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => g j))) (supᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (i : Prod.{u2, u3} ι ι') => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' i)) (g (Prod.snd.{u2, u3} ι ι' i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => g j))) (supᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (i : Prod.{u2, u3} ι ι') => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' i)) (g (Prod.snd.{u2, u3} ι ι' i))))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Frame.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u3} α (HasInf.inf.{u3} α (Lattice.toHasInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (supᵢ.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u3, succ u1} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => g j))) (supᵢ.{u3, max (succ u2) (succ u1)} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (i : Prod.{u2, u1} ι ι') => HasInf.inf.{u3} α (Lattice.toHasInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (f (Prod.fst.{u2, u1} ι ι' i)) (g (Prod.snd.{u2, u1} ι ι' i))))
+  forall {α : Type.{u3}} [_inst_1 : Order.Frame.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u3} α (Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (supᵢ.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u3, succ u1} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => g j))) (supᵢ.{u3, max (succ u2) (succ u1)} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (i : Prod.{u2, u1} ι ι') => Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (f (Prod.fst.{u2, u1} ι ι' i)) (g (Prod.snd.{u2, u1} ι ι' i))))
 Case conversion may be inaccurate. Consider using '#align supr_inf_supr supᵢ_inf_supᵢₓ'. -/
 theorem supᵢ_inf_supᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
     ((⨆ i, f i) ⊓ ⨆ j, g j) = ⨆ i : ι × ι', f i.1 ⊓ g i.2 := by
@@ -171,9 +171,9 @@ theorem supᵢ_inf_supᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
 
 /- warning: bsupr_inf_bsupr -> bsupᵢ_inf_bsupᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u3} ι'}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => f i))) (supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) (fun (H : Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) => g j)))) (supᵢ.{u1, succ (max u2 u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (p : Prod.{u2, u3} ι ι') => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' p)) (g (Prod.snd.{u2, u3} ι ι' p)))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u3} ι'}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => f i))) (supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) (fun (H : Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) => g j)))) (supᵢ.{u1, succ (max u2 u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (p : Prod.{u2, u3} ι ι') => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' p)) (g (Prod.snd.{u2, u3} ι ι' p)))))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Frame.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u1} ι'}, Eq.{succ u3} α (HasInf.inf.{u3} α (Lattice.toHasInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (supᵢ.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => supᵢ.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (supᵢ.{u3, succ u1} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => supᵢ.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) (supᵢ.{u3, succ (max u2 u1)} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (p : Prod.{u2, u1} ι ι') => supᵢ.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) (fun (H : Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) => HasInf.inf.{u3} α (Lattice.toHasInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (f (Prod.fst.{u2, u1} ι ι' p)) (g (Prod.snd.{u2, u1} ι ι' p)))))
+  forall {α : Type.{u3}} [_inst_1 : Order.Frame.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u1} ι'}, Eq.{succ u3} α (Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (supᵢ.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => supᵢ.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (supᵢ.{u3, succ u1} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => supᵢ.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) (supᵢ.{u3, succ (max u2 u1)} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (p : Prod.{u2, u1} ι ι') => supᵢ.{u3, 0} α (CompleteLattice.toSupSet.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) (fun (H : Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) => Inf.inf.{u3} α (Lattice.toInf.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Frame.toCompleteLattice.{u3} α _inst_1))) (f (Prod.fst.{u2, u1} ι ι' p)) (g (Prod.snd.{u2, u1} ι ι' p)))))
 Case conversion may be inaccurate. Consider using '#align bsupr_inf_bsupr bsupᵢ_inf_bsupᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem bsupᵢ_inf_bsupᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
@@ -185,9 +185,9 @@ theorem bsupᵢ_inf_bsupᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} {
 
 /- warning: Sup_inf_Sup -> supₛ_inf_supₛ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) t)) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) t)) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) t)) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) t)) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
 Case conversion may be inaccurate. Consider using '#align Sup_inf_Sup supₛ_inf_supₛₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem supₛ_inf_supₛ : supₛ s ⊓ supₛ t = ⨆ p ∈ s ×ˢ t, (p : α × α).1 ⊓ p.2 := by
@@ -258,9 +258,9 @@ theorem disjoint_supₛ_iff {s : Set α} : Disjoint a (supₛ s) ↔ ∀ b ∈ s
 
 /- warning: supr_inf_of_monotone -> supᵢ_inf_of_monotone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1521 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1523 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1521 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1523)] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1521 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1523 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1521 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1523)] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align supr_inf_of_monotone supᵢ_inf_of_monotoneₓ'. -/
 theorem supᵢ_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
@@ -274,9 +274,9 @@ theorem supᵢ_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· 
 
 /- warning: supr_inf_of_antitone -> supᵢ_inf_of_antitone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Frame.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (Order.Frame.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1716 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1718 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1716 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1718))] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Frame.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1716 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1718 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1716 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.1718))] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α (Order.Frame.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align supr_inf_of_antitone supᵢ_inf_of_antitoneₓ'. -/
 theorem supᵢ_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
@@ -314,9 +314,9 @@ instance OrderDual.frame : Frame αᵒᵈ :=
 
 /- warning: sup_Inf_eq -> sup_infₛ_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
 Case conversion may be inaccurate. Consider using '#align sup_Inf_eq sup_infₛ_eqₓ'. -/
 theorem sup_infₛ_eq : a ⊔ infₛ s = ⨅ b ∈ s, a ⊔ b :=
   @inf_supₛ_eq αᵒᵈ _ _ _
@@ -324,9 +324,9 @@ theorem sup_infₛ_eq : a ⊔ infₛ s = ⨅ b ∈ s, a ⊔ b :=
 
 /- warning: Inf_sup_eq -> infₛ_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s) b) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) α (fun (a : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s) b) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) α (fun (a : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s) b) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) α (fun (a : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s) b) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) α (fun (a : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a b)))
 Case conversion may be inaccurate. Consider using '#align Inf_sup_eq infₛ_sup_eqₓ'. -/
 theorem infₛ_sup_eq : infₛ s ⊔ b = ⨅ a ∈ s, a ⊔ b :=
   @supₛ_inf_eq αᵒᵈ _ _ _
@@ -334,9 +334,9 @@ theorem infₛ_sup_eq : infₛ s ⊔ b = ⨅ a ∈ s, a ⊔ b :=
 
 /- warning: infi_sup_eq -> infᵢ_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (f : ι -> α) (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i)) a) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) a))
 Case conversion may be inaccurate. Consider using '#align infi_sup_eq infᵢ_sup_eqₓ'. -/
 theorem infᵢ_sup_eq (f : ι → α) (a : α) : (⨅ i, f i) ⊔ a = ⨅ i, f i ⊔ a :=
   @supᵢ_inf_eq αᵒᵈ _ _ _ _
@@ -344,9 +344,9 @@ theorem infᵢ_sup_eq (f : ι → α) (a : α) : (⨅ i, f i) ⊔ a = ⨅ i, f i
 
 /- warning: sup_infi_eq -> sup_infᵢ_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Order.Coframe.{u1} α] (a : α) (f : ι -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i)))
 Case conversion may be inaccurate. Consider using '#align sup_infi_eq sup_infᵢ_eqₓ'. -/
 theorem sup_infᵢ_eq (a : α) (f : ι → α) : (a ⊔ ⨅ i, f i) = ⨅ i, a ⊔ f i :=
   @inf_supᵢ_eq αᵒᵈ _ _ _ _
@@ -354,9 +354,9 @@ theorem sup_infᵢ_eq (a : α) (f : ι → α) : (a ⊔ ⨅ i, f i) = ⨅ i, a 
 
 /- warning: binfi_sup_eq -> infᵢ₂_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Coframe.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i j) a)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Coframe.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j))) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i j) a)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Coframe.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i j) a)))
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Coframe.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i j) a)))
 Case conversion may be inaccurate. Consider using '#align binfi_sup_eq infᵢ₂_sup_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
@@ -366,9 +366,9 @@ theorem infᵢ₂_sup_eq {f : ∀ i, κ i → α} (a : α) : (⨅ (i) (j), f i j
 
 /- warning: sup_binfi_eq -> sup_infᵢ₂_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Coframe.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : Order.Coframe.{u1} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => f i j)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (κ i) (fun (j : κ i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) a (f i j))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Coframe.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) a (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) a (f i j))))
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u1}} [_inst_1 : Order.Coframe.{u2} α] {f : forall (i : ι), (κ i) -> α} (a : α), Eq.{succ u2} α (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) a (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) (κ i) (fun (j : κ i) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) a (f i j))))
 Case conversion may be inaccurate. Consider using '#align sup_binfi_eq sup_infᵢ₂_eqₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
@@ -378,9 +378,9 @@ theorem sup_infᵢ₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊔ ⨅ (i) (j),
 
 /- warning: infi_sup_infi -> infᵢ_sup_infᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι' (fun (i : ι') => g i))) (infᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (i : Prod.{u2, u3} ι ι') => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' i)) (g (Prod.snd.{u2, u3} ι ι' i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι' (fun (i : ι') => g i))) (infᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (i : Prod.{u2, u3} ι ι') => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' i)) (g (Prod.snd.{u2, u3} ι ι' i))))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Coframe.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u3} α (HasSup.sup.{u3} α (SemilatticeSup.toHasSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (infᵢ.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u3, succ u1} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι' (fun (i : ι') => g i))) (infᵢ.{u3, max (succ u2) (succ u1)} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (i : Prod.{u2, u1} ι ι') => HasSup.sup.{u3} α (SemilatticeSup.toHasSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (f (Prod.fst.{u2, u1} ι ι' i)) (g (Prod.snd.{u2, u1} ι ι' i))))
+  forall {α : Type.{u3}} [_inst_1 : Order.Coframe.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α}, Eq.{succ u3} α (Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (infᵢ.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u3, succ u1} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι' (fun (i : ι') => g i))) (infᵢ.{u3, max (succ u2) (succ u1)} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (i : Prod.{u2, u1} ι ι') => Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (f (Prod.fst.{u2, u1} ι ι' i)) (g (Prod.snd.{u2, u1} ι ι' i))))
 Case conversion may be inaccurate. Consider using '#align infi_sup_infi infᵢ_sup_infᵢₓ'. -/
 theorem infᵢ_sup_infᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
     ((⨅ i, f i) ⊔ ⨅ i, g i) = ⨅ i : ι × ι', f i.1 ⊔ g i.2 :=
@@ -389,9 +389,9 @@ theorem infᵢ_sup_infᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
 
 /- warning: binfi_sup_binfi -> binfᵢ_sup_binfᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u3} ι'}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => f i))) (infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) (fun (H : Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) => g j)))) (infᵢ.{u1, succ (max u2 u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (p : Prod.{u2, u3} ι ι') => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' p)) (g (Prod.snd.{u2, u3} ι ι' p)))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} {ι' : Type.{u3}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u3} ι'}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => f i))) (infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι' (fun (j : ι') => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) (fun (H : Membership.Mem.{u3, u3} ι' (Set.{u3} ι') (Set.hasMem.{u3} ι') j t) => g j)))) (infᵢ.{u1, succ (max u2 u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u2, u3} ι ι') (fun (p : Prod.{u2, u3} ι ι') => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} ι ι') (Set.{max u2 u3} (Prod.{u2, u3} ι ι')) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} ι ι')) p (Set.prod.{u2, u3} ι ι' s t)) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f (Prod.fst.{u2, u3} ι ι' p)) (g (Prod.snd.{u2, u3} ι ι' p)))))
 but is expected to have type
-  forall {α : Type.{u3}} [_inst_1 : Order.Coframe.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u1} ι'}, Eq.{succ u3} α (HasSup.sup.{u3} α (SemilatticeSup.toHasSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (infᵢ.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => infᵢ.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (infᵢ.{u3, succ u1} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => infᵢ.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) (infᵢ.{u3, succ (max u2 u1)} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (p : Prod.{u2, u1} ι ι') => infᵢ.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) (fun (H : Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) => HasSup.sup.{u3} α (SemilatticeSup.toHasSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (f (Prod.fst.{u2, u1} ι ι' p)) (g (Prod.snd.{u2, u1} ι ι' p)))))
+  forall {α : Type.{u3}} [_inst_1 : Order.Coframe.{u3} α] {ι : Type.{u2}} {ι' : Type.{u1}} {f : ι -> α} {g : ι' -> α} {s : Set.{u2} ι} {t : Set.{u1} ι'}, Eq.{succ u3} α (Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (infᵢ.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι (fun (i : ι) => infᵢ.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => f i))) (infᵢ.{u3, succ u1} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) ι' (fun (j : ι') => infᵢ.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) (fun (H : Membership.mem.{u1, u1} ι' (Set.{u1} ι') (Set.instMembershipSet.{u1} ι') j t) => g j)))) (infᵢ.{u3, succ (max u2 u1)} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Prod.{u2, u1} ι ι') (fun (p : Prod.{u2, u1} ι ι') => infᵢ.{u3, 0} α (CompleteLattice.toInfSet.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)) (Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) (fun (H : Membership.mem.{max u2 u1, max u1 u2} (Prod.{u2, u1} ι ι') (Set.{max u1 u2} (Prod.{u2, u1} ι ι')) (Set.instMembershipSet.{max u2 u1} (Prod.{u2, u1} ι ι')) p (Set.prod.{u2, u1} ι ι' s t)) => Sup.sup.{u3} α (SemilatticeSup.toSup.{u3} α (Lattice.toSemilatticeSup.{u3} α (CompleteLattice.toLattice.{u3} α (Order.Coframe.toCompleteLattice.{u3} α _inst_1)))) (f (Prod.fst.{u2, u1} ι ι' p)) (g (Prod.snd.{u2, u1} ι ι' p)))))
 Case conversion may be inaccurate. Consider using '#align binfi_sup_binfi binfᵢ_sup_binfᵢₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem binfᵢ_sup_binfᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
@@ -401,9 +401,9 @@ theorem binfᵢ_sup_binfᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} {
 
 /- warning: Inf_sup_Inf -> infₛ_sup_infₛ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) t)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) s) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) t)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) (Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.Mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasMem.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) t)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) t)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Prod.{u1, u1} α α) (fun (p : Prod.{u1, u1} α α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)) (Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) (fun (H : Membership.mem.{u1, u1} (Prod.{u1, u1} α α) (Set.{u1} (Prod.{u1, u1} α α)) (Set.instMembershipSet.{u1} (Prod.{u1, u1} α α)) p (Set.prod.{u1, u1} α α s t)) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (Prod.fst.{u1, u1} α α p) (Prod.snd.{u1, u1} α α p))))
 Case conversion may be inaccurate. Consider using '#align Inf_sup_Inf infₛ_sup_infₛₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem infₛ_sup_infₛ : infₛ s ⊔ infₛ t = ⨅ p ∈ s ×ˢ t, (p : α × α).1 ⊔ p.2 :=
@@ -412,9 +412,9 @@ theorem infₛ_sup_infₛ : infₛ s ⊔ infₛ t = ⨅ p ∈ s ×ˢ t, (p : α
 
 /- warning: infi_sup_of_monotone -> infᵢ_sup_of_monotone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (Function.swap.{succ u2, succ u2, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2)))] {f : ι -> α} {g : ι -> α}, (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Monotone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2837 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2839 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2837 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2839))] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (Function.swap.{succ u1, succ u1, 1} ι ι (fun (ᾰ : ι) (ᾰ : ι) => Prop) (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2837 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2839 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2837 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2839))] {f : ι -> α} {g : ι -> α}, (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Monotone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align infi_sup_of_monotone infᵢ_sup_of_monotoneₓ'. -/
 theorem infᵢ_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
@@ -423,9 +423,9 @@ theorem infᵢ_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap
 
 /- warning: infi_sup_of_antitone -> infᵢ_sup_of_antitone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u1}} [_inst_1 : Order.Coframe.{u1} α] {ι : Type.{u2}} [_inst_2 : Preorder.{u2} ι] [_inst_3 : IsDirected.{u2} ι (LE.le.{u2} ι (Preorder.toLE.{u2} ι _inst_2))] {f : ι -> α} {g : ι -> α}, (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} ι α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) g) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (Order.Coframe.toCompleteLattice.{u1} α _inst_1))) ι (fun (i : ι) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2959 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2961 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2959 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2961)] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
+  forall {α : Type.{u2}} [_inst_1 : Order.Coframe.{u2} α] {ι : Type.{u1}} [_inst_2 : Preorder.{u1} ι] [_inst_3 : IsDirected.{u1} ι (fun (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2959 : ι) (x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2961 : ι) => LE.le.{u1} ι (Preorder.toLE.{u1} ι _inst_2) x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2959 x._@.Mathlib.Order.CompleteBooleanAlgebra._hyg.2961)] {f : ι -> α} {g : ι -> α}, (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) f) -> (Antitone.{u1, u2} ι α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) g) -> (Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α (Order.Coframe.toCompleteLattice.{u2} α _inst_1)) ι (fun (i : ι) => g i))))
 Case conversion may be inaccurate. Consider using '#align infi_sup_of_antitone infᵢ_sup_of_antitoneₓ'. -/
 theorem infᵢ_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
@@ -562,14 +562,14 @@ section lift
 
 /- warning: function.injective.frame -> Function.Injective.frame is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Frame.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Frame.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Frame.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Frame.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Frame.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (Lattice.toHasInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Frame.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Frame.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Frame.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Frame.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.frame Function.Injective.frameₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback an `order.frame` along an injection. -/
 @[reducible]
-protected def Function.Injective.frame [HasSup α] [HasInf α] [SupSet α] [InfSet α] [Top α] [Bot α]
+protected def Function.Injective.frame [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α] [Bot α]
     [Frame β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
     (map_Inf : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : Frame α :=
@@ -583,14 +583,14 @@ protected def Function.Injective.frame [HasSup α] [HasInf α] [SupSet α] [InfS
 
 /- warning: function.injective.coframe -> Function.Injective.coframe is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Coframe.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Coframe.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Coframe.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Coframe.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Coframe.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (Lattice.toHasInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Coframe.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : Order.Coframe.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β _inst_7)))) -> (Order.Coframe.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.coframe Function.Injective.coframeₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback an `order.coframe` along an injection. -/
 @[reducible]
-protected def Function.Injective.coframe [HasSup α] [HasInf α] [SupSet α] [InfSet α] [Top α] [Bot α]
+protected def Function.Injective.coframe [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α] [Bot α]
     [Coframe β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
     (map_Inf : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
@@ -605,14 +605,14 @@ protected def Function.Injective.coframe [HasSup α] [HasInf α] [SupSet α] [In
 
 /- warning: function.injective.complete_distrib_lattice -> Function.Injective.completeDistribLattice is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteDistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (CompleteDistribLattice.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteDistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (CompleteDistribLattice.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteDistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (Lattice.toHasInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (CompleteDistribLattice.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteDistribLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7)))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β _inst_7))))) -> (CompleteDistribLattice.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.complete_distrib_lattice Function.Injective.completeDistribLatticeₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `complete_distrib_lattice` along an injection. -/
 @[reducible]
-protected def Function.Injective.completeDistribLattice [HasSup α] [HasInf α] [SupSet α] [InfSet α]
+protected def Function.Injective.completeDistribLattice [Sup α] [Inf α] [SupSet α] [InfSet α]
     [Top α] [Bot α] [CompleteDistribLattice β] (f : α → β) (hf : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_Sup : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a) (map_Inf : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a)
@@ -623,14 +623,14 @@ protected def Function.Injective.completeDistribLattice [HasSup α] [HasInf α]
 
 /- warning: function.injective.complete_boolean_algebra -> Function.Injective.completeBooleanAlgebra is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : HasCompl.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : CompleteBooleanAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_7 a)) (HasCompl.compl.{u2} β (BooleanAlgebra.toHasCompl.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BooleanAlgebra.toHasSdiff.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a) (f b))) -> (CompleteBooleanAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : HasCompl.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : CompleteBooleanAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_7 a)) (HasCompl.compl.{u2} β (BooleanAlgebra.toHasCompl.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BooleanAlgebra.toHasSdiff.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a) (f b))) -> (CompleteBooleanAlgebra.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : HasCompl.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : CompleteBooleanAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (Lattice.toHasInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteBooleanAlgebra.toSupSet.{u2} β _inst_9) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteBooleanAlgebra.toSupSet.{u2} β _inst_9) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteBooleanAlgebra.toInfSet.{u2} β _inst_9) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteBooleanAlgebra.toInfSet.{u2} β _inst_9) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_7 a)) (HasCompl.compl.{u2} β (BooleanAlgebra.toHasCompl.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BooleanAlgebra.toSDiff.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a) (f b))) -> (CompleteBooleanAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : HasCompl.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : CompleteBooleanAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9))))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteBooleanAlgebra.toSupSet.{u2} β _inst_9) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteBooleanAlgebra.toSupSet.{u2} β _inst_9) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteBooleanAlgebra.toInfSet.{u2} β _inst_9) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteBooleanAlgebra.toInfSet.{u2} β _inst_9) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β (Order.Coframe.toCompleteLattice.{u2} β (CompleteDistribLattice.toCoframe.{u2} β (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} β _inst_9)))))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_7 a)) (HasCompl.compl.{u2} β (BooleanAlgebra.toHasCompl.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BooleanAlgebra.toSDiff.{u2} β (CompleteBooleanAlgebra.toBooleanAlgebra.{u2} β _inst_9)) (f a) (f b))) -> (CompleteBooleanAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.complete_boolean_algebra Function.Injective.completeBooleanAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `complete_boolean_algebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.completeBooleanAlgebra [HasSup α] [HasInf α] [SupSet α] [InfSet α]
+protected def Function.Injective.completeBooleanAlgebra [Sup α] [Inf α] [SupSet α] [InfSet α]
     [Top α] [Bot α] [HasCompl α] [SDiff α] [CompleteBooleanAlgebra β] (f : α → β)
     (hf : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_Sup : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)

Changes in mathlib4

mathlib3
mathlib4
feat: add 3 lemmas linking iSup and symmDiff (#12340)

Add 3 lemmas to show that the symmetric difference of two iSups/biSups is less or equal to the iSup/biSup of the symmetric differences.

Diff
@@ -470,6 +470,20 @@ theorem compl_sSup' : (sSup s)ᶜ = sInf (HasCompl.compl '' s) :=
   compl_sSup.trans sInf_image.symm
 #align compl_Sup' compl_sSup'
 
+open scoped symmDiff in
+/-- The symmetric difference of two `iSup`s is at most the `iSup` of the symmetric differences. -/
+theorem iSup_symmDiff_iSup_le {g : ι → α} : (⨆ i, f i) ∆ (⨆ i, g i) ≤ ⨆ i, ((f i) ∆ (g i)) := by
+  simp_rw [symmDiff_le_iff, ← iSup_sup_eq]
+  exact ⟨iSup_mono fun i ↦ sup_comm (g i) _ ▸ le_symmDiff_sup_right ..,
+    iSup_mono fun i ↦ sup_comm (f i) _ ▸ symmDiff_comm (f i) _ ▸ le_symmDiff_sup_right ..⟩
+
+open scoped symmDiff in
+/-- A `biSup` version of `iSup_symmDiff_iSup_le`. -/
+theorem biSup_symmDiff_biSup_le {p : ι → Prop} {f g : (i : ι) → p i → α} :
+    (⨆ i, ⨆ (h : p i), f i h) ∆ (⨆ i, ⨆ (h : p i), g i h) ≤
+    ⨆ i, ⨆ (h : p i), ((f i h) ∆ (g i h)) :=
+  le_trans iSup_symmDiff_iSup_le <|iSup_mono fun _ ↦ iSup_symmDiff_iSup_le
+
 end CompleteBooleanAlgebra
 
 /--
chore(Order): add missing inst prefix to instance names (#11238)

This is not exhaustive; it largely does not rename instances that relate to algebra, and only focuses on the "core" order files.

Diff
@@ -187,10 +187,10 @@ section Frame
 
 variable [Frame α] {s t : Set α} {a b : α}
 
-instance OrderDual.coframe : Coframe αᵒᵈ where
-  __ := OrderDual.completeLattice α
+instance OrderDual.instCoframe : Coframe αᵒᵈ where
+  __ := OrderDual.instCompleteLattice α
   iInf_sup_le_sup_sInf := @Frame.inf_sSup_le_iSup_inf α _
-#align order_dual.coframe OrderDual.coframe
+#align order_dual.coframe OrderDual.instCoframe
 
 theorem inf_sSup_eq : a ⊓ sSup s = ⨆ b ∈ s, a ⊓ b :=
   (Frame.inf_sSup_le_iSup_inf _ _).antisymm iSup_inf_le_inf_sSup
@@ -208,8 +208,8 @@ theorem inf_iSup_eq (a : α) (f : ι → α) : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓
   simpa only [inf_comm] using iSup_inf_eq f a
 #align inf_supr_eq inf_iSup_eq
 
-instance Prod.frame (α β) [Frame α] [Frame β] : Frame (α × β) where
-  __ := Prod.completeLattice α β
+instance Prod.instFrame (α β) [Frame α] [Frame β] : Frame (α × β) where
+  __ := Prod.instCompleteLattice α β
   inf_sSup_le_iSup_inf a s := by
     simp [Prod.le_def, sSup_eq_iSup, fst_iSup, snd_iSup, fst_iInf, snd_iInf, inf_iSup_eq]
 
@@ -278,11 +278,11 @@ theorem iSup_inf_of_antitone {ι : Type*} [Preorder ι] [IsDirected ι (swap (·
   @iSup_inf_of_monotone α _ ιᵒᵈ _ _ f g hf.dual_left hg.dual_left
 #align supr_inf_of_antitone iSup_inf_of_antitone
 
-instance Pi.frame {ι : Type*} {π : ι → Type*} [∀ i, Frame (π i)] : Frame (∀ i, π i) where
-  __ := Pi.completeLattice
+instance Pi.instFrame {ι : Type*} {π : ι → Type*} [∀ i, Frame (π i)] : Frame (∀ i, π i) where
+  __ := Pi.instCompleteLattice
   inf_sSup_le_iSup_inf a s := fun i => by
     simp only [sSup_apply, iSup_apply, inf_apply, inf_iSup_eq, ← iSup_subtype'']; rfl
-#align pi.frame Pi.frame
+#align pi.frame Pi.instFrame
 
 -- see Note [lower instance priority]
 instance (priority := 100) Frame.toDistribLattice : DistribLattice α :=
@@ -296,10 +296,10 @@ section Coframe
 
 variable [Coframe α] {s t : Set α} {a b : α}
 
-instance OrderDual.frame : Frame αᵒᵈ where
-  __ := OrderDual.completeLattice α
+instance OrderDual.instFrame : Frame αᵒᵈ where
+  __ := OrderDual.instCompleteLattice α
   inf_sSup_le_iSup_inf := @Coframe.iInf_sup_le_sup_sInf α _
-#align order_dual.frame OrderDual.frame
+#align order_dual.frame OrderDual.instFrame
 
 theorem sup_sInf_eq : a ⊔ sInf s = ⨅ b ∈ s, a ⊔ b :=
   @inf_sSup_eq αᵒᵈ _ _ _
@@ -317,8 +317,8 @@ theorem sup_iInf_eq (a : α) (f : ι → α) : (a ⊔ ⨅ i, f i) = ⨅ i, a ⊔
   @inf_iSup_eq αᵒᵈ _ _ _ _
 #align sup_infi_eq sup_iInf_eq
 
-instance Prod.coframe (α β) [Coframe α] [Coframe β] : Coframe (α × β) where
-  __ := Prod.completeLattice α β
+instance Prod.instCoframe (α β) [Coframe α] [Coframe β] : Coframe (α × β) where
+  __ := Prod.instCompleteLattice α β
   iInf_sup_le_sup_sInf a s := by
     simp [Prod.le_def, sInf_eq_iInf, fst_iSup, snd_iSup, fst_iInf, snd_iInf, sup_iInf_eq]
 
@@ -354,11 +354,11 @@ theorem iInf_sup_of_antitone {ι : Type*} [Preorder ι] [IsDirected ι (· ≤ 
   @iSup_inf_of_monotone αᵒᵈ _ _ _ _ _ _ hf.dual_right hg.dual_right
 #align infi_sup_of_antitone iInf_sup_of_antitone
 
-instance Pi.coframe {ι : Type*} {π : ι → Type*} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) where
-  __ := Pi.completeLattice
+instance Pi.instCoframe {ι : Type*} {π : ι → Type*} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) where
+  __ := Pi.instCompleteLattice
   iInf_sup_le_sup_sInf a s := fun i => by
     simp only [sInf_apply, iInf_apply, sup_apply, sup_iInf_eq, ← iInf_subtype'']; rfl
-#align pi.coframe Pi.coframe
+#align pi.coframe Pi.instCoframe
 
 -- see Note [lower instance priority]
 instance (priority := 100) Coframe.toDistribLattice : DistribLattice α where
@@ -376,42 +376,42 @@ variable [CompleteDistribLattice α] {a b : α} {s t : Set α}
 -- Porting note (#11083): this is mysteriously slow. Minimised in
 -- https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Performance.20issue.20with.20.60CompleteBooleanAlgebra.60
 -- but not yet resolved.
-instance OrderDual.completeDistribLattice (α) [CompleteDistribLattice α] :
+instance OrderDual.instCompleteDistribLattice (α) [CompleteDistribLattice α] :
     CompleteDistribLattice αᵒᵈ where
-  __ := OrderDual.frame
-  __ := OrderDual.coframe
+  __ := OrderDual.instFrame
+  __ := OrderDual.instCoframe
 
-instance Prod.completeDistribLattice (α β)
+instance Prod.instCompleteDistribLattice (α β)
     [CompleteDistribLattice α] [CompleteDistribLattice β] :
     CompleteDistribLattice (α × β) where
-  __ := Prod.completeLattice α β
-  __ := Prod.frame α β
-  __ := Prod.coframe α β
+  __ := Prod.instCompleteLattice α β
+  __ := Prod.instFrame α β
+  __ := Prod.instCoframe α β
 
-instance Pi.completeDistribLattice {ι : Type*} {π : ι → Type*}
+instance Pi.instCompleteDistribLattice {ι : Type*} {π : ι → Type*}
     [∀ i, CompleteDistribLattice (π i)] : CompleteDistribLattice (∀ i, π i) where
-  __ := Pi.frame
-  __ := Pi.coframe
-#align pi.complete_distrib_lattice Pi.completeDistribLattice
+  __ := Pi.instFrame
+  __ := Pi.instCoframe
+#align pi.complete_distrib_lattice Pi.instCompleteDistribLattice
 
 end CompleteDistribLattice
 
 section CompletelyDistribLattice
 
-instance OrderDual.completelyDistribLattice (α) [CompletelyDistribLattice α] :
+instance OrderDual.instCompletelyDistribLattice (α) [CompletelyDistribLattice α] :
     CompletelyDistribLattice αᵒᵈ where
-  __ := OrderDual.completeLattice α
+  __ := OrderDual.instCompleteLattice α
   iInf_iSup_eq _ := iSup_iInf_eq (α := α)
 
-instance Prod.completelyDistribLattice (α β)
+instance Prod.instCompletelyDistribLattice (α β)
     [CompletelyDistribLattice α] [CompletelyDistribLattice β] :
     CompletelyDistribLattice (α × β) where
-  __ := Prod.completeLattice α β
+  __ := Prod.instCompleteLattice α β
   iInf_iSup_eq f := by ext <;> simp [fst_iSup, fst_iInf, snd_iSup, snd_iInf, iInf_iSup_eq]
 
-instance Pi.completelyDistribLattice {ι : Type*} {π : ι → Type*}
+instance Pi.instCompletelyDistribLattice {ι : Type*} {π : ι → Type*}
     [∀ i, CompletelyDistribLattice (π i)] : CompletelyDistribLattice (∀ i, π i) where
-  __ := Pi.completeLattice
+  __ := Pi.instCompleteLattice
   iInf_iSup_eq f := by ext i; simp only [iInf_apply, iSup_apply, iInf_iSup_eq]
 
 end CompletelyDistribLattice
@@ -424,22 +424,22 @@ It is only completely distributive if it is also atomic.
 class CompleteBooleanAlgebra (α) extends BooleanAlgebra α, CompleteDistribLattice α
 #align complete_boolean_algebra CompleteBooleanAlgebra
 
-instance Prod.completeBooleanAlgebra (α β)
+instance Prod.instCompleteBooleanAlgebra (α β)
     [CompleteBooleanAlgebra α] [CompleteBooleanAlgebra β] :
     CompleteBooleanAlgebra (α × β) where
-  __ := Prod.booleanAlgebra α β
-  __ := Prod.completeDistribLattice α β
+  __ := Prod.instBooleanAlgebra α β
+  __ := Prod.instCompleteDistribLattice α β
 
-instance Pi.completeBooleanAlgebra {ι : Type*} {π : ι → Type*}
+instance Pi.instCompleteBooleanAlgebra {ι : Type*} {π : ι → Type*}
     [∀ i, CompleteBooleanAlgebra (π i)] : CompleteBooleanAlgebra (∀ i, π i) where
-  __ := Pi.booleanAlgebra
-  __ := Pi.completeDistribLattice
-#align pi.complete_boolean_algebra Pi.completeBooleanAlgebra
+  __ := Pi.instBooleanAlgebra
+  __ := Pi.instCompleteDistribLattice
+#align pi.complete_boolean_algebra Pi.instCompleteBooleanAlgebra
 
-instance OrderDual.completeBooleanAlgebra (α) [CompleteBooleanAlgebra α] :
+instance OrderDual.instCompleteBooleanAlgebra (α) [CompleteBooleanAlgebra α] :
     CompleteBooleanAlgebra αᵒᵈ where
-  __ := OrderDual.booleanAlgebra α
-  __ := OrderDual.completeDistribLattice α
+  __ := OrderDual.instBooleanAlgebra α
+  __ := OrderDual.instCompleteDistribLattice α
 
 section CompleteBooleanAlgebra
 
@@ -484,29 +484,29 @@ class CompleteAtomicBooleanAlgebra (α : Type u) extends
   iInf_sup_le_sup_sInf := CompletelyDistribLattice.toCompleteDistribLattice.iInf_sup_le_sup_sInf
   inf_sSup_le_iSup_inf := CompletelyDistribLattice.toCompleteDistribLattice.inf_sSup_le_iSup_inf
 
-instance Prod.completeAtomicBooleanAlgebra (α β)
+instance Prod.instCompleteAtomicBooleanAlgebra (α β)
     [CompleteAtomicBooleanAlgebra α] [CompleteAtomicBooleanAlgebra β] :
     CompleteAtomicBooleanAlgebra (α × β) where
-  __ := Prod.booleanAlgebra α β
-  __ := Prod.completelyDistribLattice α β
+  __ := Prod.instBooleanAlgebra α β
+  __ := Prod.instCompletelyDistribLattice α β
 
-instance Pi.completeAtomicBooleanAlgebra {ι : Type*} {π : ι → Type*}
+instance Pi.instCompleteAtomicBooleanAlgebra {ι : Type*} {π : ι → Type*}
     [∀ i, CompleteAtomicBooleanAlgebra (π i)] : CompleteAtomicBooleanAlgebra (∀ i, π i) where
-  __ := Pi.completeBooleanAlgebra
+  __ := Pi.instCompleteBooleanAlgebra
   iInf_iSup_eq f := by ext; rw [iInf_iSup_eq]
 
-instance OrderDual.completeAtomicBooleanAlgebra (α) [CompleteAtomicBooleanAlgebra α] :
+instance OrderDual.instCompleteAtomicBooleanAlgebra (α) [CompleteAtomicBooleanAlgebra α] :
     CompleteAtomicBooleanAlgebra αᵒᵈ where
-  __ := OrderDual.completeBooleanAlgebra α
-  __ := OrderDual.completelyDistribLattice α
+  __ := OrderDual.instCompleteBooleanAlgebra α
+  __ := OrderDual.instCompletelyDistribLattice α
 
-instance Prop.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra Prop where
-  __ := Prop.completeLattice
-  __ := Prop.booleanAlgebra
+instance Prop.instCompleteAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra Prop where
+  __ := Prop.instCompleteLattice
+  __ := Prop.instBooleanAlgebra
   iInf_iSup_eq f := by simp [Classical.skolem]
 
-instance Prop.completeBooleanAlgebra : CompleteBooleanAlgebra Prop := inferInstance
-#align Prop.complete_boolean_algebra Prop.completeBooleanAlgebra
+instance Prop.instCompleteBooleanAlgebra : CompleteBooleanAlgebra Prop := inferInstance
+#align Prop.complete_boolean_algebra Prop.instCompleteBooleanAlgebra
 
 section lift
 
@@ -600,18 +600,18 @@ namespace PUnit
 
 variable (s : Set PUnit.{u + 1}) (x y : PUnit.{u + 1})
 
-instance completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra PUnit := by
+instance instCompleteAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra PUnit := by
   refine'
-    { PUnit.booleanAlgebra with
+    { PUnit.instBooleanAlgebra with
       sSup := fun _ => unit
       sInf := fun _ => unit
       .. } <;>
   (intros; trivial)
 
-instance completeBooleanAlgebra : CompleteBooleanAlgebra PUnit := inferInstance
+instance instCompleteBooleanAlgebra : CompleteBooleanAlgebra PUnit := inferInstance
 
-instance completeLinearOrder : CompleteLinearOrder PUnit :=
-  { PUnit.completeBooleanAlgebra, PUnit.linearOrder with }
+instance instCompleteLinearOrder : CompleteLinearOrder PUnit :=
+  { PUnit.instCompleteBooleanAlgebra, PUnit.instLinearOrder with }
 
 @[simp]
 theorem sSup_eq : sSup s = unit :=
chore: classify slow / slower porting notes (#11084)

Classifies by adding issue number #11083 to porting notes claiming anything semantically equivalent to:

  • "very slow; improve performance?"
  • "quite slow; improve performance?"
  • "`tactic" was slow"
  • "removed attribute because it caused extremely slow tactic"
  • "proof was rewritten, because it was too slow"
  • "doing this make things very slow"
  • "slower implementation"
Diff
@@ -373,7 +373,7 @@ section CompleteDistribLattice
 
 variable [CompleteDistribLattice α] {a b : α} {s t : Set α}
 
--- Porting note: this is mysteriously slow. Minimised in
+-- Porting note (#11083): this is mysteriously slow. Minimised in
 -- https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Performance.20issue.20with.20.60CompleteBooleanAlgebra.60
 -- but not yet resolved.
 instance OrderDual.completeDistribLattice (α) [CompleteDistribLattice α] :
chore: remove terminal, terminal refines (#10762)

I replaced a few "terminal" refine/refine's with exact.

The strategy was very simple-minded: essentially any refine whose following line had smaller indentation got replaced by exact and then I cleaned up the mess.

This PR certainly leaves some further terminal refines, but maybe the current change is beneficial.

Diff
@@ -170,7 +170,7 @@ instance (priority := 100) CompleteLinearOrder.toCompletelyDistribLattice [Compl
             lt_irrefl x (lt_of_lt_of_le hl (le_trans (iInf_le _ a) h))
       choose f hf using this
       refine le_trans ?_ (le_iSup _ f)
-      refine le_iInf fun a => le_of_lt (hf a)
+      exact le_iInf fun a => le_of_lt (hf a)
     else
       refine le_of_not_lt fun hrl : rhs < lhs => not_le_of_lt hrl ?_
       replace h : ∀ x, x ≤ rhs ∨ lhs ≤ x := by
style(Order): use where __ := x instead of := { x with } (#10588)

The former style encourages one parent per line, which is easier to review and see diffs of. It also allows a handful of := fun a b =>s to be replaced with the less noisy a b :=.

A small number of inferInstanceAs _ withs were removed, as they are automatic in those places anyway.

Diff
@@ -187,8 +187,9 @@ section Frame
 
 variable [Frame α] {s t : Set α} {a b : α}
 
-instance OrderDual.coframe : Coframe αᵒᵈ :=
-  { OrderDual.completeLattice α with iInf_sup_le_sup_sInf := @Frame.inf_sSup_le_iSup_inf α _ }
+instance OrderDual.coframe : Coframe αᵒᵈ where
+  __ := OrderDual.completeLattice α
+  iInf_sup_le_sup_sInf := @Frame.inf_sSup_le_iSup_inf α _
 #align order_dual.coframe OrderDual.coframe
 
 theorem inf_sSup_eq : a ⊓ sSup s = ⨆ b ∈ s, a ⊓ b :=
@@ -277,10 +278,10 @@ theorem iSup_inf_of_antitone {ι : Type*} [Preorder ι] [IsDirected ι (swap (·
   @iSup_inf_of_monotone α _ ιᵒᵈ _ _ f g hf.dual_left hg.dual_left
 #align supr_inf_of_antitone iSup_inf_of_antitone
 
-instance Pi.frame {ι : Type*} {π : ι → Type*} [∀ i, Frame (π i)] : Frame (∀ i, π i) :=
-  { Pi.completeLattice with
-    inf_sSup_le_iSup_inf := fun a s i => by
-      simp only [sSup_apply, iSup_apply, inf_apply, inf_iSup_eq, ← iSup_subtype'']; rfl }
+instance Pi.frame {ι : Type*} {π : ι → Type*} [∀ i, Frame (π i)] : Frame (∀ i, π i) where
+  __ := Pi.completeLattice
+  inf_sSup_le_iSup_inf a s := fun i => by
+    simp only [sSup_apply, iSup_apply, inf_apply, inf_iSup_eq, ← iSup_subtype'']; rfl
 #align pi.frame Pi.frame
 
 -- see Note [lower instance priority]
@@ -295,8 +296,9 @@ section Coframe
 
 variable [Coframe α] {s t : Set α} {a b : α}
 
-instance OrderDual.frame : Frame αᵒᵈ :=
-  { OrderDual.completeLattice α with inf_sSup_le_iSup_inf := @Coframe.iInf_sup_le_sup_sInf α _ }
+instance OrderDual.frame : Frame αᵒᵈ where
+  __ := OrderDual.completeLattice α
+  inf_sSup_le_iSup_inf := @Coframe.iInf_sup_le_sup_sInf α _
 #align order_dual.frame OrderDual.frame
 
 theorem sup_sInf_eq : a ⊔ sInf s = ⨅ b ∈ s, a ⊔ b :=
@@ -352,17 +354,17 @@ theorem iInf_sup_of_antitone {ι : Type*} [Preorder ι] [IsDirected ι (· ≤ 
   @iSup_inf_of_monotone αᵒᵈ _ _ _ _ _ _ hf.dual_right hg.dual_right
 #align infi_sup_of_antitone iInf_sup_of_antitone
 
-instance Pi.coframe {ι : Type*} {π : ι → Type*} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) :=
-  { Pi.completeLattice with
-    iInf_sup_le_sup_sInf := fun a s i => by
-      simp only [sInf_apply, iInf_apply, sup_apply, sup_iInf_eq, ← iInf_subtype'']; rfl }
+instance Pi.coframe {ι : Type*} {π : ι → Type*} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) where
+  __ := Pi.completeLattice
+  iInf_sup_le_sup_sInf a s := fun i => by
+    simp only [sInf_apply, iInf_apply, sup_apply, sup_iInf_eq, ← iInf_subtype'']; rfl
 #align pi.coframe Pi.coframe
 
 -- see Note [lower instance priority]
-instance (priority := 100) Coframe.toDistribLattice : DistribLattice α :=
-  { ‹Coframe α› with
-    le_sup_inf := fun a b c => by
-      rw [← sInf_pair, ← sInf_pair, sup_sInf_eq, ← sInf_image, image_pair] }
+instance (priority := 100) Coframe.toDistribLattice : DistribLattice α where
+  __ := ‹Coframe α›
+  le_sup_inf a b c := by
+    rw [← sInf_pair, ← sInf_pair, sup_sInf_eq, ← sInf_image, image_pair]
 #align coframe.to_distrib_lattice Coframe.toDistribLattice
 
 end Coframe
@@ -375,8 +377,9 @@ variable [CompleteDistribLattice α] {a b : α} {s t : Set α}
 -- https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Performance.20issue.20with.20.60CompleteBooleanAlgebra.60
 -- but not yet resolved.
 instance OrderDual.completeDistribLattice (α) [CompleteDistribLattice α] :
-    CompleteDistribLattice αᵒᵈ :=
-  { OrderDual.frame, OrderDual.coframe with }
+    CompleteDistribLattice αᵒᵈ where
+  __ := OrderDual.frame
+  __ := OrderDual.coframe
 
 instance Prod.completeDistribLattice (α β)
     [CompleteDistribLattice α] [CompleteDistribLattice β] :
@@ -386,8 +389,9 @@ instance Prod.completeDistribLattice (α β)
   __ := Prod.coframe α β
 
 instance Pi.completeDistribLattice {ι : Type*} {π : ι → Type*}
-    [∀ i, CompleteDistribLattice (π i)] : CompleteDistribLattice (∀ i, π i) :=
-  { Pi.frame, Pi.coframe with }
+    [∀ i, CompleteDistribLattice (π i)] : CompleteDistribLattice (∀ i, π i) where
+  __ := Pi.frame
+  __ := Pi.coframe
 #align pi.complete_distrib_lattice Pi.completeDistribLattice
 
 end CompleteDistribLattice
@@ -427,8 +431,9 @@ instance Prod.completeBooleanAlgebra (α β)
   __ := Prod.completeDistribLattice α β
 
 instance Pi.completeBooleanAlgebra {ι : Type*} {π : ι → Type*}
-    [∀ i, CompleteBooleanAlgebra (π i)] : CompleteBooleanAlgebra (∀ i, π i) :=
-  { Pi.booleanAlgebra, Pi.completeDistribLattice with }
+    [∀ i, CompleteBooleanAlgebra (π i)] : CompleteBooleanAlgebra (∀ i, π i) where
+  __ := Pi.booleanAlgebra
+  __ := Pi.completeDistribLattice
 #align pi.complete_boolean_algebra Pi.completeBooleanAlgebra
 
 instance OrderDual.completeBooleanAlgebra (α) [CompleteBooleanAlgebra α] :
@@ -512,13 +517,13 @@ protected def Function.Injective.frame [Sup α] [Inf α] [SupSet α] [InfSet α]
     [Frame β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
     (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
-    Frame α :=
-  { hf.completeLattice f map_sup map_inf map_sSup map_sInf map_top map_bot with
-    inf_sSup_le_iSup_inf := fun a s => by
+    Frame α where
+  __ := hf.completeLattice f map_sup map_inf map_sSup map_sInf map_top map_bot
+  inf_sSup_le_iSup_inf a s := by
       change f (a ⊓ sSup s) ≤ f _
       rw [← sSup_image, map_inf, map_sSup s, inf_iSup₂_eq]
       simp_rw [← map_inf]
-      exact ((map_sSup _).trans iSup_image).ge }
+      exact ((map_sSup _).trans iSup_image).ge
 #align function.injective.frame Function.Injective.frame
 
 -- See note [reducible non-instances]
@@ -528,13 +533,13 @@ protected def Function.Injective.coframe [Sup α] [Inf α] [SupSet α] [InfSet 
     [Coframe β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
     (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
-    Coframe α :=
-  { hf.completeLattice f map_sup map_inf map_sSup map_sInf map_top map_bot with
-    iInf_sup_le_sup_sInf := fun a s => by
+    Coframe α where
+  __ := hf.completeLattice f map_sup map_inf map_sSup map_sInf map_top map_bot
+  iInf_sup_le_sup_sInf a s := by
       change f _ ≤ f (a ⊔ sInf s)
       rw [← sInf_image, map_sup, map_sInf s, sup_iInf₂_eq]
       simp_rw [← map_sup]
-      exact ((map_sInf _).trans iInf_image).le }
+      exact ((map_sInf _).trans iInf_image).le
 #align function.injective.coframe Function.Injective.coframe
 
 -- See note [reducible non-instances]
@@ -544,9 +549,9 @@ protected def Function.Injective.completeDistribLattice [Sup α] [Inf α] [SupSe
     [Top α] [Bot α] [CompleteDistribLattice β] (f : α → β) (hf : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a) (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a)
-    (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : CompleteDistribLattice α :=
-  { hf.frame f map_sup map_inf map_sSup map_sInf map_top map_bot,
-    hf.coframe f map_sup map_inf map_sSup map_sInf map_top map_bot with }
+    (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : CompleteDistribLattice α where
+  __ := hf.frame f map_sup map_inf map_sSup map_sInf map_top map_bot
+  __ := hf.coframe f map_sup map_inf map_sSup map_sInf map_top map_bot
 #align function.injective.complete_distrib_lattice Function.Injective.completeDistribLattice
 
 -- See note [reducible non-instances]
@@ -571,9 +576,9 @@ protected def Function.Injective.completeBooleanAlgebra [Sup α] [Inf α] [SupSe
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
     (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥)
     (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
-    CompleteBooleanAlgebra α :=
-  { hf.completeDistribLattice f map_sup map_inf map_sSup map_sInf map_top map_bot,
-    hf.booleanAlgebra f map_sup map_inf map_top map_bot map_compl map_sdiff with }
+    CompleteBooleanAlgebra α where
+  __ := hf.completeDistribLattice f map_sup map_inf map_sSup map_sInf map_top map_bot
+  __ := hf.booleanAlgebra f map_sup map_inf map_top map_bot map_compl map_sdiff
 #align function.injective.complete_boolean_algebra Function.Injective.completeBooleanAlgebra
 
 -- See note [reducible non-instances]
style: use cases x with | ... instead of cases x; case => ... (#9321)

This converts usages of the pattern

cases h
case inl h' => ...
case inr h' => ...

which derive from mathported code, to the "structured cases" syntax:

cases h with
| inl h' => ...
| inr h' => ...

The case where the subgoals are handled with · instead of case is more contentious (and much more numerous) so I left those alone. This pattern also appears with cases', induction, induction', and rcases. Furthermore, there is a similar transformation for by_cases:

by_cases h : cond
case pos => ...
case neg => ...

is replaced by:

if h : cond then
  ...
else
  ...

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -139,9 +139,9 @@ instance (priority := 100) CompletelyDistribLattice.toCompleteDistribLattice
     _ = ⨅ b : s, ⨆ x : Bool, cond x a b := by simp_rw [iInf_subtype, iSup_bool_eq, cond]
     _ = _ := iInf_iSup_eq
     _ ≤ _ := iSup_le fun f => by
-      by_cases h : ∀ i, f i = false
-      case pos => simp [h, iInf_subtype, ← sInf_eq_iInf]
-      case neg =>
+      if h : ∀ i, f i = false then
+        simp [h, iInf_subtype, ← sInf_eq_iInf]
+      else
         have ⟨i, h⟩ : ∃ i, f i = true := by simpa using h
         refine le_trans (iInf_le _ i) ?_
         simp [h]
@@ -162,8 +162,7 @@ instance (priority := 100) CompleteLinearOrder.toCompletelyDistribLattice [Compl
     let lhs := ⨅ a, ⨆ b, g a b
     let rhs := ⨆ h : ∀ a, β a, ⨅ a, g a (h a)
     suffices lhs ≤ rhs from le_antisymm this le_iInf_iSup
-    by_cases h : ∃ x, rhs < x ∧ x < lhs
-    case pos =>
+    if h : ∃ x, rhs < x ∧ x < lhs then
       rcases h with ⟨x, hr, hl⟩
       suffices rhs ≥ x from nomatch not_lt.2 this hr
       have : ∀ a, ∃ b, x < g a b := fun a =>
@@ -172,7 +171,7 @@ instance (priority := 100) CompleteLinearOrder.toCompletelyDistribLattice [Compl
       choose f hf using this
       refine le_trans ?_ (le_iSup _ f)
       refine le_iInf fun a => le_of_lt (hf a)
-    case neg =>
+    else
       refine le_of_not_lt fun hrl : rhs < lhs => not_le_of_lt hrl ?_
       replace h : ∀ x, x ≤ rhs ∨ lhs ≤ x := by
         simpa only [not_exists, not_and_or, not_or, not_lt] using h
chore: add missing hypothesis names to by_cases (#8533)

I've also got a change to make this required, but I'd like to land this first.

Diff
@@ -139,7 +139,7 @@ instance (priority := 100) CompletelyDistribLattice.toCompleteDistribLattice
     _ = ⨅ b : s, ⨆ x : Bool, cond x a b := by simp_rw [iInf_subtype, iSup_bool_eq, cond]
     _ = _ := iInf_iSup_eq
     _ ≤ _ := iSup_le fun f => by
-      by_cases ∀ i, f i = false
+      by_cases h : ∀ i, f i = false
       case pos => simp [h, iInf_subtype, ← sInf_eq_iInf]
       case neg =>
         have ⟨i, h⟩ : ∃ i, f i = true := by simpa using h
@@ -162,7 +162,7 @@ instance (priority := 100) CompleteLinearOrder.toCompletelyDistribLattice [Compl
     let lhs := ⨅ a, ⨆ b, g a b
     let rhs := ⨆ h : ∀ a, β a, ⨅ a, g a (h a)
     suffices lhs ≤ rhs from le_antisymm this le_iInf_iSup
-    by_cases ∃ x, rhs < x ∧ x < lhs
+    by_cases h : ∃ x, rhs < x ∧ x < lhs
     case pos =>
       rcases h with ⟨x, hr, hl⟩
       suffices rhs ≥ x from nomatch not_lt.2 this hr
style: cleanup by putting by on the same line as := (#8407)

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -213,12 +213,14 @@ instance Prod.frame (α β) [Frame α] [Frame β] : Frame (α × β) where
   inf_sSup_le_iSup_inf a s := by
     simp [Prod.le_def, sSup_eq_iSup, fst_iSup, snd_iSup, fst_iInf, snd_iInf, inf_iSup_eq]
 
-theorem iSup₂_inf_eq {f : ∀ i, κ i → α} (a : α) : (⨆ (i) (j), f i j) ⊓ a = ⨆ (i) (j), f i j ⊓ a :=
-  by simp only [iSup_inf_eq]
+theorem iSup₂_inf_eq {f : ∀ i, κ i → α} (a : α) :
+    (⨆ (i) (j), f i j) ⊓ a = ⨆ (i) (j), f i j ⊓ a := by
+  simp only [iSup_inf_eq]
 #align bsupr_inf_eq iSup₂_inf_eq
 
-theorem inf_iSup₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊓ ⨆ (i) (j), f i j) = ⨆ (i) (j), a ⊓ f i j :=
-  by simp only [inf_iSup_eq]
+theorem inf_iSup₂_eq {f : ∀ i, κ i → α} (a : α) :
+    (a ⊓ ⨆ (i) (j), f i j) = ⨆ (i) (j), a ⊓ f i j := by
+  simp only [inf_iSup_eq]
 #align inf_bsupr_eq inf_iSup₂_eq
 
 theorem iSup_inf_iSup {ι ι' : Type*} {f : ι → α} {g : ι' → α} :
chore: exact, not refine when possible (#8130)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -131,7 +131,7 @@ theorem iSup_iInf_eq [CompletelyDistribLattice α] {f : ∀ a, κ a → α} :
   refine le_trans ?_ (le_iSup _ a)
   refine le_iInf fun b => ?_
   obtain ⟨h, rfl, rfl⟩ := ha b
-  refine iInf_le _ _
+  exact iInf_le _ _
 
 instance (priority := 100) CompletelyDistribLattice.toCompleteDistribLattice
     [CompletelyDistribLattice α] : CompleteDistribLattice α where
@@ -182,7 +182,7 @@ instance (priority := 100) CompleteLinearOrder.toCompletelyDistribLattice [Compl
       have : ∀ a, lhs ≤ g a (f a) := fun a =>
         (h (g a (f a))).resolve_left (by simpa using hf a)
       refine le_trans ?_ (le_iSup _ f)
-      refine le_iInf fun a => this _
+      exact le_iInf fun a => this _
 
 section Frame
 
feat: add PUnit.completeLinearOrder (#6585)
Diff
@@ -604,6 +604,9 @@ instance completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra PUnit := by
 
 instance completeBooleanAlgebra : CompleteBooleanAlgebra PUnit := inferInstance
 
+instance completeLinearOrder : CompleteLinearOrder PUnit :=
+  { PUnit.completeBooleanAlgebra, PUnit.linearOrder with }
+
 @[simp]
 theorem sSup_eq : sSup s = unit :=
   rfl
fix: disable autoImplicit globally (#6528)

Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.

The intent of this PR is to make autoImplicit opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true in the few files that rely on it.

That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.

I claim that many of the uses of autoImplicit in these files are accidental; situations such as:

  • Assuming variables are in scope, but pasting the lemma in the wrong section
  • Pasting in a lemma from a scratch file without checking to see if the variable names are consistent with the rest of the file
  • Making a copy-paste error between lemmas and forgetting to add an explicit arguments.

Having set_option autoImplicit false as the default prevents these types of mistake being made in the 90% of files where autoImplicits are not used at all, and causes them to be caught by CI during review.

I think there were various points during the port where we encouraged porters to delete the universes u v lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.

A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18 as the no:dontcare:yes vote ratio.

While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true has been placed locally within a section, rather than at the top of the file.

Diff
@@ -50,6 +50,8 @@ distributive lattice.
 * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3]
 -/
 
+set_option autoImplicit true
+
 
 open Function Set
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -58,7 +58,7 @@ universe u v w
 variable {α : Type u} {β : Type v} {ι : Sort w} {κ : ι → Sort w'}
 
 /-- A frame, aka complete Heyting algebra, is a complete lattice whose `⊓` distributes over `⨆`. -/
-class Order.Frame (α : Type _) extends CompleteLattice α where
+class Order.Frame (α : Type*) extends CompleteLattice α where
   inf_sSup_le_iSup_inf (a : α) (s : Set α) : a ⊓ sSup s ≤ ⨆ b ∈ s, a ⊓ b
 #align order.frame Order.Frame
 
@@ -67,7 +67,7 @@ add_decl_doc Order.Frame.inf_sSup_le_iSup_inf
 
 /-- A coframe, aka complete Brouwer algebra or complete co-Heyting algebra, is a complete lattice
 whose `⊔` distributes over `⨅`. -/
-class Order.Coframe (α : Type _) extends CompleteLattice α where
+class Order.Coframe (α : Type*) extends CompleteLattice α where
   iInf_sup_le_sup_sInf (a : α) (s : Set α) : ⨅ b ∈ s, a ⊔ b ≤ a ⊔ sInf s
 #align order.coframe Order.Coframe
 
@@ -78,7 +78,7 @@ open Order
 
 /-- A complete distributive lattice is a complete lattice whose `⊔` and `⊓` respectively
 distribute over `⨅` and `⨆`. -/
-class CompleteDistribLattice (α : Type _) extends Frame α where
+class CompleteDistribLattice (α : Type*) extends Frame α where
   iInf_sup_le_sup_sInf : ∀ a s, ⨅ b ∈ s, a ⊔ b ≤ a ⊔ sInf s
 #align complete_distrib_lattice CompleteDistribLattice
 
@@ -219,12 +219,12 @@ theorem inf_iSup₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊓ ⨆ (i) (j), f
   by simp only [inf_iSup_eq]
 #align inf_bsupr_eq inf_iSup₂_eq
 
-theorem iSup_inf_iSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
+theorem iSup_inf_iSup {ι ι' : Type*} {f : ι → α} {g : ι' → α} :
     ((⨆ i, f i) ⊓ ⨆ j, g j) = ⨆ i : ι × ι', f i.1 ⊓ g i.2 := by
   simp_rw [iSup_inf_eq, inf_iSup_eq, iSup_prod]
 #align supr_inf_supr iSup_inf_iSup
 
-theorem biSup_inf_biSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
+theorem biSup_inf_biSup {ι ι' : Type*} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
     ((⨆ i ∈ s, f i) ⊓ ⨆ j ∈ t, g j) = ⨆ p ∈ s ×ˢ t, f (p : ι × ι').1 ⊓ g p.2 := by
   simp only [iSup_subtype', iSup_inf_iSup]
   exact (Equiv.surjective _).iSup_congr (Equiv.Set.prod s t).symm fun x => rfl
@@ -260,7 +260,7 @@ theorem disjoint_sSup_iff {s : Set α} : Disjoint a (sSup s) ↔ ∀ b ∈ s, Di
   simpa only [disjoint_comm] using @sSup_disjoint_iff
 #align disjoint_Sup_iff disjoint_sSup_iff
 
-theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
+theorem iSup_inf_of_monotone {ι : Type*} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : ⨆ i, f i ⊓ g i = (⨆ i, f i) ⊓ ⨆ i, g i := by
   refine' (le_iSup_inf_iSup f g).antisymm _
   rw [iSup_inf_iSup]
@@ -269,12 +269,12 @@ theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤
   exact ⟨j, inf_le_inf (hf h₁) (hg h₂)⟩
 #align supr_inf_of_monotone iSup_inf_of_monotone
 
-theorem iSup_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
+theorem iSup_inf_of_antitone {ι : Type*} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : ⨆ i, f i ⊓ g i = (⨆ i, f i) ⊓ ⨆ i, g i :=
   @iSup_inf_of_monotone α _ ιᵒᵈ _ _ f g hf.dual_left hg.dual_left
 #align supr_inf_of_antitone iSup_inf_of_antitone
 
-instance Pi.frame {ι : Type _} {π : ι → Type _} [∀ i, Frame (π i)] : Frame (∀ i, π i) :=
+instance Pi.frame {ι : Type*} {π : ι → Type*} [∀ i, Frame (π i)] : Frame (∀ i, π i) :=
   { Pi.completeLattice with
     inf_sSup_le_iSup_inf := fun a s i => by
       simp only [sSup_apply, iSup_apply, inf_apply, inf_iSup_eq, ← iSup_subtype'']; rfl }
@@ -325,12 +325,12 @@ theorem sup_iInf₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊔ ⨅ (i) (j), f
   @inf_iSup₂_eq αᵒᵈ _ _ _ _ _
 #align sup_binfi_eq sup_iInf₂_eq
 
-theorem iInf_sup_iInf {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
+theorem iInf_sup_iInf {ι ι' : Type*} {f : ι → α} {g : ι' → α} :
     ((⨅ i, f i) ⊔ ⨅ i, g i) = ⨅ i : ι × ι', f i.1 ⊔ g i.2 :=
   @iSup_inf_iSup αᵒᵈ _ _ _ _ _
 #align infi_sup_infi iInf_sup_iInf
 
-theorem biInf_sup_biInf {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
+theorem biInf_sup_biInf {ι ι' : Type*} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
     ((⨅ i ∈ s, f i) ⊔ ⨅ j ∈ t, g j) = ⨅ p ∈ s ×ˢ t, f (p : ι × ι').1 ⊔ g p.2 :=
   @biSup_inf_biSup αᵒᵈ _ _ _ _ _ _ _
 #align binfi_sup_binfi biInf_sup_biInf
@@ -339,17 +339,17 @@ theorem sInf_sup_sInf : sInf s ⊔ sInf t = ⨅ p ∈ s ×ˢ t, (p : α × α).1
   @sSup_inf_sSup αᵒᵈ _ _ _
 #align Inf_sup_Inf sInf_sup_sInf
 
-theorem iInf_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
+theorem iInf_sup_of_monotone {ι : Type*} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : ⨅ i, f i ⊔ g i = (⨅ i, f i) ⊔ ⨅ i, g i :=
   @iSup_inf_of_antitone αᵒᵈ _ _ _ _ _ _ hf.dual_right hg.dual_right
 #align infi_sup_of_monotone iInf_sup_of_monotone
 
-theorem iInf_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
+theorem iInf_sup_of_antitone {ι : Type*} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : ⨅ i, f i ⊔ g i = (⨅ i, f i) ⊔ ⨅ i, g i :=
   @iSup_inf_of_monotone αᵒᵈ _ _ _ _ _ _ hf.dual_right hg.dual_right
 #align infi_sup_of_antitone iInf_sup_of_antitone
 
-instance Pi.coframe {ι : Type _} {π : ι → Type _} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) :=
+instance Pi.coframe {ι : Type*} {π : ι → Type*} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) :=
   { Pi.completeLattice with
     iInf_sup_le_sup_sInf := fun a s i => by
       simp only [sInf_apply, iInf_apply, sup_apply, sup_iInf_eq, ← iInf_subtype'']; rfl }
@@ -382,7 +382,7 @@ instance Prod.completeDistribLattice (α β)
   __ := Prod.frame α β
   __ := Prod.coframe α β
 
-instance Pi.completeDistribLattice {ι : Type _} {π : ι → Type _}
+instance Pi.completeDistribLattice {ι : Type*} {π : ι → Type*}
     [∀ i, CompleteDistribLattice (π i)] : CompleteDistribLattice (∀ i, π i) :=
   { Pi.frame, Pi.coframe with }
 #align pi.complete_distrib_lattice Pi.completeDistribLattice
@@ -402,7 +402,7 @@ instance Prod.completelyDistribLattice (α β)
   __ := Prod.completeLattice α β
   iInf_iSup_eq f := by ext <;> simp [fst_iSup, fst_iInf, snd_iSup, snd_iInf, iInf_iSup_eq]
 
-instance Pi.completelyDistribLattice {ι : Type _} {π : ι → Type _}
+instance Pi.completelyDistribLattice {ι : Type*} {π : ι → Type*}
     [∀ i, CompletelyDistribLattice (π i)] : CompletelyDistribLattice (∀ i, π i) where
   __ := Pi.completeLattice
   iInf_iSup_eq f := by ext i; simp only [iInf_apply, iSup_apply, iInf_iSup_eq]
@@ -423,7 +423,7 @@ instance Prod.completeBooleanAlgebra (α β)
   __ := Prod.booleanAlgebra α β
   __ := Prod.completeDistribLattice α β
 
-instance Pi.completeBooleanAlgebra {ι : Type _} {π : ι → Type _}
+instance Pi.completeBooleanAlgebra {ι : Type*} {π : ι → Type*}
     [∀ i, CompleteBooleanAlgebra (π i)] : CompleteBooleanAlgebra (∀ i, π i) :=
   { Pi.booleanAlgebra, Pi.completeDistribLattice with }
 #align pi.complete_boolean_algebra Pi.completeBooleanAlgebra
@@ -482,7 +482,7 @@ instance Prod.completeAtomicBooleanAlgebra (α β)
   __ := Prod.booleanAlgebra α β
   __ := Prod.completelyDistribLattice α β
 
-instance Pi.completeAtomicBooleanAlgebra {ι : Type _} {π : ι → Type _}
+instance Pi.completeAtomicBooleanAlgebra {ι : Type*} {π : ι → Type*}
     [∀ i, CompleteAtomicBooleanAlgebra (π i)] : CompleteAtomicBooleanAlgebra (∀ i, π i) where
   __ := Pi.completeBooleanAlgebra
   iInf_iSup_eq f := by ext; rw [iInf_iSup_eq]
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Yaël Dillies
-
-! This file was ported from Lean 3 source module order.complete_boolean_algebra
-! leanprover-community/mathlib commit 71b36b6f3bbe3b44e6538673819324d3ee9fcc96
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.CompleteLattice
 import Mathlib.Order.Directed
 import Mathlib.Logic.Equiv.Set
 
+#align_import order.complete_boolean_algebra from "leanprover-community/mathlib"@"71b36b6f3bbe3b44e6538673819324d3ee9fcc96"
+
 /-!
 # Frames, completely distributive lattices and complete Boolean algebras
 
feat: CompletelyDistribLattice (#5238)

Adds new CompletelyDistribLattice/CompleteAtomicBooleanAlgebra classes for complete lattices / complete atomic Boolean algebras that are also completely distributive, and removes the misleading claim that CompleteDistribLattice/CompleteBooleanAlgebra are completely distributive.

  • Product/pi/order dual instances for completely distributive lattices, etc.
  • Every complete linear order is a completely distributive lattice.
  • Every atomic complete Boolean algebra is a complete atomic Boolean algebra.
  • Every complete atomic Boolean algebra is indeed (co)atom(ist)ic.
  • Atom(ist)ic orders are closed under pis.
  • All existing types with CompleteDistribLattice instances are upgraded to CompletelyDistribLattice.
  • All existing types with CompleteBooleanAlgebra instances are upgraded to CompleteAtomicBooleanAlgebra.

See related discussion on Zulip.

Diff
@@ -13,28 +13,40 @@ import Mathlib.Order.Directed
 import Mathlib.Logic.Equiv.Set
 
 /-!
-# Frames, completely distributive lattices and Boolean algebras
+# Frames, completely distributive lattices and complete Boolean algebras
 
-In this file we define and provide API for frames, completely distributive lattices and completely
-distributive Boolean algebras.
+In this file we define and provide API for (co)frames, completely distributive lattices and
+complete Boolean algebras.
+
+We distinguish two different distributivity properties:
+ 1. `inf_iSup_eq : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓ f i` (finite `⊓` distributes over infinite `⨆`).
+  This is required by `Frame`, `CompleteDistribLattice`, and `CompleteBooleanAlgebra`
+  (`Coframe`, etc., require the dual property).
+ 2. `iInf_iSup_eq : (⨅ i, ⨆ j, f i j) = ⨆ s, ⨅ i, f i (s i)`
+  (infinite `⨅` distributes over infinite `⨆`).
+  This stronger property is called "completely distributive",
+  and is required by `CompletelyDistribLattice` and `CompleteAtomicBooleanAlgebra`.
 
 ## Typeclasses
 
 * `Order.Frame`: Frame: A complete lattice whose `⊓` distributes over `⨆`.
 * `Order.Coframe`: Coframe: A complete lattice whose `⊔` distributes over `⨅`.
-* `CompleteDistribLattice`: Completely distributive lattices: A complete lattice whose `⊓` and `⊔`
+* `CompleteDistribLattice`: Complete distributive lattices: A complete lattice whose `⊓` and `⊔`
   distribute over `⨆` and `⨅` respectively.
-* `CompleteBooleanAlgebra`: Completely distributive Boolean algebra: A Boolean algebra whose `⊓`
+* `CompleteBooleanAlgebra`: Complete Boolean algebra: A Boolean algebra whose `⊓`
+  and `⊔` distribute over `⨆` and `⨅` respectively.
+* `CompletelyDistribLattice`: Completely distributive lattices: A complete lattice whose
+  `⨅` and `⨆` satisfy `iInf_iSup_eq`.
+* `CompleteBooleanAlgebra`: Complete Boolean algebra: A Boolean algebra whose `⊓`
   and `⊔` distribute over `⨆` and `⨅` respectively.
+* `CompleteAtomicBooleanAlgebra`: Complete atomic Boolean algebra:
+  A complete Boolean algebra which is additionally completely distributive.
+  (This implies that it's (co)atom(ist)ic.)
 
 A set of opens gives rise to a topological space precisely if it forms a frame. Such a frame is also
 completely distributive, but not all frames are. `Filter` is a coframe but not a completely
 distributive lattice.
 
-## TODO
-
-Add instances for `Prod`
-
 ## References
 
 * [Wikipedia, *Complete Heyting algebra*](https://en.wikipedia.org/wiki/Complete_Heyting_algebra)
@@ -46,7 +58,7 @@ open Function Set
 
 universe u v w
 
-variable {α : Type u} {β : Type v} {ι : Sort w} {κ : ι → Sort _}
+variable {α : Type u} {β : Type v} {ι : Sort w} {κ : ι → Sort w'}
 
 /-- A frame, aka complete Heyting algebra, is a complete lattice whose `⊓` distributes over `⨆`. -/
 class Order.Frame (α : Type _) extends CompleteLattice α where
@@ -67,13 +79,13 @@ add_decl_doc Order.Coframe.iInf_sup_le_sup_sInf
 
 open Order
 
-/-- A completely distributive lattice is a complete lattice whose `⊔` and `⊓` respectively
+/-- A complete distributive lattice is a complete lattice whose `⊔` and `⊓` respectively
 distribute over `⨅` and `⨆`. -/
 class CompleteDistribLattice (α : Type _) extends Frame α where
   iInf_sup_le_sup_sInf : ∀ a s, ⨅ b ∈ s, a ⊔ b ≤ a ⊔ sInf s
 #align complete_distrib_lattice CompleteDistribLattice
 
-/-- In a completely distributive lattice, `⊔` distributes over `⨅`. -/
+/-- In a complete distributive lattice, `⊔` distributes over `⨅`. -/
 add_decl_doc CompleteDistribLattice.iInf_sup_le_sup_sInf
 
 -- See note [lower instance priority]
@@ -82,35 +94,96 @@ instance (priority := 100) CompleteDistribLattice.toCoframe [CompleteDistribLatt
   { ‹CompleteDistribLattice α› with }
 #align complete_distrib_lattice.to_coframe CompleteDistribLattice.toCoframe
 
+/-- A completely distributive lattice is a complete lattice whose `⨅` and `⨆`
+distribute over each other. -/
+class CompletelyDistribLattice (α : Type u) extends CompleteLattice α where
+  protected iInf_iSup_eq {ι : Type u} {κ : ι → Type u} (f : ∀ a, κ a → α) :
+    (⨅ a, ⨆ b, f a b) = ⨆ g : ∀ a, κ a, ⨅ a, f a (g a)
+
+theorem le_iInf_iSup [CompleteLattice α] {f : ∀ a, κ a → α} :
+    (⨆ g : ∀ a, κ a, ⨅ a, f a (g a)) ≤ ⨅ a, ⨆ b, f a b :=
+  iSup_le fun _ => le_iInf fun a => le_trans (iInf_le _ a) (le_iSup _ _)
+
+theorem iInf_iSup_eq [CompletelyDistribLattice α] {f : ∀ a, κ a → α} :
+    (⨅ a, ⨆ b, f a b) = ⨆ g : ∀ a, κ a, ⨅ a, f a (g a) :=
+  (le_antisymm · le_iInf_iSup) <| calc
+    _ = ⨅ a : range (range <| f ·), ⨆ b : a.1, b.1 := by
+      simp_rw [iInf_subtype, iInf_range, iSup_subtype, iSup_range]
+    _ = _ := CompletelyDistribLattice.iInf_iSup_eq _
+    _ ≤ _ := iSup_le fun g => by
+      refine le_trans ?_ <| le_iSup _ fun a => Classical.choose (g ⟨_, a, rfl⟩).2
+      refine le_iInf fun a => le_trans (iInf_le _ ⟨range (f a), a, rfl⟩) ?_
+      rw [← Classical.choose_spec (g ⟨_, a, rfl⟩).2]
+
+theorem iSup_iInf_le [CompleteLattice α] {f : ∀ a, κ a → α} :
+    (⨆ a, ⨅ b, f a b) ≤ ⨅ g : ∀ a, κ a, ⨆ a, f a (g a) :=
+  le_iInf_iSup (α := αᵒᵈ)
+
+theorem iSup_iInf_eq [CompletelyDistribLattice α] {f : ∀ a, κ a → α} :
+    (⨆ a, ⨅ b, f a b) = ⨅ g : ∀ a, κ a, ⨆ a, f a (g a) := by
+  refine le_antisymm iSup_iInf_le ?_
+  rw [iInf_iSup_eq]
+  refine iSup_le fun g => ?_
+  have ⟨a, ha⟩ : ∃ a, ∀ b, ∃ f, ∃ h : a = g f, h ▸ b = f (g f) := of_not_not fun h => by
+    push_neg at h
+    choose h hh using h
+    have := hh _ h rfl
+    contradiction
+  refine le_trans ?_ (le_iSup _ a)
+  refine le_iInf fun b => ?_
+  obtain ⟨h, rfl, rfl⟩ := ha b
+  refine iInf_le _ _
+
+instance (priority := 100) CompletelyDistribLattice.toCompleteDistribLattice
+    [CompletelyDistribLattice α] : CompleteDistribLattice α where
+  iInf_sup_le_sup_sInf a s := calc
+    _ = ⨅ b : s, ⨆ x : Bool, cond x a b := by simp_rw [iInf_subtype, iSup_bool_eq, cond]
+    _ = _ := iInf_iSup_eq
+    _ ≤ _ := iSup_le fun f => by
+      by_cases ∀ i, f i = false
+      case pos => simp [h, iInf_subtype, ← sInf_eq_iInf]
+      case neg =>
+        have ⟨i, h⟩ : ∃ i, f i = true := by simpa using h
+        refine le_trans (iInf_le _ i) ?_
+        simp [h]
+  inf_sSup_le_iSup_inf a s := calc
+    _ = ⨅ x : Bool, ⨆ y : cond x PUnit s, match x with | true => a | false => y.1 := by
+      simp_rw [iInf_bool_eq, cond, iSup_const, iSup_subtype, sSup_eq_iSup]
+    _ = _ := iInf_iSup_eq
+    _ ≤ _ := by
+      simp_rw [iInf_bool_eq]
+      refine iSup_le fun g => le_trans ?_ (le_iSup _ (g false).1)
+      refine le_trans ?_ (le_iSup _ (g false).2)
+      rfl
+
 -- See note [lower instance priority]
-instance (priority := 100) CompleteLinearOrder.toCompleteDistribLattice [CompleteLinearOrder α] :
-    CompleteDistribLattice α where
-  inf_sSup_le_iSup_inf a s := open Classical in
-    if h : ∀ b ∈ s, b ≤ a then by
-      rw [inf_eq_right.2 (sSup_le_iff.2 h)]
-      refine sSup_le_iff.2 fun b hb => ?_
-      refine le_trans ?_ (le_iSup _ b)
-      refine le_trans ?_ (le_iSup _ hb)
-      rw [inf_eq_right.2 (h b hb)]
-    else by
-      have ⟨b, hb, hab⟩ : ∃ b ∈ s, a < b := by simpa using h
-      refine le_trans ?_ (le_iSup _ b)
-      refine le_trans ?_ (le_iSup _ hb)
-      rw [inf_eq_left.2 (by exact le_trans (le_of_lt hab) (le_sSup hb))]
-      rw [inf_eq_left.2 (le_of_lt hab)]
-  iInf_sup_le_sup_sInf a s := open Classical in
-    if h : ∀ b ∈ s, a ≤ b then by
-      rw [sup_eq_right.2 (le_sInf_iff.2 h)]
-      refine le_sInf_iff.2 fun b hb => ?_
-      refine le_trans (iInf_le _ b) ?_
-      refine le_trans (iInf_le _ hb) ?_
-      rw [sup_eq_right.2 (h b hb)]
-    else by
-      have ⟨b, hb, hab⟩ : ∃ b ∈ s, b < a := by simpa using h
-      refine le_trans (iInf_le _ b) ?_
-      refine le_trans (iInf_le _ hb) ?_
-      rw [sup_eq_left.2 (le_of_lt hab)]
-      rw [sup_eq_left.2 (by exact le_trans (sInf_le hb) (le_of_lt hab))]
+instance (priority := 100) CompleteLinearOrder.toCompletelyDistribLattice [CompleteLinearOrder α] :
+    CompletelyDistribLattice α where
+  iInf_iSup_eq {α β} g := by
+    let lhs := ⨅ a, ⨆ b, g a b
+    let rhs := ⨆ h : ∀ a, β a, ⨅ a, g a (h a)
+    suffices lhs ≤ rhs from le_antisymm this le_iInf_iSup
+    by_cases ∃ x, rhs < x ∧ x < lhs
+    case pos =>
+      rcases h with ⟨x, hr, hl⟩
+      suffices rhs ≥ x from nomatch not_lt.2 this hr
+      have : ∀ a, ∃ b, x < g a b := fun a =>
+        lt_iSup_iff.1 <| lt_of_not_le fun h =>
+            lt_irrefl x (lt_of_lt_of_le hl (le_trans (iInf_le _ a) h))
+      choose f hf using this
+      refine le_trans ?_ (le_iSup _ f)
+      refine le_iInf fun a => le_of_lt (hf a)
+    case neg =>
+      refine le_of_not_lt fun hrl : rhs < lhs => not_le_of_lt hrl ?_
+      replace h : ∀ x, x ≤ rhs ∨ lhs ≤ x := by
+        simpa only [not_exists, not_and_or, not_or, not_lt] using h
+      have : ∀ a, ∃ b, rhs < g a b := fun a =>
+        lt_iSup_iff.1 <| lt_of_lt_of_le hrl (iInf_le _ a)
+      choose f hf using this
+      have : ∀ a, lhs ≤ g a (f a) := fun a =>
+        (h (g a (f a))).resolve_left (by simpa using hf a)
+      refine le_trans ?_ (le_iSup _ f)
+      refine le_iInf fun a => this _
 
 section Frame
 
@@ -136,6 +209,11 @@ theorem inf_iSup_eq (a : α) (f : ι → α) : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓
   simpa only [inf_comm] using iSup_inf_eq f a
 #align inf_supr_eq inf_iSup_eq
 
+instance Prod.frame (α β) [Frame α] [Frame β] : Frame (α × β) where
+  __ := Prod.completeLattice α β
+  inf_sSup_le_iSup_inf a s := by
+    simp [Prod.le_def, sSup_eq_iSup, fst_iSup, snd_iSup, fst_iInf, snd_iInf, inf_iSup_eq]
+
 theorem iSup₂_inf_eq {f : ∀ i, κ i → α} (a : α) : (⨆ (i) (j), f i j) ⊓ a = ⨆ (i) (j), f i j ⊓ a :=
   by simp only [iSup_inf_eq]
 #align bsupr_inf_eq iSup₂_inf_eq
@@ -237,6 +315,11 @@ theorem sup_iInf_eq (a : α) (f : ι → α) : (a ⊔ ⨅ i, f i) = ⨅ i, a ⊔
   @inf_iSup_eq αᵒᵈ _ _ _ _
 #align sup_infi_eq sup_iInf_eq
 
+instance Prod.coframe (α β) [Coframe α] [Coframe β] : Coframe (α × β) where
+  __ := Prod.completeLattice α β
+  iInf_sup_le_sup_sInf a s := by
+    simp [Prod.le_def, sInf_eq_iInf, fst_iSup, snd_iSup, fst_iInf, snd_iInf, sup_iInf_eq]
+
 theorem iInf₂_sup_eq {f : ∀ i, κ i → α} (a : α) : (⨅ (i) (j), f i j) ⊔ a = ⨅ (i) (j), f i j ⊔ a :=
   @iSup₂_inf_eq αᵒᵈ _ _ _ _ _
 #align binfi_sup_eq iInf₂_sup_eq
@@ -291,9 +374,17 @@ variable [CompleteDistribLattice α] {a b : α} {s t : Set α}
 -- Porting note: this is mysteriously slow. Minimised in
 -- https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Performance.20issue.20with.20.60CompleteBooleanAlgebra.60
 -- but not yet resolved.
-instance : CompleteDistribLattice αᵒᵈ :=
+instance OrderDual.completeDistribLattice (α) [CompleteDistribLattice α] :
+    CompleteDistribLattice αᵒᵈ :=
   { OrderDual.frame, OrderDual.coframe with }
 
+instance Prod.completeDistribLattice (α β)
+    [CompleteDistribLattice α] [CompleteDistribLattice β] :
+    CompleteDistribLattice (α × β) where
+  __ := Prod.completeLattice α β
+  __ := Prod.frame α β
+  __ := Prod.coframe α β
+
 instance Pi.completeDistribLattice {ι : Type _} {π : ι → Type _}
     [∀ i, CompleteDistribLattice (π i)] : CompleteDistribLattice (∀ i, π i) :=
   { Pi.frame, Pi.coframe with }
@@ -301,23 +392,49 @@ instance Pi.completeDistribLattice {ι : Type _} {π : ι → Type _}
 
 end CompleteDistribLattice
 
-/-- A complete Boolean algebra is a completely distributive Boolean algebra. -/
+section CompletelyDistribLattice
+
+instance OrderDual.completelyDistribLattice (α) [CompletelyDistribLattice α] :
+    CompletelyDistribLattice αᵒᵈ where
+  __ := OrderDual.completeLattice α
+  iInf_iSup_eq _ := iSup_iInf_eq (α := α)
+
+instance Prod.completelyDistribLattice (α β)
+    [CompletelyDistribLattice α] [CompletelyDistribLattice β] :
+    CompletelyDistribLattice (α × β) where
+  __ := Prod.completeLattice α β
+  iInf_iSup_eq f := by ext <;> simp [fst_iSup, fst_iInf, snd_iSup, snd_iInf, iInf_iSup_eq]
+
+instance Pi.completelyDistribLattice {ι : Type _} {π : ι → Type _}
+    [∀ i, CompletelyDistribLattice (π i)] : CompletelyDistribLattice (∀ i, π i) where
+  __ := Pi.completeLattice
+  iInf_iSup_eq f := by ext i; simp only [iInf_apply, iSup_apply, iInf_iSup_eq]
+
+end CompletelyDistribLattice
+
+/--
+A complete Boolean algebra is a Boolean algebra that is also a complete distributive lattice.
+
+It is only completely distributive if it is also atomic.
+-/
 class CompleteBooleanAlgebra (α) extends BooleanAlgebra α, CompleteDistribLattice α
 #align complete_boolean_algebra CompleteBooleanAlgebra
 
+instance Prod.completeBooleanAlgebra (α β)
+    [CompleteBooleanAlgebra α] [CompleteBooleanAlgebra β] :
+    CompleteBooleanAlgebra (α × β) where
+  __ := Prod.booleanAlgebra α β
+  __ := Prod.completeDistribLattice α β
+
 instance Pi.completeBooleanAlgebra {ι : Type _} {π : ι → Type _}
     [∀ i, CompleteBooleanAlgebra (π i)] : CompleteBooleanAlgebra (∀ i, π i) :=
   { Pi.booleanAlgebra, Pi.completeDistribLattice with }
 #align pi.complete_boolean_algebra Pi.completeBooleanAlgebra
 
-instance Prop.completeBooleanAlgebra : CompleteBooleanAlgebra Prop :=
-  { Prop.booleanAlgebra, Prop.completeLattice with
-    iInf_sup_le_sup_sInf := fun p s =>
-      Iff.mp <| by simp only [forall_or_left, iInf_Prop_eq, sInf_Prop_eq, sup_Prop_eq]
-    inf_sSup_le_iSup_inf := fun p s =>
-      Iff.mp <| by
-        simp only [inf_Prop_eq, exists_and_left, iSup_Prop_eq, sSup_Prop_eq, exists_prop] }
-#align Prop.complete_boolean_algebra Prop.completeBooleanAlgebra
+instance OrderDual.completeBooleanAlgebra (α) [CompleteBooleanAlgebra α] :
+    CompleteBooleanAlgebra αᵒᵈ where
+  __ := OrderDual.booleanAlgebra α
+  __ := OrderDual.completeDistribLattice α
 
 section CompleteBooleanAlgebra
 
@@ -350,6 +467,42 @@ theorem compl_sSup' : (sSup s)ᶜ = sInf (HasCompl.compl '' s) :=
 
 end CompleteBooleanAlgebra
 
+/--
+A complete atomic Boolean algebra is a complete Boolean algebra
+that is also completely distributive.
+
+We take iSup_iInf_eq as the definition here,
+and prove later on that this implies atomicity.
+-/
+class CompleteAtomicBooleanAlgebra (α : Type u) extends
+    CompletelyDistribLattice α, CompleteBooleanAlgebra α where
+  iInf_sup_le_sup_sInf := CompletelyDistribLattice.toCompleteDistribLattice.iInf_sup_le_sup_sInf
+  inf_sSup_le_iSup_inf := CompletelyDistribLattice.toCompleteDistribLattice.inf_sSup_le_iSup_inf
+
+instance Prod.completeAtomicBooleanAlgebra (α β)
+    [CompleteAtomicBooleanAlgebra α] [CompleteAtomicBooleanAlgebra β] :
+    CompleteAtomicBooleanAlgebra (α × β) where
+  __ := Prod.booleanAlgebra α β
+  __ := Prod.completelyDistribLattice α β
+
+instance Pi.completeAtomicBooleanAlgebra {ι : Type _} {π : ι → Type _}
+    [∀ i, CompleteAtomicBooleanAlgebra (π i)] : CompleteAtomicBooleanAlgebra (∀ i, π i) where
+  __ := Pi.completeBooleanAlgebra
+  iInf_iSup_eq f := by ext; rw [iInf_iSup_eq]
+
+instance OrderDual.completeAtomicBooleanAlgebra (α) [CompleteAtomicBooleanAlgebra α] :
+    CompleteAtomicBooleanAlgebra αᵒᵈ where
+  __ := OrderDual.completeBooleanAlgebra α
+  __ := OrderDual.completelyDistribLattice α
+
+instance Prop.completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra Prop where
+  __ := Prop.completeLattice
+  __ := Prop.booleanAlgebra
+  iInf_iSup_eq f := by simp [Classical.skolem]
+
+instance Prop.completeBooleanAlgebra : CompleteBooleanAlgebra Prop := inferInstance
+#align Prop.complete_boolean_algebra Prop.completeBooleanAlgebra
+
 section lift
 
 -- See note [reducible non-instances]
@@ -396,6 +549,19 @@ protected def Function.Injective.completeDistribLattice [Sup α] [Inf α] [SupSe
     hf.coframe f map_sup map_inf map_sSup map_sInf map_top map_bot with }
 #align function.injective.complete_distrib_lattice Function.Injective.completeDistribLattice
 
+-- See note [reducible non-instances]
+/-- Pullback a `CompletelyDistribLattice` along an injection. -/
+@[reducible]
+protected def Function.Injective.completelyDistribLattice [Sup α] [Inf α] [SupSet α] [InfSet α]
+    [Top α] [Bot α] [CompletelyDistribLattice β] (f : α → β) (hf : Function.Injective f)
+    (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
+    (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a) (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a)
+    (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : CompletelyDistribLattice α where
+  __ := hf.completeLattice f map_sup map_inf map_sSup map_sInf map_top map_bot
+  iInf_iSup_eq g := hf <| by
+    simp_rw [iInf, map_sInf, iInf_range, iSup, map_sSup, iSup_range, map_sInf, iInf_range,
+      iInf_iSup_eq]
+
 -- See note [reducible non-instances]
 /-- Pullback a `CompleteBooleanAlgebra` along an injection. -/
 @[reducible]
@@ -410,13 +576,26 @@ protected def Function.Injective.completeBooleanAlgebra [Sup α] [Inf α] [SupSe
     hf.booleanAlgebra f map_sup map_inf map_top map_bot map_compl map_sdiff with }
 #align function.injective.complete_boolean_algebra Function.Injective.completeBooleanAlgebra
 
+-- See note [reducible non-instances]
+/-- Pullback a `CompleteAtomicBooleanAlgebra` along an injection. -/
+@[reducible]
+protected def Function.Injective.completeAtomicBooleanAlgebra [Sup α] [Inf α] [SupSet α] [InfSet α]
+    [Top α] [Bot α] [HasCompl α] [SDiff α] [CompleteAtomicBooleanAlgebra β] (f : α → β)
+    (hf : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
+    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
+    (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥)
+    (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
+    CompleteAtomicBooleanAlgebra α where
+  __ := hf.completelyDistribLattice f map_sup map_inf map_sSup map_sInf map_top map_bot
+  __ := hf.booleanAlgebra f map_sup map_inf map_top map_bot map_compl map_sdiff
+
 end lift
 
 namespace PUnit
 
 variable (s : Set PUnit.{u + 1}) (x y : PUnit.{u + 1})
 
-instance completeBooleanAlgebra : CompleteBooleanAlgebra PUnit := by
+instance completeAtomicBooleanAlgebra : CompleteAtomicBooleanAlgebra PUnit := by
   refine'
     { PUnit.booleanAlgebra with
       sSup := fun _ => unit
@@ -424,6 +603,8 @@ instance completeBooleanAlgebra : CompleteBooleanAlgebra PUnit := by
       .. } <;>
   (intros; trivial)
 
+instance completeBooleanAlgebra : CompleteBooleanAlgebra PUnit := inferInstance
+
 @[simp]
 theorem sSup_eq : sSup s = unit :=
   rfl
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -59,7 +59,7 @@ add_decl_doc Order.Frame.inf_sSup_le_iSup_inf
 /-- A coframe, aka complete Brouwer algebra or complete co-Heyting algebra, is a complete lattice
 whose `⊔` distributes over `⨅`. -/
 class Order.Coframe (α : Type _) extends CompleteLattice α where
-  iInf_sup_le_sup_sInf (a : α) (s : Set α) : (⨅ b ∈ s, a ⊔ b) ≤ a ⊔ sInf s
+  iInf_sup_le_sup_sInf (a : α) (s : Set α) : ⨅ b ∈ s, a ⊔ b ≤ a ⊔ sInf s
 #align order.coframe Order.Coframe
 
 /-- In a coframe, `⊔` distributes over `⨅`. -/
@@ -70,7 +70,7 @@ open Order
 /-- A completely distributive lattice is a complete lattice whose `⊔` and `⊓` respectively
 distribute over `⨅` and `⨆`. -/
 class CompleteDistribLattice (α : Type _) extends Frame α where
-  iInf_sup_le_sup_sInf : ∀ a s, (⨅ b ∈ s, a ⊔ b) ≤ a ⊔ sInf s
+  iInf_sup_le_sup_sInf : ∀ a s, ⨅ b ∈ s, a ⊔ b ≤ a ⊔ sInf s
 #align complete_distrib_lattice CompleteDistribLattice
 
 /-- In a completely distributive lattice, `⊔` distributes over `⨅`. -/
@@ -186,7 +186,7 @@ theorem disjoint_sSup_iff {s : Set α} : Disjoint a (sSup s) ↔ ∀ b ∈ s, Di
 #align disjoint_Sup_iff disjoint_sSup_iff
 
 theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
-    (hf : Monotone f) (hg : Monotone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i := by
+    (hf : Monotone f) (hg : Monotone g) : ⨆ i, f i ⊓ g i = (⨆ i, f i) ⊓ ⨆ i, g i := by
   refine' (le_iSup_inf_iSup f g).antisymm _
   rw [iSup_inf_iSup]
   refine' iSup_mono' fun i => _
@@ -195,7 +195,7 @@ theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤
 #align supr_inf_of_monotone iSup_inf_of_monotone
 
 theorem iSup_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
-    (hf : Antitone f) (hg : Antitone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
+    (hf : Antitone f) (hg : Antitone g) : ⨆ i, f i ⊓ g i = (⨆ i, f i) ⊓ ⨆ i, g i :=
   @iSup_inf_of_monotone α _ ιᵒᵈ _ _ f g hf.dual_left hg.dual_left
 #align supr_inf_of_antitone iSup_inf_of_antitone
 
@@ -260,12 +260,12 @@ theorem sInf_sup_sInf : sInf s ⊔ sInf t = ⨅ p ∈ s ×ˢ t, (p : α × α).1
 #align Inf_sup_Inf sInf_sup_sInf
 
 theorem iInf_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
-    (hf : Monotone f) (hg : Monotone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
+    (hf : Monotone f) (hg : Monotone g) : ⨅ i, f i ⊔ g i = (⨅ i, f i) ⊔ ⨅ i, g i :=
   @iSup_inf_of_antitone αᵒᵈ _ _ _ _ _ _ hf.dual_right hg.dual_right
 #align infi_sup_of_monotone iInf_sup_of_monotone
 
 theorem iInf_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
-    (hf : Antitone f) (hg : Antitone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
+    (hf : Antitone f) (hg : Antitone g) : ⨅ i, f i ⊔ g i = (⨅ i, f i) ⊔ ⨅ i, g i :=
   @iSup_inf_of_monotone αᵒᵈ _ _ _ _ _ _ hf.dual_right hg.dual_right
 #align infi_sup_of_antitone iInf_sup_of_antitone
 
fix: change compl precedence (#5586)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -323,28 +323,28 @@ section CompleteBooleanAlgebra
 
 variable [CompleteBooleanAlgebra α] {a b : α} {s : Set α} {f : ι → α}
 
-theorem compl_iInf : iInf fᶜ = ⨆ i, f iᶜ :=
+theorem compl_iInf : (iInf f)ᶜ = ⨆ i, (f i)ᶜ :=
   le_antisymm
     (compl_le_of_compl_le <| le_iInf fun i => compl_le_of_compl_le <|
       le_iSup (HasCompl.compl ∘ f) i)
     (iSup_le fun _ => compl_le_compl <| iInf_le _ _)
 #align compl_infi compl_iInf
 
-theorem compl_iSup : iSup fᶜ = ⨅ i, f iᶜ :=
+theorem compl_iSup : (iSup f)ᶜ = ⨅ i, (f i)ᶜ :=
   compl_injective (by simp [compl_iInf])
 #align compl_supr compl_iSup
 
-theorem compl_sInf : sInf sᶜ = ⨆ i ∈ s, iᶜ := by simp only [sInf_eq_iInf, compl_iInf]
+theorem compl_sInf : (sInf s)ᶜ = ⨆ i ∈ s, iᶜ := by simp only [sInf_eq_iInf, compl_iInf]
 #align compl_Inf compl_sInf
 
-theorem compl_sSup : sSup sᶜ = ⨅ i ∈ s, iᶜ := by simp only [sSup_eq_iSup, compl_iSup]
+theorem compl_sSup : (sSup s)ᶜ = ⨅ i ∈ s, iᶜ := by simp only [sSup_eq_iSup, compl_iSup]
 #align compl_Sup compl_sSup
 
-theorem compl_sInf' : sInf sᶜ = sSup (HasCompl.compl '' s) :=
+theorem compl_sInf' : (sInf s)ᶜ = sSup (HasCompl.compl '' s) :=
   compl_sInf.trans sSup_image.symm
 #align compl_Inf' compl_sInf'
 
-theorem compl_sSup' : sSup sᶜ = sInf (HasCompl.compl '' s) :=
+theorem compl_sSup' : (sSup s)ᶜ = sInf (HasCompl.compl '' s) :=
   compl_sSup.trans sInf_image.symm
 #align compl_Sup' compl_sSup'
 
@@ -404,7 +404,7 @@ protected def Function.Injective.completeBooleanAlgebra [Sup α] [Inf α] [SupSe
     (hf : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
     (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥)
-    (map_compl : ∀ a, f (aᶜ) = f aᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
+    (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
     CompleteBooleanAlgebra α :=
   { hf.completeDistribLattice f map_sup map_inf map_sSup map_sInf map_top map_bot,
     hf.booleanAlgebra f map_sup map_inf map_top map_bot map_compl map_sdiff with }
chore: cleanup porting notes about refine_struct (#5542)

Replace some porting notes about refine_struct with uses of refine'. We only really miss refine_struct in situations where we later used pi_instance_derive_field.

I also exercised some editorial discretion to remove some porting notes about refine_struct when the original usage was (in my opinion) obfuscatory relative to just writing out the fields. (We shouldn't be using alternatives to handle different fields!)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -416,15 +416,13 @@ namespace PUnit
 
 variable (s : Set PUnit.{u + 1}) (x y : PUnit.{u + 1})
 
--- Porting note: we don't have `refine_struct` ported yet, so we do it by hand
 instance completeBooleanAlgebra : CompleteBooleanAlgebra PUnit := by
   refine'
     { PUnit.booleanAlgebra with
       sSup := fun _ => unit
       sInf := fun _ => unit
       .. } <;>
-  intros <;>
-  first|trivial
+  (intros; trivial)
 
 @[simp]
 theorem sSup_eq : sSup s = unit :=
feat: every complete linear order is a complete distributive lattice (#5031)
Diff
@@ -82,6 +82,36 @@ instance (priority := 100) CompleteDistribLattice.toCoframe [CompleteDistribLatt
   { ‹CompleteDistribLattice α› with }
 #align complete_distrib_lattice.to_coframe CompleteDistribLattice.toCoframe
 
+-- See note [lower instance priority]
+instance (priority := 100) CompleteLinearOrder.toCompleteDistribLattice [CompleteLinearOrder α] :
+    CompleteDistribLattice α where
+  inf_sSup_le_iSup_inf a s := open Classical in
+    if h : ∀ b ∈ s, b ≤ a then by
+      rw [inf_eq_right.2 (sSup_le_iff.2 h)]
+      refine sSup_le_iff.2 fun b hb => ?_
+      refine le_trans ?_ (le_iSup _ b)
+      refine le_trans ?_ (le_iSup _ hb)
+      rw [inf_eq_right.2 (h b hb)]
+    else by
+      have ⟨b, hb, hab⟩ : ∃ b ∈ s, a < b := by simpa using h
+      refine le_trans ?_ (le_iSup _ b)
+      refine le_trans ?_ (le_iSup _ hb)
+      rw [inf_eq_left.2 (by exact le_trans (le_of_lt hab) (le_sSup hb))]
+      rw [inf_eq_left.2 (le_of_lt hab)]
+  iInf_sup_le_sup_sInf a s := open Classical in
+    if h : ∀ b ∈ s, a ≤ b then by
+      rw [sup_eq_right.2 (le_sInf_iff.2 h)]
+      refine le_sInf_iff.2 fun b hb => ?_
+      refine le_trans (iInf_le _ b) ?_
+      refine le_trans (iInf_le _ hb) ?_
+      rw [sup_eq_right.2 (h b hb)]
+    else by
+      have ⟨b, hb, hab⟩ : ∃ b ∈ s, b < a := by simpa using h
+      refine le_trans (iInf_le _ b) ?_
+      refine le_trans (iInf_le _ hb) ?_
+      rw [sup_eq_left.2 (le_of_lt hab)]
+      rw [sup_eq_left.2 (by exact le_trans (sInf_le hb) (le_of_lt hab))]
+
 section Frame
 
 variable [Frame α] {s t : Set α} {a b : α}
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -50,31 +50,31 @@ variable {α : Type u} {β : Type v} {ι : Sort w} {κ : ι → Sort _}
 
 /-- A frame, aka complete Heyting algebra, is a complete lattice whose `⊓` distributes over `⨆`. -/
 class Order.Frame (α : Type _) extends CompleteLattice α where
-  inf_supₛ_le_supᵢ_inf (a : α) (s : Set α) : a ⊓ supₛ s ≤ ⨆ b ∈ s, a ⊓ b
+  inf_sSup_le_iSup_inf (a : α) (s : Set α) : a ⊓ sSup s ≤ ⨆ b ∈ s, a ⊓ b
 #align order.frame Order.Frame
 
 /-- In a frame, `⊓` distributes over `⨆`. -/
-add_decl_doc Order.Frame.inf_supₛ_le_supᵢ_inf
+add_decl_doc Order.Frame.inf_sSup_le_iSup_inf
 
 /-- A coframe, aka complete Brouwer algebra or complete co-Heyting algebra, is a complete lattice
 whose `⊔` distributes over `⨅`. -/
 class Order.Coframe (α : Type _) extends CompleteLattice α where
-  infᵢ_sup_le_sup_infₛ (a : α) (s : Set α) : (⨅ b ∈ s, a ⊔ b) ≤ a ⊔ infₛ s
+  iInf_sup_le_sup_sInf (a : α) (s : Set α) : (⨅ b ∈ s, a ⊔ b) ≤ a ⊔ sInf s
 #align order.coframe Order.Coframe
 
 /-- In a coframe, `⊔` distributes over `⨅`. -/
-add_decl_doc Order.Coframe.infᵢ_sup_le_sup_infₛ
+add_decl_doc Order.Coframe.iInf_sup_le_sup_sInf
 
 open Order
 
 /-- A completely distributive lattice is a complete lattice whose `⊔` and `⊓` respectively
 distribute over `⨅` and `⨆`. -/
 class CompleteDistribLattice (α : Type _) extends Frame α where
-  infᵢ_sup_le_sup_infₛ : ∀ a s, (⨅ b ∈ s, a ⊔ b) ≤ a ⊔ infₛ s
+  iInf_sup_le_sup_sInf : ∀ a s, (⨅ b ∈ s, a ⊔ b) ≤ a ⊔ sInf s
 #align complete_distrib_lattice CompleteDistribLattice
 
 /-- In a completely distributive lattice, `⊔` distributes over `⨅`. -/
-add_decl_doc CompleteDistribLattice.infᵢ_sup_le_sup_infₛ
+add_decl_doc CompleteDistribLattice.iInf_sup_le_sup_sInf
 
 -- See note [lower instance priority]
 instance (priority := 100) CompleteDistribLattice.toCoframe [CompleteDistribLattice α] :
@@ -87,98 +87,98 @@ section Frame
 variable [Frame α] {s t : Set α} {a b : α}
 
 instance OrderDual.coframe : Coframe αᵒᵈ :=
-  { OrderDual.completeLattice α with infᵢ_sup_le_sup_infₛ := @Frame.inf_supₛ_le_supᵢ_inf α _ }
+  { OrderDual.completeLattice α with iInf_sup_le_sup_sInf := @Frame.inf_sSup_le_iSup_inf α _ }
 #align order_dual.coframe OrderDual.coframe
 
-theorem inf_supₛ_eq : a ⊓ supₛ s = ⨆ b ∈ s, a ⊓ b :=
-  (Frame.inf_supₛ_le_supᵢ_inf _ _).antisymm supᵢ_inf_le_inf_supₛ
-#align inf_Sup_eq inf_supₛ_eq
+theorem inf_sSup_eq : a ⊓ sSup s = ⨆ b ∈ s, a ⊓ b :=
+  (Frame.inf_sSup_le_iSup_inf _ _).antisymm iSup_inf_le_inf_sSup
+#align inf_Sup_eq inf_sSup_eq
 
-theorem supₛ_inf_eq : supₛ s ⊓ b = ⨆ a ∈ s, a ⊓ b := by
-  simpa only [inf_comm] using @inf_supₛ_eq α _ s b
-#align Sup_inf_eq supₛ_inf_eq
+theorem sSup_inf_eq : sSup s ⊓ b = ⨆ a ∈ s, a ⊓ b := by
+  simpa only [inf_comm] using @inf_sSup_eq α _ s b
+#align Sup_inf_eq sSup_inf_eq
 
-theorem supᵢ_inf_eq (f : ι → α) (a : α) : (⨆ i, f i) ⊓ a = ⨆ i, f i ⊓ a := by
-  rw [supᵢ, supₛ_inf_eq, supᵢ_range]
-#align supr_inf_eq supᵢ_inf_eq
+theorem iSup_inf_eq (f : ι → α) (a : α) : (⨆ i, f i) ⊓ a = ⨆ i, f i ⊓ a := by
+  rw [iSup, sSup_inf_eq, iSup_range]
+#align supr_inf_eq iSup_inf_eq
 
-theorem inf_supᵢ_eq (a : α) (f : ι → α) : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓ f i := by
-  simpa only [inf_comm] using supᵢ_inf_eq f a
-#align inf_supr_eq inf_supᵢ_eq
+theorem inf_iSup_eq (a : α) (f : ι → α) : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓ f i := by
+  simpa only [inf_comm] using iSup_inf_eq f a
+#align inf_supr_eq inf_iSup_eq
 
-theorem supᵢ₂_inf_eq {f : ∀ i, κ i → α} (a : α) : (⨆ (i) (j), f i j) ⊓ a = ⨆ (i) (j), f i j ⊓ a :=
-  by simp only [supᵢ_inf_eq]
-#align bsupr_inf_eq supᵢ₂_inf_eq
+theorem iSup₂_inf_eq {f : ∀ i, κ i → α} (a : α) : (⨆ (i) (j), f i j) ⊓ a = ⨆ (i) (j), f i j ⊓ a :=
+  by simp only [iSup_inf_eq]
+#align bsupr_inf_eq iSup₂_inf_eq
 
-theorem inf_supᵢ₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊓ ⨆ (i) (j), f i j) = ⨆ (i) (j), a ⊓ f i j :=
-  by simp only [inf_supᵢ_eq]
-#align inf_bsupr_eq inf_supᵢ₂_eq
+theorem inf_iSup₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊓ ⨆ (i) (j), f i j) = ⨆ (i) (j), a ⊓ f i j :=
+  by simp only [inf_iSup_eq]
+#align inf_bsupr_eq inf_iSup₂_eq
 
-theorem supᵢ_inf_supᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
+theorem iSup_inf_iSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
     ((⨆ i, f i) ⊓ ⨆ j, g j) = ⨆ i : ι × ι', f i.1 ⊓ g i.2 := by
-  simp_rw [supᵢ_inf_eq, inf_supᵢ_eq, supᵢ_prod]
-#align supr_inf_supr supᵢ_inf_supᵢ
+  simp_rw [iSup_inf_eq, inf_iSup_eq, iSup_prod]
+#align supr_inf_supr iSup_inf_iSup
 
-theorem bsupᵢ_inf_bsupᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
+theorem biSup_inf_biSup {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
     ((⨆ i ∈ s, f i) ⊓ ⨆ j ∈ t, g j) = ⨆ p ∈ s ×ˢ t, f (p : ι × ι').1 ⊓ g p.2 := by
-  simp only [supᵢ_subtype', supᵢ_inf_supᵢ]
-  exact (Equiv.surjective _).supᵢ_congr (Equiv.Set.prod s t).symm fun x => rfl
-#align bsupr_inf_bsupr bsupᵢ_inf_bsupᵢ
+  simp only [iSup_subtype', iSup_inf_iSup]
+  exact (Equiv.surjective _).iSup_congr (Equiv.Set.prod s t).symm fun x => rfl
+#align bsupr_inf_bsupr biSup_inf_biSup
 
-theorem supₛ_inf_supₛ : supₛ s ⊓ supₛ t = ⨆ p ∈ s ×ˢ t, (p : α × α).1 ⊓ p.2 := by
-  simp only [supₛ_eq_supᵢ, bsupᵢ_inf_bsupᵢ]
-#align Sup_inf_Sup supₛ_inf_supₛ
+theorem sSup_inf_sSup : sSup s ⊓ sSup t = ⨆ p ∈ s ×ˢ t, (p : α × α).1 ⊓ p.2 := by
+  simp only [sSup_eq_iSup, biSup_inf_biSup]
+#align Sup_inf_Sup sSup_inf_sSup
 
-theorem supᵢ_disjoint_iff {f : ι → α} : Disjoint (⨆ i, f i) a ↔ ∀ i, Disjoint (f i) a := by
-  simp only [disjoint_iff, supᵢ_inf_eq, supᵢ_eq_bot]
-#align supr_disjoint_iff supᵢ_disjoint_iff
+theorem iSup_disjoint_iff {f : ι → α} : Disjoint (⨆ i, f i) a ↔ ∀ i, Disjoint (f i) a := by
+  simp only [disjoint_iff, iSup_inf_eq, iSup_eq_bot]
+#align supr_disjoint_iff iSup_disjoint_iff
 
-theorem disjoint_supᵢ_iff {f : ι → α} : Disjoint a (⨆ i, f i) ↔ ∀ i, Disjoint a (f i) := by
-  simpa only [disjoint_comm] using @supᵢ_disjoint_iff
-#align disjoint_supr_iff disjoint_supᵢ_iff
+theorem disjoint_iSup_iff {f : ι → α} : Disjoint a (⨆ i, f i) ↔ ∀ i, Disjoint a (f i) := by
+  simpa only [disjoint_comm] using @iSup_disjoint_iff
+#align disjoint_supr_iff disjoint_iSup_iff
 
-theorem supᵢ₂_disjoint_iff {f : ∀ i, κ i → α} :
+theorem iSup₂_disjoint_iff {f : ∀ i, κ i → α} :
     Disjoint (⨆ (i) (j), f i j) a ↔ ∀ i j, Disjoint (f i j) a := by
-  simp_rw [supᵢ_disjoint_iff]
-#align supr₂_disjoint_iff supᵢ₂_disjoint_iff
+  simp_rw [iSup_disjoint_iff]
+#align supr₂_disjoint_iff iSup₂_disjoint_iff
 
-theorem disjoint_supᵢ₂_iff {f : ∀ i, κ i → α} :
+theorem disjoint_iSup₂_iff {f : ∀ i, κ i → α} :
     Disjoint a (⨆ (i) (j), f i j) ↔ ∀ i j, Disjoint a (f i j) := by
-  simp_rw [disjoint_supᵢ_iff]
-#align disjoint_supr₂_iff disjoint_supᵢ₂_iff
+  simp_rw [disjoint_iSup_iff]
+#align disjoint_supr₂_iff disjoint_iSup₂_iff
 
-theorem supₛ_disjoint_iff {s : Set α} : Disjoint (supₛ s) a ↔ ∀ b ∈ s, Disjoint b a := by
-  simp only [disjoint_iff, supₛ_inf_eq, supᵢ_eq_bot]
-#align Sup_disjoint_iff supₛ_disjoint_iff
+theorem sSup_disjoint_iff {s : Set α} : Disjoint (sSup s) a ↔ ∀ b ∈ s, Disjoint b a := by
+  simp only [disjoint_iff, sSup_inf_eq, iSup_eq_bot]
+#align Sup_disjoint_iff sSup_disjoint_iff
 
-theorem disjoint_supₛ_iff {s : Set α} : Disjoint a (supₛ s) ↔ ∀ b ∈ s, Disjoint a b := by
-  simpa only [disjoint_comm] using @supₛ_disjoint_iff
-#align disjoint_Sup_iff disjoint_supₛ_iff
+theorem disjoint_sSup_iff {s : Set α} : Disjoint a (sSup s) ↔ ∀ b ∈ s, Disjoint a b := by
+  simpa only [disjoint_comm] using @sSup_disjoint_iff
+#align disjoint_Sup_iff disjoint_sSup_iff
 
-theorem supᵢ_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
+theorem iSup_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i := by
-  refine' (le_supᵢ_inf_supᵢ f g).antisymm _
-  rw [supᵢ_inf_supᵢ]
-  refine' supᵢ_mono' fun i => _
+  refine' (le_iSup_inf_iSup f g).antisymm _
+  rw [iSup_inf_iSup]
+  refine' iSup_mono' fun i => _
   rcases directed_of (· ≤ ·) i.1 i.2 with ⟨j, h₁, h₂⟩
   exact ⟨j, inf_le_inf (hf h₁) (hg h₂)⟩
-#align supr_inf_of_monotone supᵢ_inf_of_monotone
+#align supr_inf_of_monotone iSup_inf_of_monotone
 
-theorem supᵢ_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
+theorem iSup_inf_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨆ i, f i ⊓ g i) = (⨆ i, f i) ⊓ ⨆ i, g i :=
-  @supᵢ_inf_of_monotone α _ ιᵒᵈ _ _ f g hf.dual_left hg.dual_left
-#align supr_inf_of_antitone supᵢ_inf_of_antitone
+  @iSup_inf_of_monotone α _ ιᵒᵈ _ _ f g hf.dual_left hg.dual_left
+#align supr_inf_of_antitone iSup_inf_of_antitone
 
 instance Pi.frame {ι : Type _} {π : ι → Type _} [∀ i, Frame (π i)] : Frame (∀ i, π i) :=
   { Pi.completeLattice with
-    inf_supₛ_le_supᵢ_inf := fun a s i => by
-      simp only [supₛ_apply, supᵢ_apply, inf_apply, inf_supᵢ_eq, ← supᵢ_subtype'']; rfl }
+    inf_sSup_le_iSup_inf := fun a s i => by
+      simp only [sSup_apply, iSup_apply, inf_apply, inf_iSup_eq, ← iSup_subtype'']; rfl }
 #align pi.frame Pi.frame
 
 -- see Note [lower instance priority]
 instance (priority := 100) Frame.toDistribLattice : DistribLattice α :=
   DistribLattice.ofInfSupLe fun a b c => by
-    rw [← supₛ_pair, ← supₛ_pair, inf_supₛ_eq, ← supₛ_image, image_pair]
+    rw [← sSup_pair, ← sSup_pair, inf_sSup_eq, ← sSup_image, image_pair]
 #align frame.to_distrib_lattice Frame.toDistribLattice
 
 end Frame
@@ -188,68 +188,68 @@ section Coframe
 variable [Coframe α] {s t : Set α} {a b : α}
 
 instance OrderDual.frame : Frame αᵒᵈ :=
-  { OrderDual.completeLattice α with inf_supₛ_le_supᵢ_inf := @Coframe.infᵢ_sup_le_sup_infₛ α _ }
+  { OrderDual.completeLattice α with inf_sSup_le_iSup_inf := @Coframe.iInf_sup_le_sup_sInf α _ }
 #align order_dual.frame OrderDual.frame
 
-theorem sup_infₛ_eq : a ⊔ infₛ s = ⨅ b ∈ s, a ⊔ b :=
-  @inf_supₛ_eq αᵒᵈ _ _ _
-#align sup_Inf_eq sup_infₛ_eq
+theorem sup_sInf_eq : a ⊔ sInf s = ⨅ b ∈ s, a ⊔ b :=
+  @inf_sSup_eq αᵒᵈ _ _ _
+#align sup_Inf_eq sup_sInf_eq
 
-theorem infₛ_sup_eq : infₛ s ⊔ b = ⨅ a ∈ s, a ⊔ b :=
-  @supₛ_inf_eq αᵒᵈ _ _ _
-#align Inf_sup_eq infₛ_sup_eq
+theorem sInf_sup_eq : sInf s ⊔ b = ⨅ a ∈ s, a ⊔ b :=
+  @sSup_inf_eq αᵒᵈ _ _ _
+#align Inf_sup_eq sInf_sup_eq
 
-theorem infᵢ_sup_eq (f : ι → α) (a : α) : (⨅ i, f i) ⊔ a = ⨅ i, f i ⊔ a :=
-  @supᵢ_inf_eq αᵒᵈ _ _ _ _
-#align infi_sup_eq infᵢ_sup_eq
+theorem iInf_sup_eq (f : ι → α) (a : α) : (⨅ i, f i) ⊔ a = ⨅ i, f i ⊔ a :=
+  @iSup_inf_eq αᵒᵈ _ _ _ _
+#align infi_sup_eq iInf_sup_eq
 
-theorem sup_infᵢ_eq (a : α) (f : ι → α) : (a ⊔ ⨅ i, f i) = ⨅ i, a ⊔ f i :=
-  @inf_supᵢ_eq αᵒᵈ _ _ _ _
-#align sup_infi_eq sup_infᵢ_eq
+theorem sup_iInf_eq (a : α) (f : ι → α) : (a ⊔ ⨅ i, f i) = ⨅ i, a ⊔ f i :=
+  @inf_iSup_eq αᵒᵈ _ _ _ _
+#align sup_infi_eq sup_iInf_eq
 
-theorem infᵢ₂_sup_eq {f : ∀ i, κ i → α} (a : α) : (⨅ (i) (j), f i j) ⊔ a = ⨅ (i) (j), f i j ⊔ a :=
-  @supᵢ₂_inf_eq αᵒᵈ _ _ _ _ _
-#align binfi_sup_eq infᵢ₂_sup_eq
+theorem iInf₂_sup_eq {f : ∀ i, κ i → α} (a : α) : (⨅ (i) (j), f i j) ⊔ a = ⨅ (i) (j), f i j ⊔ a :=
+  @iSup₂_inf_eq αᵒᵈ _ _ _ _ _
+#align binfi_sup_eq iInf₂_sup_eq
 
-theorem sup_infᵢ₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊔ ⨅ (i) (j), f i j) = ⨅ (i) (j), a ⊔ f i j :=
-  @inf_supᵢ₂_eq αᵒᵈ _ _ _ _ _
-#align sup_binfi_eq sup_infᵢ₂_eq
+theorem sup_iInf₂_eq {f : ∀ i, κ i → α} (a : α) : (a ⊔ ⨅ (i) (j), f i j) = ⨅ (i) (j), a ⊔ f i j :=
+  @inf_iSup₂_eq αᵒᵈ _ _ _ _ _
+#align sup_binfi_eq sup_iInf₂_eq
 
-theorem infᵢ_sup_infᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
+theorem iInf_sup_iInf {ι ι' : Type _} {f : ι → α} {g : ι' → α} :
     ((⨅ i, f i) ⊔ ⨅ i, g i) = ⨅ i : ι × ι', f i.1 ⊔ g i.2 :=
-  @supᵢ_inf_supᵢ αᵒᵈ _ _ _ _ _
-#align infi_sup_infi infᵢ_sup_infᵢ
+  @iSup_inf_iSup αᵒᵈ _ _ _ _ _
+#align infi_sup_infi iInf_sup_iInf
 
-theorem binfᵢ_sup_binfᵢ {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
+theorem biInf_sup_biInf {ι ι' : Type _} {f : ι → α} {g : ι' → α} {s : Set ι} {t : Set ι'} :
     ((⨅ i ∈ s, f i) ⊔ ⨅ j ∈ t, g j) = ⨅ p ∈ s ×ˢ t, f (p : ι × ι').1 ⊔ g p.2 :=
-  @bsupᵢ_inf_bsupᵢ αᵒᵈ _ _ _ _ _ _ _
-#align binfi_sup_binfi binfᵢ_sup_binfᵢ
+  @biSup_inf_biSup αᵒᵈ _ _ _ _ _ _ _
+#align binfi_sup_binfi biInf_sup_biInf
 
-theorem infₛ_sup_infₛ : infₛ s ⊔ infₛ t = ⨅ p ∈ s ×ˢ t, (p : α × α).1 ⊔ p.2 :=
-  @supₛ_inf_supₛ αᵒᵈ _ _ _
-#align Inf_sup_Inf infₛ_sup_infₛ
+theorem sInf_sup_sInf : sInf s ⊔ sInf t = ⨅ p ∈ s ×ˢ t, (p : α × α).1 ⊔ p.2 :=
+  @sSup_inf_sSup αᵒᵈ _ _ _
+#align Inf_sup_Inf sInf_sup_sInf
 
-theorem infᵢ_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
+theorem iInf_sup_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (swap (· ≤ ·))] {f g : ι → α}
     (hf : Monotone f) (hg : Monotone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
-  @supᵢ_inf_of_antitone αᵒᵈ _ _ _ _ _ _ hf.dual_right hg.dual_right
-#align infi_sup_of_monotone infᵢ_sup_of_monotone
+  @iSup_inf_of_antitone αᵒᵈ _ _ _ _ _ _ hf.dual_right hg.dual_right
+#align infi_sup_of_monotone iInf_sup_of_monotone
 
-theorem infᵢ_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
+theorem iInf_sup_of_antitone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
     (hf : Antitone f) (hg : Antitone g) : (⨅ i, f i ⊔ g i) = (⨅ i, f i) ⊔ ⨅ i, g i :=
-  @supᵢ_inf_of_monotone αᵒᵈ _ _ _ _ _ _ hf.dual_right hg.dual_right
-#align infi_sup_of_antitone infᵢ_sup_of_antitone
+  @iSup_inf_of_monotone αᵒᵈ _ _ _ _ _ _ hf.dual_right hg.dual_right
+#align infi_sup_of_antitone iInf_sup_of_antitone
 
 instance Pi.coframe {ι : Type _} {π : ι → Type _} [∀ i, Coframe (π i)] : Coframe (∀ i, π i) :=
   { Pi.completeLattice with
-    infᵢ_sup_le_sup_infₛ := fun a s i => by
-      simp only [infₛ_apply, infᵢ_apply, sup_apply, sup_infᵢ_eq, ← infᵢ_subtype'']; rfl }
+    iInf_sup_le_sup_sInf := fun a s i => by
+      simp only [sInf_apply, iInf_apply, sup_apply, sup_iInf_eq, ← iInf_subtype'']; rfl }
 #align pi.coframe Pi.coframe
 
 -- see Note [lower instance priority]
 instance (priority := 100) Coframe.toDistribLattice : DistribLattice α :=
   { ‹Coframe α› with
     le_sup_inf := fun a b c => by
-      rw [← infₛ_pair, ← infₛ_pair, sup_infₛ_eq, ← infₛ_image, image_pair] }
+      rw [← sInf_pair, ← sInf_pair, sup_sInf_eq, ← sInf_image, image_pair] }
 #align coframe.to_distrib_lattice Coframe.toDistribLattice
 
 end Coframe
@@ -282,41 +282,41 @@ instance Pi.completeBooleanAlgebra {ι : Type _} {π : ι → Type _}
 
 instance Prop.completeBooleanAlgebra : CompleteBooleanAlgebra Prop :=
   { Prop.booleanAlgebra, Prop.completeLattice with
-    infᵢ_sup_le_sup_infₛ := fun p s =>
-      Iff.mp <| by simp only [forall_or_left, infᵢ_Prop_eq, infₛ_Prop_eq, sup_Prop_eq]
-    inf_supₛ_le_supᵢ_inf := fun p s =>
+    iInf_sup_le_sup_sInf := fun p s =>
+      Iff.mp <| by simp only [forall_or_left, iInf_Prop_eq, sInf_Prop_eq, sup_Prop_eq]
+    inf_sSup_le_iSup_inf := fun p s =>
       Iff.mp <| by
-        simp only [inf_Prop_eq, exists_and_left, supᵢ_Prop_eq, supₛ_Prop_eq, exists_prop] }
+        simp only [inf_Prop_eq, exists_and_left, iSup_Prop_eq, sSup_Prop_eq, exists_prop] }
 #align Prop.complete_boolean_algebra Prop.completeBooleanAlgebra
 
 section CompleteBooleanAlgebra
 
 variable [CompleteBooleanAlgebra α] {a b : α} {s : Set α} {f : ι → α}
 
-theorem compl_infᵢ : infᵢ fᶜ = ⨆ i, f iᶜ :=
+theorem compl_iInf : iInf fᶜ = ⨆ i, f iᶜ :=
   le_antisymm
-    (compl_le_of_compl_le <| le_infᵢ fun i => compl_le_of_compl_le <|
-      le_supᵢ (HasCompl.compl ∘ f) i)
-    (supᵢ_le fun _ => compl_le_compl <| infᵢ_le _ _)
-#align compl_infi compl_infᵢ
+    (compl_le_of_compl_le <| le_iInf fun i => compl_le_of_compl_le <|
+      le_iSup (HasCompl.compl ∘ f) i)
+    (iSup_le fun _ => compl_le_compl <| iInf_le _ _)
+#align compl_infi compl_iInf
 
-theorem compl_supᵢ : supᵢ fᶜ = ⨅ i, f iᶜ :=
-  compl_injective (by simp [compl_infᵢ])
-#align compl_supr compl_supᵢ
+theorem compl_iSup : iSup fᶜ = ⨅ i, f iᶜ :=
+  compl_injective (by simp [compl_iInf])
+#align compl_supr compl_iSup
 
-theorem compl_infₛ : infₛ sᶜ = ⨆ i ∈ s, iᶜ := by simp only [infₛ_eq_infᵢ, compl_infᵢ]
-#align compl_Inf compl_infₛ
+theorem compl_sInf : sInf sᶜ = ⨆ i ∈ s, iᶜ := by simp only [sInf_eq_iInf, compl_iInf]
+#align compl_Inf compl_sInf
 
-theorem compl_supₛ : supₛ sᶜ = ⨅ i ∈ s, iᶜ := by simp only [supₛ_eq_supᵢ, compl_supᵢ]
-#align compl_Sup compl_supₛ
+theorem compl_sSup : sSup sᶜ = ⨅ i ∈ s, iᶜ := by simp only [sSup_eq_iSup, compl_iSup]
+#align compl_Sup compl_sSup
 
-theorem compl_infₛ' : infₛ sᶜ = supₛ (HasCompl.compl '' s) :=
-  compl_infₛ.trans supₛ_image.symm
-#align compl_Inf' compl_infₛ'
+theorem compl_sInf' : sInf sᶜ = sSup (HasCompl.compl '' s) :=
+  compl_sInf.trans sSup_image.symm
+#align compl_Inf' compl_sInf'
 
-theorem compl_supₛ' : supₛ sᶜ = infₛ (HasCompl.compl '' s) :=
-  compl_supₛ.trans infₛ_image.symm
-#align compl_Sup' compl_supₛ'
+theorem compl_sSup' : sSup sᶜ = sInf (HasCompl.compl '' s) :=
+  compl_sSup.trans sInf_image.symm
+#align compl_Sup' compl_sSup'
 
 end CompleteBooleanAlgebra
 
@@ -327,15 +327,15 @@ section lift
 @[reducible]
 protected def Function.Injective.frame [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α] [Bot α]
     [Frame β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
-    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_supₛ : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
-    (map_infₛ : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
+    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
+    (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
     Frame α :=
-  { hf.completeLattice f map_sup map_inf map_supₛ map_infₛ map_top map_bot with
-    inf_supₛ_le_supᵢ_inf := fun a s => by
-      change f (a ⊓ supₛ s) ≤ f _
-      rw [← supₛ_image, map_inf, map_supₛ s, inf_supᵢ₂_eq]
+  { hf.completeLattice f map_sup map_inf map_sSup map_sInf map_top map_bot with
+    inf_sSup_le_iSup_inf := fun a s => by
+      change f (a ⊓ sSup s) ≤ f _
+      rw [← sSup_image, map_inf, map_sSup s, inf_iSup₂_eq]
       simp_rw [← map_inf]
-      exact ((map_supₛ _).trans supᵢ_image).ge }
+      exact ((map_sSup _).trans iSup_image).ge }
 #align function.injective.frame Function.Injective.frame
 
 -- See note [reducible non-instances]
@@ -343,15 +343,15 @@ protected def Function.Injective.frame [Sup α] [Inf α] [SupSet α] [InfSet α]
 @[reducible]
 protected def Function.Injective.coframe [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α] [Bot α]
     [Coframe β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
-    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_supₛ : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
-    (map_infₛ : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
+    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
+    (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
     Coframe α :=
-  { hf.completeLattice f map_sup map_inf map_supₛ map_infₛ map_top map_bot with
-    infᵢ_sup_le_sup_infₛ := fun a s => by
-      change f _ ≤ f (a ⊔ infₛ s)
-      rw [← infₛ_image, map_sup, map_infₛ s, sup_infᵢ₂_eq]
+  { hf.completeLattice f map_sup map_inf map_sSup map_sInf map_top map_bot with
+    iInf_sup_le_sup_sInf := fun a s => by
+      change f _ ≤ f (a ⊔ sInf s)
+      rw [← sInf_image, map_sup, map_sInf s, sup_iInf₂_eq]
       simp_rw [← map_sup]
-      exact ((map_infₛ _).trans infᵢ_image).le }
+      exact ((map_sInf _).trans iInf_image).le }
 #align function.injective.coframe Function.Injective.coframe
 
 -- See note [reducible non-instances]
@@ -360,10 +360,10 @@ protected def Function.Injective.coframe [Sup α] [Inf α] [SupSet α] [InfSet 
 protected def Function.Injective.completeDistribLattice [Sup α] [Inf α] [SupSet α] [InfSet α]
     [Top α] [Bot α] [CompleteDistribLattice β] (f : α → β) (hf : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
-    (map_supₛ : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a) (map_infₛ : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a)
+    (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a) (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a)
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : CompleteDistribLattice α :=
-  { hf.frame f map_sup map_inf map_supₛ map_infₛ map_top map_bot,
-    hf.coframe f map_sup map_inf map_supₛ map_infₛ map_top map_bot with }
+  { hf.frame f map_sup map_inf map_sSup map_sInf map_top map_bot,
+    hf.coframe f map_sup map_inf map_sSup map_sInf map_top map_bot with }
 #align function.injective.complete_distrib_lattice Function.Injective.completeDistribLattice
 
 -- See note [reducible non-instances]
@@ -372,11 +372,11 @@ protected def Function.Injective.completeDistribLattice [Sup α] [Inf α] [SupSe
 protected def Function.Injective.completeBooleanAlgebra [Sup α] [Inf α] [SupSet α] [InfSet α]
     [Top α] [Bot α] [HasCompl α] [SDiff α] [CompleteBooleanAlgebra β] (f : α → β)
     (hf : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
-    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_supₛ : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
-    (map_infₛ : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥)
+    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a)
+    (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥)
     (map_compl : ∀ a, f (aᶜ) = f aᶜ) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
     CompleteBooleanAlgebra α :=
-  { hf.completeDistribLattice f map_sup map_inf map_supₛ map_infₛ map_top map_bot,
+  { hf.completeDistribLattice f map_sup map_inf map_sSup map_sInf map_top map_bot,
     hf.booleanAlgebra f map_sup map_inf map_top map_bot map_compl map_sdiff with }
 #align function.injective.complete_boolean_algebra Function.Injective.completeBooleanAlgebra
 
@@ -390,20 +390,20 @@ variable (s : Set PUnit.{u + 1}) (x y : PUnit.{u + 1})
 instance completeBooleanAlgebra : CompleteBooleanAlgebra PUnit := by
   refine'
     { PUnit.booleanAlgebra with
-      supₛ := fun _ => unit
-      infₛ := fun _ => unit
+      sSup := fun _ => unit
+      sInf := fun _ => unit
       .. } <;>
   intros <;>
   first|trivial
 
 @[simp]
-theorem supₛ_eq : supₛ s = unit :=
+theorem sSup_eq : sSup s = unit :=
   rfl
-#align punit.Sup_eq PUnit.supₛ_eq
+#align punit.Sup_eq PUnit.sSup_eq
 
 @[simp]
-theorem infₛ_eq : infₛ s = unit :=
+theorem sInf_eq : sInf s = unit :=
   rfl
-#align punit.Inf_eq PUnit.infₛ_eq
+#align punit.Inf_eq PUnit.sInf_eq
 
 end PUnit
chore: forward port leanprover-community/mathlib#18657 (#3164)

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Yaël Dillies
 
 ! This file was ported from Lean 3 source module order.complete_boolean_algebra
-! leanprover-community/mathlib commit c5c7e2760814660967bc27f0de95d190a22297f3
+! leanprover-community/mathlib commit 71b36b6f3bbe3b44e6538673819324d3ee9fcc96
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -325,7 +325,7 @@ section lift
 -- See note [reducible non-instances]
 /-- Pullback an `Order.Frame` along an injection. -/
 @[reducible]
-protected def Function.Injective.frame [HasSup α] [HasInf α] [SupSet α] [InfSet α] [Top α] [Bot α]
+protected def Function.Injective.frame [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α] [Bot α]
     [Frame β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_supₛ : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
     (map_infₛ : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
@@ -341,7 +341,7 @@ protected def Function.Injective.frame [HasSup α] [HasInf α] [SupSet α] [InfS
 -- See note [reducible non-instances]
 /-- Pullback an `Order.Coframe` along an injection. -/
 @[reducible]
-protected def Function.Injective.coframe [HasSup α] [HasInf α] [SupSet α] [InfSet α] [Top α] [Bot α]
+protected def Function.Injective.coframe [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α] [Bot α]
     [Coframe β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_supₛ : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
     (map_infₛ : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) :
@@ -357,7 +357,7 @@ protected def Function.Injective.coframe [HasSup α] [HasInf α] [SupSet α] [In
 -- See note [reducible non-instances]
 /-- Pullback a `CompleteDistribLattice` along an injection. -/
 @[reducible]
-protected def Function.Injective.completeDistribLattice [HasSup α] [HasInf α] [SupSet α] [InfSet α]
+protected def Function.Injective.completeDistribLattice [Sup α] [Inf α] [SupSet α] [InfSet α]
     [Top α] [Bot α] [CompleteDistribLattice β] (f : α → β) (hf : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_supₛ : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a) (map_infₛ : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a)
@@ -369,7 +369,7 @@ protected def Function.Injective.completeDistribLattice [HasSup α] [HasInf α]
 -- See note [reducible non-instances]
 /-- Pullback a `CompleteBooleanAlgebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.completeBooleanAlgebra [HasSup α] [HasInf α] [SupSet α] [InfSet α]
+protected def Function.Injective.completeBooleanAlgebra [Sup α] [Inf α] [SupSet α] [InfSet α]
     [Top α] [Bot α] [HasCompl α] [SDiff α] [CompleteBooleanAlgebra β] (f : α → β)
     (hf : Function.Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_supₛ : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a)
Diff
@@ -134,7 +134,7 @@ theorem supᵢ_disjoint_iff {f : ι → α} : Disjoint (⨆ i, f i) a ↔ ∀ i,
 #align supr_disjoint_iff supᵢ_disjoint_iff
 
 theorem disjoint_supᵢ_iff {f : ι → α} : Disjoint a (⨆ i, f i) ↔ ∀ i, Disjoint a (f i) := by
-  simpa only [Disjoint.comm] using @supᵢ_disjoint_iff
+  simpa only [disjoint_comm] using @supᵢ_disjoint_iff
 #align disjoint_supr_iff disjoint_supᵢ_iff
 
 theorem supᵢ₂_disjoint_iff {f : ∀ i, κ i → α} :
@@ -152,7 +152,7 @@ theorem supₛ_disjoint_iff {s : Set α} : Disjoint (supₛ s) a ↔ ∀ b ∈ s
 #align Sup_disjoint_iff supₛ_disjoint_iff
 
 theorem disjoint_supₛ_iff {s : Set α} : Disjoint a (supₛ s) ↔ ∀ b ∈ s, Disjoint a b := by
-  simpa only [Disjoint.comm] using @supₛ_disjoint_iff
+  simpa only [disjoint_comm] using @supₛ_disjoint_iff
 #align disjoint_Sup_iff disjoint_supₛ_iff
 
 theorem supᵢ_inf_of_monotone {ι : Type _} [Preorder ι] [IsDirected ι (· ≤ ·)] {f g : ι → α}
feat: Port algebra.punit_instances (#1319)

Port of algebra.punit_instances

Co-authored-by: Arien Malec <arien.malec@gmail.com> Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com>

Diff
@@ -387,7 +387,7 @@ namespace PUnit
 variable (s : Set PUnit.{u + 1}) (x y : PUnit.{u + 1})
 
 -- Porting note: we don't have `refine_struct` ported yet, so we do it by hand
-instance : CompleteBooleanAlgebra PUnit := by
+instance completeBooleanAlgebra : CompleteBooleanAlgebra PUnit := by
   refine'
     { PUnit.booleanAlgebra with
       supₛ := fun _ => unit
feat: port Order.CompleteBooleanAlgebra (#1107)

Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Dependencies 55

56 files ported (100.0%)
30960 lines ported (100.0%)

All dependencies are ported!